Almaadeed, Noor, Asim, Muhammad, Al-Maadeed, Somaya, Bouridane, Ahmed and Beghdadi, Azeddine (2018) Automatic Detection and Classification of Audio Events for Road Surveillance Applications. Sensors, 18 (6). p. 1858. ISSN 1424-8220
Text (Full text)
Almadeed et al - Automatic Detection and Classification of Audio Events for Road Surveillance Applications AAM.docx - Accepted Version Restricted to Repository staff only Download (2MB) |
||
|
Text (Full text)
Almadeed et al - Automatic Detection and Classification of Audio Events for Road Surveillance Applications OA.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (3MB) | Preview |
Abstract
This work investigates the problem of detecting hazardous events on roads by designing an audio surveillance system that automatically detects perilous situations such as car crashes and tire skidding. In recent years, research has shown several visual surveillance systems that have been proposed for road monitoring to detect accidents with an aim to improve safety procedures in emergency cases. However, the visual information alone cannot detect certain events such as car crashes and tire skidding, especially under adverse and visually cluttered weather conditions such as snowfall, rain, and fog. Consequently, the incorporation of microphones and audio event detectors based on audio processing can significantly enhance the detection accuracy of such surveillance systems. This paper proposes to combine time-domain, frequency-domain, and joint time-frequency features extracted from a class of quadratic time-frequency distributions (QTFDs) to detect events on roads through audio analysis and processing. Experiments were carried out using a publicly available dataset. The experimental results conform the effectiveness of the proposed approach for detecting hazardous events on roads as demonstrated by 7% improvement of accuracy rate when compared against methods that use individual temporal and spectral features.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | event detection; visual surveillance; tire skidding; car crashes; hazardous events |
Subjects: | G400 Computer Science |
Department: | Faculties > Engineering and Environment > Computer and Information Sciences |
Depositing User: | Paul Burns |
Date Deposited: | 13 Jun 2018 10:20 |
Last Modified: | 01 Aug 2021 08:04 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/34516 |
Downloads
Downloads per month over past year