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Abstract
This paper presents the flexural behaviof two directional functionally graded (2BEG)
microbeamsubjected to uniformly distributed loadth various boundary conditions. A four
unknownshear and normal deformatiaheory orquast3D oneis employed based on the
modified couple stress theory, Ritz method and finite element formulation.mBberial
properties are assumed to vary through the thickness and longitudinal axis and follow the
powerlaw distribution. Firstly, the static deformations of conventional FG microbeams are
investigated to verify the developed finite element code. Fardheergence studies, a simply
supported FG microbeam is considered by employing various number of elements in the
problem domain, aspect ratiamaterial length scalparametes and gradient indexe3he
verification of the developed code is established thien extensive studies are performed for
variousboundary conditionsSecondly, sice there is no reported data regarding to the analysis
of 2D-FG microbeams, verification studies are performed forFEDbeams with different
aspect ratioand gradient indexeghe effects of the normal astiear deformationss well as
and material length scale paramsten the flexural behavig of the 2DFG microbeams are
Investigated. Finally, some new results for deflections of conventional FG andFgZD
microbeamdor various boundary conditiorege introduced for the first time and can be used

as reference for future studies.

Keywords: 2D Functionally Graded Microbeam, Finite Element Method, G8BsTheory,
Modified Couple Stress Theory.

1. Introduc tion



In most of the research and development activities, one of the biggest problems of engineers is
the selection of the proper material which can satisfy all the technical and economical
requirements. A group of Japanese scientists introduced a noeelanedlled as Functionally
Graded Material (FGM) in 1984 for the manufacturing of a thermal barrier to withstand very
high surface temperature and work in severe operating conditions [1]. FGMs can be classified
as advanced materials whose material ptoggerary continuously in the desired directions.

The advantages of using these materials over the conventional composites are avoiding the
stress concentration, cracking and interface problems. FGMs have been using in many
engineering areas such as miltaaerospace, nuclear energy, biomedical, and electrical
engineering for nano/micro devices. Researchers have been developed different theories and
methods of analysis to predict and understand precisely libbavioursespecially invery

small scales. Due to its computational efficiency, the-nl@ssical continuum approach has
been used widely to analyse the size dependent behaviour of small scale structures. Yang et al.
[2] proposed the modified couple stress theory (MCST) by modifying &ssichl couple stress
theory [36] and more importantly only one material length scale parameter is required. This
theory has been used by the many researchers to atfaysending, vibration and buckling
behaviours of isotropic, laminated composite andventional FG beams based on various
theories such as Eul®ernoulli beam theory,first-order beam theory (FBT), higherder

beam theory (HBT) as well as shear and normal beam theory or3idasie [7-43]. More

details about sizdependent models ihading the MCST, no#tocal elasticity[44-51] and

strain gradient§2-54] can be found in recent works of Romano et &) f;d Thai et al. [6].

The conventional FGMs may not be effective for aerospace craft and shuttles in the severe
operation conditins since the distribution of temperature and stress in these structures varies
in two or three directionfs7]. Therefore, 2DFG beams whose material properties vary in two
directions are propose@oupee and Vel B optimise the first three natural fregncies of 2b

FG beams using the element free Galerkin method. Elasticity solutions for static bending and
thermal deformation of 2IBFG beams are derived by Lu et al9]bising the combination of

state space approach and differential quadrature methad. &thal. 0] study bending and
vibration analysis of 2B-G beams by using a symplectic elasticity solution. SIm8&6g]
investigates free, and forced vibration as well as buckling of Timoshenka=2eams, whose
material properties follow the pow&aw distribution. Karamanli [§ presents the static
behaviar of 2D-FG beams by using various theories. The coupled themsehanical response

of 2D-FG beams is studied by Nazarga#i][@a finite element method (FEM). Pydah and Batra
2



[65] derive an analytal solution for deflections of the 2BG circular beams. Karamanligp

studies the flexure behaviour of the-H® sandwich beams by using a qt@Bitheory and a
meshless metho@ome recents contributions dealing with SintVenantbeams can also be
found in [67-69]. Regarding to the studies based on the-lnoal classical methods, the
bending, vibration and buckling problems of -G nanobeams are analysed by Nejad et al.
[70-72]. Shafiei and Kazem|i73] present the buckling behawioof 2D-FG poras tapered

Euler Bernoulli micro/nano beams. By using the FBT, the vibration of imperfede@D
micro/nano beams is investigated Blgafiei et al]74]. Recently, the vibration behaviour of
2D-FG microbeams with arbitrary boundary conditiehpresentedby Trinh et al. ¥5] using

the HBT and quasi' WKHRU\ EDVHG RQ WKH 0&67 $FFRUGLQJ WR
knowledge, there is no study dealing with the flexural beh@awb the 2DFG microbeams

with various boundary conditions using a qe@Bitheoy. This complicated problem is solved

here for the first time by FEM, which is also the main noveltgwfentpaper.Numerical
examples are presented for various aspect ratios, gradient indexes and material length scale
parameters to investigate the fleal behaviours of the conventional FG and-R®
microbeams with arbitrary boundary conditions.

2. Theory and Formulation
2.1 Two Directional Functionally Graded (2BG) Microbeams

A 2D-FG microbeam with rectgular section (bxh), length (Ljind itsbending plane asx is
illustrated in Fig. 1It7Should’be noted @i'only microbeams  tndeaniaxial flextreare
considered in this StutyThe material properties vary both longitudinal and thickness

directions. The rule of mixture is used to estiendm UDWLR

Figure 1 Right Here

Where ' s and ' 5 are [KIRXIQUV, fARaG0&dre PoisR Q TV &2l Bfare volume

fractions of two constituents. According to the pouaar rule, the relation oBand §can be

given



&: T&d, E&:TA/ L s it

where

TA/ L @F T:a|SEVaé u:
&: TV, T RERP u

here Lz and L; are the gradierdr powerlaw indexesin x- andz-direction

By using Egs. (1)3), KRXQINV. PRGSOV VR CarEn befonnd Ry as follows:

||

2.2 Modified Couple Stress Theory (MCST)
According to the MCST, the strain energy)(of a deformed isotropic linear elastic body
occupying a volume3 can be written as follows [1]:

i L-+k&g¥El gipe@a BFL sda

|
where &; is the stress tensol; is the strain tensor, (;is the deviatoric part of the symmetric

S
t

couple stress tensor arig is the symmetric curvature tensor. The componenig;@re given

2.3 Kinematics and Constitutive Relations
The effects of shear and normal deformations are included in thecaispat field below
[43, 60, 63, 69]:
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where Q6SpéS.and S; are the migplane displacements of the axikdending, shear and
thickness stretching components. The prime notation is used to represent the derivative of the

displacements with respectxo

The nonzero strains can be written as:
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The rotation vector can be obtained by using Egs. (7) and (8):
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By using Eq. (10), the components of the symmetric curvature tensor can be written as:
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The following linear elastic constitutive relations for-B microbeams can be written:

iSt=;

where °is the material length scale parameter [1], which can be determined from microscale

experiments (i.e., microtorsion or microbending tests) [4B, 5

2.4 Variational Formulation
The strain energy of a 2BG microbeam can be written based on the displao¢field given

above as:
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The following form of the strain energyrce written by substituting E¢L12)into Eq.(13):
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It is convenient to introduce the stiffness coefficients as follows:
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The potential energyy theuniformly distributed loadj(x) is given by
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Using Egs. (14) to (17), the total potential energydan be written in the form of:
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2.5 Finite Element Formulation

A two-node C beam element with seven degrees of freedom is developed. According to the
variational statement given in Eg. (18), the axial displacem@mhust be only once
differentiable and is expressed over each elemerd bigear polynomialéy whereas the
bending, shear and thickness stretching componeStssS, and S;, must be twice
differentiable and are expressed by a Herwitleic polynomiali « The displacement functions

@x), Su: T, Se T;and S; : T, within an element are preged as
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Substituting Eq. (19) into Eq. (18) and then using the principle of the minimum potential energy
givenby Eq. (20), the system of equations to be solved for unknown variables are obtained.
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The system oéquations can be expressed as the finite element model of a typical element:
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where < =is the hodal dispaceéments > ?and < =are the element stiffness matrix and the
element force vector respectively. 7and < =an be given by:
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It should be worth noting that the x which is given in the equations above must be modified

according to the location of each element in the problem domain.

3. Numerical Results

In this section, a number of numerical examplepegsented for various aspect ratios, gradient
indexes and material length scadarametergo investigate the flexural behauis of the
conventionaFG and 2DFG microbeamsvith arbitrary boundary conditions, namely simply
supported (SS), clampeadamped (CC) and clampefiree (CF). The kinematic boundary
conditions are given in Table 1. The material length scale parameter is 8dt ®vé |

throughout examples [36]. The heigimd width of the microbeam are equal to each other (b=h).
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Unless otherwise stadl, the material properties of the two constitutes are given as ceramic
(Al203): '5 L uz1GPa and& L raand metal (Aluminum) ¢ L yrGPa andg L ra

For convenience, dimensionldsansverse displacemeardf the beamaredefined as:

srrg>D . o
%ng té\/, f'T ,,:l:f" tu=;
srrg> o
Sol—ye 9 JEfe ‘tu>,
and their dimensionlesial, normal and shear stressesgvenby:
&L D Tav, t
— A . tv=;
M.
>D
@ LW (S1 (TaV, tv>;
>D
QILW € - TaV, tv?;

3.1 Flexural analysis of FG microbeams
This section is dedicated to study the static deformations of the conventional FG microbeams.

All the equations needed for this part can be obtained tgget, L rin Eq. (22). To validate

the developed FEM code, simply supported FG microbeams under uniformly distributed load
are studied. The following material properties are use@mic (SiC):' s L vtyGPaanda L

r & yand metal (Aluminum) ¢ L yrGPa ad & L ra The computed results are compared

with thosefrom a previous study [43], which was performed with the present-Glagieory

and Navier solution based on the MCST. Different number of elements (6, 10, 20, 30 and 40)
are employed to test the amrgence of the develop code based on thespéh deflections.
Numerical results are obtained for various thickness to material length scales, gradient indexes
and aspect ratios. As it is seen from Table 2, the obtained results show excellent agreéement wi
those from the previous study. It is clear that the numerical results computed by employing 20
elements are satisfactory and thus this number of elements is used from now on to carry out the

extensive analysis of the FG microbeams.

The deflections of & microbeams for various boundary conditions are presented in Tables 3
and 4. It shald be noted that results plecrobeamg D ° L ») are also given toanpare with
previous results [716using the same theory. It can be seen that the present resultsvatiree
with previous ones fomacrobeams As expected, an increment on the aspect ratio increases

the deflections. It is explicit that the deflections increase as the gradient indexes and the

11



thickness to material length scale increase. Due to the stamngfiect, the lowest deflections
are always obtained wheb ° L s This is due to the fact that the strong size effect changes

the mechanical properties of the microbeams and produces an increase on their stiffness.

The variation of the axial, normal andesr stresses of CF FG microbeams are plotted in Fig.

2 for various gradient indexes and two thickness to material length sBafek, sand D ° L

z It should be noted that the maximum axial and normal stresses increase when the gradient
index increases. Ehaxial stress is tension on the bottom of the beam. However, the maximum
axial stress which is at the top of the beam is compression. As it is expected, the zero traction
boundary conditions are satisfied by using the present-Glatieory. Because ofi¢ strong

size effect, all stresses fdD © L s are lower than those foD°L z For D°L s the
maximum shear stress is obtained wherL. § however, and foD © L zit is observed when

L Lt

Figure 2 Right Here

3.2 Flexural analysis of 2DFG microbeams

Since there is no data in the literature for the deflections of 2D FG microbeams, verification
studies are carried out for simply supported2B beams under uniformly distributed load.

The numerical calculations are obtained by settings1. The results are given in Table 5
along with those obtained from previous studg][@&n excellent agreement with the previous
results can be observed. The mghn deflections of the SS and CC-BB microbeams and

the tip deflections of CF 2l6G microbeams are presented in Tablés & is clear that the
results decrease as the aspatib increases. One may easily notice that they increase for all
type of end conditions while the gradient indexes increase. It is seen that the increment in the
deflections with respect to variation of the gradient index in tt&ection is larger thathat

in the zdirection for all type of end conditions. It is found that the deflections increaBefas

12



increases. It is clear that the strong size effect significantly affects the transverse deflections.
This indicates that with the inclusion of coupgess, rigidity of the 2(FG microbeam is
increasing. Some new results for deflections of XD microbeams in Tables%can be used

as reference for future studies.

The variations of the axial, normal and shear stresses through the thickness withtoespec
various D °are plotted in Fig. 3 by setting L/h= 57 and p=1. It is clear that the maximum
stresses increase as the thickness to material length scale increases. The size effect vanishes
when D ° R tr. The axial and normal stresses are tensilleeasurface of the microbeam. The

shear stress values are zero for both surfaces of the beam.

Figure 3 Right Here

The variation of the axial, normal and shear stresses of the €&&2mDicrobeams is plotted in

Figs. 4 to 6 to show the effects of theadient indexes in both directions and the thickness to
material length scalparametersAccording to these figures, as the gradient index in the z
direction increases the maximum stresses increase. On the other hand, the maximum axial and
normal stresslecreases while the gradient index intkairection increases. It is explicit that

the effect of the gradient index in tha@irection on the axial and normal stresses is more than

the gradient index in thedirection. Due to the strong small size effect, the effect of the both
gradient indexes on the axial and normal stresses is more significant forDovéran higher

one. It is found that as the gradient index in thdirection increases, the maximum
dimensionless shear stress decreases (Fig. 6). Besides, the variation of the gradient index in the
x-direction has different effect on the shear stress which depends on the thickness to material
length scale. It is observed tithe maximum shear stress walis obtained with the gradient

index in thex-direction as 5.

13



Figure 4 Right Here

Figure 5 Right Here

Figure 6 Right Here

Finally, the variation of the tip deflections of the CF-EB microbeams can be seen in Fig. 7
with respect to the thickness to material length qoatameterand gradient indexes. It is clear
that the dimensionless tip deflection increases as the gtaddexes increase. Moreover, it is
found that the effect of the gradient index in thdirection is more pronounced than the
gradient index in the-direction for L; Q wHowever, for higher values of the gradient indexes,
the effect of Ly becomes mar significant thanl;. It is worth noting that strong small size effect

decreases the effect of the gradient indexes on the tip deflections of thef&F Rizrobeams.

Figure 7 Right Here

4. Conclusion
The modified couple stress theory is employedthe flexural behaviar analysis of both
conventional FG and 2BG microbeams based on the Ritz method and finite element
formulation. A quasBD theory which includes both normal and shear deformai®nosed to

study the deflections, axial, normaddashear stresses. The material properties are assumed to
14



vary through the thickness and longitudinal axis and follow the ptamedistribution. The

effects of the normal, shear deformations, boundary conditions, aspectgettient indexes

and thickress to material length scale parameter on deflections, axial, normal and shear stresses
are investigated. Based on the extensive analysis, the main important results are given below:

x The deflections of the 1D and 2BG microbeams are greatly affectedtbg thickness
to material length scale parameter. While their thickness approach the material length
scale parameter, they exhibit significant size dependent behavie size dependence
decreases while the thickness to material length peadametemcreases.

x As the gradient indexes increase, the deflections increase for all type of boundary
conditions, aspect ratios and thickness to material length ga@metes.

x The increment in the deflections because of the gradient index variation ¥ the
direction is more than the gradient index variation in zkdbrection for all type of
boundary conditions.

x The influence of the gradient index in thdirection on the axial and normal stresses is
more pronounced than the gradient index inxtld@ection

x Due to the strong small size effect, the effect of the both gradient indexes on the axial
and normal stresses is more significant for lower thickness to material length scale
parameter

X To meet the design requirements, the flexural belawbthe 2DFG microbeams can
be controlled by selecting suitable gradient indexes.

15
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Table Captions

Table 1: Kinematic boundary conditions used for the numerical computations.

Table 2: Dimensionlessnid-span deflections of SS FG microbeams for various gradient

indexes.

Table 3: Dimensionless migpan deflections of CC FG microbeams for various gradient

indexes.
Table 4: Dimensionless tip deflections of CF FG microbeams for various gradient indexes.

Table 5: Dimensionless migpan deflections, axial and shear stod<3S 2DFG beams ' ; L

9
Table 6: Dimensionless migpan deflections, axial and shear st@sSS 2DFG mirobeams
("i L9

Table 7: Dimensionless migpan deflections of the SS ZB5 microleams for various
gradient indexes.

Table 8: Dimensionless migpan deflections of the CC 2BG microbeams for various

gradient indexes.

Table 9: Dimensionless tip deflections of the CF-HG microbeams for various gradient

indexes.

23



Figure Captions
Fig. 1: Geometry and coordinate of a #85 beam.

Fig. 2: Variation of dimensionless axial&:. t&/ normal &:. t&/ and shear

& .. taVstresses for CF FG microbeams with respect to gradient inekes, a) By L
sb) By L 2.

Fig. 3: Variation of dimensionless axial, normal and shear stresses for-&& 2icrobeams

with respect to thickness to material length spalemetersi(h=5, L; L Ls L 9.

Fig. 4: Variation of dimensionless axial stre€:. t &V, for CC 2DFG microbeamsvith

respect to gradient indexes (L/h=5).

Fig. 5: Variation of dimensionless normal streds.. t &/ for CC 2D FG microbeams with

respect to gradient indexes (L/h=5).

Fig. 6: Variation of dimensionless shear stregs:. t &V for CC 2D FG microbeans with

respect to gradient indexes (L/h=5).

Fig. 7: Variation of tip deflections for CF 2IBG microbeams with respect to gradient indexes

and thickness to material length scadégameterg¢l/h=5).
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Table 1.Kinematic boundary conditionssed for the numerical computations.

BC x=0 x=L

SS| QL r&SsL r&S,Lra& Lr SepL ré&S,L r&; Lr

ce QL r&gL raSL ra&S; Lrd QL ré&SpL r&SL.Lréa& Lra
Sg'L r&SSL r&S"Lr Sg'L r&SSL r&S"Lr

QL ra&SsL r&SLra&S Lra

CF _ .
Sg' L réSs'Lr
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Table 2Dimensionless migpan deflections of SS FG microbeams for various gradient

indexes.
D| D° N;g:gg:,g Theory L iLra| ';Ls i Lsr
5 6 elements 0.0364 | 0.0527 | 0.0663 | 0.1564
10 elements 0.0364 | 0.0527 | 0.0663 | 0.1565
L |20 elements Qﬁ’jg;g’g 0.0364 | 0.0527 | 0.0663 | 0.1565
30 elements 0.0364 | 0.0527 | 0.0663 | 0.1565
40 elements 0.0364 | 0.0527 | 0.0663 | 0.1565
Quasi3D [43] 0.0364 | 0.0527 | 0.0663 | 0.1565
6 elements 0.0990 | 0.1460 | 0.1859 | 0.4015
10elements 0.0990 | 0.1461 | 0.1860 | 0.4019
, |20 elements QF;raessgg 0.0990 | 0.1461 | 0.1861 | 0.4020
30 elements 0.0990 | 0.1461 | 0.1861 | 0.4020
40 elements 0.0990 | 0.1461 | 0.1861 | 0.4020
Quasi3D [43] 0.0990 | 0.1461 | 0.1861 | 0.4021
6 elements 0.1734 | 0.2621 | 0.3383 | 0.6655
10 elements 0.1734 | 0.2622 | 0.3388 | 0.6665
, |20 elements QF;raessgg 0.1734 | 0.2623 | 0.3391 | 0.6669
30 elements 0.1734 | 0.2623 | 0.3391 | 0.6669
40 elements 0.1734 | 0.2623 | 0.3391 | 0.6669
Quasi3D [43] 0.1734 | 0.2623 | 0.3391 | 0.6670
6 elements 0.2136 | 0.3270 | 0.4256 | 0.7989
10 elements 0.2136 | 0.3273 | 0.4265 | 0.8002
g |20 elements Qﬁ’j:jgg 0.2136 | 0.3274 | 0.4268 | 0.8008
30 elements 0.2136 | 0.3274 | 0.4269 | 0.8009
40 elements 0.2136 | 0.3274 | 0.4269 | 0.8009
Quasi3D [43] 0.2136 | 0.3274 | 0.4269 | 0.8010
6 elements 0.0352 | 0.0510 | 0.0643 | 0.1520
10 elements 0.0352 | 0.0510 | 0.0643 | 0.1521
. | _20elements QF;raessgg 0.0352 | 0.0510 | 0.0643 | 0.1521
30 elements 0.0352 | 0.0510 | 0.0643 | 0.1521
40 elements 0.0352 | 0.0510 | 0.0643 | 0.1521
Quasi3D [43] 0.0352 | 0.0510 | 0.0643 | 0.1521
6 elements 0.0949 | 0.1404 | 0.1789 | 0.3827
10 elements 0.0949 | 0.1404 | 0.1791 | 0.3831
, |20 elements QF;raessgg 0.0949 | 0.1404 | 0.1792 | 0.3833
30 elements 0.0949 | 0.1404 | 0.1792 | 0.3833
40 elements 0.0949 | 0.1404 | 0.1792 | 0.3833
1 Quasi3D [43] 0.0949 | 0.1404 | 0.1792 | 0.3833
6 elements 0.1646 | 0.2499 | 0.3230 | 0.6181
10 elements 0.1646 | 0.2501 | 0.3236 | 0.6191
, |20 elements erae;es'g 0.1646 | 0.2501 | 0.3238 | 0.6195
30 elements 0.1646 | 0.2502 | 0.3239 | 0.6195
40 elements 0.1646 | 0.2502 | 0.3239 | 0.6195
Quasi3D [43] 0.1646 | 0.2502 | 0.3239 | 0.6196
6 elements 0.2016 | 0.3105 | 0.4045 | 0.7311
10 elements 0.2016 | 0.3107 | 0.4053 | 0.7324
g |_20elements erae;es'g 0.2016 | 0.3108 | 0.4057 | 0.7330
30elements 0.2016 | 0.3108 | 0.4058 | 0.7331
40 elements 0.2016 | 0.3108 | 0.4058 | 0.7331
Quasi3D [43] 0.2016 | 0.3109 | 0.4058 | 0.7332
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Table 3Dimensionless migpan deflections of CC FG microbeams for various gradient

indexes.

D| D° |Referencg '; Lr| "y Ls| ';Lt| ' Lw| jLsr
1 0.1202 | 0.2068 | 0.2624 | 0.3555 | 0.4313

2 0.3287 | 0.5831 | 0.7454 | 0.9894 | 1.1749

: 4 Present 0.5836 | 1.0747 | 1.3898 | 1.8261 | 2.1277
8 0.7281 | 1.3680 | 1.7828 | 1.8261 | 2.1277

» 0.8217 | 1.5534 | 2.0296 | 2.6774 | 3.0951

» FEM [76] | 0.8327 | 1.5722 | 2.0489 | 2.6929 | 3.1058

1 0.1060 | 0.1839 | 0.2367 | 0.3245 | 0.3927

2 0.2755| 0.4989 | 0.6419 | 0.8427 | 0.9883

10 | 4 |present | 04599 | 0.8733| 1.1248 | 1.4174| 1.6143
8 0.5530 | 1.0760 | 1.3873 | 1.7168 | 1.9294

» 0.6306 | 1.2303 | 1.5810 | 1.9471 | 2.1905

1 0.1021 | 0.1776 | 0.2297 | 0.3159 | 0.3820

2 0.2607 | 0.4755| 0.6131 | 0.8014 | 0.9356

20 4 Present 0.4265| 0.8190 | 1.0529 | 1.3054 | 1.4734
8 0.5072 | 0.9996 | 1.2833 | 1.5509 | 1.7237

» 0.5845 | 1.1522 | 1.4704 | 1.7623 | 1.9593

» FEM [76] | 0.5894 | 1.1613 | 1.4811 | 1.7731| 1.9694
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Table 4 Dimensionless tip deflections of CF FG microbeams for various gradient indexes.

