Attempted endogenous tissue repair following experimental spinal cord injury in the rat: involvement of cell adhesion molecules L1 and NCAM?

Brook, Gary, Houweling, Diane, Gieling, Roben, Hermanns, Thomas, Joosten, Elbert, Bär, Dop, Gispen, Willem-Hendrik, Schmitt, Andreas, Leprince, P., Noth, Johannes and Nacimiento, Wilhelm (2000) Attempted endogenous tissue repair following experimental spinal cord injury in the rat: involvement of cell adhesion molecules L1 and NCAM? European Journal of Neuroscience, 12 (9). pp. 3224-3238. ISSN 0953-816X

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1046/j.1460-9568.2000.00228.x

Abstract

It is widely accepted that the devastating consequences of spinal cord injury are due to the failure of lesioned CNS axons to regenerate. The current study of the spontaneous tissue repair processes following dorsal hemisection of the adult rat spinal cord demonstrates a phase of rapid and substantial nerve fibre in‐growth into the lesion that was derived largely from both rostral and caudal spinal tissues. The response was characterized by increasing numbers of axons traversing the clearly defined interface between the lesion and the adjacent intact spinal cord, beginning by 5 days post operation (p.o.). Having penetrated the lesion, axons became associated with a framework of NGFr‐positive non‐neuronal cells (Schwann cells and leptomeningeal cells). Surprisingly few of these axons were derived from CGRP‐ or SP‐immunoreactive dorsal root ganglion neurons. At the longest survival time (56 days p.o.), there was a marked shift in the overall orientation of fibres from a largely rostro‐caudal to a dorso‐ventral axis. Attempts to identify which recognition molecules may be important for these re‐organizational processes during attempted tissue repair demonstrated the widespread and intense expression of the cell adhesion molecules (CAM) L1 and N‐CAM. Double immunofluorescence suggested that both Schwann cells and leptomeningeal cells contributed to the pattern of CAM expression associated with the cellular framework within the lesion.

Item Type: Article
Subjects: B900 Others in Subjects allied to Medicine
C900 Others in Biological Sciences
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: Becky Skoyles
Date Deposited: 17 Jul 2018 09:26
Last Modified: 11 Oct 2019 20:00
URI: http://nrl.northumbria.ac.uk/id/eprint/35014

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics