Zhang, Jingtian, Zhang, Lining, Shum, Hubert P. H. and Shao, Ling (2016) Arbitrary view action recognition via transfer dictionary learning on synthetic training data. In: ICRA '16 - IEEE International Conference on Robotics and Automation, 16th - 21st May 2016, Stockholm, Sweden.
|
Text (Full text)
Zhang et al - Arbitrary View Action Recognition via Transfer Dictionary Learning on Synthetic Training Data AAM.pdf - Accepted Version Download (719kB) | Preview |
Abstract
Human action recognition is an important problem in robotic vision. Traditional recognition algorithms usually require the knowledge of view angle, which is not always available in robotic applications such as active vision. In this paper, we propose a new framework to recognize actions with arbitrary views. A main feature of our algorithm is that view-invariance is learned from synthetic 2D and 3D training data using transfer dictionary learning. This guarantees the availability of training data, and removes the hassle of obtaining real world video in specific viewing angles. The result of the process is a dictionary that can project real world 2D video into a view-invariant sparse representation. This facilitates the training of a view-invariant classifier. Experimental results on the IXMAS and N-UCLA datasets show significant improvements over existing algorithms.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Subjects: | G400 Computer Science |
Department: | Faculties > Engineering and Environment > Computer and Information Sciences |
Depositing User: | Paul Burns |
Date Deposited: | 19 Jul 2018 16:02 |
Last Modified: | 01 Aug 2021 10:03 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/35062 |
Downloads
Downloads per month over past year