D

DO

Reference

’iLr

i Ls

Lt

i Lw

i Lsr

(oo} EEE SN N \V)

Present

4.9207

8.5591

11.0626

15.2093

18.3904

12.5871

13.8139

15.1851

19.9476

28.0594

20.6392

39.6255

50.9772

63.3044

71.4820

24.5841

48.4402

62.2580

75.4226

83.8715

28.1129

55.4977

71.0212

85.5438

95.3550

FEM [76]

28.5524

56.2002

71.7295

86.1201

95.7582

10

Present

4.8576

8.4580

10.9493

15.0716

18.2182

12.3493

22.5778

29.1321

38.0364

44.3417

20.1027

38.7537

49.8245

61.5077

69.2222

23.8480

47.2127

60.5900

72.7624

80.5743

27.5448

54.5183

69.5326

82.8371

91.8567

20

Present

4.8411

8.4317

10.9197

15.0356

18.1732

12.2871

22.4799

29.0112

37.8630

44.1226

19.9645

38.5294

49.2579

61.0485

68.6661

23.6640

49.9070

60.1767

72.1243

79.8687

27.4872

54.4071

69.2900

82.2525

91.0326

FEM [76]

27.6217

54.6285

69.5266

82.4836

91.2606
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Table 5Dimensionless migpan deflections, axial and shear stress of S&E@Mheams for
variousgradient indexeé’ ; L 9

D Reference 'eLr| 'eLs| 'sLt| 'sLw| 'sLsr

Deflections

Present 6.1318 | 7.2314 | 8.3533 | 11.3840| 14.3867

Meshless [6] 6.1343 | 7.2342 | 8.3430 - -

Axial stress & 24,

a ’

5 | present 5.8946 | 5.6360 | 5.3826 | 4.7306 | 4.1064

Meshless [6] 5.8815 | 5.6196 | 5.3454 - -

Shear stressh ;:r & ;
0.7333 | 0.7886 | 0.8299 | 0.8787 | 0.8735

Present
Meshless [6] 0.7234 | 0.7780 | 0.8186 - _

Deflections

Present 5.7184 | 6.7284 | 7.7680 | 10.6228| 13.4716

Meshless [6] 5.7215 | 6.7299 | 7.7469 - -

Axial stress& :—/f a*g ;
20 | present 23.2583| 22.2396| 21.2480| 18.6978| 16.2384

Meshless [6] | 23-2099| 22.1731] 21.0861[ - -

Shear stresgh, ;:r & ;
0.7479 | 0.8008 | 0.8394 | 0.8798 | 0.8614

Present
Meshless [6] 0.7432 | 0.7993 | 0.8415 R -
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Table 6: Dimensionless migpan deflections, axial and shear stress of SEGD
microbeams for variougradient indexe§’ ; L 9

D| D° | Results "aLr| "alLs| 'sLt] 'sLw 'sLsr

Deflections 0.9136 | 1.1038 | 1.3051 | 1.8658 | 2.4156
1 | Axial stress& :—ﬁ &: | 0.9527| 0.9357 | 0.9173| 0.8537| 0.7618
Shear stresék ;:r&; | 0.1019| 0.1109| 0.1181| 0.1289| 0.1334

S Deflections 5.3006 | 6.2531 | 7.2242 | 9.8416 | 12.4293
8 | Axial stressé& :—’2 alg ; | 5.4605| 5.2325| 5.0083 | 4.4237 | 3.8492

Shear stressk ;:rd; | 0.6627 | 0.7158 | 0.7562 | 0.8089 | 0.8154

Deflections 0.8796 | 1.0620 | 1.2558 | 1.7996| 2.3348

1 | Axial stressé& :—?:%J; 3.8772 | 3.8083| 3.7323 | 3.4746| 3.1061

20 Shear stressh ;:rd&; | 0.1037 | 0.1117 | 0.1178| 0.1249| 0.1236

Deflections 49015 | 5.7663 | 6.6552 | 9.0946 | 11.5693
8 | Axial stressé‘é:—éég; 21.5721| 20.6743| 19.7950| 17.4989| 15.2269
Shear stressh ;:rd&; | 0.6735| 0.7229 | 0.7591 | 0.7985| 0.7846

