
Northumbria Research Link

Citation: Thompson, Ryan, Perry, John, Stanforth, Stephen and Dean, John (2018) Rapid
detection of hydrogen sulfide produced by pathogenic bacteria in focused growth media
using SHS-MCC-GC-IMS. Microchemical Journal, 140. pp. 232-240. ISSN 0026-265X 

Published by: Elsevier

URL:  https://doi.org/10.1016/j.microc.2018.04.026
<https://doi.org/10.1016/j.microc.2018.04.026>

This  version  was  downloaded  from  Northumbria  Research  Link:
http://nrl.northumbria.ac.uk/id/eprint/34138/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of  the research,  please visit  the publisher’s website (a subscription
may be required.)

                        

http://nrl.northumbria.ac.uk/policies.html


1 
 

Rapid detection of hydrogen sulfide produced by pathogenic bacteria in 
focused growth media using SHS-MCC-GC-IMS 

 
Ryan Thompsona, John D. Perryb, Stephen P. Stanfortha and John R. Deana 

 

a Department of Applied Sciences, Northumbria University, Ellison Building, 

Newcastle Upon Tyne, NE1 8ST, UK 
b Department of Microbiology, Freeman Hospital, Newcastle Upon Tyne, NE7 

7DN, UK 

Abstract 

A new rapid method for the detection of hydrogen sulfide from pathogenic bacteria is 

reported. The developed method, static headspace – multi-capillary column - gas 

chromatography - ion mobility spectrometry (SHS-MCC-GC-IMS), has been applied 

to detect hydrogen sulfide evolution from 61 bacteria. The developed method has 

been compared against a standard triple sugar iron (TSI) agar approach, and a 

modified single sugar iron (SSI) agar approach. Hydrogen sulfide detection by SHS-

MCC-GC-IMS using an initial inoculum of 1-1.5 x 105 CFU/mL can be achieved 

within 6 hours, after incubation at 37 °C, with a limit of detection of 1.6 ng/mL. Data 

for the standard agar method against the new instrumental approach, and the 

modified agar method against the new instrumental approach, are compared. The 

specificity for the new method compared against the standard method and the 

modified agar approach across all 61 strains was 85.2% and 88.5% respectively, 

and 86.7% and 91.3% across the 23 Salmonella strains tested.  

 

Keywords: hydrogen sulfide; pathogenic bacteria; gas chromatography; ion mobility 
spectrometry. 

 

Introduction 
Hydrogen sulfide (H2S) is a volatile compound with a characteristic rotten egg odour 

at low concentrations, and is commonly associated with bacterial contamination of 

food and water sources, particularly involving bacteria of the family 

Enterobacteriaceae [1]. It is one of the earliest volatile compounds identified as a 

product of microbial decomposition. One of the first documented studies of microbial 
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H2S was published in 1875 [2]. The Doctoral Thesis [2] primarily focused on 

examining H2S production from undefined microbes associated with chicken egg 

spoilage using lead acetate paper as the method of detection.  Further work, during 

the same period, conducted by Orlowski (1895) [3] described H2S production by 

Typhoid bacillus; according to current taxonomy this strain is likely to be a sub-

species of Salmonella enterica. Further studies have examined H2S production by 

Salmonella and other putrefactive organisms isolated from contaminated soil and 

faeces, and have been instrumental in the improvement of sanitation procedures for 

public drinking water [4-6]. Production of H2S is particularly prevalent in members of 

the Gram-negative Enterobacteriaceae family, and is particularly associated with the 

enterica sub-species of the genus Salmonella [7]. However, H2S has also been 

positively identified in Citrobacter spp., Proteus spp., Edwardsiella spp. [7], as well 

as in the non-Enterobacteriaceae Gram-negative bacterial genus Shewanella, which 

are often involved in marine carrion cycles [8]. The most infamous members of the 

Enterobacteriaceae family, Escherichia coli serotypes, are generally accepted as 

H2S negative according to current testing methods [9]. However, many studies have 

shown positive H2S production from E. coli strains isolated from various 

backgrounds. For example Lautrop et al. isolated 26 different H2S positive E. coli 

strains from 25 different patients over a period of 9 months[10], a similar situation 

was also reported by Maker et al.[11] Furthermore, Magalhaes et al. [12] isolated 

positive H2S producing E. coli strains from swine livestock. Clearly there is much 

contradiction throughout the literature regarding the H2S production status of many 

bacteria, which when combined with a lack of recent studies into bacterial H2S 

production, leads to a potentially misrepresented consensus. 

 

Microbial sulfate reduction has been identified as one of the earliest complex 

biological pathways to develop, with isotopic sedimentary data indicating its 

emergence as early as 3.47 billion years ago [12]. Production of H2S by microbes is 

a by-product of microbial anaerobic respiration, where sulfate is used in place of 

oxygen as a terminal electron acceptor [13]. Hydrogen sulfide production is highly 

variable throughout microorganisms at multiple taxonomic ranks, and there are 

multiple production pathways dependent on the type and concentration of the sulfur 

source present in their immediate environment. The main sources utilised by 

microbes for H2S production are the sulfur containing amino acids cystine and 
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cysteine, and thiosulfate. Hydrogen sulphide production can also be achieved 

through utilisation of tetrathionate, sulfite, and sulfate, however this is less prevalent 

[14]. Cystine and cysteine are generally acquired through protein decomposition, 

whereas other sulfur containing compounds such as thiosulfate are generally found 

in anaerobic environments containing decaying organic matter, primarily soils and 

sea/river beds [15].  

The pathway for cysteine utilisation for H2S production has been somewhat 

explored, with cysteine desulfhydrase identified as the enzyme responsible [14], 

resulting in the formation of pyruvic acid, ammonia, and H2S, which is then liberated 

as a gas [16]. However, there is also evidence that H2S may be induced in response 

to excess cysteine as a protective mechanism against toxicity [17-19]. The enzyme 

responsible for thiosulfate utilisation has been identified as thiosulfate reductase, 

which reduces thiosulfate to sulfite and gaseous H2S [20, 21]. 

Current tests employed for the detection of bacterial H2S tend to rely on nutrient rich 

growth media supplemented with a sulfur source, usually including the addition of 

sodium thiosulfate, cystine, or cysteine hydrochloride, to induce significant 

production of H2S [14]. These media are also combined with a visible colour change 

following incubation; usually facilitated via metallic salts, such as, ferric ammonium 

citrate or lead acetate, which forms a black precipitate with H2S [7, 11]. One of the 

primary drawbacks of these methods is the subjective nature of the visual colour 

interpretation, which combined with relatively low sensitivity has meant that current 

methods have little application outside of differential taxonomic testing. This paper 

proposes a new method for the rapid and sensitive detection of H2S using static 

headspace – multi capillary column - gas chromatography - ion mobility spectrometry 

(SHS-MCC-GC-IMS), with potential future application for detection of bacterial 

contamination in food and water sources, as well as detection of bacteria within 

various human clinical samples. 

Experimental 
Materials and Reagents 
Meat extract, yeast extract, bacteriological peptone, lactose, tryptone soya agar, 

sodium sulphide (97%), hydrochloric acid, and Triple Sugar Iron agar were 
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purchased from Sigma-Aldrich (Dorset, UK). Sucrose, dextrose, sodium chloride, 

and sodium thiosulfate were purchased from Melford Laboratories Ltd. (Ipswich, UK).  

 

Instrumentation 
A static headspace-multi-capillary column-gas chromatography-ion mobility 

spectrometer (SHS-MCC-GC-IMS) manufactured by G.A.S.-Gesellschaft für 

Analytische Sensorsysteme mbH (Dortmund, Germany), was used.[22],[23] The 

instrument was fitted with an automatic sampler unit (CTC-PAL; CTC Analytics AG, 

Zwingen, Switzerland) and a heated gas-tight syringe. A multi-capillary column 

(MCC) (Multichrom, Novosibirsk, Russia) was used for the chromatographic 

separation. The MCC comprised a stainless steel tube, 20 cm × 3 mm ID, containing 

approximately 1000 parallel capillary tubes, 40 µm ID, coated with 0.2 µm film 

thickness of stationary phase (Carbowax 20M). Atmospheric pressure ionisation is 

generated by a Tritium (3H) solid state bonded source (β-radiation, 100–300 MBq 

with a half-life of 12.5 years). The IMS has a drift tube length of 50 mm. Separation 

in the IMS drift tube is achieved by applying an electric field of 2 kV to the ionized 

volatiles in a pulsed mode using an electronic shutter opening time of 100 µs. The 

drift gas was N2 (99.998%) with a drift pressure of 101 kPa (ambient pressure). 

Samples were run under the following operating conditions: incubation conditions 

(time, 3 min; and, temperature, 37 oC); MCC-IMS conditions (syringe temperature, 

50°C; injection temperature, 80 oC; injection volume, 2.5 mL; column temperature, 

40 oC; and, a column carrier gas flow programme rate, 5 mL/min with IMS conditions 

(temperature, 50 oC; and, drift gas flow rate, 500 mL/min). The total analysis time 

was 5 mins. All data was acquired in the negative ion mode and each spectrum is 

formed with the average of 12 scans. All data are processed using the LAV software 

(version 1.5.1, G.A.S). The experimental procedure has previously been reported for 

analysis of VOCs from bacteria [22-23].  
 

