A cohesive network approach for modelling fibre and matrix damage in composite laminates

Joosten, Matthew, Yang, Qingda, Blacklock, Matthew and Wang, C. H. (2018) A cohesive network approach for modelling fibre and matrix damage in composite laminates. Composite Structures, 206. pp. 658-667. ISSN 0263-8223

[img]
Preview
Text (Full text)
Joosten et al - A cohesive network approach for modelling fibre and matrix damage in composite laminates AAM.pdf - Accepted Version

Download (1MB) | Preview
Official URL: http://dx.doi.org/10.1016/j.compstruct.2018.08.087

Abstract

In the current study a high fidelity analysis approach is used to predict the failure process of notched composite structures. Discrete cracking is explicitly modelled by incorporating cohesive interface elements along potential failure paths. These elements form an interconnected network to account for the interaction between interlaminar and intralaminar failure modes. Finite element models of these configurations were created in the commercial analysis software ABAQUS and a user defined material subroutine (UMAT) was used to describe the behaviour of the cohesive elements. The material subroutine ensured that the model remained stable despite significant damage, which is a significant challenge for implicit damage simulations. Two analysis approaches were adopted using either the as-measured or modified (in-situ) ply strengths. Both approaches were capable of closely predicting the mean ultimate strength for a range of hole diameters. However, using the measured ply properties resulted in extensive matrix cracking in the surface ply which caused a deviation from the experimentally measured surface strain. The results demonstrate that high fidelity physically based modelling approaches have the ability to complement or replace certain experimental programs focussed on the design and certification of composite structures.

Item Type: Article
Uncontrolled Keywords: Laminates; Strength prediction; Computational modelling; User subroutine (UMAT)
Subjects: J500 Materials Technology not otherwise specified
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: Paul Burns
Date Deposited: 17 Sep 2018 15:21
Last Modified: 01 Aug 2021 10:37
URI: http://nrl.northumbria.ac.uk/id/eprint/35746

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics