
Northumbria Research Link

Citation:  Mansour  Abadi,  Mojtaba  (2017)  A  hybrid  free  space  optics/radio  frequency
antenna - design and evaluation. Doctoral thesis, Northumbria University. 

This  version  was  downloaded  from  Northumbria  Research  Link:
https://nrl.northumbria.ac.uk/id/eprint/36012/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

                        

http://nrl.northumbria.ac.uk/policies.html


Northumbria Research Link

Citation:  Mansour  Abadi,  Mojtaba  (2017)  A  hybrid  free  space  optics/radio  frequency
antenna - design and evaluation. Doctoral thesis, Northumbria University. 

This  version  was  downloaded  from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/36012/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners.  Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without  prior  permission  or  charge,  provided  the  authors,  title  and  full  bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder.  The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html


 

 

A Hybrid Free Space 

Optics/Radio Frequency Antenna 

– Design and Evaluation 

 

 

 

Mojtaba Mansour Abadi 

 

 

 

 

 

A thesis submitted in partial fulfilment of 

the requirements of the University of 

Northumbria at Newcastle for the degree of 

Doctor of Philosophy 

 

 

 

 

 

 

 

Research undertaken in the School of Computing, 

Engineering and Information Sciences 

 

 

 

 

January 2017 



 

ii 

Abstract 

Free space optical (FSO) communication provides high speed data communications 

with high flexibility and cost-effectiveness. However, FSO links are sensitive to 

atmospheric effects such as fog, smoke and turbulence. To address the problem, this 

research is investigating a hybrid FSO and RF technology to ensure link availability under 

all weather conditions as part of the last mile access networks. The research exclusively 

investigates design, implementation, and assessment of a novel dual purpose hybrid 

FSO/RF antenna. The technical issues are interference between FSO and RF parts; 

compactness of the design; quality of service; and robustness. As part of the design a 

conventional RF antenna scheme, known as Cassegrain antenna is adopted, and a new 

design scheme for a hybrid antenna is proposed. For the FSO part an optical transceiver 

aperture, which is composed of optical lenses and optical fibres, is designed and 

incorporated in the shadowing region of the sub-reflector of Cassegrain antenna. The use 

of lens and fibre ensures the isolation between the optical and RF parts. Based on the 

initial design, modifications are made to enhance the hybrid antenna performance. In this 

work the focus of the research is on the optical part and how it is incorporated as part of 

the RF antenna. As part of the optical design, spatial diversity and differential signalling 

techniques are adopted. Majority-logic combining is adopted from RF technology and the 

performances of a FSO system implementing combining methods are compared for 

various turbulent regimes.  The concept of differential signalling is investigated in terms 

of the channels correlation and it is shown that the variation of the detection threshold 

level reduces in correlated channels. A new design method is given based on spatial 
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diversity and differential signalling techniques. To simulate the RF part, CST STUDIO 

SUITE® software is used, whereas Monte-Carlo simulation is used for performance 

estimation of the FSO link. Also provided are the detailed mathematical modelling of the 

hybrid FSO/RF system. The proposed hybrid antenna is fabricated and evaluated and 

results are compared with simulation and predicted data. Based on the recorded data of a 

real hybrid FSO/RF channel the performance of hybrid FSO/RF link employing the 

hybrid antenna with a switching mechanism is evaluated. Through this thesis, the detailed 

guidelines on design of the hybrid antenna are outlined and when necessary, the 

significant issues are discussed and addressed. Since the propose of this PhD is to outline 

and demonstrate the proof of concept for the proposed hybrid antenna, therefore the focus 

has been on the design, evaluation and the minimum performance requirements rather 

than the best possible performance or optimising the communication link quality. The 

outcome of the thesis will be a prototype antenna with a gain of 29.2 dBi and efficiency 

of 59 % at the frequency of 10 GHz for use in a hybrid FSO/RF system. It will be shown 

that the designed antenna is able to provide a hybrid link with 99.8 % availability and 1 

Gbits/sec data rate at the recorded fog and rain channel conditions. 
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 INTRODUCTION 

1.1 Introduction to Free Space Optics 

One of the current challenges in wireless communications is to be able to provide a cost 

effective high speed data link in applications, where the radio frequency (RF) based 

technology cannot be used or is not suitable. For example, in highly populated indoor 

environments (train station, airports, etc.), and ‘the last mile access’ network, where the 

end users, using the RF based wireless technologies, do experience lower data rates and 

low quality services due to the spectrum congestion (i.e., bandwidth bottleneck). The high 

speed optical wireless connection is defined as a data link with a minimum speed of few 

Gbps, where a 2-hour long high definition movie can be downloaded within few seconds 

[1], in emergency situations such as flooding, earthquake, etc., and massive public events 

including concerts, festivals, as well as optical fibre networks maintenance and repair. 

Nowadays, using the internet and, in general, having access to the data network have 

become a typical daily task for everyone. With the rapid growth of smart devices, the RF 

spectrum, which is already being stretched too thinly, is experiencing congestion at a 

global level, which needs addressing. Nowadays, there are a growing number of 

applications as shown in Figure 1.1, which require access quality to the data services 

anywhere, anytime and under all conditions. In a perfect scenario, all end users should 

have access to the optical fibre based backbone network with an ultra-high capacity, to 
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benefit from truly high-speed data communications with a very low end-to-end 

transmission latency.  

Of course, for environment where deployment of optical fibre is not economical a 

combination of satellite communications and optical fibre communications technologies 

would be the most suitable option. However, this could also be quite costly and therefore 

may not be feasible in the long run.  
Therefore, because of the limited bandwidth, and high cost of the RF technology [2], 

there is the need to consider alternative technologies. The cost and challenges associated 

with installation of optical fibre particularly in rural areas as well as maintenance of such 

a network is rather high, therefore is not considered for the last mile access network. 

Whereas bandwidth limited RF technologies are also not suitable, thus the need for the 

most attractive and relatively cost effective solution still exists. Free space optical (FSO) 

communications also known as optical wireless communications have been used to 

provide high speed data service for aforementioned applications [3]. The FSO technology 

 
Figure 1.1: Variety of demands for high bit rate access to the data. 
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is license free, easily deployable, secure and capable of offering low bit error rate as well 

as high speed link over a range of link span up to 10 km for civilian applications [4], 

which has been adopted in a number of applications including: 

• Broadband internet to rural areas [5] – FSO based link could replace optical 

fibre access technologies such as fibre to the home (FTTH) in order to provide 

connectivity between in-building networks and to broadband and backbone data 

networks. 

• Inter-building connectivity [4] and electronic commerce [6] – FSO provides 

high-speed, flexibility and high security.  

•  Audio and video streaming [7] – FSO is an attractive solution for video 

surveillance and monitoring, as well as live broadcasting of sporting events, in 

emergency situation (e.g., the tsunami in Japan in 2011 that almost wiped out 

all the telecommunications infrastructure [11]) etc. 

• Unmanned aerial vehicle (UAV) and high attitude platforms [4, 8] – UAVs and 

high attitude platforms have been used for  military surveillance, monitoring 

traffic and disaster areas, or broadcasting vital data. UAVs generate a large 

volume of data, which needs downloading as quickly as possible. This can be 

achieved by employing the on-board FSO technology. 

1.2 FSO Communications 

1.2.1 Background 

Considering any information transmission via light as a form of optical communication; 

then the ancient Greeks and Romans around 800 B.C. who used fire beacons for signalling 
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over a medium range distance were the first users of FSO links [9]. Since then, a growing 

interest in research, development and deployment in FSO is observed. The first modern 

system was developed by Alexander Graham Bell back in 1880 by inventing the 

“Photophone” that used sun rays to transfer voice over a distance of 200 m [10]. 

However, not much happened until the discovery of the laser in 1960s. In 1962 

researchers from MIT Lincolns Laboratory demonstrated a television signal transmission 

over 48 km using a light emitting GaAs diode based FSO link [9]. For years FSO was 

used in military and deep space applications with very little commercial use. The reasons 

were that i) existing communication technologies were more than adequate to meet the 

demand; ii) lack of cost-efficient reliable optical components; and iii) impact of the 

atmospheric conditions on the performance of FSO links [10]. 

As mentioned before, the demand for higher data rate was the main motivation for 

researchers to reconsider FSO as a promising alternative and complementary technology 

to the RF. The growing number of research and development activities in FSO both within 

the academy and industry supported by a large number of scientific articles clearly 

demonstrate the potential of this emerging technology with optical fibre like capabilities. 

Currently, there are commercial FSO products available in the market offering data rates 

beyond gigabits per second [11, 12]. Research and development is going on to push the 

data rate to higher limits (e.g., 10 Gbps commercial FSO transceiver [13]) and improve 

the link quality (e.g., it is desirable to achieve ideal 100 % link availability in all weather 

conditions. In practice, using a hybrid link the availability of five nines (99.999 %) is 

reported [5]) as well as to reduce the cost of the complete system. The cost effectiveness 

of FSO system compared to the RF system is more obvious, when the RF system is 

supposed to deliver the same high data rate connection service [14-16]. To illustrate the 

comparison between existing technologies and FSO and to show the advantage of FSO 



A Hybrid Free Space Optics/Radio Frequency Antenna – Design and Evaluation 

 

5 

one can refer to Figure 1.2. [17] [18]  

In summary the key features of FSO systems for long range line-of-sight (LOS) high 

speed data connections are outlined as follow: 

•  High data rate: At the moment RF provides 1 to 2 Mbps for unregulated 2.4 

GHz ISM bands [19], 20 Mbps 875 Mbps at 5.7 GHz 4G mobile and 60 GHz 

millimetre wave technologies, respectively [20]. Potentially FSO can provide 

bandwidth as large as 2000 THz, which is far beyond the maximum data rate of 

RF technologies [21, 22], see Figure 1.2(a). 

• License free spectrum: FSO spectrum is not regulated therefore there are no 

 
(a) 

 
(b) 

Figure 1.2: Comparison of communication technologies: (a) in terms of data rate and link coverage, 
figure taken from [17] with permission, and (b) in terms of cost and data rate (the figure is plotted using 
the data from [18]). 
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license fees. 

• Power consumption: The global information and communications technology 

is responsible for 2 to 10 % of the global energy consumption according to the 

report smart 2020 [23]. The global warming and the existing concern to reduce 

the power consumption is a critical motivation to replace RF with FSO in LOS 

applications since FSO is potentially green in terms of energy consumption 

compared to RF. 

• Low cost: Covering installation, maintenance and license fees, see Figure 

1.2(b). 

• High security: FSO links are inherently secure due to highly narrow, well 

confined and directional beam profile. 

• Back-bone network compatibility: FSO operating at all three optical 

transmission windows of 850, 1300 and 1550 nm are compatible with optical 

fibre based back bone networks. 

1.2.2 FSO Structure 

Figure 1.3 illustrates the general schematic system block diagram of a typical FSO 

communication link (Note that in the following chapters, the detailed block diagram will 

be presented for each case). 
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Figure 1.3: The fundamental system diagram of an FSO link. LD and PD are laser diode and photodetector, respectively. 

7
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The modulated or unmodulated version of the transmit information, (i.e., a digital bit 

steam) is used for intensity modulation of the optical source. Note that, for much higher 

data rates (i.e., in excess of 10 Gbps) external modulation schemes should be used). As 

shown in Figure 1.3, the modulation procedures are assumed to be performed in the 

transmitter (Tx) module. The optical source adopted could be a light emitting diode 

(LED) or a laser diode (LD). The latter is more widely used because of the LOS 

transmission requirement, longer transmission span and higher data rates in outdoor 

environments. Note that additional optics such as lens, beam splitters, beam polarizer, 

optical filter, optical fibre, etc. are also used as part of the Tx. 

Particularly, locating the LD at the focal length of a lens is a common practice used in 

beam forming and collimation of the laser output. The generated optical beam is launched 

into the free space channel and is captured at the receiver (Rx) using a combination of 

optics and an optical photodetector (PD). As in the Tx, typically a lens is used at the Rx 

to focus the received beam into the PD. The generated electrical signal at the output of 

the PD is then amplified, processed and converted back into the digital bit stream at the 

Rx, see Figure 1.3. 

Depending on the application, the free space channel condition and the data rate, the 

aforementioned elements (i.e., LD, PD, and interface block) can be different. For instance, 

in a short range clear channel, a single Tx and Rx as well as a simple on-off-keying non-

return-to-zero (NRZ-OOK) modulation scheme would be sufficient to meet the link 

requirements [17]. 

For most cost-effective typical systems, intensity-modulation/direct-detection (IM/DD) 

based FSO links are more adequate [7, 24-27]. In IM/DD technique, based on the 

information data, only the intensity of the light is modulated. Another technique to 

modulate and detect the light is the external modulation and the coherent detection, where 
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in contrary to IM/DD, both intensity and phase/frequency of the light can be modulated 

[28]. Coherent systems require an external modulator such as Mach-Zehnder modulator 

to perform the modulation operation. Besides at the Rx, a light source synchronized with 

the one at the Tx is needed to down-convert the received optical beam [29]. Although 

coherent systems are shown to have impressive performance in terms of background noise 

rejection, atmospheric-induced fading mitigation and higher sensitivity of the Rx; the cost 

and complexity of practical implementation, in particular stability and synchronization of 

laser sources at the Tx and the Rx, make them less popular than IM/DD based systems 

[7]. 

Although the FSO technology has many benefits, it cannot provide 100% link 

availability under all weather conditions as outlined below [8]: 

1. Turbulence induced fading - This is due to the temperature gradient along the 

optical propagation path and the movement of air perpendicular to the 

propagating optical beam [30]. In Chapter 3, more detail is given about 

turbulence phenomena. 

2. Atmospheric loss – This is mainly due to the fog, aerosol, haze, smoke particles 

[7], where the induced loss by fog/smoke is dominant [31]. The attenuation is 

the contribution of molecular absorption and light scattering [32]. Absorption 

occurs at the molecular level and is resulted from absorption of photon energy 

by molecules of gases in the atmosphere [33]. Since the dimension of fog 

particles varies between 0.5 µm to 2 µm, which is in the range of FSO 

wavelengths, therefore Mie scattering is the major cause of scattering 

attenuation [32, 33].  

3. Pointing errors induced fading - Is due to the vibration or small movements of 

both Tx and/or Rx [34]. In Chapter 4, more detail is given about this 
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phenomena.  

4. Link blockage - Mostly due to flying object or birds, which results in a burst 

error [17]. 

5. Ambient noise – This can be considered as the main noise source in many 

scenarios [35]. The ambient noise is mostly due to sunlight or artificial lighting 

sources [35]. 

In particular, among these effects, the atmospheric loss can lead to attenuation as high 

as 50 dB∕km for < 500 m visibility under the fog condition [40, 41]. As reported in [3] the 

fog attenuation in moderate continental fog environment (Graz, Austria) in winter season 

and in dense maritime fog environment (La Turbie, France) in summer months can lead 

to 120 dB/km and 480 dB/km, respectively [42]. Indeed, the FSO link undergoes a wide 

range of attenuation in presence of fog and smoke [3], which results in reduced link 

availability in a significant way so that it was shown in [2] that for the weather condition 

recorded in Graz, the link availability could drop to ∼67 %. 

1.3 Hybrid Link 

The FSO system has been shown to be a high speed cost-effective link for a number of 

application where the RF technology may not be able to offer the required data throughput 

or be employed. However, the performance of the FSO link in outdoor environment is 

affected because of the weather conditions in particular fog, turbulence, dust, etc. Note 

that, the RF link performance is also determined by the weather condition mostly, rain 

and snow. Therefore, under all weather conditions no single wireless technology is able 

to provide full link availability at all times resulting in the need for a hybrid link to ensure 

link availability under all weather conditions [2, 36]. In a hybrid link based on FSO and 
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RF technologies, FSO is used at all-time, except under the fog condition, where it is 

changed over to the lower data rate RF link. Once the weather is cleared of fog, the RF 

link is switched over to FSO [4, 6, 8]. Figure 1.4 depicts an example in which the 

availability of RF, FSO and hybrid FSO/RF are compared [37]. In situations where 

individual FSO or RF system fails to provide total link availability, it has been shown that 

the hybrid system is capable of delivering a link average availability of 99.926 % over 

almost 2 years of measurements [37].  

The high link availability (i.e., 100 % at all weather conditions) of a hybrid FSO/RF 

link makes it a promising solution for the last mile access networks. It can also be used 

between two buildings where due to natural obstacles such as river and lake; or 

regulations and environmental considerations such as railways, highways, metros and 

power grids, it is not possible to establish cable based communication links. In recent 

years a growing number of research activities in this area is seen, where most of the 

published work focused on investigating the channel models [38-40], hybrid system 

measurements [4, 41, 42], coding schemes [3, 36, 40, 43-45], modulation techniques [46, 

47], and diversity schemes [36, 48].  

However, very little work has been reported on the devices and components and more 

 
Figure 1.4: Measured availability of RF, FSO and hybrid system in percentage versus measurement 
date. Measurement was taken from December 2001 to January 2003 at Graz University of Technology. 
FSO wavelength was 850 nm with total transmit power of 8 mW. The link distance was 2.7 km. More 

details are available in [37]. Figure is taken from [37] with permission. 
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specifically on the single antenna in hybrid FSO/RF based system. In this research work 

the focus is on the frontend component (i.e., antenna and aperture for RF and FSO parts, 

respectively). The term concept of hybrid FSO/RF antenna refers to a single antenna unit 

with dual functionalities, which covers both FSO and RF transmissions. The proposed 

hybrid system is mainly intended for outdoor environments with a LOS link configuration 

over a few kilometres. However, the proposed system could also be used in large area 

indoor environment to cover full connectivity in case the FSO link is down due to other 

reasons than atmospheric conditions. The key features of the hybrid system are 

summarised as follow: 

1. Reduced power consumption and costs – This is achieved by means of 

incorporating the optical aperture as part of the RF antenna and only utilizing 

FSO or RF path at any given time.  

2. Link alignment – Both FSO and RF could be used to establish the link alignment 

and maintain it via auto-tracking system within a certain degree. 

3. High link availability – A wireless technology based on the hybrid antenna can 

ensure full link availability under all weather conditions with higher data rates 

capability. 

4. Installation cost and complexity - This is much lower in the hybrid antenna 

based wireless link than the dual antenna base systems. 

1.4 Problem Statement 

In recent years, one can see research activities on the hybrid antenna based transmission 

scheme. Here are some important ones: 
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1. In [49, 50] packaging of a dual-mode wireless communications module based 

on RF/optoelectronic devices with shared functional components was 

investigated. The RF antenna and FSO Tx and Rx were mounted on the same 

PCB with separate feed lines. However, this scheme with a 3 dB full divergence 

angle not more than 20 degrees is not applicable for outdoor applications. This 

radiation pattern is not suitable for peer-to-peer connections, where the link is 

considered to be directive and LOS. The authors also reported that in the worst 

scenario the coupling between FSO and RF can be as high as -15 dB. In 

situations where the FSO beam is attenuated but still detectable at the Rx, the 

link suffers from interference due to leakages from the high power RF signal, 

which will affect the FSO link availability. 

2. In [51], a dual band RF and optical antenna and a terminal design technology 

were proposed for the ground to satellite link, which also can be adopted for 

terrestrial outdoor applications. The proposed design was suitable for long-to 

extremely long-range (space-to-ground) transmission spans. The RF antenna 

was a direct feed reflector whereas the optical aperture was based on Cassegrain 

telescope. This necessitates the existence of a shared large concave mirror for 

RF and optical aperture as well as adopting adaptive optics, which resulted in 

increased system and maintenance costs. 

3. In [52], a hybrid antenna system based on the adaptive optics and signal 

processing as well as using a large optical mirror as the aperture was reported. 

Here the same mirrors for both FSO aperture and the RF antenna in a Cassegrain 

configuration were used. However, employing a large mirror is a major issue 

and using a secondary mirror results in blocking of the main reflector, which 

results in additional attenuation of the received optical power. On the other 
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hand, the performance of optical Rx (ORx) depends on the wavefront correction 

mechanism, thus making the entire system more complex and costly. 

To the best of our knowledge, no simple hybrid antenna for outdoor wireless 

applications particularly for the last mile access networks in urban areas have been 

reported. Thus, the motivation in this research work is to design, fabricate, and 

characterize a hybrid FSO/RF antenna for wireless communications. The research will 

address a number of challenges as outlined below: 

1. A compact and less complex design, which can be readily connected to FSO 

and RF transceivers. 

2. The RF part of hybrid antenna must provide a directive pencil beam pattern to 

ensure high directionality and improved security. 

3. The FSO part must be incorporated as part of the RF antenna and should be able 

to reduce the weak turbulence effects (see next chapters for more details) 

without the need for adaptive optics or wavefront correction techniques. 

4. Meeting much wider specifications so that it can be adopted for a wide range of 

frequencies and wavelengths. Thus making the design more flexible that can be 

reused for different configurations and applications. 

5. Minimum interference between FSO and RF links to ensure high-quality signal 

at both ends of the link. 

1.5 Aim and Objectives 

The aim of this research is to propose, design, implement, model and characterise a 

hybrid FSO/RF antenna for few Gbps data rate outdoor wireless applications over at least 
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1 km link span. The desired antenna should provide narrow directive beams (for both 

optical and RF links) with  sufficient gains to overcome the attenuation due to the 

atmospheric channel conditions as well as mitigating the turbulence effect [38] on the 

FSO link. 

Based on the research aim, the objectives are as follow: 

1. Proposing a novel design for hybrid antenna supported by detailed analytical 

modelling. 

2. Comprehensive simulation of the proposed antenna for verification of the 

design. 

3. Comprehensive characterizing of the proposed antenna. 

4. Investigating the potential channel effects of the communication link employing 

hybrid FSO/RF antennas. 

5. Investigating existing methods for mitigation of the atmospheric channel effects 

particularly for FSO, since it is the main link. 

6. Optimization of the FSO part of the antenna and investigating diversity and 

detections techniques for the FSO link. 

7. Fabrication of the proposed hybrid antenna based on the optimized design. 

8. Experimental measurements and comparison with analytical and simulation 

results. 

9. Assessment of the system performance in terms of the bit error rate (BER) and 

the link availability. 
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1.6 Original Contributions 

The original contributions made to the research field are best outlined with reference to 

Figure 1.5, see blocks shown in dashed lines, and are also summarised as follow: 

1. Chapter 3 – Categorizing and investigation of the combining scheme for 

mitigating the effect of turbulence for the FSO link including (i) introduction of 

a new combining method known as the majority-logic combining (MLC) 

(adopted from RF) for the turbulence channel; (ii) deriving closed-form 

mathematical expressions for BER for the proposed combining under weak to 

strong turbulence regimes; and (iii) investigation of the performance of link 

employing combining methods including equal gain combining (EGC), 

selection combining (SC) and MLC under different turbulence regimes. 

2. Chapter 4 – Investigation of a new detection scheme known as the differential 

signalling to mitigate the effect of turbulence and pointing errors. This includes 

(i) mathematical analysis to demonstrate the functionality of the proposed 

method; (ii) developing theoretical analysis for the variance of detection level 

of the received signal, Q-factor of the received electrical signal, and BER; (iii) 

extensive Monte-Carlo simulation in support of the proposed theory; (iv) 

experimental verification of the variance of detection threshold level and the Q-

factor of the received signal; and (v) employing Manchester coding scheme as 

an alternative for differential signalling and performing experimental 

measurement of the Q-factor. 

3. Chapters 5 – Investigation of the design process of the hybrid antenna 

including (i) the key design requirements and parameters; (ii) investigation of 

the existing RF antenna with the aim of proposing the best possible fundamental 
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structure for hybrid antenna; (iii) derivation of closed form mathematical 

expressions to characterize the antenna and corresponding components; (iv) 

simulation of the radiation pattern and gain of the designed antenna using CST 

STUDIO SUITE®; (v) experimental test and measurement of the  radiation 

pattern, return loss and the gain of the designed antenna; and (vi) comprehensive 

assessment of the communications link employing two hybrid antennas in terms 

of the received RF signal-to-noise ratio (SNR) and the received FSO Q-factor 

and comparison  with the predicted results. 

4. Chapter 6 – Investigation of the performance of the final design including (i) 

the FSO system configuration based on combining and detection methods 

outlined in Chapters 3 and 4, respectively; (ii) analysis of the recorded data 

based on measurements carried out in Faculty of Electrical Engineering, Czech 

Technical University in Prague, Czech Republic; (iii) simulation of the FSO 

link availability over the recorded channel conditions, (iv) simulation of the 

hybrid FSO/RF link availability over the recorded channel conditions while 

employing a time hysteresis (TH) switching technique, (v) investigation of 

effects of FSO data rate and the transmission span on the hybrid link availability 

and the hybrid data rate, and (vi) outlining the method to achieve the maximum 

hybrid data rate and guaranteed availability over a given channel link span. 



Chapter 1: Introduction 

 

18 

 
Figure 1.5: Schematic diagram of a hybrid FSO/RF communication system. The original contributions are highlighted with dashed boarders. 

1
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1.7.3 Awards 

1. Receiving full scholarship from Northumbria University (2012-2015) 

2. Winning the best design poster of 3rd year PhD research Student at Northumbria 
Conference March 2014 

1.8 Thesis Structure 

The thesis is arranged into seven chapters and five appendices. Chapter 1 outlines the 

introduction, background, aim and objectives of the thesis as well as original 

contributions. Chapter 2 is devoted to the fundamental theories to prepare the reader for 

the following chapters. The chapter covers both FSO and RF technologies as well as 

required material for hybrid FSO/RF link. Chapter 3 investigates spatial diversity and 

combining techniques for the FSO part. In Chapter 4, a new detection method is proposed 

and described. Chapter 5 represents the design procedure of the hybrid antenna whereas 

Chapter 6 studies the performance of the communication link employing a pair of hybrid 

antenna. The conclusions together with the future works are outlined in Chapter 7 . 

In Appendix A, the derivations of the mathematical equations are discussed. Appendix 

B describes the simulation methods used in the thesis. Appendix C is devoted to the 

practical setups and summarises them, whereas Appendix D explains the measurement 

methods used to evaluate the systems and Appendix E is devoted to confirmation of the 

experimental results by means of Student’s t-test. 
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 FUNDAMENTALS OF FSO, 

RF AND HYBRID FSO/RF 

2.1 Introduction 

In this chapter the necessary materials, which are essential for the following chapters 

are presented for both FSO and RF technologies. For each technology, a system block 

diagram with the description of each part is given. The chapter also highlights the existing 

problems focusing on the most relevant issues. Additionally, the chapter introduces the 

hybrid FSO/RF based system, in particular focusing on the switching methods, as well as 

outlining the key design considerations.  

2.2 FSO 

The general FSO system block diagram is illustrated in Figure 2.1. Note that the FSO 

link is based on IM/DD technique. The digital input bit stream � or the information data 

is applied to the modulation block. Depending on the application, the modulation could 

be a simple OOK scheme or more complex multilevel amplitude, frequency and phase 

scheme [7].  
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Figure 2.1: The block diagram of an IM/DD FSO communication link. LD, PD, TIA are laser diode, photodetector, and transimpedance amplifier, respectively. 
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In this research work the NRZ-OOK data format is adopted, which is the most widely 

used in commercial FSO systems [53]. NRZ-OOK is used because of its simplicity and a 

balanced power and spectral efficiency compared to other digital modulation schemes 

[54]. Note that the research main focus is on the design of the hybrid antenna and less on 

the modulation schemes. However, the system employing a hybrid antenna could readily 

be adopted for other modulation schemes. Then the output of the modulator � (i.e., a 

bipolar NRZ-OOK signal in this case) with a bandwidth BW = 1 �⁄ , where � is the bit 

duration is DC-level shifted to convert it into a unipolar format prior to intensity-modulate 

the light source (i.e., LD in this case). The data rate of NRZ-OOK equals to BW [55]. 

The output of the LD (i.e., �) has four key parameters, wavelength njkl, divergence 

angle �4, beam waist �4, and output power {�/�. The wavelength used in FSO is in the 

red to infrared range of the spectrum. In this work only two wavelengths of 670 nm and 

830 nm have been adopted in the experimental investigation. The visible LD at 670 nm 

is also used for the alignment of the FSO link. 

The laser beam is collimated using a lens in order to reduce the geometrical loss [56]. 

This means that the divergence angle �4 should be kept small, and �4 will be the 

minimum radius of the propagating laser beam, which can be considered prior to the beam 

divergence [57]. However, the output power of the LD is subject to the eye and safety 

regulations. There are different standards for laser safety such as the international 

electrotechnical commission (IEC) [58], American national standards institute (ANSI) 

[59] and European committee of electrotechnical standardization (CENELEC) [60]. In 

this work one class 3R pointer laser with wavelength of 670 nm and 2 mW output power 

is used, which is considered to be safe if handled carefully. Also another class 3B pointer 

laser with wavelength of 830 nm and 10 mW output power which needs eyes protection 

is used. Note that class 3B lasers are only used for experimental proof of concept in 
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laboratory and in an outdoor real scenario, safe lasers must be implemented [61]. 

In FSO systems with LOS configuration the link performance will be affected by 

blocking mostly due to flying objects (e.g., birds) and the atmospheric channel conditions 

(i.e., fog, smoke, turbulence, etc.). The channel affects are defined as the attenuation (loss) 

and a random fading. The attenuation is due to: 

1. Geometrical loss £¤¥¦ - The real laser light is not an ideal collimated beam. 

With even a small divergence angle of �4, it experiences beam spreading and 

since the PD has a finite physical size, only a fraction of the laser power is 

captured and collected at the Rx. Therefore, the geometrical loss is defined by 

���� [62], and is described in details in Chapter 5. 

2. Atmospheric attenuation £§¨© - This loss is due to Rayleigh scattering and 

molecule absorption, with a typical value of 0.5 dB [56]. 

3. Fog attenuation £ª¦¤ - This is the most important loss in FSO links. Generally 

speaking, fog and smoke, which are composed of small particles floating in the 

air, are the main cause of attenuation in FSO systems [32]. The optical beam 

interacting with fog and smoke particles results in both absorption and Mie 

scattering, which contribute to ���� [63]. The fog attenuation is determined 

based on the channel's visibility (Vis) in km and is described by two well-known 

models of Kim and Kruse [62]. The visibility is define as [32]: 

 Vis = z¬
­® ¯(°±²(³ ´:�

, (2.1) 

where njkl is LD wavelength, and n4 denote the maximum sensitive 

wavelength for human eye, which is normally set to 550 nm (i.e., the green 

colour). Based on Kim model µ is defined as [63]: 
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q =
·̧
¹
º̧ 1.6, Vis > 501.3, 6 < Vis < 501.6×Vis + 0.34, 1 < Vis < 6Vis − 0.5, 0.5 < Vis < 0.1  0, Vis < 0.1

. (2.2) 

The relation between the total attenuation due to the absorption and scattering 

of light '( and ���� is given by Beer-Lambert law as [63]: 

 '( = − z4  �� ÃÄÅÆ
Ç.ÈÇÈÉ , (2.3) 

where m denotes the link distance. Depending on visibility (Vis), fog can be 

defined as thick (Vis < 0.1), medium (0.1 < Vis < 1) or thin (Vis > 1). 

4. Miscellaneous attenuation £©ÊËÌ - This includes additional losses due to 

misalignment, devices or other unknown factors [56]. 

Rain also introduces a loss in FSO systems, which is not significant compared to fog, 

and smoke [2]. However, rain is a major source of attenuation in RF systems. The 

received power in terms of the transmit power {# and all losses is given by [64]: 

 {8 = {# − ���� − ���� − ���� − �����. 
(2.4) 

For a system point of view, knowing that the total noise variance at the Rx and the PD's 

responsivity are ����� �  and ℜ, respectively, the link electrical signal-to-noise ratio (SNR) 

is defined as [64]: 

 SNR = �ℜÎÏ�Ð
ÑÒÅÒÓÔÐ . 

(2.5) 

In a clear channel with no fading the system BER is given by [64]: 

 BER = �Ö√SNR×, (2.6) 

where ��∙� denotes the Gaussian �-function defined as ���� = Ø exp�− Ù� 2⁄ � 3ÙÛÜ` . 

Thus in clear channel (i.e., no channel fading), to achieve BER < 10:Ý one needs 
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SNR > +13.54 dB.  

In this research work, a channel with fading is considered as outlined below: 

1. Scintillation/turbulence - In a clear channel with no turbulence the 

propagating optical beam only experiences attenuation. Whereas in turbulence 

channel the propagating beam will experience both attenuation and phase 

variation due to randomly varying refractive index of the air, thus leading to 

fading and link failure [7, 65]. Note that, turbulence is caused by the presence 

of temperature gradient along the laser propagation path and the air movement 

(wind) perpendicular to the laser beam [17]. Turbulence randomly changes the 

refractive index along the propagation path, which consequently causes the 

beam wandering [30]. Depending on the fading intensity, the turbulence can be 

classified as the weak, moderate, strong and saturated [17]. 

2. Pointing errors - This is due to the movement of building, mast, tower, and in 

general the structures on which the FSO units are mounted [34]. Pointing errors 

lead to the amplitude fluctuation (or oscillation) of the received optical signal 

in the transverse plan, thus contributing to deterioration of the link's 

performance [66]. 

More details on these fading effects will be given in the next chapters. Also mitigation 

methods to overcome them will be introduced. 

As shown in Figure 2.1 in the IM/DD system the received optical signal is captured 

using a lens and focused onto a PD the output of which is amplified using a 

transimpedance amplifier (TIA) prior to be demodulated in order to recover the 

transmitted information.  
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2.3 RF 

Figure 2.2 depicts the block diagram of a general RF communication system. The 

modulator and demodulator blocks are basically the same as the FSO system. The output 

of the modulator is fed into an up-convertor block. The output of the up-convertor is the 

desired RF signal, which is used for transmission via the transmit antenna (frontend 

antenna at Tx side). In this research a binary phase shift keying (BPSK) modulation 

scheme, which is simple and does perform well in turbulence channel is adopted [55]. As 

in the FSO link, the simplicity of the modulation scheme is the major motivation for 

selecting BPSK. For BPSK the BER is expressed as [67]: 

 BER =  1 2⁄ @AB-ÖÞCF x4⁄ ×, (2.7) 

where CF, x4, and @AB-��� = 2 √ß⁄ Ø @:àÐ3áǛ
 are the energy per channel bit, noise 

spectral density and the complementary error function, respectively. In a channel with no 

fading, for a BER =  10:Ý, the desired CF x4⁄  is ~10.5 dB. The carrier power to noise 

power spectral density ratio is given by [67]: 

 �� x4⁄ �,g = �CF x4⁄ �,g + 10 logz4 �h, (2.8) 

where � is signal power at the Rx and �h denotes the data rate.  

Considering both the Tx and Rx antenna gains ^�2 and ^12, respectively and the total 

channel loss m�=, Equ. (2.8) can be also written as [67]: 

 �� x4⁄ �,g = �{a^�2�,g − m�= + ¯æçèaé ´,g − f,g, 
(2.9) 
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Figure 2.2: The block diagram of an RF communication link. 
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where {a , �_, and f,g are the transmit power, noise temperature and Boltzmann 

constant in dB, respectively. The bandwidth of BPSK signal is related to data rate (�h) 

as given by [68]: 

 BW = 2×�h×ê log�\⁄ . (2.10) 

For BPSK, K and S are 0.75 and 2, respectively, and for a 10 MHz available bandwidth 

�h= 6.67 Mbps. Thus, the relation between carrier-to-noise ratio (CNR) and (Ec N0⁄ ) is 

given by [67]: 

 CNR = ¯ìíî³´,g + 10 logz4 �h − 10 logz4 BW. 
(2.11) 

In this research, for a BER < 10:Ý, which is much lower than forward error correction 

(FEC) limit of 10:È, the required CNR > ~ 8.8 dB. 

The equivalent isotropic radiated power (EIRP) in dB is given by [67]: 

 EIRP = CNR + m�= − ^_` + �_ + f,g + 10 logz4 BW, (2.12) 

where �_ is the summation of the antenna and the Rx system noise temperatures. In 

Appendix C, the noise temperature of the system is calculated and for most terrestrial 

applications, a typical value of 300° K is adopted for the antenna [69]. Note that EIRP = 
{a + ^a` is the common parameter used in standards and regulations for wireless 

communications [70]. Depending on the antenna type, frequency range and applications, 

EIRP will be different. For more information refer to [71]. 

As in FSO, the RF link propagation mechanism is also LOS, where the link experience 

very little or no fading, but it undergoes attenuations as outlined below: 

1. Free space path loss (ñòóô� - Is equivalent to the geometrical loss in FSO, 

which is given as [67]: 
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 FSPL = 20 log ÇõÉ
(ç°, 

(2.13) 

where n1j is the RF signal wavelength. For a frequency of 10 GHz and a link 

distance of 1 km, FSPL ≅ 112.5 dB. 

2. Rain attenuation £÷§Êø - Is the main cause of RF link unavailability, and is 

caused by the absorption phenomena when the RF energy is absorbed by rain 

[72]. �0��+ in dB for lower part of RF spectrum is given by [73]: 

 �0��+ = m×1.076×�� È⁄ , (2.14) 

where � is the precipitation rate in mm/h. E.g., for precipitation of 64.8 mm h⁄  

in Glasgow, the attenuation is ∼18 dB over a 1 km link. 

Thus the total channel loss m�= = FSPL + �0��+ in (2.12) will be: 

 m�= = 20 log ÇõÉ
(ç° + m×1.076×�� È⁄ . 

(2.15) 

Note that attenuation due to turbulence and fog are negligible for RF links, and 

therefore are not considered as part of the total channel loss [2]. 

The central carrier frequency of the RF signal is chosen to be 10.00 GHz, which lies 

within the microwave range and is categorized as the X-band or the super high frequency 

(SHF) band. This frequency range is adopted for the RF link due to the followings:  

1. At lower microwave frequency ranges the loss due the atmospheric channel is 

low [74]. This is clearly demonstrated in Figure 2.3 [72].  

2.  The path loss attenuation given by (2.13) is also included in Figure 2.4, which 

also shows lower loss at lower frequencies. 

3.  Relatively smaller antenna size as well as the LOS transmission mode [74]. 

Figure 2.5 illustrates the reflector antenna nomograph for 100 % efficiency [75]. 
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The solid red line shows that at a frequency of 9 GHz an antenna with a diameter 

of ∼1.8 m is needed to ensure 45 dB of gian. Whereas at the frequency of ∼4.5 

GHz an antenna with a minimum diameter of 3 m is required, as shown with 

dashed green line.  

4. This frequency can be adopted for the satellite-to-ground link and for amateur 

radio applications since it is very close the amateur band of 10.225 to 10.500 

GHz [23], hence providing the chance to adopt the design for non-terrestrial 

applications.  

 
Figure 2.3: Attenuations of an RF link due to the rain in Glasgow for various perception rate. 0.01, 0.1, 
and 1% refers to 25.5, 8.0, and 2.1 mm/h rainfall rate. Figure is taken from [72] with permission. 

 
Figure 2.4: Attenuations of an RF link due to the free space path loss (FSPL) against frequency. 
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5. As a proof concept and considering the above points and availability of devices, 

the carrier frequency of 10 GHz was the best option for the RF link. However, 

higher frequencies could be adopted.  

In Chapter 5, additional details on the selected central frequency are given. Referring 

to [76, 77], for the purpose of this thesis the effective radiated power (EIRP) at 10 GHz 

Tx can be limited to 2.15 dBW [76]. In this work EIRPmax of 0	dBW is adopted, though 

other values less than 2.15 dBW could also be used. 

2.4 Hybrid FSO/RF 

A hybrid transmission system is basically a combination of FSO and RF technologies. 

All the points outlined in the previous sections are applicable to the hybrid system too. In 

this section, the focus will be on the concept of the hybrid link and switching methods 

adopted. As was outlined in Chapter 1, FSO provides a high speed and a low cost data 

link under a clear channel. However, under medium to heavy fog conditions the FSO link 

availability drops considerably. Thus, the need for a hybrid system to ensure link 

 
Figure 2.5: Reflector antenna gain nomograph. The graph is for an antenna with 100% efficiency. Figure 
is taken from [75] which is open to public. 
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connectivity under all channel conditions, but at the cost of reduced data throughput, still 

exists. Under fog, smoke and turbulence condition the link can be switched to the RF to 

ensure link availability, which is then switched back to FSO when the channel is almost 

clear.  

To show that the channel condition can influence the performance of FSO and RF links, 

an analytical comparison between FSO and RF channel attenuations is carried out with 

the results presented in Figure 2.6.  

The link setup for both FSO and RF was based on the block diagram shown in the 

Appendix C. The gain of RF antennas was set to 27 dBi. The noise floor of the RF Rx 

module was set to be -91.48 dBm whereas for the ORx (THORLABS PDA10A Detector) 

the noise floor or sensitivity was at -39.56 dBm. An optical aperture with a 3 mRad 

divergence angle and a 2 mm diameter was employed at the Tx and an aperture with a 

 

 
Figure 2.6: FSO and RF link attenuations versus link distance for different channel conditions. The RF 
and FSO detection threshold show the achievable level of the distance, within which the link is available 
with BER of 10-6. 
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diameter of 50.00 mm was used at the Rx. The total attenuation of the optical link under 

medium and thick fog conditions based on Kim model is also included in Figure 2.6. 

Assuming rain fall rates of 68.4 mm/h in Glasgow and 6.9 mm/h in London, with 0.001 

and 0.1	% time the rain rate exceeded, respectively, the rain attenuation was also included 

in the analysis. Based on the model as in [78], at a visibility of 100 m the fog attenuation 

at a temperature and frequency of 1℃ and 10 GHz, respectively was almost 0.04 dB/km, 

which is negligible and can be ignored.  

As part of analytical investigations, the output power of FSO and RF links were 

assumed to be 10 and -10 dBm, respectively. Considering a BER of 10-6, one can find the 

required signal power for both FSO and RF links at the Rx using Equs. (2.6) and (2.7). 

Considering the expected attenuations along the channels, it is possible to find the 

maximum attenuation at which the BER is still < 10-6. This point is called the detection 

threshold, hence the detection threshold of 49.55 dB and 91.47 dB for FSO and RF Rxs, 

respectively. From Figure 2.6, the RF link with given parameters can be used for a 

transmission span up to 1.23 km and 3.43 km under heavy rain in Glasgow and London, 

respectively. On the other hand, in a clear channel the FSO link can cover up to a 

transmission distance of 2.53 km, which is well within the project target distance under a 

clear channel condition. However, in medium and thick fog conditions the maximum 

obtainable transmission spans for the FSO link are reduced to 0.52 km and 0.18 km, 

respectively. This drop in transmission range leads to the link unavailability, which can 

be addressed by switching over to the RF link until the channel condition is relatively 

clear for the link to be switched over back to the FSO.  

In addition to the fog and link blockage induced attenuation, the FSO system is also 

affected by the scintillation induced fading and pointing errors. Provided fading is not 

strong, the FSO link can be used for transmission as long as an appropriate mitigation 
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method is adopted at the Rx. In this research work, to combat fading both spatial diversity 

and differential signalling schemes as outlined in Chapter 3 and Chapter 4, respectively 

are investigated. However, under a serve fading channel the transmission should be 

switched over to the RF link in order to maintain the link and ensure transmission quality 

at all times, see Chapter 6 for more information. 

2.4.1 Switching Methods 

In a hybrid transmission system to ensure continuous link availability under all channel 

conditions, a range of switching schemes between FSO and RF have been proposed. 

Figure 2.7 shows three possible switching configurations that could be adopted in a 

typical hybrid FSO/RF system [79]. The first configuration is the simplest, where both 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 2.7: Three hybrid FSO/RF configurations: (a) hybrid FSO/RF switch-over link, (b) hybrid 
redundant RF link, and (c) hybrid channel coding link. 
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channels are simultaneously transmitting at the same data rate, see Figure 2.7(a), thus 

ensuring 100 % link availability under all weather conditions [80]. In this configuration 

there are two scenarios: (i) both links are operating at the data rate of the RF link, which 

could result in lower data throughput; and (ii) the RF link is transmitting at a lower data 

rate than the FSO link, thus resulting in the need for buffering at the Tx side. The second 

scenario is widely adopted in most commercial systems currently available. Note that the 

parallel transmission scheme is power inefficient, since both links are active at all times. 

 The second configuration is based on only one link being active at any given time, with 

a hard switching mechanism to select the FSO or RF depending on the channel condition, 

see Figure 2.7(b) [2]. In this technique to select the correct link a feedback signal 

containing the channel state information (CSI) is transmitted from the Rx to the Tx [2]. 

Although this method is more complex than the parallel transmission it can provide a 

communication service with higher data rates and 99.9 % link availability [2]. However 

the inclusion of a feedback signal and the drop in data rate when using the RF link are the 

main disadvantages of this scheme [81]. Note that in this configuration, the FSO link is 

selected as the default link and in case of link outage, the link is switched over to the RF. 

In the case of a link with hard switching and under high scintillation and attenuation 

the FSO link is rarely selected therefore, the full FSO capacity is not utilised at all. To 

overcome this problem one option would be to adopt soft switching (i.e., using channel 

coding), see Figure 2.7(c). Here the coded data (for example using low-density parity-

check (LDPC) code) is divided into two parts for both FSO and RF links and the code 

rate is selected based on the channel conditions. In this scheme both Tx and Rx should 

have information on CSI. Alternatively, raptor codes, which requires no CSI, could be 

used that can adapt its code rate based on a single feedback bit per message. In [82], a 

practical soft-switching H-FSO/RF system was implemented using short-length raptor 
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codes with an adaptive code rate based on the channel conditions. In addition to coding, 

it is also possible to use adaptive modulation schemes, where the constellation of symbols 

is split into two parts for each arm of the link (i.e., FSO and RF). Depending on the 

channel condition more points could be included on the constellation for each part [43]. 

However, this is achieved at the cost of increased system complexity as in the soft-

switching scheme.  

Although using pure hard switching can lead to improved link availability and increased 

average data rate, it cannot increase the reliability of the overall system. To mitigate the 

problem of random variation of received signal, which results in unnecessary switching 

between FOS and RF and vice versa [83], power hysteresis (PH), time hysteresis (TH), 

filtering, or combined methods have been used [84]. In PH, two threshold levels are used 

in a hysteresis loop manner, whereas in TH a time delay is introduced prior to switching 

to avoid transient changes in the received power. Filtering of the variation of the received 

power is also capable of removing temporary sudden changes in the received power level. 

In this work TC with TH is adopted. 

2.5 Summary 

This chapter was devoted to introducing of FSO, RF and H-FSO/RF systems. The 

chapter discussed the source of errors in FSO and RF channels. For the FSO system, fog, 

smoke and blockage were considered to be the cause of link discontinuity whereas 

turbulence was described as the cause of high BER at the Rx. On the other hand, for the 

RF link rain was considered to be the main issue. As part of the proposed hybrid system, 

two simple modulation schemes of NRZ-OOK and BPSK were selected for FSO and RF 

links, respectively and the fundamental theories outlining the BER performance were 

discussed. To ensure link reliability, availability and high performance, a hybrid FSO/RF 
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system was introduced and the key issues in such a system were outlined, in particular 

the switching mechanism between the FSO and RF link under changing weather 

condition. Finally, the existing switching methods adopted in hybrid FSO/RF systems 

were introduced and the TH method was adopted as the switching method in this research 

work.
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 FSO SPATIAL DIVERSITY 

3.1 Introduction 

In Chapter 2, it was mentioned that turbulence is a source of error in FSO 

communication. In this chapter a common technique to mitigate the effect of turbulence 

is studied. Spatial diversity is known to be an effective mitigation scheme in FSO fading 

channels [7, 85-87], which is implemented by means of using multiple Txs or Rxs. 

Basically transmitting data information over several path increases the chance of 

receiving a signal less affected by fading. Therefore, logically multiple Txs or Rxs will 

enhance the performance of the link (in this case the FSO link). Thus, the motivation is 

to investigate different aspects of spatial diversity under various channel conditions as 

well as system configurations in this research work. 

This chapter will give an overview of the spatial diversity technique currently being 

adopted. First different types of spatial diversity are introduced. Then existing combining 

methods are presented and a new categorization is outlined. The Chapter also outlines the 

closed form expressions for the BER and discusses the performance of each combining 

method for a range of turbulence regimes (weak and strong). A well-known majority logic 

combining method, which is already used in RF, is adopted for the FSO link. The 

performances of a FSO system under various turbulence regimes with different 

combining methods are compared and the results are discussed. 



A Hybrid Free Space Optics/Radio Frequency Antenna – Design and Evaluation 

 

41 

3.2 Turbulence 

If hypothetically the turbulent channel is frozen at Ù	 ¡ 	0, the channel can be 

considered as in Figure 3.1 . The input wavefront in this case is planar, which encounters 

random changes in the refractive index. The refractive index variation is a function of the 

atmospheric temperature, pressure, altitude and wind speed. The variation is modelled as 

small cells with different refractive index from the adjacent cells. These cells are called 

turbulence eddies. The size of eddies might change from a few millimetre to several 

metres [30, 88]. Turbulence is a slow varying fading channel and has the temporal 

coherence in the order of 1 to 10 ms [89]. 

A useful parameter is the channel correlation radius ��, which is defined as [90]: 

 �� � 34� ß�4ý , (3.1) 

where correlation length 34 is given by [91]: 

 34 � Þnjklm. (3.2) 

Also �4 is spatial coherence radius and is defined as [90]: 

 �4 ¡ Ö1.46fjkl
����m×:È þ⁄

, (3.3) 

where fjkl ¡ 2ß njkl⁄  is the wavenumber and ��� is the index-of-refraction structure 

 
Figure 3.1: Turbulent channel frozen at t=0. The turbulent channel consists of eddies with various sizes. 



Chapter 3: FSO Spatial Diversity 

 

42 

parameter. �� is an important parameter to choose the spacing between various 

independent Rxs in a system with multiple Rxs. The term ‘independent Rxs’ means that 

the correlation between the fading effects of two received signals from two independent 

Rxs is negligible. �� is a general use parameter and can be employed in different 

turbulence regimes, whereas correlation length (34) is an approximation of �� for the 

weak turbulence regime [90]. 

For the index-of-refraction structure (���) there are a number of models available but 

the most widely used is the altitude dependent model developed by Hufnagle-Valley, 

which is given by [85]: 

 

��� ¡ 0.00594�� 27⁄ ���10:þℎ�z4exp�ℎ 1000⁄ � 

+2.7×10:Ýexp�− ℎ 1500⁄ � + �	exp�− ℎ 1000⁄ �, 
(3.4) 

where ℎ, �, and � represent the altitude (m), the root mean square (rms) wind speed (m/s), 

and the nominal value of ��� at ℎ	 ¡ 	0, respectively. Depending on the strength of 

turbulence ��� might be 1.7×10:zÇm:� È⁄  during daytime for a 1 km link or 

8.4×10:zþm:� È⁄  during night for the same link [85]. 

Provided that the received optical signal intensity is denoted by [, a useful parameter to 

qualify the effect of turbulence is the scintillation index (SI) �R
�, which is defined as the 

normalized irradiance variance of the optical beam as given by [91]: 

 �R
� ¡ ì�RÐ�:ìDREÐ

ìDREÐ , (3.5) 

where CD∙E denotes the expected value. The variance of log-intensity signal fluctuation 

defined by Rytov variance �_
� is given by [91]: 

 �_
� ¡ 1.23fjkl

�����m
��� , (3.6) 

For the light beam with a spot size of diameter � at the Rx, Rytov variance criteria for 
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the weak turbulence condition are given by [30]: 

 �_
� < 1 and �_

�Λ
� < 1, (3.7) 

where Λ ¡ 2m fjkl�⁄ . Since in this research work Λ ≪ 1, then only the condition �_
� <

1 is applicable for weak turbulence. 

The distribution of fading coefficient for the weak turbulence regime can be modelled 

using Log-normal distribution, which is practically valid as long as �_
� < 0.3. Log-normal 

probability distribution function (PDF) of the normalized irradiance with mean s` and 

variance � �̀ is given as [15]: 

 BR�[� ¡ z
�R

z
��õÑ
Ð exp ¯− � +�R R³⁄ �:��
�Ð�Ñ
Ð ´, 

(3.8) 

where [4 ¡ CD[E is the signal light intensity without turbulence.  

To normalize BR�[� it is assumed that s` ¡ −��̀ [85]. Under the assumption of weak 

turbulence �R
� and ��̀ are related as follow [30]: 

 �R
� ¡ exp�4��̀� − 1 ≅ 4��̀, (3.9) 

In the literature depending on the light propagation model different expressions are 

introduced for the variance of Log-normal distribution. For the plane wave propagation, 

one has �R
� ¡ �_

� [30]. 

Aperture averaging is a technique that reduces the variation of optical intensity 

according to the aperture diameter 3� [92, 93]. To benefit from aperture averaging, the 

size of 3� needs to be larger than 34 in Equ. (3.2) [85, 90], which is valid for the weak 

turbulence regime. In fact, 34 can be much larger in the moderate-to-strong turbulence 

regime [90, 93]. With �R
��0� and �R

��3�� defined as the scintillation index of the Rx with 

no aperture and with aperture of 3�, respectively, the aperture averaging factor (AF) is 

given by [7, 93]: 
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 AF ¡ Ñ�Ð�h��
Ñ�Ð�4� ≈ �1 + 1.6682 ¯h�

h³
´

��:¬ Ý⁄
. (3.10) 

In the moderate-to-strong turbulence regime one has [30]: 

 �_
� ≈ 1, for moderate regime, (3.11.a) 

 �_
� > 1, for strong regime, (3.11.b) 

and the received signal optical intensity [ is based the PDF of Gamma-Gamma (GG) 

distribution given by [94]: 

 BR�[� ¡ ���­�
���

Ð R
���

Ð ��
������­�R³

���
Ð

ê�:­ �2�!' R
R³
�, (3.12) 

where ! ≥ 0 and ' ≥ 0 are known as the effective numbers of large- and small-scale 

turbulence cells, respectively [86, 95]. Kn(∙), and Γ�∙� denote the modified Bessel function 

of 2nd kind and order n, and the Gamma function, respectively. 

The two parameters of ! and β that characterize the irradiance fluctuation PDF are 

related to the atmospheric conditions and �R�, which are given by [30]: 

 ! = z
�2/ÖÑÔ��Ð ×:z, 

(3.13.a) 

 ' = z
�2/ÖÑÔ��Ð ×:z, 

(3.13.b) 

 �R� = z
α

+ z
­ + z

αβ
= expÖ� +�� + � + � × − 1, 

(3.13.c) 

where σlnX
2  and σlnY

2  represent the variances of large-scale and small-scale irradiance 

fluctuations, respectively. 

As mentioned above the presence of aperture at the Rx will reduce the effect of 

turbulence. For the plane wave propagation model and considering the aperture size the 

closed form expressions for σlnX
2  and σlnY

2  parameters are given by [30]:  
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 � +�� = 4.Ç!ÑéÐ
¯zÛ4.ÝþhÐÛz.zzÑé�Ð 
⁄ ´� �⁄ , 

(3.14.a) 

 � + � = 4.þzÑéÐ¯zÛ4.Ý!Ñé�Ð 
⁄ ´�
 �⁄
zÛ4.!4hÐÛ4.Ý�hÐÑé�Ð 
⁄ , (3.14.b) 

where 3 =  Öfjkl3�� 4m⁄ ×4.þ
 [30]. 

3.3 Spatial Diversity Configuration 

Depending on the number of Txs and Rxs apertures, there are a number of spatial 

diversity schemes. Figure 3.2 illustrates a simple block diagram of the existing spatial 

diversity schemes of single-input single-output (SISO), single-input multiple-output 

(SIMO), multiple-input single-output (MISO), and multiple-input multiple-output 

(MIMO). SISO is the simplest option with no spatial diversity, whereas MIMO is the 

most complex scheme. SIMO is the other scheme, which is used in this thesis and will be 

discussed later. In this work SISO and SIMO systems are adopted, with SISO being used 

as a reference scheme. The performance of the SISO/SIMO FSO link will be evaluated 

under various turbulence conditions.[17] 

 
Figure 3.2: Spatial diversity configurations [17]. SISO, SIMO, MISO, and MIMO denote single-input 
single-output, single-input multiple-output, multiple-input single-output, multiple-input multiple-
output, respectively. 
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3.4 Channel Model in SISO and SIMO 

For a SIMO FSO link with OOK employing "-receive apertures, the received signal at 

the m-th aperture Ae can be written as (see Figure 3.3) [85]: 

 Ae = �I[e + ye, # ¡ 1,… ,", (3.15) 

where � ∈ &0,1' represents the information bit, I is the optical-to-electrical conversion 

coefficient, [e denotes the irradiance received at the m-th aperture, and ye is additive 

white Gaussian noise (AWGN) with zero mean and variance of �e� . The AWGN can be 

considered as a combination of the thermal, shot, and dark noise sources of the Rx and 

the background ambient light [96]. It is assumed that the channel for Tx to each Rx is 

independent, which interprets to the fact that the transversal distance between the adjacent 

apertures is larger than �� in Equ. (3.1) [90].  

In SIMO, each m-th FSO link (see Figure 3.3) is equivalent to a SISO FSO link. For an 

IM/DD based link with AWGN and assuming an equiprobable data transmission ({�0� ¡
{�1� ¡ 0.5), the probability of error conditioned on the received irradiance is BER =
0.5Ö{�@|0� + {�@|1�×. Note that {�@|0� and {�@|1� are the conditional probabilities 

defined by averaging over the PDF of fading coefficient BRS �∙� as [97]: 

 {�@|0� = {�@|1� = Ø BRS�[e�� � (RSÞ�î³�3[eÛÜ4 , (3.16) 

where x4 = 2�e�  is the noise spectral density. Note that BRS�∙� will depend on the channel 

condition. Also note that Equ. (3.16) is valid for SISO and for SIMO the appropriate 

 
Figure 3.3: A simplified illustration of m-th FSO link in a single-input multiple-output scheme. LD and 
PD are laser diode and photodetector, respectively. 
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expression will be introduced. 

The simplified BER expression in a weak and moderate-to-strong turbulence regime 

will be given later in Equs. (3.21) and (3.28). Here, however to show the effect of 

turbulence and the need for mitigation methods, the performance of a SISO link in clear, 

weak, moderate and strong turbulence regimes with and without the aperture averaging 

effect are compared, see Figure 3.4. Note that the aperture size 3� = 34 ≈ 30 mm, and 

Rytov variance (�_�) for the weak, moderate and strong regimes are 0.2, 1 and 4, 

respectively. The graph shows the severe effect of turbulence on the performance of the 

system. Aperture averaging also helps to reduce the effect of turbulence. But for the given 

aperture size, the turbulence effect is still significant. Even for the weak turbulence regime 

with the aperture averaging, there is a ∼8 dB power penalty in order to maintain the target 

BER of 10-6 as in a clear channel. 

 Therefore, aperture averaging is not the single sufficient solution to mitigate the 

turbulence and other techniques should also be considered. Thus as mentioned earlier, 

spatial diversity along with aperture averaging will be used as the other technique. 

 
Figure 3.4: Comparison of single-input single-output performance (BER versus SNR) over clear, weak, 
moderate and strong turbulence regimes with and without aperture averaging. ‘Weak’, ‘Mod’ and ‘Str’ 
refer to weak, moderate and strong regimes, respectively. ‘+AF’ denotes applying aperture averaging. 
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3.5 Combining Methods 

In [98, 99] Kennedy et. al. proposed using diversity technique in FSO systems and they 

showed the benefits of diversity techniques in turbulent channels. Since then the 

researchers have been investigating different diversity configurations in distinct 

turbulence regimes. 

In a SIMO FSO link multiple optical aperture are being used to receive the same signal 

transmitted from the Tx. Depending on the combining technique, the output bit stream 

will be extracted from the received multiple optical signals. A typical SISO FSO Rx is 

shown in Figure 3.5 where optical, electrical and logical signals are depicted for the bit 

stream of {1, 0, 1, 1, 0}. Note that at the final stage, using a quantizer, the electrical signal 

is converted back into a bit stream of 0s and 1s.   

Considering these three forms of the received signal, combining can be performed at 

various levels. Here the performance of an optical SIMO link employing three spatial 

diversity Rx configurations using different combining techniques is investigated (see 

Figure 3.6).  

In Figure 3.6(a) the output of ORx is fed into a quantizer, which converts the electrical 

 
Figure 3.5: A typical single-input single-output FSO Rx. The received signal is shown at optical, 
electrical and logical domain for bit stream of {1, 0, 1, 1, 0}. OptAp refers to the optical aperture. 
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signal into logical levels of 0 and 1, whereas in Figure 3.6(b-c), following the linear 

combiner, the combined outputs from ORxs is applied to the quantizer. In another 

configuration the outputs of ORxs are passed through quantizer modules, the outputs of 

which are applied to the logical combiner, see Figure 3.6(d). 

3.6 Weak Turbulence 

In this section different combining methods under the weak turbulence regime are 

studied. Starting from the optical domain, first the existing combining method 

corresponding to the optical domain are introduced. Next, the combining methods in the 

electrical domain are explained and finally the logical domain is looked at. Since the weak 

turbulence regime is considered, thus a point-wise ORx will be used. 

3.6.1 Adaptive Optics Technique 

In [100] authors have investigated the effect of turbulence in a non-Gaussian receiver 

optical system, where all channels experienced the turbulence effect. As a result, the 

phase of the received signals underwent random fluctuation, and using the adaptive optics 

compensation scheme, it was possible to sum up the channels coherently. In this approach 

the spatial diversity is applied at the Rx side, where the outputs of optical apertures are 

combined prior to photodetection, see Figure 3.6(a). The combining method is referred 

as adaptive optics technique (AOT). AOT is modelled by an equivalent SISO system, 

whereas Equ. (3.15) is written as A#$#%& = �I[#$#%& + y4, where [#$#%& = �)∑ RS)S+�  [100]. 

Therefore, Equ. (3.16) takes the following form: 

 {�@|0� = {�@|1� = Ø BRUVUWX�[�� � (Þ�î³ [�3[ÛÜ4 . (3.17) 

For weak turbulence, BRUVUWX�∙� will have Log-normal distribution given by Equ. (3.8) 
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with the total variance �#$#%&�  and mean ##$#%& given by [100]:  

 �#$#%&� = ln�1 + Ö@Ñ
Ð − 1× "⁄ �, (3.18.a) 

 s#$#%& = −0.5���̀ + �#$#%&� �. (3.18.b) 

Equation (3.18) is derived using Wilkinson's method for uncorrelated random variables 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.6: Block diagram of combining implementation at different signal levels: (a) optical domain, 
(b-c) electrical domains, and (d) logical domain. OTx and OptAp and ORx refer to optical transmitter, 
optical aperture, and optical receiver, respectively. 
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[101]. The simplified form of BER for the weak turbulence regime is given by: 

 BER = 1√ß ∑ ,6� -I[4 �2/.��UVUWXÛ/0��ÑUVUWXÐ 1
Þ�î³ 2�3=1 . (3.19) 

Note that to obtain a closed form equation in weak turbulence, Gauss-Hermite 

quadrature formula is used. � is the order of approximation, ,6 is the weight factor for 

the pth-order approximation, and 46 is the zero of the pth-order Hermite polynomial. For 

values of ,6 and 46 refer to mathematical handbooks such as [102]. For further 

information on mathematical simplification, refer to Appendix A. 

3.6.2 SISO and EGC 

In this approach the spatial diversity is adopted at the Rx side, where the outputs of 

ORxs are combined prior to being applied to the quantizer module as shown in Figure 

3.6(b). For EGC as seen from Figure 3.6(b), the outputs of ORxs are summed up 

coherently before quantization. For this combining method, Equ. (3.16) is replaced by 

[103]: 

 {�@|0� = {�@|1� = Ø BT�T�� � (5Þ�î³ ∑ [e5e6z �3TT , (3.20) 

where BR�T� is the joint PDF of vector T = �[z, [�,… , [5�. Following the method reported 

in [85] it is possible to derive a closed-form expression for Equ. (3.20), so that for the 

SISO link it results in: 

 BER = 1√ß∑ ,6�-I[4 �2/.:�Ñ
ÐÛ/0��Ñ
Ð1
Þ�î³ 2�3=1 , (3.21) 

and for the EGC scheme, the BER is given by: 
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 BER = 1√ß∑ ,6�-I[4 �2/.:�Ñ7
ÐÛ/0��Ñ7
Ð1
Þ�î³ 2�3=1 , (3.22) 

where �8 �̀ = ��̀ "⁄  [85]. For further information on mathematical simplification, refer to 

Appendix A. 

3.6.3 SC 

In SC, by means of a comparator at the Rx, the signal with highest intensity level is 

selected for further processing, see Figure 3.6(c). Considering an independent and 

identically distributed (i.i.d.) intensity fading channel and by introducing [\] =
max�[z, [�,… , [5� the PDF takes the following form [86]: 

 BRYZ�[\]� = hhRYZ ∏ QRS�[\]�5e6z = "BR�[\]�DQR�[\]�E5:z, 
(3.23) 

where QRS�∙� is cumulative distribution function (CDF). Thus the BER expression for SC 

is given by [103]: 

 {�@|0� = {�@|1� = " Ø BR�[�DQR�[�E5:z� � (
Þ�5î³ [� 3[ÛÜ

4 . (3.24) 

After some mathematical simplification, it can be shown that: 

 BER = "√ß∑ ,6�Ö−√246×"−1�3=1 �-I[4
�2/.:�−Ñ
ÐÛ/0��Ñ
Ð1

Þ�5î³ 2. (3.25) 

For further information on mathematical simplification, refer to the Appendix A. 

3.6.4 MLC  

In this scheme for more than two receivers (" > 2) a comparison-based combining 

method is adopted in the logical domain and is referred to as the MLC scheme, see Figure 
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3.6(d). The basic concept of MLC is to monitor the output bits at each branch and generate 

the final output bit Btotal stream based on the numbers of simultaneous received 1s (yz) 

and 0s (y4) (see Figure 3.6(d)). For this scheme the probability of error is given by [104]: 

 BER = :∑ Ö56 ×{76 {F5:6566îÛz + z
� Ö5î×{7î{Fî , " = 2x∑ Ö56 ×{76 {F5:6566î , " = 2x − 1, (3.26) 

where {7 denotes the probability of error for each diversity branch that can be obtained 

by setting [4 to [4 "⁄  in Equ. (3.22), {F = 1 − {7, and x > 2, which is an integer number. 

However for {7 ≪ 1 it can be assumed that {F ≅ 1 and since higher SNRs where {7 ≪
1, and assuming i.i.d for all channels then Equ. (3.26) can be simplifies to the following: 

 BER = :∑ Ö56 ×{76566îÛz + z
� Ö5î×{7î , " = 2x∑ Ö56 ×{76566î , " = 2x − 1. (3.27) 

3.6.5 Numerical Analysis 

In this section the system performance of the mentioned diversity methods in 

comparison to the SISO based FSO link under the weak turbulence regime is outlined. 

Figure 3.7 shows the BER performance against the average SNR for aforementioned 

combing schemes for two values of weak turbulence strength (�`) and a range of number 

of receivers (M) using the expressions given in Equs. (3.19), (3.21), (3.22), (3.25), and 

(3.27).  

In Figure 3.7(a) a plot for MLC is not shown since M = 2. In Figure 3.7(a) EGC and 

AOT offer the best performance for both turbulence levels. However, in Figure 3.7(b) 

and Figure 3.7(c) MLC displays the best performance by offering lower SNR values of 

2.10, 1.83, 5.29 and 7.18 dB compared to the AOT, EGC, SC and SISO, respectively to 

achieve the same BER of 10:Ý for �` = 0.2, and M = 3. For the same �` and M = 5, the 

SNR gains are 4.27, 3.95, 8.90 and 10.66 dB compared to the AOT, EGC, SC and SISO, 
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respectively. For �` = 0.5 however, the best combining method is EGC while SC still 

has the worst performance for all cases. Besides all the combining schemes show the same 

slope in Figure 3.7, which means that diversity order of all combining methods are the 

same. The summary of power gains relative to the SISO method for a BER of 10:Ý is 

presented in Table 3.1.  

Next simulation of a 2 km long FSO link with the following parameters is carried out: 

laser wavelength of 830 nm, ORx with noise floor of -31.06 dBm for 500 MHz bandwidth 

and ��� of 10:zþ #:� È⁄ .  The corresponding BER expressions are solved for a BER of 

10:Ý and required received optical power at each PD is calculated using [96, Eq. (23)]. 

Figure 3.8 illustrates the normalized required optical received power (normalized with 

 
(a) (b) 

 
(c) 

Figure 3.7: Comparison of average BER for average SNR of 0 to 30 dB for different numbers of receiver 

apertures (M): (a) M=2, (b) M=3, and (c) M=5. Two turbulence regime sets of σx=0.2 and 0.5 have 
been calculated in each plot. SISO, AOT, EGC, SC, and MLC refer to single-input multiple-output, 
adaptive optical technique, equal gain combining, selective combining and bit-majority combining, 
respectively. 
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respect to SISO) against M for AOT, EGC, SC and MLC.   As it was concluded before 

SC has the worst performance among all combining methods. AOT offers improved 

performance compared to SC, e.g., for " =  2, the power penalty between them is 0.7 

dB increasing to 2.4 dB for " =  10. However comparing AOT and EGC the power 

penalties are between 0.43 and 0.60 dB for the values of " in the range of 2 ≤ " ≤ 9. 

Compared to AOT, EGC and SC the proposed MLC method outperforms all for " > 3 

(e.g., for " =  10 the power penalty is 3.29 dB compared to the EGC). The MLC offers 

superior performance capabilities compared to all other combing schemes at the cost of 

increased system complexity.  

One important issue in this numerical analysis is the superiority of MLC to the EGC 

method. EGC is almost similar to maximal ratio combining (MRC) and considering the 

Table 3.1: Comparison of power gains of AOT, EGC, SC and MLC relative to SISO method for a 

BER=10-6 under weak turbulence regimes (i.e., σx of 0.2 and 0.5). SISO, AOT, EGC, SC, and MLC 
refer to single-input multiple-output, adaptive optical technique, equal gain combining, selection 
combining and majority-logic combining, respectively. The values are obtained from the results in 
Figure 3.7. The gains are in dB and M is the number of receiver apertures. 

 <= = >.? <= = >.@ 

 M = 2 M = 3 M = 5 M = 2 M = 3 M = 5 

AOT 3.6 5 6.4 10.72 15.52 20.22 
EGC 3.8 5.3 6.7 12.62 17.82 22.72 
SC 1.6 1.8 2 10.02 14.12 17.97 

MLC - 7.2 10.6 - 15.12 21.97 

 

 
Figure 3.8: Normalized required optical received power versus the number of receiver apertures (M) for 
a BER of 10-6 at the Rx. The values are normalised with respect to single-input single-output (SISO). 
AOT, EGC, SC, and MLC refer to adaptive optical technique, equal gain combining, selection 
combining and majority-logic combining, respectively. 
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fact that MRC gives the best performance among combining methods, additional 

comparison, similar to Figure 3.8, only between EGC and MLC for different turbulence 

strengths and a range of M is performed, see Figure 3.9. For �` = 0.01 the channel is 

assumed to be clear and Figure 3.9 obviously shows that regardless of the values of M the 

performance of system with EGC is almost the same as SISO. However, the MLC system 

shows a different behaviour and increasing the number of Rxs improves the system 

performance. 

In MLC each Rx is an independent SISO link and the final output bit is decided based 

on the majority rule so that larger number of Rxs results in less chance of receiving a 

wrong bit. Therefore, the quality of MLC is totally dependent on each individual SISO 

link and that is why increasing the turbulence strength will degrade the MLC system 

performance. Figure 3.9 illustrates the calculated results for �` = 0.54 in which the 

performance of MLC is not as significant of the case where �` was 0.01. The value of 

�` = 0.54 is the limit which beyond it the Log-normal PDF is not valid. 

As seen from case of �` = 0.01, increasing M leads to more enhanced system 

performance and one can see that for small values of M the system with EGC outperforms 

 
Figure 3.9: Normalized required optical received power versus the number of receiver apertures (M) for 
a BER of 10-6 at the Rxs implementing EGC and MLC. The values are normalised with respect to SISO. 
EGC, and MLC refer to equal gain combining and majority-logic combining, respectively. 
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the one with MLC. This observation about the MLC method concludes that increasing 

the number of Rxs of a MLC system improves the system performance under any 

conditions (i.e., in contrary to EGC even in a clear channel the performance will improve) 

and for a specific number of Rxs the performance of MLC outperforms EGC. For low 

values of �` MLC outperforms EGC however, the increase in the turbulence strength 

degrades this superiority. 

The MLC curves depicted in Figure 3.8 and Figure 3.9 show two interesting odd 

behaviours: the ripple in the MLC curve as well as performance degradation for higher 

number of apertures (e.g. a system with 3 apertures performs better than one with 4 

apertures). To describe these behaviour, one should remember that an assumption was 

made to simplify Equ. (3.26) into Equ. (3.27). Besides, to obtain the required power Equ. 

(3.27) was numerically solved, which introduced additional approximation. Also it is 

worth mentioning that the performance of MLC system for " = 2x and " = 2x − 1 

are the same, which is proved in [104]. Therefore, ideally for instance in Figure 3.9 for 

" = 3 and 4 the same value for normalized required optical received power should be 

observed. It is worth mentioning that the ideal plot must look like a staircase graph 

showing that same normalised required optical power for receivers with 2x and 2x − 1 

numbers of apertures. However, the existence of errors does not alter the fact that MLC 

offers improved performance for larger number of apertures and higher values of SNR. 

3.7 Strong Turbulence 

In this section, the performance of typical combining methods under the strong 

turbulence regime is investigated. In contrary to the weak turbulence regime, apertures 

with a given diameter, which results in aperture averaging effect are considered. 
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3.7.1 SISO and EGC 

The procedure of deriving the BER expression is the same as in Section 3.6.2 where as 

BR�T� takes a different form. In [95] a closed-form expression is proposed to estimate BR�T� 

for the case of a MIMO FSO system. Using the same approach and considering the special 

case of SIMO with "-aperture, the error probability is obtained as [95]: 

 BER ≈ �AB�SB�C√õC��DB���eB� þ̂,��,Ç .¯ �DBeB´� E F��ABÐ ,Ð�ABÐ ,��SBÐ ,Ð�SBÐ ,z
0, �Ð 1, (3.28) 

where ^D∙E is the Meijer-G function [105], fa = "α+M�", !, '�, #a = "', and the 

parameter M�G, f,#� is defined as [95]:  

 M�G, f,#� = �G − 1� �:4.z�¬:4.!þk:4.44þ�e�
�zÛ4.44z�ÇkÛ4.!�e� . (3.29) 

Also, E in Equ. (3.28) is the average electrical SNR defined as I�[4� x4⁄ . 

3.7.2 SC 

Knowing that QRS �∙� for the GG distribution is defined as [95]: 

 QRS�[e� = z������­� ẑ,È�,z ��­
R³ H 1!, ', 0�. (3.30) 

Thus the following Section 3.6.3 and using Gauss-Laguerre quadrature formula [102], 

the BER expression for SC is given by [103]: 

 BER ≈ 2" ��­����Ð
Ö������­�×)∑ I6

·̧
¹
º̧ ê�:­Ö2Þ!'�6××
� ẑ,È�,z �!'�6 H 1!, ', 0��5:z

×� � (R³J0Þ�5î³��6
���Ð :z@J0 Ķ

L
M̧

�66z , (3.31) 

where µ, I6, and �6 are the order of approximation, the weight factor for the µth-order 

approximation, and the zero of the µth-order Laguerre polynomial, respectively. For 

further information on mathematical simplification, refer to the Appendix A. 
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3.7.3 MLC 

The BER expression is obtained by following the same procedure explained in Section 

3.6.4. Note that, here {7 denotes the probability of error for each diversity branch that can 

be obtained by setting the number of apertures (") to 1 in Equ. (3.28). 

3.7.4 Numerical Analysis 

In this section, the performance of EGC, SC and MLC with a SISO system under 

turbulence conditions are compared. An FSO link of 1 km length employing a 830 nm 

laser source is considered. The plane wave model propagation, and two turbulence 

regimes with ��� =  3×10:zÇ  and 5×10:zÇ m:� È⁄ , which are equivalent to Rytov 

variance (�_�) of 1.24 and 2.06, respectively, are the other conditions. Using Equs. (3.28), 

(3.31) and (3.27), the BER performance of EGC, SC and MLC over the SNR range of 0 

to 50 dB and M of 3 and 5 for the case of a point Rx is depicted in Figure 3.10. Also 

shown for comparison, is the BER plot for SISO. 

These results clearly illustrate the benefit of employing diversity techniques compared 

to SISO. It is observed that for each scenario EGC performance is better than SC. For 

 
(a) (b) 

Figure 3.10: BER versus SNR for EGC, SC, MLC and SISO. The comparison is carried out for different 

numbers of apertures (M) and turbulence strengths (Cn
2): (a) Cn

2=3×10-14 m-2/3 (σR
2=1.24), and (b) 

Cn
2=5×10-14 m-2/3 (σR

2=2.06). SISO, EGC, SC, and MLC refer to single-input multiple-output, equal 
gain combining, selection combining and majority-logic combining, respectively. 

0 5 10 15 20 25 30 35 40 45 50
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

 

 
SISO

EGC

SC

MLC

M=3

M=5

0 5 10 15 20 25 30 35 40 45 50
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR (dB)

B
E

R

 

 
SISO

EGC

SC

MLC

M=3

M=5



Chapter 3: FSO Spatial Diversity 

 

60 

example for a BER of 10:Ý, ��� =  3×10:zÇ m:� È⁄  and " =  5, EGC provides an SNR 

gain of 2.6 dB compared to SC. For ��� =  5×10:zÇ m:� È⁄  and M = 5 EGC still provides 

the best performance followed by MLC and SC for SNR > 24.5 dB. However, for SNR < 

24.5 dB MLC offers marginally improved BER performance compared to others. 

Therefore, it can be concluded that in the case of either increasing the number of Rxs 

or reducing the turbulence strength the performance of MLC drastically improves 

compared to EGC and SC. The summary of power gains relative to the SISO method for 

a BER of 10:Ý is presented in Table 3.2. 

To assess and compare the performance of MLC in a turbulence channel with other 

methods the performance of all three combing schemes as well as SISO for a range of 

real Rx aperture sizes 3N are investigated. For the SIMO case the aperture size of each Rx 

is set to 0.534 and 34, where 34 is obtained from Equ. (3.2). In order to make a fair 

comparison between SISO and SIMO systems the aperture area of SISO is kept the same 

as the total apertures area of SIMO. Figure 3.11 shows the BER performance as a function 

of the SNR for EGC, SC, MLC and SISO configurations for M = 3 and ��� =
 5×10:zÇ m:� È⁄ .  

In Figure 3.11(a) the aperture diameters for SIMO and SISO are approximately 

14.5 mm and 25 mm, respectively. It is worth to compare results with the predicted data 

but for non-real cases with a point Rx in Figure 3.10(b). At a BER of 10-6 the SNR 

requirements has dropped by 38.3, 8.4, 7.75, and 13 dB for SISO, EGC, SC and MLC, 

Table 3.2: Comparison of power gains of AOT, EGC, SC and MLC relative to SISO method for a 

BER=10-6 under strong turbulence regimes (i.e., σR
2 of 1.24 and 2.06). SISO, EGC, SC, and MLC refer 

to single-input multiple-output, equal gain combining, selection combining and majority-logic 
combining, respectively. The values are obtained from the results in Figure 3.10. The gains are in dB 
and M is the number of receiver apertures. 

 <O? = P.?Q <O? = ?.>R 

 M = 3 M = 5 M = 3 M = 5 

EGC 35 28.9 46 38.5 
SC 32.2 25.5 43.8 37.3 

MLC 34.6 27.2 44.1 32.75 
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respectively. This improvement in SNR is clearly due to the aperture averaging, which 

has reduced �R� from 1 to 0.35 and 0.57 in SISO and SIMO cases, respectively. For the 

same aperture sizes of 0.534 and 34 MLC displays similar performance like two other 

combining methods. This was expected as reducing the turbulence strength improves the 

performance of MLC to the level that it outperforms other combining methods. For this 

case considering the minimum distance of �4 obtained from Equ. (3.3) between apertures 

in SIMO system, the SIMO Rx must have at least a diameter of 30.69 mm1. 

It is worth mentioning that the SISO Rx with a diameter of 24.95 mm and an SNR of 

38.10 dB can provide the same BER of 10-6 as EGC with the SNR of 29.10 dB. This is 

interesting since at higher values of SNR it is possible to implement a smaller and less 

complex SISO system instead of a SIMO link. Figure 3.11(b) depicts the BER versus the 

SNR for SIMO and SISO with aperture sizes of to 29 mm and 50 mm, respectively. 

It is noticeable that SISO displays a similar performance to SC with an additional SNR 

requirement of 1.5 dB at a BER of 10-6 while the diameters of SISO and SC Rxs are kept 

                                                                        

1It can be shown that minimum Rx diameter for SIMO when " =  3 is 3� + 2�4 √3⁄ . See Appendix A for details. 

 
(a) (b) 

Figure 3.11: BER versus SNR for EGC, SC, MLC and SISO optical link configurations implementing 
real aperture averaged Rx. The comparison is carried out for three receiver apertures (i.e., M=3), 
Cn

2=5×10-14 m-2/3 and different aperture sizes ds provided d0≈29 mm: (a) ds =0.5d0, and (b) ds =d0. SISO, 
EGC, SC, and MLC refer to single-input multiple-output, equal gain combining, selection combining 

and majority-logic combining, respectively. 
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at ∼50 mm and ∼45 mm, respectively. Therefore, using a ∼50 mm diameter Rx with a 

1.5 dB additional SNR a simpler SISO could be used instead of SIMO employing SC 

with a ∼45 mm diameter Rx. For the same aperture size MLC and EGC offer the same 

performance and based on the first analysis it can be predicted that for higher aperture 

sizes MLC offers improved performance compared to EGC. This is proved by letting the 

SIMO aperture size to be 1.530 ≈  43.2 mm. For this aperture size and at a BER of 10-

6 MLC achieves 2.8 dB gain in SNR when compared to EGC. Note that for SNR < 21 dB 

the marginal improvement in SISO compared to SC, see Figure 3.11(b), is due to the 

larger aperture size of SISO. 

The analysis carried out in this chapter leads to two important conclusions: 

1. Based on the system requirements it is possible to determine the Rx 

configuration using the closed-from BER expressions. For example for SIMO 

with the aperture diameter of 0.830 ≈  23 mm both SISO and SIMO have the 

same Rx diameter of ~40 mm. In this case the less complex SISO link require 

3.4 dB higher values of SNR than more complex SC link to achieve a BER of 

10:Ý; 

2. MLC method offers improved performance compared to EGC either by 

increasing the number of Rxs or by reducing the effect of turbulence via 

aperture averaging. 

Although EGC can provide an optimum performance over a wide range of turbulence 

regimes, it is essential to ensure coherently synchronized signal summation in the 

physical layer of the network. Whereas since MLC deals with logical 0 and 1 data streams, 

it can be implemented in the higher layers of the network rather than the physical layer. 

Although it was shown that the MLC offers an improved performance at higher values 
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of SNR and a large number of apertures, for the rest of this thesis the EGC method is used 

where the best performance is needed; and if the easiest combining method is required, 

SC will be implemented. 

3.8 Summary 

In this chapter, first the existing combining techniques used in spatial diversity were 

categorized into three optical, electrical and logical domains. Then existing combining 

methods were studied and categorized based on three aforementioned domains. Also the 

performance of each combining method in two different turbulence regimes (i.e., weak 

and strong) were discussed. It was shown that for high SNR and larger number of 

apertures, MLC method has a better performance compared to well-known methods such 

as EGC or SC. The numerical analysis showed that to achieve the same BER of 10:Ý the 

SNR improvement were 2.10, 1.83, 5.29, and 7.18 dB compared to AOT, EGC, SC, SISO, 

respectively for �` = 0.2, and M = 3. The performance of SISO, EGC, SC, and MLC 

were also compared under moderate and strong regimes, where the same behaviour as in 

weak regime was observed. Once again MLC offered improved performance for a larger 

number of apertures and higher values of SNR.  

However, here considering a wide range of system parameters, EGC could be used for 

its best performance whereas SC is preferred for its simplicity.
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 A FSO LINK WITH 

DIFFERENTIAL 

SIGNALLING 

4.1 Introduction 

The received signal in a FSO communication system is highly sensitive to the 

atmospheric effects such as fog, smoke, low clouds, snow, rain and the atmospheric 

turbulence [7, 17, 106, 107] that may result in severe power loss and channel fading. In 

NRZ-OOK IM/DD based systems, an optimal detection threshold level at the Rx can be 

used to distinguish the received ‘0’ and ‘1’ bits. However, under atmospheric turbulence 

the received optical signal will experience random intensity fluctuation as well as fading 

[108], which can result in the received signal power dropping below the Rx's threshold 

for a duration of milliseconds. For deep fading simply increasing the transmit power level 

and using a fixed optimal threshold level at the Rx are not the best options [107]. 

Most already-proposed detection methods rely on the knowledge of instantaneous or 

statistical CSI. For instance, to resolve the fluctuation of threshold level, in [88] the 

maximum-likelihood sequence detection (MLSD) scheme was adopted, and it was shown 

that provided the temporal correlation of atmospheric turbulence S4 is known MLSD 

outperforms the maximum-likelihood (ML) symbol-by-symbol detection technique. In 
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practical applications S4 ≅ 1 − 10 ms; then to maximize the link performance S4 needs 

to be adjusted dynamically. In addition, MLSD suffers from high computational 

complexity. In [109] two sub-optimal MLSD schemes, based on the single-step Markov 

chain model, were proposed to reduce the Rx computational complexity; however they 

still require the CSI knowledge. Employing the pilot symbol (PS) assisted modulation 

(PSAM) scheme, and assuming that S4 is known, CSI is acquired by inserting PS within 

the data stream [110]. However, obtaining an accurate-enough instantaneous CSI 

necessitates a non-negligible pilot overhead. In commercial FSO products, it is desirable 

to employ low complexity signal detection schemes with simple data framing and 

packetization structures in order to ensure infrastructure transparency [111]. 

In outdoor FSO links, a differential signalling scheme, also known as differential 

detection, was investigated in [35] to remove the effect of background noise. Also the 

same idea was adopted in [107] that used a pre-fixed optimal threshold level for various 

atmospheric channel conditions (rain, atmospheric turbulence, etc.). The detection 

technique did not rely on the CSI (with increased computational load at the Rx) and PS 

or a training sequence [107]. However, the simulation based investigation only 

considered narrow collimated beams without overlapping and with no experimental 

verification. To mitigate the fluctuation of pre-fixed optimal threshold level, the 

differential signalling scheme is preferred to AC-coupling (i.e., high pass filtering 

method) for a number of reasons including (i) no need to increase the transmit power to 

compensate for the filter attenuation; (ii) no baseline wander effect (i.e., disturbing the 

DC level of a signal); and (iii) removing the effects of the background noise.  

The basic concept of differential signalling is to send the signal and its inverted version 

simultaneously by using two pairs of Txs and Rxs over the same communication channel. 

Following reception of each signal by the corresponding Rxs and performing a 
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subtraction operation at the final stage, the output signal is regenerated for further 

processing. With this scheme the challenges are to identify the received signals at the 

receiver and effectively exploit the potential of differential signalling method under 

various channel conditions. 

There are two main motivations for using the differential signalling method. First, it 

has been shown theoretically that provided Rxs are not saturated by the combined power 

of the received signal and the background noise level, the effect of ambient illumination 

can be cancelled out [35]. Second, in [107] a differential signalling scheme was adopted 

in an IM/DD OOK FSO links to overcome the variation of the threshold level caused by 

the channel fading. The benefit of differential signalling method in channels with large 

ambient illumination has been fully investigated in [35]. Therefore, in this research, only 

the performance of differential signalling in a fading channel is investigated. 

In addition to turbulence, pointing errors also results in threshold level fluctuations at 

the Rx, which can affect the link performance as well as making signal detection a 

challenging task [106, 112]. To mitigate signal degradation researchers have proposed a 

number of techniques including adaptive detection [106], more complex tracking systems 

[34], and spatial diversity [113]; also see [7] and the references therein. Adaptive 

detection techniques (ADT) either imposes computational load at the Rx or reduces the 

link throughput [109, 110]. When using ADT, the CSI or the temporal correlation of 

fading is required for data detection at the Rx [106]. FSO links with tracking systems 

requiring optics, monitoring and controlling circuits [114] are complex and costly to be 

used in commercial IM/DD NRZ-OOK FSO systems. Using spatial diversity with a 

number of Txs and Rxs will result in improved system performance for various channel 

conditions. However, there is still the need for a detection technique to extract the 

information bits from the combined signal [88]. The differential signalling technique can 
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also be used to mitigate the fluctuation of threshold level due to the pointing errors. 

In this chapter, first the basic idea of differential signalling method is introduced. Then 

the challenges associated with the existing differential signalling methods are discussed 

and a solution is outlined. To the best of our knowledge no research work has been 

reported on the correlation between two channels in FSO systems with differential 

signalling. In this work theoretical, simulation and experimental investigation of the 

correlation are carried out. Correlation is shown to be an important key factor that needs 

considering. Also the theory of differential signalling method will be extended into 

channels with the pointing errors effect. 

4.2 Differential Signalling Configuration 

The differential signalling system block diagram is depicted in Figure 4.1. The NRZ-

OOK signal � and its inverted version �̅ are used to intensity-modulate two optical 

sources at wavelengths of nz and n�, respectively. By comparing � with the optimal 

threshold level ��=0��= = CD�E, where CD∙E denotes expected value, the original data bit 

stream can be recovered (i.e., bit is 0 for � < ��=0��= and 1 elsewhere).  

Note that the optimal threshold level for �̅ is also �#u89�u. The output intensities Ii (i = 

1,2) of optical sources are given by: 

 �[z[�� = �Γz 00 Γ�� T��̅U, (4.1) 

where Γ6 denotes the electrical-to-optical conversion coefficient of optical sources.  
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Figure 4.1: The system block diagram to implement differential signalling in correlated-channels conditions. T is the bit duration. OTx, BC, BS, ORx and TIA refer to optical 

transmitter, beam combiner, beam splitter, optical receiver, and transimpedance amplifier, respectively.  
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The outputs of optical sources are then passed through a beam combiner to ensure that 

both beams will be transmitted over the FSO channel of length m. Note that the beam 

combiner is only used for alignment purposes and not for combining signals in the optical 

domain. 

The optical signals V at the Rx end are given by: 

 T�z��U = �ℎz 00 ℎ�� �Γz 00 Γ�� T��̅U, (4.2) 

where ℎ6 denotes the channel response including the effect of geometrical and 

atmospheric losses, pointing errors, and the turbulence. Here only the effect of turbulence 

is considered. 

At the Rx, the optical signal is passed through a 50/50 beam splitter and optical filters 

with the centre wavelengths of nz and n�, prior to being collected by an ORx. The 

generated photocurrents are amplified by TIA with outputs given by: 

 T�z��U = z
� �ℜz^zℎzΓz 00 ℜ�^�ℎ�Γ�� T��̅U+ Tyzy�U, (4.3) 

where ℜ6 is the PD responsivity, ^6 is gain of TIA, y6 is the AWGN with the zero mean 

and variance ��,6� . The combined output �# = �z − �� is given by: 

 �# = z
� Γzℎzℛz^z� − z

� Γ�ℎ�ℛ�^��̅ + yz − y�. (4.4) 

Note that in [35] it shown that for outdoor applications where the ambient noise effect 

is also embedded in y6, the impact of background noise is significantly reduced. 
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4.3 Differential Signalling and Turbulence 

4.3.1 Optimal Detection Threshold Level 

A sampler with sampling at the centre of bit duration and a threshold detector are used 

to regenerate the transmit data. From Equ. (4.4), the optimal threshold level for �# is given 

by: 

 ��=0��= = z
� ��=0��=�Γzℎzℛz^z − Γ�ℎ�ℛ�^�� + yz − y�. (4.5) 

Using [115] one obtains: 

 Mean���=0��=� = Mean�ℎz� − Mean�ℎ��, (4.6.a) 

 

Var���=0��=� = Var�ℎz� + Var�ℎ�� 

−2�z,�ÞVar�ℎz�Var�ℎ�� + 2���, 
(4.6.b) 

where Mean�∙� denotes the average and Var�∙� introduces the variance. Here, �z,� is 

correlation coefficient between the channels (i.e., ℎz and ℎ�). For simplicity, in Equ. (4.6) 

Γ�ℛ�^� = 2 ��=0��=⁄  and ��,z� = ��,�� = ��� are set. For the weak turbulence regime ℎ6 
follows Log-normal distribution with mean and variance su,6 and �u,6� , respectively [115]. 

For Log-normal distribution one has [85]: 

 Mean�ℎ6� = expÖ2su,6 + 2�u,6� ×, (4.7.a) 

 Var�ℎ6� = ÖexpÖ4�u,6� × − 1××expÖ4su,6 + 4�u,6� ×, (4.7.b) 

where su:6 = −�u,6�  . Therefore, one has: 

 Mean���=0��=� = 0, (4.8.a) 

   

 Var���=0��=� = expÖ4�u,z� × + expÖ4�u,�� × − 2 (4.8.b) 
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−2�z,��expÖ4�u,z� × − 1�expÖ4�u,�� × − 1 + 2���. 

Since optical beams are in parallel and propagating very close to each other over the 

channel, then both beams will experience the same turbulence effects (i.e., �u,z� ≈ �u,�� ). 

Considering this approximation, one obtains: 

 Mean���=0��=� = 0, (4.9.a) 

 Var���=0��=� = 2Ö1 − �z,�×�expÖ4�u,z� × − 1� + 2���. (4.9.b) 

From Equ. (4.9.a), it is seen that to recover the transmit bit stream, the optimal threshold 

level should be set to 0. This is similar to the work in [107] except for not considering the 

variance of the detection threshold in Equ. (4.9.b) due to turbulence. The method 

proposed in [107] is effective only under constant fading conditions. However, for 

randomly varying fading scenario a Rx employing a fixed optimal threshold level is not 

the optimum and therefore alternative scheme should be considered to ensure improve 

FSO link performance. 

4.3.2 Correlation Between Channels 

From Equ. (4.9.b), for �z,� = 1 (i.e., the highly correlated channels), one has 

Var���=0��=� = 2���. In other words, turbulence does not affect signal detection provided 

the channels are highly correlated. According to [89], under the weak turbulence regime 

�z,� can be expressed in terms of the transversal distance between the Rx apertures 38  

and the spatial coherence radius �4. Here, with parallel optical beams propagating over a 

LOS link, 38 is in fact the distance between the propagation axes of beams. Thus the 

correlation coefficient between channels takes the form of [89]: 
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 �z,� = exp �− ¯hÏY³´þ È⁄ �, (4.10) 

where for a plane wave propagation model, the spatial coherence radius �4 is given by 

Equ. (3.3). From Equ. (4.10), for �38 �4⁄ �þ È⁄ > 5 channels are considered uncorrelated 

�z,� < 0.007 whilst for 38 → 0 one can obtain �z,� → 1. So, by adopting a small 38, one 

can obtain highly correlated channels and, as a result, use an optimal threshold level 

independent of turbulence. 

This can be the challenging part of the differential signalling scheme; since the goal is 

to achieve the following features simultaneously: 

1. Both channels have to be highly correlated 

2. Signals are different, which necessitates minimum interference. 

In the next sections, it will be shown how these two challenges can be addressed by 

using the scheme illustrated in Figure 4.1.  

4.3.3 Channel Modelling 

In this section the differential signalling method in more details will be investigated 

and the effect of signal level, modulation extinction ratio, laser wavelengths, and 

correlation coefficient on the differential signalling performance will be described. 

Knowing that superscripts high and low denote corresponding high and low levels of the 

electrical signal �, respectively, the electrical signals of LD �6 in Figure 4.1 are given by: 

 �z = [ �zu6\u bit 1
Ö�zu6\u + �z&$]× 2⁄ Threshold

�z&$] bit 0
, (4.11.a) 
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 �� = [ ��&$] bit 1
Ö��u6\u + ��&$]× 2⁄ Threshold

��u6\u bit 0
. (4.11.b) 

Each bit in Equ. (4.11) is distinguished by the corresponding electrical signal level. 

Besides a constant threshold level, which is equivalent to the average signal level, is also 

included and one can regenerate the information bits by comparing signal to 

corresponding threshold level. In Section 4.3.1, this threshold level was defined as the 

optimal threshold level. �z and �� are used to internal-modulate two optical sources at 

wavelengths of nz and n�, respectively. The output of optical transmitter (OTx1) {z# is 

given as: 

 {z# = [{zu6\u bit 1
{z%_\ Threshold
{z&$] bit 0

. (4.12) 

Due to equiprobable data transmission link the average power level {6%_\ =
Ö{6u6\u + {6&$]× 2⁄  (3 = 1, 2). By defining the extinction ratio M6 = {6u6\u {6&$]ý , low and 

high power levels can be expressed as {6&$] = 2{6%_\ �1 + M6�⁄  and {6u6\u =
2M6{6%_\ �1 + M6�⁄ , respectively. Therefore, outputs of OTxs ({6#) are expressed as: 

{z# = {z%_\×
·¹
º �

zÛ`0 bit 1
1 Threshold�`0zÛ`0 bit 0

, (4.13.a) 

{�# = {�%_\×
·¹
º �`0zÛ`0 bit 1

1 Threshold�
zÛ`0 bit 0

. (4.13.b) 

The received optical power at the Rx {68 = ℎ6{6#, where ℎ6 represents the atmospheric 

turbulence. The outputs of ORxs are given by: 
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�z = yz + 2
·̧
¹
º̧ℎz^zℜz `�Î�WabzÛ`� bit 1

z
� ℎz^zℜz{z%_\ Threshold
ℎz^zℜz Î�WabzÛ`� bit 0

, (4.14.a) 

�� = y� + 2
·̧
¹
º̧ ℎ�^�ℜ� ÎÐWabzÛ`Ð bit 1

z
� ℎ�^�ℜ�{�%_\ Threshold
ℎ�^�ℜ� `ÐÎÐWabzÛ`Ð bit 0

. (4.14.b) 

As seen from Equ. (4.14) the threshold levels are affected by turbulence. If only a link 

with the wavelength nz is considered then the FSO link in Figure 4.1 is simplified to a 

SISO link for which the average value and the variance of the received electrical signal 

�z are defined as [115]: 

Mean��z� = Mean�ℎz�×
·¹
º�`�c��zÛ`�� bit 1Φz Threshold�c��zÛ`�� bit 0

, (4.15.a) 

Var��z� = ��,z� + Var�ℎz�×
·̧
¹
º̧¯�`�c��zÛ`��´� bit 1

�Φz�� Threshold
¯ �c��zÛ`��´� bit 0

, (4.15.b) 

where Φ6 = ^6ℜ6{6%_\. Thus using Equ. (4.7) one has: 

Mean��z� =
·¹
º `�c��zÛ`�� bit 1Φz Thresholdc��zÛ`�� bit 0

, (4.16.a) 

Var��z� = ��,z� + �expÖ4�u,z� × − 1�×
·̧
¹
º̧¯�`�c��zÛ`��´� bit 1

�Φz�� Threshold
¯ �c��zÛ`��´� bit 0

. (4.16.b) 

The expression in Equ. (4.16.a) shows that the average of threshold level depends on 
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Log-normal variances (�u,z� ). Besides based on Equ. (4.16.b), the threshold level 

fluctuates with the given order as predicted before. The combined output �# is given as: 

 �# = yz − y� +
·¹
º�`�c��zÛ`�� ℎz − �cÐ�zÛ`Ð� ℎ� bit 1Φzℎz − Φ�ℎ� Threshold�c��zÛ`�� ℎz − �`ÐcÐ�zÛ`Ð� ℎ� bit 0

. (4.17) 

Mean�∙� and Var�∙� will be as given in Equ. (4.18). If laser beams are propagating very 

close to each other, then they experience the same turbulence strength and �u,z� ≈ �u,�� , 

therefore Equ. (4.18) leads to Equ. (4.19). 
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 Mean��#� =
·̧
¹
º̧ 2MzΦz�1 + Mz� Mean�ℎz� − 2Φ��1 + M�� Mean�ℎ�� bit 1

ΦzMean�ℎz� − Φ�Mean�ℎz� Threshold2Φz�1 + Mz� Mean�ℎz� − 2M�Φ��1 + M�� Mean�ℎ�� bit 0
 (4.18.a) 

 

Var��#� = ��,z� + ��,��

+
·̧
¹
º̧� 2MzΦz�1 + Mz��� Var�ℎz� + � 2Φ��1 + M���� Var�ℎ�� − 2�z,� 4MzΦzΦ��1 + Mz��1 + M�� ÞVar�ℎz�ÞVar�ℎ�� bit 1

�Φz��Var�ℎz� + �Φ���Var�ℎz� − 2�z,�ΦzΦ�ÞVar�ℎz�ÞVar�ℎ�� Threshold
� 2Φz�1 + Mz��� Var�ℎz� + � 2M�Φ��1 + M���� Var�ℎ�� − 2�z,� 4M�ΦzΦ��1 + Mz��1 + M�� ÞVar�ℎz�ÞVar�ℎ�� bit 0

 
(4.18.b) 

 

  

7
6
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 Mean��#� =
·̧
¹
º̧ 2MzΦz�1 + Mz� − 2Φ��1 + M�� bit 1Φz − Φ� Threshold2Φz�1 + Mz� − 2M�Φ��1 + M�� bit 0

 (4.19.a) 

 Var��#� = ��,z� + ��,�� + �expÖ4�u,z� × − 1�×
·̧
¹
º̧� 2MzΦz�1 + Mz��� + � 2Φ��1 + M���� − 2�z,� 4MzΦzΦ��1 + Mz��1 + M�� bit 1

�Φz�� + �Φ��� − 2�z,�ΦzΦ� Threshold
� 2Φz�1 + Mz��� + � 2M�Φ��1 + M���� − 2�z,� 4M�ΦzΦ��1 + Mz��1 + M�� bit 0

 (4.19.b) 

 

 

7
7
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In Section 4.3.1, it is assumed that the links are the same. Here it is good to start with 

the same concept just to generalize the expressions derived before. Later on the general 

case where links are not the same be will discussed. By setting Φz = Φ� or equivalently 

^zℜz{z%_\ = ^�ℜ�{�%_\ the average of the threshold level is fixed to ~0 no matter how 

strong the turbulence is. On the other hand, the variance of the detection threshold under 

the same condition is defined as: 

 Var���=0��=� = 2�expÖ4�u,z� × − 1��Φz��Ö1 − �z,�× + ��,z� + ��,�� , (4.20) 

where ��=0��= denotes the detection threshold level. The derived expression in Equ. (4.20) 

is compatible with what was achieved in Equ. (4.9.b). 

From Equ. (19), one can formulate the average and the variance of low level e*�� 4 and 

high level �*�� z of the combined as: 

 Mean��*�� 4� = 2Φz T z
�zÛ`�� − `Ð�zÛ`Ð�U, (4.21.a) 

 Mean��*�� z� = 2Φz T `��zÛ`�� − z
�zÛ`Ð�U, (4.21.b) 

 

Var��*�� 4� = 4�expÖ4�u,z� × − 1��Φz�� �¯ z
�zÛ`��´� + ¯ `Ð�zÛ`Ð�´� −

2�z,� `Ð�zÛ`���zÛ`Ð��+ ��,z� + ��,�� , 

(4.21.c) 

 

Var��*�� z� = 4�expÖ4�u,z� × − 1��Φz�� .� Mz�1 + Mz��� + � 1�1 + M����

− 2�z,� Mz�1 + Mz��1 + M��1 
+��,z� + ��,�� . 

(4.21.d) 

Using Equ. (4.21) one can assess the quality of the signal using the Q-factor parameter 

as given by [116]: 
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 Q = |f��+�ghiÒ ��:f��+�ghiÒ ³�|
Þj�0�ghiÒ ��ÛÞj�0�ghiÒ ³� . 

(4.22) 

Equ. (4.22) will be used to study the effect of channel characteristics on the received 

signal in a differential signalling based FSO system in the following sections. 

4.3.4 BER Expression 

For simplicity, the subtracted signal � is assumed to be as: 

 � = �I[z − �̅I[� + y, (4.23) 

where y = yz − y� is the total AWGN of the Rx. The fading of received intensities [� is 
given as [ = [4exp�2�� where [4 denotes the average signal intensity without turbulence 

and � is a distributed normal random variable with mean s and variance �� with Log-

normal PDF [85]. Also for normalised PDF CD[E = [4 [85]. To ease the derivation two 

identical links meanings are considered as CD[zE = CD[�E = [4. Furthermore it is assumed 

that � = �4exp�2��\�, where ��\ is also a distributed normal random variable with 

mean stk and variance �u,tk� . To normalize � the condition stk = −�u,tk�  is considered. 

To obtain �u,tk� , the following expression is used [115]: 

 �u,tk� = ln ¯1 + j�0D_E
��D_E�Ð´, 

(4.24) 

where CD�E is set to 1 for normalization and VarD�E can be obtained the same as Equ. 

(4.8.b). On the other hand, it can be shown that VarD[zE and VarD[�E are defined as [115]: 

 VarD[6E = ¯@ÇÑk,0Ð − 1´ �ED[6E��. (4.25) 

Then �u,tk�  will be achieved by the following expression: 

 



Chapter 4: A FSO Link With Differential Signalling 

 

80 

 

�u,tk� = ln .1 + ¯@ÇÑk,�Ð − 1´ + ¯@ÇÑk,ÐÐ − 1´ −

2�z,��¯@ÇÑk,ÐÐ − 1´ ¯@ÇÑk,ÐÐ − 1´1. 

(4.26) 

Once equivalent Log-normal variance (�u,tk� ) is achieved it is possible to specify the 

PDF of a differential signalling FSO system by means of Equ. (3.8). Having PDF, one 

can calculate the average BER of the link using Equ. (3.16). 

4.3.5 Numerical Analysis 

In this section, the effect of link parameters on the performance of differential signalling 

system will be analysed. The derived expressions will be used and wherever applicable 

will be supported with Monte-Carlo simulation. In previous section it was shown that by 

setting ^zℜz{z%_\ = ^�ℜ�{�%_\ a constant threshold level of 0 can be used for different 

turbulent conditions. Also it was shown that for correlation coefficient (�z,�) of 1 the 

fluctuation of the threshold level reaches its minimum value. 

In the analysis the adopted wavelengths were 830 and 850 nm and link was 1 km long. 

To calculate Mean���=0��=� and ÞVar���=0��=� of SISO and differential signalling links, 

Equs. (4.16) and (4.19) were used, respectively whereas Equ. (4.22) was used for 

calculation of the Q-factor. The given values of SNR denote the electrical SNR of the 

signal before the sampler block box as in Figure 4.1. From Equs. (4.16) and (4.19), it is 

deduced that the threshold level is dependent from extinction ratio (M6). To confirm this, 

Monte-Carlo simulation was used for both SISO and differential signalling systems for 

M6 = 5 and M6 = 10 with Φz = Φ� = 5.7 mV, Φklkl = 8.1 mV, �z,� = 1, and �_� = 0.5. 

To obtain each corresponding value, a 1 Mbits of data was transmitted with 10 

independent iterations. The other parameters of the simulations were set according to 
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Table 4.1. The obtained results are summarized in Table 4.2. Note that the fading varying 

frequency of the channel is in the order of 400 Hz [117], thus in both simulations and 

experiments, a low data rate was selected to avoid the need for storage of large number 

of samples. 

Considering the theoretical and simulation results; it is seen that the proposed theory 

can predict the system behaviour accurately. Besides in agreement with Equs. (4.16) and 

(4.19), for the same link condition but different extinction ratio (M6), mean value of 

threshold detection (Mean���=0��=�) and standard deviation value of threshold detection 

(ÞVar���=0��=�) are the same.   

As discussed earlier for Φz = Φ� and �z,� = 1, regardless of turbulence conditions, 

Mean���=0��=� ≈ 0 and Var���=0��=� = ��,z� + ��,�� . To prove this, another set of analysis 

was performed for a range of turbulence strength from almost a clear channel �_� ≈ 0 to 

�_� = 1. As shown before, the value of M6 did not affect Mean���=0��=� and 

ÞVar���=0��=�; then for the simulation, the extinction ratio (M6) was set to 10 and SNR 

was changed by setting Φ�.  

The results of the analysis are represented in Figure 4.2. From Figure 4.2 it is observed 

that the theory can predict the Mean���=0��=� for both SISO and differential signalling.  

Table 4.1: The summary of FSO system properties used in the differential signalling simulation. 
Parameter Value 

Data rate 1 Mbps 

Link length 1 km 

Turbulence strength ��� 1, 2.5, and 5×10:zþ m:� È⁄  

Correlation coefficient �z,� 0, 0.5, 0.8, and 1 

Received average optical power −20 dBm 

PD responsivity ℜ 0.4 

Noise spectral density x4 −102 dB/Hz 

Number of transmit bits 1 Mbits 

Number of iterations 10 
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For ÞVar���=0��=�, there is a slight deviation between the theory and simulation, however 

both theory and simulation show the same trend.  As predicted from Equ. (4.16) 

Mean���=0��=� and ÞVar���=0��=� of SISO link are changing with the turbulence strength. 

ÞVar���=0��=� of SISO link almost equals to the standard deviation of noise ��,klkl =
1.32 mV for a clear channel condition (i.e., Rytov variance (�_�) of ∼0) and it increases 

for higher values of �_� values, which agrees well with Equ. (4.15.b). Besides, different 
SNRs results in various Mean���=0��=� and ÞVar���=0��=� of the SISO link. 

Since in this analysis M6 was fixed then SNR was changed by setting appropriately Φ� =
^6ℜ6{6%_\. Thus, the gain of the TIA (^), PD responsivity (ℜ), and LD output power 

({%_\) can change the required threshold level whereas M6 has no effect on it. On the other 

hand for the differential signalling link, Mean���=0��=� is constant for various turbulence 

conditions and different values of SNRs. This was expected because from Equ. (4.19.a) 

when links have the same parameters (i.e., Φz = Φ�) and the optical beams undergo the 

same turbulence effect; the required threshold level at the Rx is zero for various 

turbulence conditions and different SNRs. ÞVar���=0��=� of the differential signalling 

link is also fixed for different turbulence conditions and various SNRs. From Equ. 

(4.19.b) it is known that ÞVar���=0��=� ≈ Ö��,z� + ��,�� ×z �⁄ = 1.9 mV, which agrees well 

Table 4.2: The theoretical analysis accompanied by simulation of mean of detection threshold (Mean) 
and standard deviation of detection threshold (√Var) of single-input single-output (SISO) and 
differential signalling (DS) links for different extinction ratios (ε) of 5 and 10 but fixed Ф1=Ф2=5.7 mV, ФSISO=8.1 mV, where channels are highly correlated ρ1,2=1, and Rytov variance (σR

2) is 0.5. 

s SNR (dB) Link t¥§ø �©u�a √u§÷ �©u�b 

5 12.2 
SISO 7.6; [8.1, 0.5] 3.0; [3.3, 0.9] 

DS 0.0; [0.0, 0.1] 1.9; [1.8, 0.1] 

10 14 

SISO 7.6; [8.1, 0.6] 3.0; [3.4, 0.8] 

DS 0.0; [0.0, 0.1] 1.9; [2.0, 0.1] 

a, b For each case there is a pair of numbers separated by comma. The first number denotes 
theoretical analysis result while the pair shows the simulation outcome in form of expected 
value and standard deviation pair, respectively. 
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with the simulation results as in Figure 4.2(b). In another set of analysis, the Q-factor for 

both SISO and differential signalling links are compared under different conditions.  

From Equs. (4.16), (4.19), and (4.22) it is seen that in contrary to the Mean�e�=0��=� 

and ÞVar���=0��=�, the Q-factor also depends on M6. Therefore, M6 is set to 5 and 10 for 

SNRs of 10, 12, 14 dB and the same turbulence strength is used. The theoretical and 

simulation results are illustrated in Figure 4.2(c) and Figure 4.2(d). Figure 4.2(c) and 

Figure 4.2(d) confirm that the proposed theory predicts the Q-factor for both SISO and 

differential signalling links. In Figure 4.2(c) M6 = 5, where M6 is 10 for Figure 4.2(d). For 

a clear channel condition, Q� ≈ 10kv1 z4⁄  and as �_� increases, the Q-factor tends to 

 
(a) (b) 

 
(c) (d) 

Figure 4.2: Simulation results of: (a) mean of detection threshold Mean(Vthresh), (b) standard deviation 

of detection threshold √Var(Vthresh), and (c, d) Q-factor versus Rytov variance (σR
2). The comparison is 

performed for a range of turbulences and SNRs for: (a) and (b) εi=10, (c) εi=5, and (d) εi=10. SISO and 

DS refer to single-input single-output and differential signalling, respectively. εi and ρ1,2 denote 
extinction ratio and correlation coefficient, respectively. Note that in (c) and (d) the error bars are too 
small to be seen. 

0 0.2 0.4 0.6 0.8 1

0

2

4

6

8

10

12

M
ea

n
(V

th
re

sh
)

m
V

<
2
R

 

 
SISO

DS

SNR = 10 dB

SNR = 12 dB

SNR = 14 dB

Line+hollow marker                    Theory
Solid marker                              Simulation

ε
i
 = 10

ρ
1,2

 = 1

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

p
V

a
r(

V
th

r
e
sh

)
m

V

<
2
R

 

 
SISO

DS

SNR = 10 dB

SNR = 12 dB

SNR = 14 dB

ε
i
 = 10

ρ
1,2

 = 1

Line+hollow marker                    Theory
Solid marker                              Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

<
2
R

Q

 

 
SISO

DS

SNR = 10 dB

SNR = 12 dB

SNR = 14 dB

ε
i
 = 5

ρ
1,2

 = 1

Line+hollow marker                    Theory
Solid marker                              Simulation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

<
2
R

Q

 

 
SISO

DS

SNR = 10 dB

SNR = 12 dB

SNR = 14 dB

Line+hollow marker                    Theory
Solid marker                              Simulation

ε
i
 = 10

ρ
1,2

 = 1



Chapter 4: A FSO Link With Differential Signalling 

 

84 

reduce. Changing M6 from 5 to 10 has no effect on the Q-factor of the differential signalling 

link while the SISO link shows a lower Q-factor for Mklkl = 5 in a turbulent channel. 

So far it has been shown out that for �z,� = 1 and Φz = Φ�, both the Mean���=0��=� 

and ÞVar���=0��=� of SISO and differential signalling links and the Q-factor of the 

differential signalling link are independent of M6 and change with Φ6. The results also 

showed that changing Φ6 has no effect on the Mean���=0��=� and ÞVar���=0��=� of the 

differential signalling link for �z,� = 1. 

It is important to note that Equ. (3.6) gives different results for nz and n�, which results 

in different Log-normal variances (i.e., �u,z� ≠ �u,�� ). Therefore, the simplified expressions 

given in Equ. (4.10) are no longer valid. Also note that spatial coherence radius (�4) in 

Equ. (3.3) is a function of wavelength, which leads to different values of correlation 

coefficient (�z,�) for the same FSO system. This issue necessitates us to define a 

constraint on how distinct the wavelengths can be and also to study the effect of 

correlation coefficient on the system performance. 