Preparation of H2S Standards 

Initially, nitrogen gas was continuously bubbled through 0.01 M aqueous 

hydrochloric acid solution for 30 minutes to expel any dissolved oxygen within the 

acid, as oxygen interferes with the generation of gaseous H2S. Then, H2S standards 

were prepared by dissolving 0.01 g (accurately weighed) of sodium sulfide in 100 mL 

of the previously prepared 0.01M HCl solution, liberating H2S gas to a stock 
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concentration of 0.1 mg/mL (100 µg/mL). From this stock solution, 1 mL was added 

to the previously prepared 0.01 M HCl solution to create a 1 µg/mL working solution. 

Using the working solution further dilutions were made in the concentration range 5 

to 500 ng/mL and analysed via SHS-MCC-GC-IMS. Control samples of the 0.01 M 

HCl were run during the analyses of the standards, alongside TSI broth samples, to 

allow for blank subtraction. In addition, H2S standards of 20, 40 and 60 ng/mL were 

prepared daily and ran on every test sampling day to compensate for any potential 

instrumental variance. 

Microbiology 
Bacteria used in this study were acquired from numerous sources, and are 

predominantly strains acquired from the National Collection of Type Cultures (NCTC) 

(Salisbury, UK) or other culture collections. Further wild and type culture strains were 

kindly provided by the Freeman Hospital, Newcastle UK, many of which were 

isolated from routine patient samples. Wild type Escherichia coli strains CPE 

14/15/20 and ES 17/20 were named so due to their antimicrobial resistance profiles 

(CPE = carbapenemase producing enterobacteriaceae, ES = Extended spectrum β 

lactamase). All bacterial strains used are shown Table 1, along with their 

identification number where applicable. The majority of the bacterial strains used in 

this study were of the family Enterobacteriaceae, which were selected due to their 

high association with human pathogenicity, and also because of their role in food 

and water contamination [24]. Furthermore, many of the bacteria were selected due 

to their relevance regarding human pathogenicity and antimicrobial resistance, such 

as Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and 

Enterobacter spp., organisms which are particularly relevant due to their status as 

ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, 

Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter species) 

pathogens [25, 26].  

 

TSI Broth Preparation 
To prepare the TSI broth, 1 g of dextrose, 10 g of lactose, 10 g of sucrose, 3 g of 

meat extract, 3 g of yeast extract, 20 g of bacteriological peptone, 5 g of sodium 

chloride, and 0.3 g of sodium thiosulfate were dissolved in 1 L of distilled water and 

subsequently sterilized via an autoclave at 121°C for 15 minutes. The recipe used for 
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this TSI broth mimics the TSI Agar recipe (Sigma-Aldrich, product code: 92499), with 

the omission of agar, phenol red, and ferric ammonium citrate. 

 

Agar Slopes Preparation & Procedure 
To prepare the TSI agar slopes, 64.6 g of the TSI agar powder (Oxoid, Basingstoke, 

UK) was added to 1 litre of deionised water (Milli-Q, Integral 3, 18 MΩ cm) and 

brought to boil using a hot plate with a built-in magnetic stirrer. SSI agar slopes were 

prepared using an identical composition to that of TSI agar slopes, with the omission 

of sucrose and lactose. For both agar types, 7 mL of the freshly boiled agar mixture 

was then aliquoted into 20 mL headspace vials (with lids loosely screwed on) and 

subsequently autoclaved at 121°C for 15 minutes to achieve sterilization. The 

sterilized agar solutions were then removed and allowed to set at room temperature 

for approximately 30 minutes, whilst cooling the vials were positioned at an 

approximately 45° angle to allow for a sufficient slope to form. Once completely set, 

the agar slopes were either used immediately or refrigerated at 8°C for future use.  

To inoculate the agar slopes, colonies were picked from one-day old cultures on 

Tryptone soya agar plates and streaked thoroughly across the surface of the slopes, 

before stabbing through the agar to bottom of the tube (ensuring this step was only 

carried out once). The lids were screwed back on the vials, ensuring only a loose fit, 

and the vials were then placed in an incubator set to 37°C. The standard method for 

TSI agar slopes calls for the observations to be carried out only after 24 hours, 

however we also observed the slopes following 6 hours incubation, to allow a 

comparison with the new proposed method. Observations were also recorded on SSI 

agar slopes at 6, 24, and 96 hours incubation.  

Bacterial Growth Conditions & Sample Preparation 
Bacteria were cultured overnight on Tryptone Soya Agar at 37°C one day prior to 

sample preparation. Following overnight incubation, fresh colonies were removed 

from the plates and inoculated into sterile TSI broth. The inoculated broth was 

adjusted to an absorbance of 0.132 at OD600nm (equivalent to 0.5 McFarland units), 

giving an approximate cell suspension of 1-1.5 x 108 CFU / mL, 10 µL of the bacterial 

suspension was then added to a 20 mL clear headspace vial containing 9990 µL 

sterile TSI broth, giving an approximate final inoculation of 1-1.5 x 105 CFU / mL 

prior to incubation. The bacterial suspensions were then immediately sampled via 
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SHS-MCC-GC-IMS before being placed in an incubator set to 37°C and were 

subsequently sampled every half hour for 8 hours, and sampled again after 24 hours 

incubation. Based on the result of the time study, a pre-incubation inoculum study 

was conducted where Salmonella stanley and Salmonella typhimurium suspensions 

of 1-1.5 x 102, 1-1.5 x 103,1-1.5 x 104, and 1-1.5 x 105 CFU / mL were created and 

analysed via SHS-MCC-GC-IMS after 6 hours incubation at 37°C.  

 

Results and Discussion 
Initially the analytical performance of SHS-MCC-GC-IMS to detect H2S in negative 

ion mode, was investigated. In negative ion mode fast electrons from the tritium β-

radiation source react with the nitrogen carrier gas as follows: 

N2 + β → N2+ + e- 

As air is present in the surrounding atmosphere further reactions take place with 

oxygen and water molecules to form the stable Reactant Ion Peak (RIP): 

O2 + e- → O2- 

H2O + O2- → O2-.H2O 

H2O + O2-.H2O → O2-(H2O)2 

Subsequently the stable RIP (O2-(H2O)2) interacts with H2S to form a cluster ion as 

follows: 

O2-(H2O)2 + H2S → [H2S.O2-(H2O)2] 
 
The cluster ion ([H2S.O2-(H2O)2]) subsequently stabilises to form the product ion 

(monomer) (H2S.O2-(H2O)): 

[H2S.O2-(H2O)2] → H2S.O2-(H2O) + H2O 

Experimentally, H2S had a monomer with a retention time of 5.35 ± 0.43 s and drift 

time of 5.75 ± 0.027 (n = 10) (Figure 1). The relative drift time (tr.drift) for H2S was 

calculated as follows: 

tr.drift = td / td.RIP               

Where td is the measured drift time of H2S (5.75 ms) and td.RIP is the drift time of the 

reactant ion peak (RIP) in negative ion mode (0.187 ms). The normalised reduced 

ion mobility (Ko, cm2 V−1 s−1) can then be calculated for H2S. This was done by firstly 

calculating the normalised reduced ion mobility for the RIP (Ko(RIP)): 

 

Ko(RIP) =   [(L2/ E . tD(RIP)) . (P / Po) . (To / T)]   
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Where L is the length of the drift region (5 cm), E is the applied electrical field (2000 

V), tD(RIP) is the drift time of the RIP (0.187 x 10-3 s), P is the pressure of the drift gas 

(hPa), Po is the standard atmospheric pressure (1013.2 hPa), T is the temperature of 

the drift gas (323 K), and To is the standard temperature (273 K). The normalised 

reduced ion mobility for the RIP (Ko(RIP)) was experimentally determined to be 56.50 

cm2 V−1 s−1 (n = 20). Subsequently, the normalised reduced ion mobility (Ko) for H2S 

was then calculated: 

K0(H2S) = FIMS / tD(H2S) 

Where FIMS is the IMS factor (cm2 V-1) which can be derived as follows: FIMS = K0(RIP) 

x tD(RIP); where Ko(RIP) is 56.50 cm2 V−1 s−1 and tD(RIP) (0.187 x 10-3 s). Finally, using 

the FIMS value of 0.01056 cm-1 V-1, the normalised reduced ion mobility for H2S was 

calculated as 1.837 cm2 V−1 s−1 (with a range of 1.828 – 1.845 cm2 V−1 s−1).   

 

The calibration data for H2S was determined (Figure 2); a non-linear calibration 

graph for H2S was determined over the concentration range 0 – 500 ng/mL. 

Quantification of bacterial samples was achieved using the equation y = (ab + cxd) / 

(b + xd), where the coefficients: a = 51.57, b = 24.44, c = 11828, d = 1.2322 gave a 

regression coefficient, r, of 0.9981. The limit of detection (LOD) and limit of 

quantification (LOQ), based on 3 or 10 x standard deviation of the blank, respectively 

was determined. The limit of detection was experimentally determined to be 1.6 

ng/mL while the limit of quantitation was experimentally determined as 5.5 ng/mL.  

In practice, the non-linear response for H2S at the higher concentrations was 

addressed in this work as follows: any bacterial samples producing an H2S 

concentration above 100 ng/mL were reported as >100 ng/mL. 

 

To determine the optimal balance between incubation time and pre-incubation 

inoculum size, an initial study was conducted on four of the test bacteria. 

Specifically, E. coli NCTC 12241 and E. coli K12 NCTC 8912 (both known to be H2S 

negative according to standard testing); and, S. Stanley, and S. typhimurium (both 

known to be H2S positive according to standard testing). An initial incubation time 

study, using SHS-MCC-GC-IMS, identified that bacteriologically produced H2S could 

be detected in as little as 6 hours incubation with an initial inoculum of 1-1.5 x 105 

CFU / mL (Figure 3). A further sample was also taken after 24 hours incubation and 

the determined H2S concentrations were: S. stanley > 100 ng/mL; S. typhimurium > 



9 
 

100 ng/mL; E. coli (NCTC 12241) 12.1 ng/mL; and, E. coli (K12 NCTC 8912) 24.5 

ng/mL. Based on these results and a 6 hour incubation period, a pre-incubation 

inoculum study was then conducted using S. stanley and S. typhimurium. The results 

(Figure 4) confirmed that the optimal initial inoculum for this incubation time period 

was 1-1.5 x 105 CFU / mL. Subsequent testing of the pathogenic bacteria was 

undertook, using SHS-MCC-GC-IMS, using a 6 hour incubation time with an initial 

inoculum of 1-1.5 x 105 CFU/mL. 

 

Triple Sugar Iron (TSI) agar slopes were developed primarily for the differentiation of 

Enterobacteriaceae strains, and therefore are not used solely for detection of H2S 

production. Other differential components included in TSI agar are glucose, sucrose, 

and lactose to assess microbial carbohydrate fermentation, as well as a pH indicator.  

The results of these aspects of the TSI agar test were deemed beyond the scope of 

this study, and therefore only the result of H2S production testing has been recorded. 

A disadvantage of TSI agar, in terms of monitoring H2S production, is the potential 

for products of carbohydrate fermentation interfering with the precipitate formation 

reaction between H2S and ferric ammonium citrate, thereby producing false negative 

results [27]. Due to this potential for erroneous results with this agar, it was decided 

to modify the composition of TSI agar to remove sucrose and lactose, creating single 

sugar iron (SSI) agar to be tested alongside the standard method, in comparison to 

our proposed analytical technique.  Table 1 shows all the bacteria tested for H2S 

production by traditional agar, the modified agar, and the proposed method. A total 

of 61 bacterial isolates were tested, all in duplicate. Of the 61 isolates tested, all 

were potential human pathogens, and 56 of which were members of the 

Enterobacteriaceae family. The results from the agar slopes were recorded following 

the recommended 24 hour incubation period, as well as after 6 hours incubation in 

order to compare against the incubation period utilised in the SHS-MCC-GC-IMS 

method. The SSI agar slope results were also recorded after 96 hours incubation.  

 

When compared with the standard method for H2S using TSI agar slopes, and a 24 

hour incubation, the new proposed 6 hour SHS-MCC-GC-IMS method was in 

agreement (with either positive or negative identification), on the basis of H2S 

production, in 85.2% (52/61) of the Gram-negative bacteria tested, and 14.8% (9/61) 

gave a different response for H2S than expected. Similarly, if the comparison with the 
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TSI agar slopes, based on a 6 hour incubation, is used to compare to the 6 hour 

SHS-MCC-GC-IMS then 86.9% (53/61) of the Gram-negative bacteria tested are in 

agreement, and 13.1% (8/61) gave a different response for H2S than expected. 

When the analytical method was compared against SSI agar slopes, agreement on 

H2S production was recorded in 88.5% (54/61) of the 61 bacteria tested, with 

differences coming from Salmonella Indiana and Enterobacter cloacae, which are 

known to ferment lactose [28] and sucrose [29], respectively.  

 

Of the 23 Salmonella strains tested on the standard 24 h TSI agar slopes, 20 were 

found to be H2S positive, to varying degrees (identified as significant-to-complete 

coverage of the agar) (Table1). Interestingly, the same results were also observed 

following just 6 hours incubation albeit of a lower threshold determination (i.e. a slight 

black precipitate). In the case of S. stanley however, only trace H2S was detected 

after 6 hour incubation on the agar slopes. Furthermore, when the same 23 

Salmonella isolates were tested via SHS-MCC-GC-IMS, 22/23 tested positive for 

H2S production, with only Salmonella gallinarum producing definitive H2S negative 

results on all testing methods. The Salmonella strains othmarschen, hadar, saint-

paul, and derby all produced H2S positive results on slopes whilst producing less 

than 1.6 ng/ml (<LOD) according to our analytical method; a potential explanation for 

this could be that the 6 hours incubation utilised was not sufficient for these strains to 

produce a significant quantity of H2S.  Interestingly, Salmonella senftenburg was 

consistently H2S negative on slopes, but produced a small signal for H2S according 

to our method (<LOD); potentially highlighting an issue with indicator sensitivity in the 

TSI medium. A further difference was noted for S. indiana which produced a positive 

response for H2S (9.8 ng/mL), following 6 hours incubation, with detection by SHS-

MCC-GC-IMS, contrasting with the H2S negative response observed on TSI slopes. 

This is due to the ability of S. indiana to ferment lactose [28], the product of which 

has been shown to mask precipitate formation [30], therefore producing a false 

negative for H2S production on TSI agar slopes. This is compounded in the H2S 

production observed in S. Indiana on SSI agar slopes. Furthermore, the omission of 

ferric ammonium citrate from the TSI broth thereby allows any H2S produced to be 

released into the gaseous headspace and detected via SHS-MCC-GC-IMS.  
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Results obtained from the Citrobacter freundii and the Proteus isolates tested were 

all encouraging, showing that analysis via SHS-MCC-GC-IMS was able to 

consistently detect H2S production after just 6 hours incubation at 37°C with a low 

initial inoculum of 1-1.5 x 105 CFU / mL. Interestingly, it was observed that despite 

the far higher inoculum, both Citrobacter freundii isolates performed poorly on the 

TSI agar slope observations after 6 hours incubation, with C. freundii NCIMB 8645 

only producing trace H2S on both samples, and C. freundii NCTC 9750 only 

producing trace H2S in one sample. A possible explanation could be the ability of 

these strains to ferment sucrose and/or lactose, a notion which is supported by these 

strains increased H2S production activity on SSI agar slopes.   

 

All isolates of the following genera tested negative on both TSI agar slopes (at both 

incubation times) and using SHS-MCC-GC-IMS detection; Escherichia, Klebsiella, 

Serratia, Yersinia, Hafnia, Stenotrophomonas, Acinetobacter, and Burkholderia. Of 

the four Shigella species tested, only Shigella sonnei tested positive for H2S via 

SHS-MCC-GC-IMS, producing an average concentration of 7.6 ng/mL. This could 

therefore have potential as a method for the differentiation of Shigella sonnei from 

other Shigella species.  

 

In both Pseudomonas aeruginosa isolates, no H2S was detected after 6 hours 

incubation on slopes or using SHS-MCC-GC-IMS. Trace H2S was detected for both 

strains following 24 hours incubation on both TSI and SSI agar slopes, indicating that 

while they possess potential for H2S production; a significant incubation period and 

inoculum are required, precluding its use as an identifying biochemical characteristic.  

 

Conflicting results were also observed by SHS-MCC-GC-IMS analysis of 

Cronobacter sakazakii ATCC 29544, Providencia rettgeri NCTC 7475, and 

Providencia stuartii NCTC 10318, which all tested H2S positive. Cronobacter 

sakazakii is known to be able to ferment both lactose [31] and sucrose [32], however 

C. sakazakii was not observed to produce H2S on SSI agar at either 6 or 24 hours 

incubation, but did produce trace H2S after 96 hours incubation. No difference was 

noted between TSI and SSI agar slopes for either Providencia strain, concluding that 

sugar fermentation activity had no effect on H2S detection. These findings therefore 

suggests that whilst these strains possess potential for H2S production, a significant 
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incubation period and inoculum are required, precluding its use as an identifying 

biochemical characteristic. 

 

A surprising result is the minimal evolution of H2S (<LOD) according to SHS-MCC-

GC-IMS detection by Edwardsiella tarda NCTC 11934. This contrasted with the 

strongly positive H2S production observed on TSI agar slope following 24 hours 

incubation. The low H2S responses using both approaches at 6 hour incubation are 

probably linked to the somewhat fastidious nature of E. tarda; a predominantly 

marine pathogen suited to lower incubation temperatures. E. tarda has however 

been documented to have serious human pathogenic capability, and therefore 

should not be discounted [33]. 

 

It is worth noting that the pre-incubation inoculum used in agar slopes is significantly 

higher than used in the new proposed SHS-MCC-GC-IMS method (1-1.5 x 105 

CFU/mL). Where the standard TSI method may use 1 colony per slope, our 

proposed method requires roughly one colony to be diluted and homogenized in 

approximately 7 mL of broth, of which only 10 µL is diluted into 9990 µL of broth. 

Furthermore, the low initial CFU/mL required to analyse H2S by SHS-MCC-GC-IMS 

is more representative of an in vivo Salmonella infection [34], which when combined 

with the rapid run time of 6 hours could potentially mean this test could be performed 

in a clinical laboratory within the confines of a normal ‘working day’.  