30



Table 7Dimensionless migpan deflections of the SS ZE5 microbeams for various
gradient indexes.

o 4 vV
D x 0 1 [ 2 [ 5 [ 10
L/h=5
0 0.5264 0.6667 0.8324 1.4065 2.1451
1 0.9136 1.1038 1.3051 1.8658 2.4156
1 2 1.1770 1.3780 1.5777 2.0814 2.5241
5 1.6144 1.8028 1.9749 2.3580 2.6521
10 1.9535 2.1133 2.2506 2.5306 2.7268
0 1.3635 1.7270 2.1552 3.6323 5.5279
1 2.4730 2.9622 3.4727 4.8757 6.2526
2 2 3.1840 3.6773 4.,1636 5.3980 6.5155
5 41777 4.6237 5.0413 6.0176 6.8168
10 4.8950 5.2969 5.6555 6.4303 7.0076
0 2.2652 2.8691 3.5787 6.0146 9.1338
1 4.3140 5.1162 5.9404 8.1755 10.3777
4 2 5.5572 6.3187 7.0652 8.9850 10.7886
5 6.9836 7.6478 8.2881 9.8698 11.2511
10 7.9377 8.5703 9.1580 10.5031 11.5658
0 2.7142 3.4380 4.2873 7.1957 10.9163
1 5.3006 6.2531 7.2242 9.8416 12.4293
8 2 6.8322 7.7048 8.5594 10.7789 12.9084
5 8.4154 9.1625 9.8959 11.7625 13.4458
10 9.4327 10.1633 10.8573 12.4935 13.8246
0 3.1394 3.9764 4.9588 8.3261 12.6406
1 6.1318 7.2314 8.3533 11.3840 14.3867
» 2 7.8571 8.8609 9.8488 12.4325 14.9233
5 9.6003 10.4696 11.3292 13.5332 15.5285
10 10.7555 11.6141 12.4344 14.3792 15.9632
L/h=20
0 0.5051 0.6397 0.7994 1.3580 2.0798
1 0.8796 1.0620 1.2558 1.7996 2.3348
1 2 1.1389 1.3312 1.5229 2.0089 2.4376
5 1.5680 1.7467 1.9102 2.2762 2.5583
10 1.8953 2.0456 2.1750 2.4406 2.6279
0 1.2831 1.6248 2.0305 3.4487 5.2815
1 2.3465 2.8061 3.2879 4.6259 5.9480
2 2 3.0278 3.4868 3.9417 5.1111 6.1816
5 3.9526 4.3624 4.7506 5.6753 6.4466
10 4.6075 4.9796 5.3162 6.0564 6.6296
0 2.0868 2.6425 3.3022 5.6077 8.5899
1 4.0245 4.7609 5.5226 7.6188 9.7091
4 2 5.1734 5.8598 6.5401 8.3284 10.0477
5 6.3824 6.9785 7.5671 9.0651 10.4389
10 7.1842 7.7740 8.3324 9.6439 10.8226
0 2.4747 3.1338 3.9162 6.6508 10.2041
1 49015 5.7663 6.6552 9.0946 11.5693
8 2 6.2891 7.0640 7.8344 9.8933 11.9717
5 7.5488 8.2185 8.8958 10.6865 12.5156
10 8.3754 9.0727 9.7492 11.4176 13.1510
0 2.8947 3.6656 4.5806 7.7778 11.9083
1 5.7184 6.7284 7.7680 10.6228 13.4716
» 2 7.2773 8.1819 9.0864 11.5114 13.8817
5 8.6446 9.4404 10.2475 12.3673 14.3076
10 9.5726 10.4004 11.1993 13.1082 14.6676
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Table 8 Dimensionless migpan deflections of the CC 2BG microbeams for various
gradient indexes.