To define a constraint for the difference of two wavelengths, which still validates the 

use of Equs. (3.3), (3.6), and (4.10), the derivatives of �u,6� , �z,� and �4 are taken with 

respect to n6. After a series of mathematical simplification, one has: 

∆�u,6� = ¬
Ý �u,6� y(

(³ , 
(4.27.a) 

∆�4 = Ý
þ �4 y(

(³ , 
(4.27.b) 

∆�z,� = −2�z,� ln �z,� ∆z
(³, 

(4.27.c) 

where n4 = �nz + n�� 2⁄  and Δn = |nz − n�|. See Appendix A for detailed derivation of 

Equ. (4.27). 
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Considering the rule of thumb that a 10% tolerance relative to the absolute value is 

acceptable, from Equs. (4.27.a) and (4.27.b) the criteria of ∆n n4⁄ < 
�³ is extracted. This 

criteria, which is independent from the FSO channel (i.e., ��� and 38), means that for 

∆n n4⁄ < 
�³, Equs. (3.3) and (3.6) give approximately the results for both wavelengths 

with 10% relative deviation. However, in Equ. (4.27.c) a fixed constraint cannot be 

derived. It can be easily shown that assuming the same rule of thumb of ∆�z,� �z,�⁄ < 0.1 

the criteria based on Equ. (4.27.c) is given by: 

 y(
(³ = �Ð³ ¯hÏY³´:þ È⁄

. (4.28) 

Figure 4.3 shows ∆n n4⁄  with respect to 38 �4⁄ , a characteristic, which is independent 

from wavelength, and the link distance or the turbulence strength. It is deduced from Equ. 

(4.28) that for 38 �4⁄ → 0 the range of selecting nz and n� broadens (i.e., ∆n n4⁄ → ∞), 

whereas for 0 < 38 �4⁄ < 0.26 the range of applicable wavelengths is reduced (i.e., 

∆n n4⁄ > 0.47). Therefore, there is a trade-off between how close the beams have to be 

and how different the wavelengths can be.  
The two differential signalling link conditions (i.e., Φz = Φ� and �z,� → 1) are ideal 

 
Figure 4.3: Δλ/λ0 plotted with respect to dr/ρ0. The graph shows the relation between the tolerable 
optical sources wavelengths and the distance between the optical receivers, while the channels are 

kept independent. The graph is obtained from Equ. (4.28). 
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and in reality there are deviations from the ideal scenario. Thus, the mean value of 

threshold detection (Mean���=0��=�), the variance value of threshold detection 

(ÞVar���=0��=�) and the Q-factor are compared for SISO and differential signalling links 

for the same SNR but different values of Φ6 over a range of correlation coefficient (�z,�). 

The SNR was set to 12 dB and extinction ratio (M6) was changed to 5, 10, and 20. The 

turbulence strength of �_� ≈ 0.5 was considered and the results are depicted in Figure 4.4.  

The value of �z,� spans from uncorrelated channels conditions (i.e., �z,� = 0) to fully 

correlated channels condition (i.e., �z,� = 1). The accuracy of the proposed theory for 

�z,� range is obvious from the good agreement between simulation and predicted results 

as depicted in Figure 4.4.  

 
(a) (b) 

 
(c) 

Figure 4.4: Simulation results of: (a) mean of detection threshold Mean(Vthresh), (b) standard deviation 
of detection threshold √Var(Vthresh), and (c) Q-factor. The comparison is performed between single-input 
single-output (SISO) link and differential signalling (DS) and for different values of extinction ratios 

(εi) over a range of correlation coefficient (ρ1,2). 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

; 1;2

M
ea

n
(V

th
re

sh
)

m
V

 

 

SISO DS ε = 5 ε = 10 ε = 20

0 0.2 0.4 0.6 0.8 1
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

p
V

a
r(

V
th

r
es

h
)

m
V

; 1;2

 

 

SISO DS ε = 5 ε = 10 ε = 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.4

1.6

1.8

2

2.2

2.4

Q

; 1;2

 

 

SISO DS ε = 5 ε = 10 ε = 20



A Hybrid Free Space Optics/Radio Frequency Antenna – Design and Evaluation 

 

87 

As expected from Equ. (4.15.a) the mean value of the detection threshold 

(Mean���=0��=�) of the SISO link in Figure 4.4(a) depends on the link parameters. 

Mean���=0��=� of the SISO link decreases when extinction ratio of SISO link (Mklkl) is 

higher. To keep SNR at 12 dB, the value of Φklkl was changed to 7.9 , 6.4, and 5.8 mV. 

On the other hand, from Equ. (4.15.a) it is observed that for higher Φklkl the resultant 

Mean���=0��=� is also higher. The variance value of the detection threshold (Var���=0��=�) 

of the SISO link in Figure 4.4(b) also is dependent on the link parameters and since for a 

fixed SNR higher Mklkl requires lower Φklkl, then Var���=0��=� of the SISO link for 

higher Mklkl is reduced. This deduction is in agreement with Equ. (4.15.b).  

Figure 4.4(c) illustrates the Q-factor for the SISO link, which are obtained from Equ. 

(4.22). The numerator |Mean��*�� z� − Mean��*�� 4�| in Equ. (4.22) is dependent on both 

Mklkl and Φklkl, however the effects of Φklkl and Mklkl are opposite, therefore for the 

same SNR, higher Mklkl results in the same |Mean��*�� z� − Mean��*�� 4�| value. On the 

other hand, ÞVar��*�� z� + ÞVar��*�� 4� is increased for the same SNR and higher Φklkl. 

Therefore, the Q-factor of the SISO link is lower for lower values of Mklkl. Mean���=0��=� 

of the differential signalling link in Figure 4.4(a) is also dependent on the link parameters 

and since Φz ≠ Φ� the value of Mean���=0��=� is non zero. But as discussed for the SISO 

link, for the same SNR and higher M6 the value of Mean���=0��=� is reduced. 

ÞVar���=0��=� and the Q-factor of the differential signalling link depend on not only 

the link parameters but also on correlation coefficient (�z,�). As seen in Figure 4.4(b) 

ÞVar���=0��=� of the differential signalling link reaches the minimum value of total 

standard deviation of noise (Ö��,z� + ��,�� ×z �⁄ = 1.9 mV) for �z,� = 1. Also it can be seen 

that lower Mklkl results in smaller ÞVar���=0��=�. Figure 4.4(c) shows the Q-factor of the 

differential signalling link that achieves the maximum value of Q� ≈ 10kv1 z4⁄  at �z,� =
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1. As discussed for the SISO link, the same SNR and higher M6 leads to higher values of 

the Q-factor.  

Based on the analysis, if achieving higher SNR in a differential signalling link is 

desirable, then increasing M6 is the preferred option. Of course, increasing M6 needs to be 

done with respect to the span of laser L-I curve linear region to avoid pulse shape 

distortion. 

To validate the work in Section 4.3.4, the BER results from Equ. (4.26) were compared 

with the simulation data. The parameters adopted for the FSO system investigated are 

given in Table 4.1. Figure 4.5 shows the predicted and simulated BER versus SNR 

obtained from the theory as well as the performed simulation based on Equ. (4.26) for the 

FSO with differential signalling for �z,� = 0, and 0.8 and ��� =  1×10:zþ and 

2.5×10:zþ m:� È⁄ . The simulation results are presented by large markers for each case 

with the error bars to show the tolerance of the simulated values. To obtain each point, 

10 iterations were carried out with 1 Mbps of transmit bit stream for each iteration. Note 

that for BER < 10-6
, the simulation results were zero, and therefore are not shown in the 

graph. It is clear from the figure that the initial assumption that � with a Log-normal 

 
Figure 4.5: BER versus SNR in dB of an FSO system with the differential signalling method. The 

comparison is carried out for various turbulence strengths (Cn
2) and correlation coefficients (ρ1,2). Solid 

lines marked with small markers are based on the derived equations whilst large markers are obtained 

from the simulation. 
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distribution does indeed lead to a good approximation of PDF of the differential signalling 

method for the weak turbulence regime.  

It was discussed in Section 4.2 that when the channels are fully correlated (i.e., �z,� =
1) the effect of the turbulence has the minimum influence on the received signal. In the 

next step ��� = 5×10:zþ m:� È⁄  was considered and the correlation according was 

changed based on Table 4.1. The results in Figure 4.6 show that when the correlation 

coefficient increases, the performance of differential signalling method improves in term 

of mitigating the turbulence effect. As shown in Figure 4.6, for �z,� = 1 the FSO system 

with the differential signalling scheme offers almost the same performance as in the clear 

channel. For the uncorrelated case (i.e., �z,� = 0) in Figure 4.6, the simulation error 

increases so that the error bars shown are negative, which are not shown in the logarithmic 

scale  

4.3.6 Atmospheric Turbulence Experiment 

 To prove the concept of differential signalling technique, the experimental work for 

the proposed system as given in Figure 4.7 will be outlined.  

 
Figure 4.6: BER versus SNR in dB of an FSO system with the differential signalling method for 

Cn
2=5×10-15 m-2/3 and a range of correlation conditions (ρ1,2). Solid lines with small markers are based 

on theory whereas large markers are obtained from simulation. The plus maker denotes the clear channel 
condition. 
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According to proposed scheme shown in Figure 4.1, an experimental setup for the 

proposed method was developed to evaluate its performance for both uncorrelated (i.e., 

�z,� = 0) and correlated (i.e., �z,� → 1) channels conditions as depicted in Figure 4.7. 

Snapshots of the setup are also shown in Figure 4.8. The laser beams (see Figure 4.8(a)) 

were launched into a chamber of length 6 m, emulating an outdoor uncorrelated FSO 

channel (see Figure 4.8(b)). The incident and reflected ray paths are labelled as PATH1 

and PATH2, respectively (see Figure 4.7).  In PATH1 optical sources were spaced apart 

by a minimum distance of 38 > 5 mm to ensure uncorrelated fading conditions (i.e., 

�38 �4⁄ �þ È⁄ > 5). An adjustable mirror positioned at the other end of the chamber was 

used to increase the path length by reflecting back the beams. The reflected beams 

indicated by PATH2 in Figure 4.7 were kept as close as possible to each other to ensure 

high correlation between the two paths (note that PATH2 in Figure 4.7 corresponds to 

FSO channel in Figure 4.1).  

Heater fans were used to generate turbulence in the chamber, see Figure 4.7. To 

measure ���, the method of thermal structure parameter was used (based on temperature 

gradient measurement) as in [118]. The temperature gradient was measured using 20 

temperature sensors positioned along the chamber, see Figure 4.8(b). At the Rx end, the 

 
Figure 4.7: Block diagram of the atmospheric turbulence and differential signalling experiment. PATH1 
and PATH2 are referring to uncorrelated and correlated paths, respectively. OTx, BS, OF, and ORx are 
optical transmitter, beam splitter, optical filter, and optical receiver, respectively. 
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reflected beams passed through a 50/50 beam splitter and were applied to two identical 

PIN PDs after optical filters, see Figure 4.7 and Figure 4.8(a).  The outputs of PDs were 

captured using a real-time digital storage oscilloscope for further processing in 

MATLAB®.  

 First investigated was the effect of turbulence on the uncorrelated path within the 

chamber. The reflected beams (i.e., PATH2) were passed through a pipe positioned within 

the chamber. The pipe ensured that propagating beams inside it did not experience any 

turbulence, see Figure 4.8(b). Similarly, the effect of turbulence on the correlated path 

was investigated by isolating the uncorrelated channels (i.e., optical beams in PATH1 

propagating through the pipe), see Figure 4.7. The amplitude of � and �̅ were then set in 

order to ensure that both received electrical signals �z and �� had the same amplitude of 

~300 mV, which is equivalent to Γzℛz^z = Γ�ℛ�^� criterion. 

Figure 4.9 illustrates the histogram of the detection threshold level obtained from the 

experiment. Note that due to the hardware dissimilarities, the average of the detection 

threshold is non-zero. However, since the offset levels are due to ORx1 and ORx2, then 

the problem can be resolved by adjusting the offset level of the output signal.  Table 4.3 

 
(a) 

 
(b) 

Figure 4.8: Experimental setup of atmospheric turbulence and differential signalling: (a) OTxs and 
ORxs at one end of the chamber, and (b) atmospheric camber with temperature sensors to measure 
temperature gradient, and a pipe to isolate either PATH1 or PATH2 from the turbulent condition of the 
chamber. OF, OTx, ORx, and BS are optical filter, optical transmitter, optical receiver, and beam 
splitter, respectively. 
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shows all the key parameters adopted in the experiment. The recorded data were 

processed and the detection threshold level was extracted from signals. Figure 4.10 

illustrates the sampled signal as well as the obtained detection threshold level of �z. The 

measured mean and standard deviation of ��=0��= (indicated by Mean and √Var, 

respectively) as well as ��� values for correlated and uncorrelated channels are 

summarized in Table 4.4 .  

As predicted from Equ. (4.9.a), for both uncorrelated and correlated conditions the 

measured mean value is zero. Figure 4.11 shows an image taken from the oscilloscope 

screen illustrating how signals �z and �� for correlated channels are affected under the 

same turbulence conditions. Note that turbulence strength and the laser modulation index 

 
(a) (b) 

 
(c) (d) 

Figure 4.9: Histograms of the detection threshold levels of the differential signal threshold (Vthresh) for 
atmospheric turbulence and differential signalling experiment: (a) uncorrelated channels in dark 
room, (b) uncorrelated channels in lit room, (c) correlated channels in dark room, and (d) correlated 
channels in lit room. 
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in Figure 4.11 were deliberately set to relatively small values in order to better illustrate 

the correlation between �z and ��.   

It is expected to obtain √Var ≈ Þ2��� from the measurements. However, given the rms 

noise of optical Rx in Table 4.3, the measured √Var in Table 4.4 is different from the 

predicted value of Þ2��� = 2.1 mV. This difference might be due to imperfect correlation 

Table 4.3: The setup parameters for atmospheric turbulence and differential signalling experimental. 

 Parameter Value 

 
Data rate NRZ-OOK 100 kbps 

Chamber length m 6 m 

 Sampling rate 2.5 MSample/sec 

 
Number of recorded points for each 

iteration 
1 M points 

 Number of total iterations 500 

L
in

k
 1

 

Optical transmit power 10 dBm 

Divergence angle 9.5 mDeg 

PD responsivity ℛz 0.3 A W⁄  

Wavelength nz 830 nm 

L
in

k
 2

 

Optical transmit power 3 dBm 

Divergence angle 4.8 mDeg 

PD responsivity ℛ� 0.4 A W⁄  

Wavelength n� 670 nm 

 Optical receiver noise rms Þ��� 1.5 mV 

 

 
(a) (b) 

Figure 4.10: The sampled v1 signal with the estimated detection threshold during atmospheric 
turbulence experiment. The signal is in blue colour, where the dashed red line with circle markers refers 
to the estimated detection threshold. 
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between channels in PATH2 and using two (not very close) wavelengths of 

670 and 830 nm, which could lead to dissimilar �u�. In the experiment �_� ≈ 0.17, which 

corresponds to the weak turbulence regime [30].  Considering Equ. (4.27.a) and using the 

rule of thumb, to have ∆�u� �u�⁄ < 0.1, it is expected to have ∆n n4⁄ < 0.09. Note that in 

the experiment, the accuracy limit of Equ. (4.9.b) does not apply perfectly (as ∆n n4⁄ <
0.21, which corresponds to a maximum wavelength deviation of 160 nm around the 

central wavelength of 750 nm).  

Using measured signals correlation coefficient (�z,�) was estimated, which are 

presented in Table 4.4. The estimated �z,� (for the correlated case) are relatively high but 

do not correspond to the ideal case of �z,� = 1. Other effects that could lead to inaccuracy 

of the measurement were the noise associated with the oscilloscope and the vibration of 

the whole setup. However, since it was intended to demonstrate only the difference 

 
Figure 4.11: Original (v1 in yellow and top) and inverted (v2 in green and bottom) signals captured on 
the oscilloscope during atmospheric turbulence experiment. 

Table 4.4: The summery of the experimental measurement results for turbulence effect on differential 
signalling. Mean (mv) and √Var (mv), denote the measured mean of detection threshold, variance of 

detection threshold of the differential signal. Cn
2 and ρ1,2 denote obtained turbulence strength and 

correlation coefficient. 

Channels condition t¥§ø �©u� √u§÷ �©u� ��?  � ©:? �⁄ � �P,? 

Uncorrelated (dark room) -864.2 43.4 5.11×10:zz 0.08 

Uncorrelated (lit room) -886.9 45.5 

Correlated (dark room) -915.7 12.9 5.21×10:zz 0.72 

Correlated (lit room) -949.9 12.9 
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between uncorrelated and correlated situations and during the entire measurement the 

same setup was used, these effects are not critical in the final conclusion. In addition to 

using two wavelengths and spatially closer beams from Equ. (3.3) it is evident that longer 

transmission spans will lead to larger values of �4, which in turn helps to achieve a highly 

correlated channels condition (i.e., �z,� → 1) [119].  

In [35], a similar differential signalling based technique was proposed to reduce the 

effect of background noise in the received signal. The above experiment was carried out 

in both dark and fully lit environments (with ambient light power level of −45 dBm and 

−18 dBm, respectively), see Table 4.4. A negligible difference between the standard 

deviation of detection threshold results in these two cases is noticed. This testifies that 

under the experimental conditions, the background noise was not dominant. Thus, the 

reduction in √Var values is due to the theory explained in Section 4.2 rather than the 

background noise level.  

Using the derived analytical expression of the variance of the detection threshold, it 

was shown that the fluctuation in the optimal threshold level highly depended on the 

correlation between the propagating optical beams. Thus the differential signalling 

technique is attractive when highly correlated FSO channels can be established. This 

deduction was validated by means of experimental investigations under uncorrelated and 

correlated conditions. Also note that to achieve a high correlated channel condition light 

sources with close wavelengths, spatially closer beams and longer transmission distance 

are critical to have.  
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4.4 Differential Signalling and Pointing Errors 

4.4.1 Channel Modelling 

In the previous sections, the effect of differential signalling system in a turbulence 

channel was investigated and in this section the performance of the same system with the 

pointing errors is investigated. 

Considering Equ. (4.6), a clear weather condition and negligible atmospheric 

turbulence is assumed. Also it is assumed that channel coefficient (ℎ6) includes the 

geometrical loss and pointing errors effects. The concept outlined in [120] is adopted to 

describe the pointing errors at Rxs, see Figure 4.12.  Rxs are assumed to have the same 

aperture diameter as well as the same electrical and optical characteristics. The aperture 

diameter is 3� and the laser beam spot at the Rx transverse plane has a radius of �12. 

Besides the instantaneous radial displacement between the beam centroid and the aperture 

centre is denoted by A. In terrestrial FSO communication systems the fading coefficient 

due to the geometrical loss and pointing errors ℎ6 is given by [120]: 

 ℎ6�A; m� ≈ �4exp �− �8Ð]��Ð �, 
(4.29) 

where �4 and �9�  correspond to the geometrical loss and equivalent beam-width, 

 
Figure 4.12: Rx aperture and a laser beam footprint at the Rx transverse plane. 
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respectively. Note that �4 = Derf���E� and ���� = �12� √���Ä�a�
Ða�è�Ö�aÐ× where � = Þß 2⁄ ��Ð�çè 

and erf��� = Ð
√� Ø @:#Ð3Ù`

4  [120]. In most practical applications the beam divergence � is 

small (i.e., � ≪ 1 Rad), which leads to �12 = �m + ��2. Therefore, it is possible to set 

�12,z = �12,� by selecting the appropriate values for �z and ��. pointing errors 

displacement has two components known as the boresight A7 (displacement between 

beam centre and centre of the detector) and jitter A� (offset of the beam centre at detector 

plane) [66].  

The boresight displacement (A7) represents a deviation originating from thermal 

expansion of the buildings [34] and determines the mean offset of pointing errors [121], 

whereas A� is a random variable originating from building sway and vibration [34]. From 

the statistics point of view the jitter corresponds to the random variation of the beam 

footprint around the boresight direction with the jitter variance of ��� [121]. 

In terrestrial FSO links, the jitter consists of both vertical and horizontal components 

[34]. Thus, without loss of generality, here the focus will be on the deviation along either 

vertical or horizontal axis, which can be further extended to the other axis. It is shown in 

[34] that A has Rician PDF with the average (Mean�ℎ6� = CDℎ6E) and the second moment 

(C�ℎ6��) given by: 

Mean�ℎ6� = CDℎ6E = Ã³�Ð
zÛ�Ð exp �− 8�Ð��zÛ�Ð�Ñ�Ð�, 

(4.30.a) 

C�ℎ6�� = Ã³Ð�Ð
�Û�Ð exp �− �8�Ð���Û�Ð�Ñ�Ð�, 

(4.30.b) 

where E = ��� 2��⁄ . Therefore the variance of ℎ6 will be: 

 Var�ℎ6� = Ã³Ð�Ð
�Û�Ð exp �− 8�Ð��Û�Ð�Ñ�Ð� − Ã³Ð���zÛ�Ð�Ð exp �− 8�Ð�zÛ�Ð�Ñ�Ð�. 

(4.31) 

Since ED�5E = ED�̅5E, where " is an integer, thereafter by means of Equ. (4.30), the 
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average and variance of Equ. (4.6) are derived as: 

Mean���=0��=� = Mean�ℎz� − Mean�ℎ��, (4.32.a) 

Var���=0��=� = Var�ℎz� + Var�ℎ�� − 2ρ��ÞVar�ℎz�ÞVar�ℎ�� +
2���, 

(4.32.b) 

where ��� is the correlation coefficient between two channel coefficients of ℎz and ℎ�. 

Note that to derive Equ. (4.32), it was assumed that Γ�ℛ�^� = 2 ��=0��=⁄ . 

The dynamic response of a building with applied live loads depends on the directional 

stiffness, as well as the height, size and topology. The tip displacements of a tall building 

can be as large as tens of centimetres due to the normal wind loads. However, irrespective 

of the height and stiffness of the building, the relative displacement of Rx1 and Rx2 is 

almost zero. The segment of the Rx mast between the two Rxs can be reasonably assumed 

to be rigid if the mast is properly designed according to the building standards (i.e., 

earthquake or wind) and if the distance between the two Rxs is very small compared to 

the overall height of the building (4z  ≅  4�  =  4 in Figure 4.13), then A�,z = A�,� = A�. 
Considering the short distance between the two Rxs the relative displacement due to the 

thermal expansion, which results in A7,z = A7,�, can be neglected. The same is true for the 

relative displacement between the Txs. In view of the above, it can be assumed ��,z� = ��,��  

and ρ�� ≅ 1. 

Considering ��,z� = ��,�� , Equ. (4.32) will be: 

Mean���=0��=� = 0, (4.33.a) 

Var���=0��=� = 2Var�ℎz�Ö1 − ρ��× + 2���. (4.33.b) 
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Therefore, regardless of the strength of pointing errors the detection threshold level can 

be set to zero but will experience fluctuation with the given variance.  Considering ρ�� ≅
1, Equ. (4.33.b) simplify to Var���=0��=� ≈ 2���, thus leading to the elimination of 

pointing errors at the Rx. Therefore for the system shown in Figure 4.1 provided links are 

identical, and Rxs are mounted on the same fixture structure, the threshold level could be 

set to zero for a range of pointing errors strength.  