 

Conclusion 

A new method to detect bacteria generated H2S is proposed based on SHS-MCC-

GC-IMS. Analysing the headspace above a bacterial suspension with an initial 

inoculum of 1-1.5 x 105 CFU / mL after 6 hours of incubation at 37°C is a relatively 

rapid and extremely sensitive method for the detection of bacteriologically produced 

H2S, allowing for detection as low as 1.6 ng/mL. A major advantage of this new, 

rapid method over the current agar based colorimetric methods is the potential for a 

clinical sample to be collected, cultured, and analysed within a working day. This 

method is particularly useful for analysing bacteria which do not have strict growth 

requirements, such as Salmonella spp., Citrobacter spp., and Proteus spp. However, 

the developed approach could be extended by incorporating a more flexible 
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(increased) incubation period to suit the target organism. This new rapid method 

could potentially be applied for the analysis of various clinical or food samples.  
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Figure 1. Data Visualisation for H2S determined by MCC-GC-IMS (a) topographical view 
showing monomer and (b) 2-dimensional view 
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Figure 2. Calibration Graph for H2S by SHS-MCC-GC-IMS 
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Figure 3. Investigation of incubation time for known positive and negative H2S-producing 
bacteria by SHS-MCC-GC-IMS. 

 

 

 

Notes:  

Monitoring of H2S production by E. coli and Salmonella strains over an 8 hour incubation 
period at 37°C. Headspace sampling was done every 30 minutes up to an incubation time of 
8 hours (a further sample was also taken after 24 hours incubation).  

Values displayed are the average of two separate bacterial suspensions per strain, set up 
identically, and are presented in ng/mL.  
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Figure 4. Pre-incubation inoculum optimization 

 

 

 

Note: 

Values displayed are the average of two separate bacterial suspensions per strain, set up 
identically, and are presented in ng/mL (± sd). 
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Table 1. Comparison of 61 Gram-negative bacteria tested for H2S production using the traditional triple sugar iron (TSI) agar slopes, a 
modified single sugar iron (SSI) agar slopes and SHS-MCC-GC-IMS 

Taxonomic hierarchy 
TSI Agar Slopes SSI Agar Slopes SHS-MCC-GC-

IMS 
SHS-MCC-GC-

IMS data 
compared to 
Standard TSI 
Method at 24 

hour 
incubation@ 

SHS-MCC-GC-
IMS data 

compared to 
SSI Agar 

Method at 24 
hour 

incubation@ 

Family Genus Species Serovar / ID 
number 6 hour 

incubation 
24 hour 

incubation 
6 hour 

incubation 
24 hour 

incubation 
96 hour 

incubation 

6 hour 
incubation 

(ng/mL) 

Enterobacteriaceae Salmonella enterica 

stanley         
(Wild) 

T 
(T, T) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

10.5 
(10.6, 10.7) √ √ 

london         
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

8.7 
(8.0, 9.3) √ √ 

gallinarum 
(Wild) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

othmarschen 
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++)  < LOD  √ √ 

oranienburg 
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

55.7 
(63.1, 48.4) √ √ 

typhimurium 
(Wild) 

+ 
(+, +) 

++++ 
(++++, ++++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

26.0 
(29.0, 22.9) √ √ 

javiana        
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

14.3 
(13.6, 15.1) √ √ 

hadar           
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) < LOD √ √ 

indiana       
(Wild) 

– 
(-, -) 

– 
(-, -) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

9.8 
(12.6, 7.0) X √ 

zanzibar      
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

25.5 
(35.2, 15.9) √ √ 

braenderup 
(Wild) 

+ 
(+, +) 

++++ 
(++++, ++++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

36.8 
(41.6, 32.1) √ √ 

vilvoorde     
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

26.1 
(27.7, 24.4) √ √ 

agona         
(Wild) 

+ 
(+, +) 

++++ 
(++++, ++++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

45.8 
(48.5, 43.2) √ √ 

Muenchen   
(Wild) 

+ 
(+, +) 

+++ 
(+++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

10.1 
(10.8, 9.4) √ √ 

saint-paul   
(Wild) 

+ 
(+, +) 

+++ 
(+++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) < LOD √ √ 

abony          
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

48.9 
(48.5, 49.3) √ √ 

bareilly       
(Wild) 

+ 
(+, +) 

++++ 
(++++, ++++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

44.0 
(32.2, 55.8) √ √ 
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meleagridis 
(Wild) 

+ 
(+, +) 

++++ 
(++++, ++++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

44.4 
(42.2, 46.5) √ √ 

derby           
(Wild) 

+ 
(+, +) 

+++ 
(+++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) < LOD √ √ 

augustenborg 
(Wild) 

+ 
(+, +) 

+++ 
(+++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

1.9 
(1.8, 1.9) √ √ 

montevideo 
(Wild) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

20.9 
(18.2, 23.6) √ √ 

senftenburg 
(NCTC 9959) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) < LOD X X 

Enteritidis   
(NCTC 6676) 

+ 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

30.2 
(26.1, 34.3) √ √ 

Citrobacter freundii 
NCIMB 8645 T 

(T, T) 
+++ 

(++++, +++) 
+ 

(+, +) 
++++ 

(++++, ++++) 
++++ 

(++++, ++++) 
> 100 

(>100, > 100) √ √ 

NCTC 9750 – 
(-, T) 