o 4 vV
D x 0 1 [ 2 [ 5 [ 10
L/h=5
0 0.1202 0.1530 0.1881 0.2834 0.3751
1 0.2068 0.2511 0.2933 0.3879 0.4623
1 2 0.2624 0.3093 0.3514 0.4381 0.5008
5 0.3555 0.4005 0.4375 0.5059 0.5505
10 0.4313 0.4703 0.5004 0.5518 0.5831
0 0.3287 0.4182 0.5140 0.7739 1.0270
1 0.5831 0.7035 0.8175 1.0728 1.2752
2 2 0.7454 0.8696 0.9808 1.2120 1.3811
5 0.9894 1.1056 1.2029 1.3868 1.5082
10 1.1749 1.2780 1.3594 1.5019 1.5895
0 0.5836 0.7424 0.9119 1.3712 1.8235
1 1.0747 1.2863 1.4852 1.9298 2.2862
4 2 1.3898 1.6003 1.7889 2.1853 2.4786
5 1.8261 2.0142 2.1746 2.4852 2.6923
10 2.1277 2.2932 2.4277 2.6706 2.8216
0 0.7281 0.9261 1.1371 1.7072 2.2710
1 1.3680 1.6302 1.8755 2.4231 2.8642
8 2 1.7828 2.0378 2.2665 2.7500 3.1098
5 2.3436 2.5624 2.7516 3.1238 3.3732
10 2.7076 2.8960 3.0532 3.3434 3.5248
0 0.8217 1.0455 1.2842 1.9315 2.5789
1 1.5534 1.8498 2.1275 2.7528 3.2609
» 2 2.0296 2.3165 2.5754 3.1292 3.5436
5 2.6774 2.9215 3.1352 3.5616 3.8479
10 3.0951 3.3043 3.4821 3.8145 4.0227
L/h=20
0 0.1021 0.1300 0.1600 0.2412 0.3174
1 0.1776 0.2153 0.2511 0.3312 0.3927
1 2 0.2297 0.2693 0.3046 0.3771 0.4282
5 0.3159 0.3527 0.3828 0.4382 0.4732
10 0.3820 0.4129 0.4367 0.4770 0.5009
0 0.2607 0.3319 0.4084 0.6159 0.8106
1 0.4755 0.5709 0.6609 0.8614 1.0152
2 2 0.6131 0.7086 0.7942 0.9734 1.1013
5 0.8014 0.8874 0.9611 1.1041 1.1978
10 0.9356 1.0133 1.0764 1.1897 1.2590
0 0.4265 0.5430 0.6680 1.0072 1.3258
1 0.8190 0.9728 1.1167 1.4371 1.6827
4 2 1.0529 1.1977 1.3290 1.6113 1.8160
5 1.3054 1.4328 1.5479 1.7839 1.9430
10 1.4734 1.5973 1.7033 1.9028 2.0289
0 0.5072 0.6457 0.7944 1.1976 1.5767
1 0.9996 1.1808 1.3496 1.7259 2.0145
8 2 1.2833 1.4480 1.5987 1.9279 2.1688
5 1.5509 1.6947 1.8285 2.1099 2.3027
10 1.7237 1.8688 1.9959 2.2407 2.3989
0 0.5845 0.7443 0.9160 1.3833 1.8246
1 1.1522 1.3611 1.5563 1.9937 2.3304
» 2 1.4704 1.6601 1.8350 2.2204 2.5033
5 1.7623 1.9309 2.0886 2.4223 2.6512
10 1.9593 2.1310 2.2818 2.5730 2.7598
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Table 9 Dimensionless tip deflections of the @B-FG microbeams for various gradient

indexes.
o 1 vV
D x 0 1 [ 2 [ 5 [ 10
L/h=5
0 4.9207 5.3966 5.9280 7.7744 10.9306
1 8.5591 9.2176 9.9073 12.0027 14.9647
1 2 11.0626 11.7642 12.4724 14.4905 17.1269
5 15.2093 15.8725 16.5095 18.1870 20.1803
10 18.3904 18.9569 19.4819 20.7907 22.2494
0 12.5871 13.8139 15.1851 19.9476 28.0594
1 22.9526 24.6385 26.3913 31.6615 39.0516
2 2 29.5943 31.2984 33.0100 37.8881 44,3291
5 38.6990 40.2354 41,7351 45.8095 50.8652
10 45,1877 46.5898 47.9222 51.3745 55.4021
0 20.6392 22.6665 24.9341 32.8093 46.1751
1 39.6255 42.3839 45,2293 53.6950 65.4712
4 2 50.9772 53.5889 56.2038 63.6789 73.6885
5 63.3044 65.5574 67.7965 74.0873 82.2488
10 71.4820 73.6709 75.7995 81.5212 88.4924
0 24.5841 27.0066 29.7175 39.1321 55.0853
1 48.4402 51.7176 55.0855 65.0558 78.8740
8 2 62.2580 65.2503 68.2445 76.8280 88.4163
5 75.4226 77.9524 80.4908 87.7461 97.3660
10 83.8715 86.3971 88.8818 95.6802 104.1344
0 28.1129 30.9503 34.1270 45.1626 63.8316
1 55.4977 59.3376 63.2867 74.9833 91.1610
» 2 71.0212 74.5281 78.0478 88.1681 101.8271
5 85.5438 88.5651 91.6046 100.3052 111.8212
10 95.3550 98.3980 101.3950 109.5963 119.7711
L/h=20

0 4.8411 5.3021 5.8161 7.6031 10.6797
1 8.4317 9.0713 9.7407 11.7779 14.6752
1 2 10.9197 11.6034 12.2928 14.2593 16.8404
5 15.0356 15.6826 16.3033 17.9387 19.8886
10 18.1732 18.7247 19.2355 20.5101 21.9353
0 12.2871 13.4576 14.7629 19.3007 27.1115
1 22.4799 24.0957