++ 
(++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

46.1 
(44.7, 47.5) √ √ 

Escherichia coli 

NCTC 12241 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

NCTC 8912 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

O157           
(NCTC 12079) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

CPE 14         
(Wild) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

CPE 15         
(Wild) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

CPE 20         
(Wild) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

ES 17           
(Wild) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

ES 20           
(Wild) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Shigella 

Dysenteriae     (type 
3) NCTC 9730 – 

(-, -) 
– 

(-, -) 
– 

(-, -) 
– 

(-, -) 
– 

(-, -) 
0.0 

(0.0, 0.0) √ √ 

sonnei NCTC 9774 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

7.6 
(7.5, 7.7) X X 

boydii NCTC 9327 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

flexneri NCTC 9780 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Enterobacter 
cloacae NCTC 11936 – 

(-, -) 
– 

(-, -) 
– 

(-, -) 
+ 

(+, +) 
+ 

(+, +) 
1.9 

(2.6, 1.2) X √ 

aerogenes NCTC 9777 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 
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Klebsiella pneumoniae 

Wild – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

NCTC 243 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

NCTC 418 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

NCTC 9633 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Cronobacter sakazakii ATCC 29544 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

T 
(T, T) 

11.1 
(10.4, 11.7) X X 

Serratia 

marcescens NCTC 10211 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

odorifera NCTC 11214 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

liquefaciens NCTC 11361 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Yersinia 
enterocolitica NCTC 11176 – 

(-, -) 
– 

(-, -) 
– 

(-, -) 
– 

(-, -) 
– 

(-, -) 
0.0 

(0.0, 0.0)) √ √ 

pseudotuberculosis NCTC 10275 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Hafnia alvei NCTC 8105 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Edwardsiella tarda NCTC 11934 + 
(+, +) 

++++ 
(++++, ++++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) < LOD √ √ 

Proteus 

vulgaris NCTC 4175 + 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

2.0 
(2.1, 1.9) √ √ 

mirabilis 
NCTC 10975 + 

(+, +) 
+++ 

(++++, +++) 
+ 

(+, +) 
++++ 

(++++, ++++) 
++++ 

(++++, ++++) 
74.1 

(89.3, 58.8) √ √ 

NCTC 11938 + 
(+, +) 

+++ 
(++++, +++) 

+ 
(+, +) 

++++ 
(++++, ++++) 

++++ 
(++++, ++++) 

22.8 
(23.9, 21.7) √ √ 

Providencia 
stuartii NCTC 10318 – 

(-, -) 
– 

(-, -) 
– 

(-, -) 
– 

(-, -) 
– 

(-, -) 
6.7 

(6.5, 7.0) X X 

rettgeri NCTC 7475 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

4.4 
(4.3, 4.2) X X 

Pseudomonadaceae Pseudomonas aeruginosa 
NCTC 8295 – 

(-, -) 
T 

(T, T) 
– 

(-, -) 
+ 

(+, +) 
+ 

(+, +) 
0.0 

(0.0, 0.0) X X 

DSMZ 19880 – 
(-, -) 

T 
(T, T) 

– 
(-, -) 

+ 
(+, +) 

+ 
(+, +) 

0.0 
(0.0, 0.0) X X 

Xanthomonadaceae Stenotrophomonas maltophilia NCTC 10257 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Moraxellaceae Acinetobacter baumanii ATCC 19606 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 

Burkholderiaceae Burkholderia cepacia ATCC 25416 – 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

– 
(-, -) 

0.0 
(0.0, 0.0) √ √ 
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Notes: 

TSI and SSI agar slope results were recorded according to the following criteria: - = No black precipitate formation; T = Trace black 
precipitate formation; + = Slight black precipitate formation; ++ = Significant black precipitate, covering less than 50% of the agar; +++ = 
Significant black precipitate, covering more than 50% of the agar but not complete coverage; and, ++++ = Complete coverage of the 
agar.  

SHS-MCC-GC-IMS test results were recorded as the concentration of H2S detected in ng/mL, all isolates were tested in duplicate with both 
values displayed in brackets below the average value in bold. H2S concentrations below 1.6 ng/mL were classed as below the limit of 
detection and labelled as < LOD, and those which exceeded the quantification threshold are labelled as >100 ng/mL. 

@ ‘√’ results concur between TSI/SSI agar (24 hours) and SHS-MCC-GC-IMS (6 hours) and include results for which <LOD has been recorded; 
while ‘X’ results are considered to contradict each other between TSI and/or SSI agar (24 hours) and SHS-MCC-GC-IMS (6 hours). 

 

 

 

 

 

 

 

 

 

 