To estimate the equivalent parameters of the differential signalling based link, a SISO 

link with a Rayleigh pointing errors PDF is used as the equivalent link. The pointing 

errors parameters of the equivalent SISO link is found so that SISO has the same pointing 

errors variance as differential signalling.  For the simplified case where A7,z = A7,� = 0, 

assuming that Ez = E� and �z = �� = �tk, and simplifying Var�ℎtk� = Var�ℎz − ℎ��, 

the following equation is derived from which Etk of the equivalent pointing errors PDF 

can be obtained: 

 

�2 + Ez���1 + Ez��� �2 + Etk���1 + Etk���⁄ =
2Ö1 − ρ��×Ez� Etk�⁄ , 

(4.34) 

when A7,z = A7,� = 0, Rician distribution becomes Rayleigh and it is assumed that PDF 

of the equivalent pointing errors to perform comparison is also Rayleigh.  

 
Figure 4.13: Effect of building movement on FSO Rxs with exaggeration. On the left there is the Tx 
building hypothetically without movement and on the right the Rxs are installed on top of a building, 

which is influenced by the effect of building movement. 
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4.4.2 Pointing Errors Experiment 

To validate the proposed concept practically the experimental setup shown in Figure 

4.14 has been used. Both Txs and Rxs modules were located at one end of a 6 m long 

indoor atmospheric chamber. In order to double the link length a mirror was used at the 

other end of the chamber to reflect back the beams (note that the mirror is not shown in 

the figure). Since the optical beams were in parallel with no overlap at the Rx plane, no 

optical filters were used. The outputs of Rxs were recorded using a sampling oscilloscope 

for further analysis via MATLAB®. The amplitude of modulating signal was set such that 

the Rx output levels were at ~10 mV. Table 4.3 summarizes the key system parameters 

adopted. Note that in this experiment, the number of iterations was only 50 since the 

vibration had a fixed pattern rather than being random.  

To simulate pointing errors condition, both Rxs were positioned on a vibration stand 

vibrating at a frequency of 5 Hz with the deviation of ~2 mm in the vertical direction (a 

sinusoidal waveform was used to stimulate the vibrator). In practical scenarios FSO links 

will experience vibrations in both axes but here the vibration is generated only on the 

vertical axis. Note that it has the same effect as for vibrations on the horizontal axis.  

Figure 4.15 depicts a captured image from the oscilloscope screen for two signals. Note 

that the laser modulation index in Figure 4.15 was deliberately set to relatively small 

 
Figure 4.14: The pointing errors and differential signalling experimental setup. OTx and ORx are optical 
transmitter and optical receiver, respectively. 
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value in order to better illustrate correlation between �z and ��. As shown the effect of 

pointing errors on both signals are highly correlated.  The recorded data were processed 

and the detection threshold level was extracted from signals. Figure 4.16 illustrates the 

sampled signal as well as the detected signal ��.  The histogram of the recorded threshold 

levels for the differentiated signal is illustrated in Figure 4.17. As in the previous 

experiment, the dissimilarity of the offset levels added by ORxs results in a non-zero DC 

offset in the detection threshold level.   

 Based on the covariance matrix of the received signals, the correlation coefficient (ρ��) 

of 0.92 was obtained from the measurements, which agrees well with the assumption of 

ρ�� → 1 made in the analysis. The measured standard deviation of �z, �� and ��=0��= are 

 
Figure 4.15: An image taken from the oscilloscope screen during the pointing errors and differential 
signalling experiment. Top yellow signal is v1 whereas bottom green one is v2. 

 
(a) (b) 

Figure 4.16: The sampled v2 signal with the estimated detection threshold during pointing errors and 
differential signalling experiment. The signal is blue colour where the dashed red line with circle 

markers refers to the estimated detection threshold. 
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presented in Table 4.5.  

As discussed before for the same pointing errors jitters (i.e., A�,z ≈ A�,�), the variance of 

channel coefficient (Var�ℎ6�) in Equ. (4.33.b) results in almost the same range for both 

signals. The close match between the measured values of standard deviation of �z and �� 

confirms the deduction.  

  On the other hand, according to Equ. (4.33.b), if the effects of pointing errors on both 

signals are highly correlated, then standard deviation will significantly be reduced by 

2���. However the measured value of 4.58 mv slightly differs from the predicted value of 

ÞVar���=0��=� ≈ Þ2��� = 2.1 mV. This can be due to the small difference in the values 

of ÞVar��z� and ÞVar����. Although the experiment was conducted over a 12 m long 

FSO link, the investigation can be extended to longer spans. Using the same laser beam, 

but over a longer link span, the geometrical attenuation and the beam footprint at the Rx 

will be larger. Higher geometrical loss will reduces �4 whereas larger optical footprints 

 
Figure 4.17: Histogram of the detection threshold levels of the differential signal (Vthresh) for pointing 
errors and differential signalling experiment. 
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Table 4.5: The summery of the measurements results for pointing errors and differential signalling 
experiment.  

Signal �P �? �¨�÷¥Ë� 

√Var mv 24.75 27.00 4.58 
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will lead to reduced �4 and increased E. However, as seen from Equ. (4.33.b), for ρ�� →
1 these parameters will have no effect on the resultant variance.  

Using the predicted Etk, (from Equ. (4.33)) the variance of equivalent differential 

signalling pointing errors (��,tk) can be determined for a range of ρ��. Figure 4.18 depicts 

the jitter standard deviation against channel correlation (ρ��) for the SISO link and 

equivalent link of differential signalling for receiver aperture radius (3�) of 10 cm, laser 

beam radius at receiver (�12) of 100 cm, and the jitter variances of 10 cm (i.e., ��,z =
��,� = 10 cm). It is observed that the pointing errors induced fading effect reduces with 

increasing value of ρ��. Also from both Equ. (4.33) and Figure 4.18 it is seen that for 

ρ�� ≥ 0.5 one obtains Etk ≤ Ez.  

4.5 Differential Signalling and Manchester Code 

4.5.1 System Configuration 

To the best of our knowledge, Manchester code has not been used to mitigate the fading 

 
Figure 4.18: Jitter standard deviation of the equivalent differential signalling (DS) pointing errors 

versus correlation coefficient (ρPE), for the single-input single-output (SISO) system with differential 
signalling and for receiver diameter (ds) of 20 cm, beam radius (wRx) of 100 cm, and jitter variances of 

10 cm (i.e., σj,1=σj,2=10 cm). 
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effect of the channel in a FSO link. In fact, Manchester code is used to achieve clock 

synchronization. It also can be used to remove the DC component of the signal and to 

avoid a long stream of logic ‘1’ or logic ‘0’ [122]. In this work Manchester code is adopted 

to remove the need for two parallel highly correlated links in a differential signalling 

system. Figure 4.19(a) illustrates the proposed concept, where the input bit stream and its 

inverted version are applied to the encoder, which is fed directly to the optical source.  

The output of the encoder is the Manchester code (also known as phase encoding) word 

in which the encoding of each data bit has at least one transition at the centre of each bit 

period, and has a bandwidth twice that of the input signal [122].  

In the proposed differential signalling scheme, the received raw signal is processed 

prior to quantization. At the Rx the regenerated bit stream is passed through sampler 

modules and a combiner, which simply subtracts the sampled outputs, to recover the NRZ 

data stream as shown in Figure 4.19(b).  As seen so far in the proposed technique the 

original and inverted versions of signal are transmitted by means of Manchester code and 

a single FSO link whereas in Section 4.3 and Section 4.4 this was done using two distinct 

FSO links. Thus, the proposed method ensures that the channels are highly correlated. 

Besides, it eliminates the need of optics for combining and separating two FSO links as 

 
(a) 

 
(b) 

Figure 4.19: The required signal processing to perform differential signalling using one FSO link. The 
procedure is shown for a sequence of 01101 bits as an example: (a) the required signal shaping at the 
Tx, and (b) the required signal recovery at the Rx where two samples (i.e., r1 and r2) are taken at the 
presented intervals. 
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in Section 4.3.3.  

4.5.2 Manchester Code Experiment 

To prove the validity and benefit of the proposed method an experimental test bed for 

a SISO FSO link was developed to measure the variation of the threshold level and the 

Q-factor. The experiment was using the same indoor atmospheric chamber. The method 

described in Section 4.3.6 was used to estimate ��� (in unit of m:� È⁄ ), which is known as 

refractive index structure coefficient and shows the strength of the turbulence strength. 

For each scenario 250 data sets were recorded. The summary of the experimental setup 

for the 830 nm wavelength is summarized in Table 4.3.  

The experimental setup also is illustrated in Figure 4.20. Measurements were taken for 

three different channel conditions, and were also repeated under dark 

(ambient light power <  −45 dBm) and bright (ambient light power ≈  −18 dBm) 

environments to ensure that the measurement were not influenced by any undesirable 

 
(a) 

 
(b) 

Figure 4.20: The experimental setup: (a) equipment at the Tx side, and (b) artificial atmospheric 
channel. AWG and OTx denote arbitrary waveform generator and the optical source, respectively. 
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optical signal. Since the results taken under dark and bright room conditions were almost 

the same only measured data set for the bright room condition are presented, see Table 

4.6. The results clearly show the advantage of the proposed method. For example, for 

��� = 6.06×10:zz m:� È⁄  where SISO link did not provide acceptable signal quality (the 

Q-factor is less than the required value of 4.75), the proposed method results in a Q-factor 

which is larger than SISO. Besides, compared to a SISO link, the proposed method 

effectively reduced the variation of detection threshold. The outcome of the experimental 

result agrees with the deduction in Section 4.3.3 and Section 4.5.1 in the way that in the 

proposed scheme the channels are highly correlated, therefore a high performance 

enhancement was expected.  

To conclude this section, the histogram of the recorded signals for a clear channel as 

well as a turbulent channel for ��� = 6.06×10:zz m:� È⁄  are included in Figure 4.21. In 

contrast to the previous cases, the combination of Manchester code and differential 

signalling method results in a signal with a zero offset.  

  

Table 4.6:The summery of the measurement for single-input single-output (SISO) differential signalling 
(DS) link. These results are for DS and Manchester code scheme. 

  SISO DS 

��?  � ©:? �⁄ �  √u§÷  �©u� QQQQ-factora √u§÷  �©u� QQQQ-factorb 

Clear  0.88 [33.0, 5.3] 0.89 [45.3, 1.4] 

4.25×10:z�  7.35 [7.9, 4.1] 0.91 [40.3, 2.1] 

6.06×10:zz  40.77 [1.7, 0.6] 1.09 [40.0, 4.1] 

a, b The pair shows the simulation outcome in form of expected value and standard deviation 
pair, respectively.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Figure 4.21: (a, b) histograms of the detection threshold levels of the single-input single-output link, (c, 
d) histograms of the detection threshold levels of the differential signalling (DS) link, (e, f) histograms 

of the Q-factor of the SISO link, and (g, h) histograms of the Q-factor of the differential signalling link. 
(a, c, e, f) are for clear conditions whereas (b, d, f, h) are for turbulent channel with Cn

2=6.06×10-11 m-

2/3. 
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4.6 Summary 

 Using theory, simulation and experiment, the benefits of differential signalling method 

in turbulence and pointing errors channels were described. Differential signalling has 

been known as an effective method to mitigate the impact of non-random fading channels 

(e.g., fog) and cancelling the ambient background noise. In this chapter it was shown that 

differential signalling also can mitigate the effects of turbulence and pointing errors. In 

conditions where threshold level of the received signal is varied by turbulence and 

pointing errors, it was shown that by using the differential signalling method threshold 

level variation is reduced and the reduction depends on how correlated the channels are. 

In one experiment the performance of differential signalling under turbulence of �_� ≈
0.17 was evaluated. The measurements showed that for differential signalling in 

uncorrelated channels condition (i.e., �z,� ≈ 0) the threshold level had the standard 

deviation of 43 mV whereas for the same setup under correlated condition (i.e., �z,� ≈
0.72) the standard deviation reduced to 13 mV. The appropriate conditions of 

approaching high correlation were also discussed and it was shown that if the wavelength 

difference of differential signalling links relative to the central wavelength is less than 

0.47, then the channels will have correlation higher than 0.9. In another experiment, the 

effect of differential signalling under pointing errors fading effect was investigated. The 

measurement showed that where the standard deviation of threshold level for both links 

of differential signalling scheme was 25 and 27 mV under the same conditions the 

threshold level of differential signalling system with correlation coefficient of 0.92 was 

5 mV. Finally, an alternative scheme was introduced that in contrary to conventional 

differential signalling, it only needs one FSO link. The measurements showed that under 

the same turbulence condition of ��� = 6.06×10:zz m:� È⁄  using the aforementioned 

method the Q-factor of the received signal in the new differential signalling scheme was 
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40 while a SISO link under the same conditions delivers a Q-factor of 1.8. 
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 HYBRID FSO/RF 

ANTENNA 

5.1 Introduction 

This chapter introduces the idea, describe the characteristics and evaluate the 

performance of the propose hybrid antenna. The design strategy is based on the 

geometrical optics and a full wave electromagnetics simulation using CST STUDIO 

SUITE® [123]. The chapter is composed of the followings. First an introduction on RF 

antennas is given and based on the required specifications of the hybrid antenna a suitable 

existing RF design is adopted as the base. Next, an initial hybrid antenna prototype is 

proposed, where Cassegrain antenna design is combined with the SISO FSO link. The 

simulation results as well as experimental measurements are compared to the initial 

design expectations and it is shown that a SISO FSO scheme cannot provide the adequate 

reliability. Therefore, an alternative SIMO FSO scheme is proposed, where the complete 

system is simulated, characterized, and tested to confirm the validity of the proposed 

scheme. Note that the optimisation techniques and detailed electromagnetic analysis of 

the RF antenna are beyond the scope of this thesis. However, interested readers are 

referred to appropriate references for further studies. 
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5.2 Antenna Specifications 

As outlined in the previous chapter, as part of the requirement to ensure 100 % link 

availability at all times and under all weather conditions, it is essential to adopt a hybrid 

FSO/RF system. Therefore, a backup RF link is required to provide connectivity (through 

at reduced data rate then FSO) when the FSO link is down due to fog, smoke, etc. The 

proposed hybrid antenna is intended for “short hop”, typically few kilometres, of wireless 

link that can be used in a number of applications including last mile, inter-campus 

connectivity, etc. The final frequency range for the RF link is yet to be determined but is 

likely to be within the currently available ISM bands around 24 GHz or 61 GHz. In this 

research work as a proof of concept, the X-band of 8.2-12.4 GHz is adopted in order to 

demonstrate the proposed concept considering the availability of components, and test 

and measurement equipment. However, the proposed concept could be implemented at 

higher frequency range of 30-100 GHz as part the future millimetre/FSO wireless 

networks. 

With reference to Equ. (2.12), the RF link equation is given by: 

 ^12 = CNR + m�= − EIRP + �_ + f,g + 10 logz4 BW. (5.1) 

For BW = 100 MHz at the receiver, receiver noise temperature of �_ = 4100° K, and 

EIRP =  30 dBm, path loss 112 dB at 10 GHz over 1 km link distance, and received 

signal to noise ratio of 10 dB, the required gain for the receiving antenna (^12) will be at 

least ∼10 dBi However, in order to compensate for the rain attenuation for the worst 

scenario (Glasgow rain with attenuation of ∼18 dB/km), the minimum receiver antenna 

gain should be 28 dBi. Here, a receiver antenna gain of 30 dBi is adopted which includes 

a 2 dB link margin for other possible losses in the system, in particular the cable loss. The 

same gain is considered for the transmitting antenna as well. 
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5.3 Antenna Base Structure 

To design the hybrid antenna, a suitable RF antenna should be selected as the base to 

provide a 30 dBi gain. Considering a peer-to-peer RF link with high gain and bandwidth, 

the antenna should have the following specifications: 

1. A carrier frequency of 10 GHz 

2. A minimum bandwidth of 100 MHz 

3. A directive radiation pattern with a maximum half-power beam-width (HPBW) 

of 5o giving RF radiation footprint of ∼87 m over a 1 km link span 

4. A minimum gain of 30 dBi 

As for the antenna gain, the available options are multi-element array antennas and 

reflector. For a circular open ended-waveguide with a gain of ∼9 dBi, at least 126 circular 

open-ended waveguides are required to achieve a 30 dBi gain [70]. Alternatively, an array 

of patch antennas could be considered to achieve the required gain. However the gain of 

a single patch antenna is typically ~ 7dB necessitating a significant increase in the number 

of elements required [70]. Besides, simple patch antennas cannot provide a high 

bandwidth. Another issue with array antennas is the maximum element separation, which 

needs to be no greater than half the operating wavelength to prevent grating lobes. [70]. 

This limitation results in complex fabrication and making the radiation pattern frequency 

dependent. Therefore, the array antenna is not considered in this research. 

The reflector RF antenna [67, 69, 70], which has been used in many applications 

including terrestrial link, ground-to-satellite link, and satellite-to-satellite links, is adopted 

in this work. This type of antenna provides a directive high gain pattern, which is suitable 

for LOS based link configurations. Operating over a much higher frequency range with a 
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wide bandwidth also is an advantage, since the physical size of the antenna is smaller (see 

Figure 2.5). Considering the typical antenna efficiency of 0.55 [67], using Figure 2.5, it 

is found that the minimum antenna aperture size of ∼407 mm is required to achieve a 30 

dBi gain. 

In this work, an aperture with a diameter of 475.2 mm is used (see Table C.3 and 

Section C.2.4 for more details). Table 5.1 summarises the key required RF antenna 

specifications. The maximum return loss of the antenna is defined to be -10 dB over the 

available bandwidth, which is equivalent to a power reflection of 0.1 times the pumped 

power. 

5.4 Reflector Antenna 

There are a number of reflector antenna including the parabolic reflector (see Figure 

5.1(a)) [69], offset parabolic antenna (see Figure 5.1(b)) [124], spherical reflector antenna 

(see Figure 5.1(c)) [125], Gregorian reflector antenna (see Figure 5.1(d)) [126], 

Cassegrain reflector antenna (see Figure 5.1(e)) [127], offset Cassegrain reflector antenna 

(see Figure 5.1(f)) [124], and reflector fed by dielectric cone (see Figure 5.1(g)) [128] 

that are widely reported in the literature. In addition to the antenna specification, in order 

to select the most suitable reflector antenna for this work the following properties are also 

Table 5.1: Required RF antenna specifications. 

Parameter Value 

Minimum antenna gain 30 dBi 

Maximum half-power beam-width (HPBW) 5 Degrees 

Minimum bandwidth 100 MHz 

Carrier frequency 10 GHz 

Maximum return loss -10 dB 

Antenna type Reflector 
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considered: 

1. Practical reflectors are expected to have a total antenna efficiency within the 

range of 55 to 85% [67], which is defined as the ratio of total radiated power 

to total input power of the antenna. Higher efficiency in reflectors means lower 

power dissipation and improved performance. Factors contributing to the 

antenna total efficiency will be discussed later on in this chapter. 

2. In addition to the main lobe of an antenna, there also exist side-lobes. In outdoor 

LOS based microwave links, it is essential to keep the side-lobe of the Tx 

antenna as small as possible to avoid unwanted interference. Here, a side-lobe 

level (i.e., ratio of the main-lobe peak to the side-lobe peak) of -20 dB is 

adopted. 

3. Frequency scaling of a basic reflector antenna can be accomplished in a 

straightforward manner.  

4. The electromagnetic interference between the RF and optic parts should be kept 

at a minimum level. The introduction of the required optical components should 

be done in a manner which causes minimum disturbance to the RF performance. 

In this design advantage of the RF blocking introduced by the sub-reflector is 

taken to site the optical components. 

5. For a full duplex data link, the antenna should provide an acceptable cross-

polarization discrimination. Having a high X-pol discrimination makes it 

possible to transmit in one polarization and receive in another using the same 

carrier frequency, while the cross-talk is kept low. 
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(a) (b) (c) (d) 

 

 

 

 

 

(e) (f) (g) (h) 

Figure 5.1: (a) to (g) Different reflector antenna configurations, (h) proposed antenna configuration for the project. Hatched area labelled by ‘A’ is the empty available area in 
front of the sub-reflector. 
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Each property of the antennas results in a side-effect, which degrades the performance 

and, in particular, the aforementioned specifications. Here, these properties and the 

corresponding effects are outlined [70, 129]: 

• Front-fed design: This only offers two degrees of freedom including main 

reflector, and the feed when considering optimisation. In cases that the electrical 

size of the antenna, which is the physical size relative to the wavelength, is small 

(i.e., less than 100); having more degrees of freedom is an advantage in 

optimisation methods. 

• Offset design: This results in a low X-pol discrimination less than -20 dB [124, 

130] and a high fabrication cost due to the reflector geometry. Figure 5.2 depicts 

the relation between the X-pol discrimination and the reflector offset angle. 

Note that, the X-pol decreases with reflector offset angle as outlined in [124]. 

Besides, for wide angle feeds the performance is worse, which restricts the size 

of the reflector. 

• Spherical reflector: The whole point of using a paraboloid reflector is to reduce 

the phase error of the impinging incident power over the reflector surface. In a 

paraboloid design, all of the radiated electromagnetic waves at the far field have 

the same phase thus they add up leading to increased total radiation. However, 

this is not the case for a spherical reflector. Therefore, in general the total 

efficiency of spherical antennas is less than the paraboloid ones. Also in 

contrary to the paraboloid reflector, the spherical reflector cannot generate an 

equiphase front-wave and the incoming waves do not add up in phase at the 
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focal point. Therefore, a spherical reflector is not the best option.  

• Strut support: The existence of struts scatters the fields, which contribute to 

both the low X-pol discrimination and high side-lobe level. This degradation is 

higher when larger struts are required to support larger feeds or sub-reflectors. 

Figure 5.3 illustrates the overall strut efficiency and the blocked area by struts 

[69].  

 

 
 

Figure 5.2: X-pol discrimination versus the reflector offset angle. Figure is taken from [124] with 
permission. 
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• Dielectric cone: The cost of fabrication of a dielectric cone as well as the 

protection against environmental damages are the significant issues with this 

design.  

• Two reflector designs: The spillover of electromagnetic field creates a surface 

current on the sub-reflector, which results in sub-reflector radiating an 

additional field. The total radiated field is the interaction of radiation due to the 

sub-reflector from the main reflector. The small sub-reflector has a wide angle 

radiation field, which results in the total field having a lower gain and a higher 

side-lobe level. In Figure 5.4 the effect of second reflector blockage on both 

 
Figure 5.3: Strut blockage overall efficiency versus fractional area blockage. Fractional area blockage 
is defined as the ratio of the effective blocked area by struts to the total area of aperture. Figure is taken 
from [69] with permission. 
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efficiency [69] and side-lobe level [129] is presented.  

Based on the discussion so far, it is possible to compare existing options in Figure 5.1 

and select the optimum scheme for the antenna. Another important factor, which must be 

taken into account, is the possibility of adding optical aperture to the antenna structure 

with a minimum effect on the antenna characteristics. Table 5.2 summarises the 

 
(a) 

 
(b) 

Figure 5.4: (a) Blockage efficiency versus the blockage ratio for illumination efficiency of 0.9. Figure 
is taken from [69] with permission, and (b) side-lobe level versus blockage ratio for various illumination 
forms. Figure is taken from [129] with permission. 
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comparison. 

Front-fed antenna (parabolic or spherical) is not considered since it makes the 

combination of RF and FSO difficult. Therefore, other schemes including Cassegrain or 

Gregorian are considered as possible options. More important, the structure of the antenna 

selected in this project requires two constraints that a Cassegrain antenna can easily meet:  

1. The space available at the front of the sub-reflector is the best possible position 

for installing the optical transceiver with no blocking or being blocked by the 

RF antenna. 

2. In a single reflector antenna the feed and the supporting struts will block a 

significant part of the aperture, which will affect the radiation pattern 

considerably [131]. The scattered power from the obstacles will also increase 

the overall antenna noise [127, 131]. 

Cassegrain is preferred to Gregorian since for the same main reflector the distance 

between the main reflector and the sub-reflector is shorter. Between the off-axis (offset) 

Table 5.2: Comparison between antenna schemes in Figure 5.1 according to the required specifications. 

Antenna Schematic 
High X-pol 

discrimination 

Low 

blockage 

Low 

phase 

error 

Easy 

access to 

the feed 

FSO 

compatibility 

Small size 

and low 

cost 

Front-fed 

on-axis 

parabolic 

Figure 5.1(a) Yes No Yes No No Yes 

Front-fed 

Offset 

parabolic 

Figure 5.1(b) No Yes Yes Yes No No 

Front-fed 

offset 

spherical 

Figure 5.1(c) - No No No No Yes 

Gregorian 

on axis 
Figure 5.1(d) No No Yes Yes Yes No 

Cassegrain 

on-axis 
Figure 5.1(e) No No Yes Yes Yes Yes 

Cassegrain 

offset 
Figure 5.1(f) No Yes Yes Yes Yes No 

Dielectric 

cone 
Figure 5.1(g) No No Yes Yes Yes No 

Proposed 

Design 
Figure 5.1(h) No No Yes Yes Yes Yes 
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and on-axis reflector antenna (see Figure 5.1(e) and Figure 5.1(f), respectively) fed by a 

linearly polarized primary feed, the on-axis version of Cassegrain, which offers an 

improved cross-polarization performance and is also relatively simpler to make [132], is 

selected in this work.  

To improve the performance of the on-axis Cassegrain, it is possible to use the dielectric 

cone design scheme. However, to avoid the practical disadvantages of solid dielectric 

cone, the original Cassegrain antenna with a dielectric cone feed is modified and a 

dielectric tube is used instead for holding the sub-reflector. The new design, which is 

derived from an on-axis Cassegrain dielectric cone feed antenna, is presented in Figure 

5.1(h). Therefore, in addition to the RF properties of the Cassegrain antenna 

configuration, there is an available shadow region (labelled by ‘A’ in the picture) in front 

of the sub-reflector, which is the best place for locating the optics. Therefore, among 

possible reflector antenna configurations, the proposed scheme is selected, which offers 

a number advantages including [127]: 

1. Low noise property since the receiver can be closer to the feed 

2. Higher X-pol discrimination compared to the version with struts  

3. Three degrees of freedom (i.e., feed, main reflector and sub-reflector) compared 

to schemes with two  

4. Using a hollow tube instead of a solid cone, which makes the design less 

complex and costly 

5. A shadow region in front of the sub-reflector for locating the optical aperture 
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The summary of the all required specifications for the proposed design in presented in 

Table 5.3. In the rest of this chapter, we outline how to include the FSO part to the antenna 

with the specifications outlined in Table 5.3. In situations where the specifications are not 

met, appropriate solutions are proposed. 

5.5 First Hybrid FSO/RF Antenna Design 

This section is devoted to the first design of the antenna, which includes a single optical 

aperture (i.e., collimator) in the shadow region of the sub-reflector. In this section, the 

aim is to illustrate that implementing a single aperture is not sufficient and later on a 

detailed design procedure for the proposed scheme is presented in Section 5.6.1. 

5.5.1 Design 

Cassegrain antenna is composed of a double reflector (parabolic main reflector, and 

hyperbolic sub-reflector) and a feed, offering a number of interesting features including 

high total efficiency and easy accessibility to electronic equipment [127]. The aim is to 

design and build a compact antenna, where the ratio of focal length to the diameter of the 

available Cassegrain antenna is small 0.26. For such a small antenna, based on 

geometrical optics design procedure, the distance between the feed and the sub-reflector 

Table 5.3: Summary of all required RF antenna specifications. 

Parameter Value 

Minimum antenna gain 30 dBi 

Maximum half-power beam-width (HPBW) 5 Degrees 

Minimum bandwidth 100 MHz 

Carrier frequency 10 GHz 

Maximum return loss -10 dB 

X-pol discrimination 20 dB 

Side-lobe level -20 dB 



A Hybrid Free Space Optics/Radio Frequency Antenna – Design and Evaluation 

 

123 

will be small, which can degrade the return loss parameter of the antenna [133, 134]. 

In designing the hybrid antenna, the level of interference between RF and FSO parts 

must be kept to a minimum level to maintain the quality of the link performance. In the 

proposed design the available shadow region in front of the RF sub-reflector is used for 

locating the optical components to ensure a LOS path and a minimum FSO and RF 

interference (see Figure 5.5). Additionally, to avoid any wiring and blockage because of 

the OTx and ORx a novel solution is proposed in this work. An optical lens is located 

within the shadow region of the RF sub-reflector, see Figure 5.5, which is fed with a 

multimode plastic optical fibre (POF) that runs through the feed waveguide and exits from 

a small hole placed in the E-plane bend. The POF is used to guide the light from aperture 

to the optoelectronic circuits. One end of POF is located at the focal length of the lens, 

while the order end is connected to an OTx or an ORx (see Figure 5.5). For this 

application POF is the preferred option since more light could be launched and or 

collected and is less costly compared to the single-mode fibre. The measured total loss 

including the coupling losses from free space to fibre and fibre to free space and the fibre 

loss is about 2 dB. 

5.5.2 Simulations Results 

The CST STUDIO SUITE® 2012 software was used to validate the initial design. The 

initial design was parametrically analysed for improved gain and a radiation pattern using 

the software. For the parametric analysis, the distance between the feed and the apex of 

the sub-reflector was changed while other parameters were kept fixed. The dimensions 

and parameters of the simulated antenna are summarised in Table 5.4. In Section 5.6.1.1, 

the procedure of obtaining the parameters is described in details. 
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Figure 5.5: The hybrid antenna with single collimator schematic diagram. 
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5.5.2.1 Initial Design with no Tube and Collimator 

 Using the parameters in Table 5.4, the antenna structure is modelled. The profile of the 

antenna is shown in Figure 5.6(a). For the initial design (i.e., before performing 

parametric analysis) the distance between the sub-reflector and the feed is determined to 

be 38.96 mm.  The radiation patterns in E- and H-planes, X-pol radiation patterns in E- 

and H-planes, return loss, bandwidth, side-lobe level, HPBW, and first-null beam-width 

(FNBW) of the antenna are obtained.  The E- plane in this design refers to the vertical 

direction whereas the H-plane denoted the horizontal one. Figure 5.6(b-d) illustrates the 

simulated results. Note that the radiation pattern is only presented over the range of -30 

to 30 degrees since the main lobe and the first side-lobe are within this range. In addition 

to the return loss, the voltage standing wave ratio (VSWR) is also included in the results. 

A VSWR of < 1.92 is equivalent to a return loss of < -10 dB. The summary of the antenna 

characteristics is also presented in Table 5.5. 

Table 5.4: First hybrid antenna with single collimator prototype characteristics. 

 Parameter Value 

R
F

 A
n

te
n

n
a
 

Central frequency 10 GHz 

Parabola diameter 475 mm 

Parabola focal length to diameter ratio (F/D) 0.26 

Hyperbolic diameter 85 mm 

Hyperbolic focal length 57.65 mm 

Antenna gain 27.52 dBi 

Antenna size (width×height×length) 460×460×470 mm 

F
S

O
 A

n
te

n
n

a
 

Wavelength 670 nm 

POF length 3.0 m 

POF core diameter 1.0 mm 

POF total diameter 2.2 mm 

Lens diameter 24 mm 

Lens focal length 41.4 mm 

Antenna size (width×height×length) 85×85×100 mm 

F
S

O
/R

F
 A

n
te

n
n

a
 

Antenna size 

(width×height×length) 
460×460×680 mm 
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(a) 

 
(b) 

 
(c) 

Figure 5.6: Simulation results for initial antenna design scheme with no optical part and tube: (a) 
antenna profile (the distance between the feed and sub-reflector is 38.96 mm), (b) E-, H-planes, and 
X-pol radiation normalised to the antenna gain of 28.8 dBi, and (c) return loss and voltage standing 

wave ration (VSWR) against frequency. 
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5.5.2.2 Parametric Analysis with no Tube and Collimator 

 The initial design did not meet the required gain, and E-plane side-lobe level. This was 

expected and as it was discussed the sub-reflector blockage and small size of the antenna 

degrades the performance. Therefore, a parametric analysis is performed to study the 

effect of sub-reflector to feed distance on the performance of antenna while keeping the 

other parameters fixed. The results are illustrated in Figure 5.7, where the gain, X-pol 

discremination, side-lobe level and HPBW are presented against the sub-reflector 

displacement. The displacement of 2 mm is selected as the optimum value at this stage 

and the antenna is simulated with the new sub-reflector to feed distance of 40.96 mm. 

Although the E-plane side-lobe level is still higher than the target level of 20 dB, the other 

parameters have significantly improved. The characteristics summary of optimised 

antenna are presented in Table 5.5, while the simulation results are depicted in Figure 5.8. 

As expected, the improved parameters are due to degradation of HPBW and FNBW. The 

optimised parameters are used for the remaining simulations and experimental 

investigation. 

5.5.2.3 Optimised Design with Tube and no Collimator 

Next, the tube is added to the antenna structure to make it possible to practically 

implement the antenna with no strut. Details of the tube size and its material are given in 

Appendix C. The antenna profile and the simulation results are presented in Figure 5.9. 

Adding the tube has slightly changed the gain. However, side-lobe level in both E- and 

H-planes are effected and the E-plane side-lobe level is not acceptable. One technique to 

enhance this feature is investigated in [129], where the profile of the sub-reflector is 

altered in order to achieve the desired antenna radiation pattern.  Investigation and 

implementing of this technique is out of the scope of this research work and interested 

readers are referred to the aforementioned reference.
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(a) 

 
(b) 

 
(c) 

Figure 5.7: Parametric analysis on the initial design with no optical part and tube: (a) gain and X-pol 
discrimination, (b) side-lobe level in E- and H-planes, and (c) half-power beam-width (HPBW) in E- 
and H-planes. Negative displacement denotes moving the sub-reflector towards the feed. At 

displacement of 0 mm, the distance between the feed and sub-reflector is 38.96 mm. 
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(a) 

 
(b) 

Figure 5.8: Simulation results for the optimised antenna design scheme with no optical part and tube 
(the distance between the feed and sub-reflector is 40.96 mm): (a) E-, H-planes, and X-pol radiation 
normalised to the antenna gain of 29.1 dBi, and (b) return loss and voltage standing wave ration 
(VSWR) against frequency. 
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(a) 

 
(b) 

 
(c) 

Figure 5.9: Simulation results for initial antenna design scheme with tube and no optical part: (a) 
antenna profile (the distance between the feed and sub-reflector is 40.96 mm), (b) E-, H-planes, and X-
pol radiation normalised to the antenna gain of 30.0 dBi, and (c) return loss and voltage standing wave 
ration (VSWR) against frequency. 
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5.5.2.4 Optimised Design with Strut and no Collimator 

Before moving to the next step, a comparison between a structure with strut and the 

proposed scheme is carried out and the results are summarised in Table 5.5. For this 

simulation a struts with width of 4 mm and a thickness of 1 mm were used. As expected 

the X-pol performance of the antenna is degraded. Obviously a wider strut will worsen 

the antenna performance. Therefore, the proposed antenna scheme is preferred to the one 

with the struts. The antenna profile and simulation results are presented in Figure 5.10. 

5.5.2.5 Optimised Design with Tube and Collimator 

The final step is to add the single collimator plus the optical fibre to the design. The 

details on the collimator and fibre are available in Appendix C. The simulation results are 

presented in Figure 5.11, while the detailed parameters are available in Table 5.5. In 

contrary to the antenna version with a tube, in the one with a collimator the fibre and tube 

offer an improved E-plane side-lobe level performance. However, this improvement is 

due to the decrease in the total bandwidth, FNBW in E-plane, HPBW and also antenna 

gain. The existence of a collimator in front of the antenna also causes scattering and hence 

worsening X-pol performance with the X-pol discremination reduced by ∼2 dB.  

The existence of optical aperture results in electromagnetic power perturbation. 

Investigating the power distribution makes it possible to better understand the effect of 

optical aperture. Therefore using CST STUDIO SUITE® software the near field power 

distribution of the antenna in both E- and H-planes were obtained as in Figure 5.12. One 

can see from Figure 5.12(a, b) that in the shadow region the power can be as low as ∼40 

dB relative to the maximum power. Although the sub-reflector provides a shadow region, 

the power distribution in Figure 5.12(a, b) shows the existence of some leaked power in 

front of the sub-reflector. 
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(a) 

 
(b) 

 
(c) 

Figure 5.10: Simulation results for initial antenna design scheme with struts and no optical part: (a) 
antenna profile (the distance between the feed and sub-reflector is 40.96 mm), (b) E-, H-planes, and X-
pol radiation normalised to the antenna gain of 29.1 dBi, and (c) return loss and voltage standing wave 

ration (VSWR) against frequency. 
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(a) 

 
(b) 

 
(c) 

Figure 5.11: Simulation results for initial antenna design with single collimator design scheme including 
tube: (a) antenna profile (the distance between the feed and sub-reflector is 40.96 mm), (b) E-, H-planes, 
and X-pol radiation normalised to the antenna gain of 29.7 dBi, and (c) return loss and voltage standing 
wave ration (VSWR) against frequency. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.12: Near field power distribution of the antenna with and without collimator for single aperture in E- and H-planes: (a) without collimator in E-plane, (b) without 
collimator in H-plane, (c) with collimator in E-plane, and (d) with collimator in H-plane. The distance between the feed and sub-reflector is 40.96 mm. 
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The leaked power is due to spillover and diffraction from the sub-reflector edge.  

Therefore, it is expected that including any conductor in the shadow region would change 

the local power distribution in the near field, see Figure 5.12(c, d). However, since the 

far-field region rather than near-field is the significant feature, therefore, the resultant 

effects in the far-field are important to address. 

5.5.3 Hybrid Antenna Fabrication 

Based on the available resources and the optimised design, the proposed antenna was 

fabricated. More details on the fabrication and antenna components are available in 

Appendix C. Figure 5.13 shows the picture of the assembled prototype.  

5.5.4 Hybrid RF Antenna Characteristics 

The return loss, radiation pattern, gain, bandwidth, side-lobe level, HPBW and FNBW 

of the fabricated antennas with a tube and with a tube plus a collimator were measured. 

The details on the return loss and radiation pattern measurements are presented in the 

 
Figure 5.13: The hybrid antenna with single collimator under the pattern measurement test. The distance 
between the feed and sub-reflector is 40.96 mm. 
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Appendix D. The comparison of simulation and measurement results of the antenna with 

a tube are presented in Table 5.5. The difference between the measurements is due to the 

antenna fabrication inaccuracy and mismatch in the feed line. Although the bandwidth 

achieved is more than 100 MHz, the measured result is not as good as the simulation, see 

Figure 5.14.  

 The return loss and the equivalent VSWR of the hybrid antenna with a tube and a 

collimator is depicted in Figure 5.15. The mismatch in the result can be due to the 

rectangular to circular transition, the E-plane bend and the waveguide to coaxial adaptor 

that were used in the experimental setup. To overcome the mismatch a waveguide tuner 

was used to achieve the required bandwidth of 160 MHz. The radiation patterns of the 

antenna in H- and E-planes were measured using a near field chamber as depicted in 

Figure 5.16. The details of the measurement are summarised in Table 5.5. The non-

symmetrical radiation pattern is due to the design and fabrication inaccuracy and 

misalignment. The measured gain of the antenna is 27.52 dBi, which is 2.28 dB less than 

the simulated result. Observing Figure 5.7(a), it is deduced that the gain is dependent on 

the feed to sub-reflector distance, in particular for more than 2 mm of displacement.  

 
Figure 5.14: The return loss simulation and measurement results of the antenna with tube and no 
collimator.  
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Note that, in the simulations factors such as rectangular to circular transition, E-plane 

bend and waveguide to coax adaptor were not considered. Therefore, any mismatch due 

to these factors will result in lower antenna efficiency. The comparison between the 

simulated and measured data show that with tuning the antenna radiation, in particular 

the main lobe, is similar to the expected result. The H-plane radiation also shows the same 

trend for the first side-lobe.  

  

 
(a) 

 
(b) 

Figure 5.15: (a) Measured return loss of the antenna with single collimator before and after tuning, and 
(b) equivalent voltage standing wave ratio (VSWR) from the measurement before and after tuning. 
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(a) 

 
(b) 

Figure 5.16: Radiation pattern of hybrid antenna with single collimator measured in a near field chamber 
as well as the simulated one for: (a) E-plane, and (b) H-plane. 
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Table 5.5: The antenna (design with single collimator) characteristics obtained from simulation and measurement. X-pol disc, SLL, HPBW, and FNBW are X-pol discrimination, 
side-lobe level, half-power beam-width, and first null beam-width, respectively. 

 E-plane H-plane  

Design stepa Gain (dBi) X-pol disc (dB) SLL (dB)b HPBW (Deg) FNBW (Deg) SLL (dB)b HPBW (Deg) FNBW (Deg) Bandwidth (MHz) 

Target 30 20 < -20 < 5 - < -20 < 5 - 100  

Simulation, initial 28.8 21.9 -14.5 4 9.2 -26.4 4.3 11.5 > 100  

Simulation, optimised 29.1 24.1 -17.7 4 9.7 -28.3 4.4 12.1 > 100 

Simulation, tube added 30.0 25.2 -15.4 4.2 9.9 -21.3 4.4 11.8 > 100 

Simulation, strut 29.1 20.5 -15.3 4.5 10.5 -17.8 4.4 10.8 >100 

Measurement, tube added 27.9 - [-18.5, -17.5] 4.85 13.7 [-25.3, -24.5]  4.7 12.65 > 100 

Simulation, collimator added 29.7 23.8 -19.5 4.7 12.5 -17.4 4.5 11.0 > 100 

Measurement, before tuning 26.8 - [-11.6, -13.5] 4.4 9.6 [-15.2 -14.8] 4.8 10.8 ≪ 100 

Measurement, after tuning 27.5 - [-17.0, -14.6] 5 10.8 [-19.9, -19.8] 4.6 10.8 160 

a “Target” is based on the desired characteristics in Table 5.3. “Simulation, initial” is simulation of the antenna with no tube and collimator based on the first design. “Simulation, 
optimised” is the simulation of the optimised antenna with no tube and collimator. “Simulation, tube added” is the simulation of the antenna with tube based on the optimised 
antenna. Simulation, strut” is the simulation of the antenna with strut based on the optimised antenna. “Measurement, tube added” is the measurement of the fabricated antenna 
with tube based on the optimised antenna. “Simulation, collimator added” is the simulation of the antenna with tube and collimator based on the optimised antenna. 
“Measurement, before tuning” is the measurement of the fabricated antenna with tube and collimator based on the optimised antenna before tuning. “Measurement, after tuning” 
is the measurement of the fabricated antenna with tube and collimator based on the optimised antenna after tuning. 
b The first number is side-lobe level for negative angles, whereas the second one refers to the positive angles. 
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5.5.5 Hybrid FSO/RF Simplex Link 

The schematic block diagram of the experimental set up is shown in Figure 5.17(a). 

The RF signal generator is connected to a Tx module, which up-convert the signal from 

2.45 GHZ to 10.0 GHz and then amplifies the signal. The Tx module output is fed to the 

antenna. At the Rx, the received signal is fed to an RF Rx module, which down-converts 

the RF signal from 10.0 GHz to 2.45 GHz. Following amplification and filtering the 

recovered signal is observed using a spectrum analyser. The optical signal, which is 

generated using an arbitrary signal generator, is used to intensity-modulate the laser, the 

output of which is launched into the POF. The output of the POF is passed through a lens 

prior to transmission over the free space channel. At the Rx the incoming light is coupled 

into a POF via a lens the output of which is feed to an optical receiver. The optical receiver 

is composed of a PD and an amplifier with a controllable gain. The far-field distance of 

the RF antenna is 12.91 m. In order to measure the SNR and the Q-factor for both RF and 

FSO links, a simplex link with two prototype antennas positioned at 15 m apart was set 

up as shown in Figure 5.17(b). Details of the experimental setup are shown in Appendix 

C, while the measurement techniques are explained in Appendix D. 

Table 5.6 summarizes the far-field link characteristics. According to [135] a collimated 

Gaussian laser beam emerging from a Tx aperture with a diameter of 24 mm over a link 

distance of 2 km will result in a 75 mm foot print diameter. Thus, a Rx with an aperture 

of 24 mm should be able to capture almost 20% of the received laser power. Obviously 

using a larger optical lens will improve the Rx total efficiency. In this work a divergent 

laser beam is implemented to ease the alignment. From Table 5.6 one can see that due to 

a high field of view (divergence angle) of optical apertures, the ORx with a high gain and 

a low bandwidth was chosen.  
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(a) 

 
(b) 

Figure 5.17: (a) hybrid link with single collimator antenna experimental block diagram, and (b) hybrid antenna far-field link setup. OTx, MPOF, and ORx refer to optical 

transmitter, multimode plastic optical fibre, and optical receiver, respectively. 
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 The obtained SNR and the Q-factor are 45.68 dB and 15.69, respectively (see Table 

5.6). The method outlined in [118] is adopted to measure the Q-factor whereas the SNR 

is based on the difference between the average of the RF noise floor and the signal level 

measured using the spectrum analyser. These parameters show that by using the proposed 

antenna the hybrid FSO/RF can provide an error free transmission (BER <  10:Ý, which 

is much lower than the FEC limit of 10-3) in a clear channel.  

Table 5.6: The hybrid FSO/RF link characteristics. The antenna with single collimator is implemented 
in the link. 

 Link Parameter Value 

R
F

 

Carrier frequency 10 GHz 

Modulation scheme BPSK 

Data rate 6.7 Mbps 

Antenna input power -8 dBm 

Channel loss 75.96 dB 

Receiver bandwidth 10 MHz 

Receive noise floor -86.78 dBm 

F
S

O
 

Operating wavelength 670 nm 

Modulation scheme OOK-NRZ 

Bandwidth 50 MHz 

Antenna input power +3 dBm 

Aperture field of view 45.63 mRad 

Received power at aperture -27.19 dBm 

Receiver responsivity 0.4 A/W 

Receiver gain 150 kV/A 

Receiver bandwidth 700 kHz 

Receiver noise floor -59.51 dBm 

POF diameter 1 mm 

POF length 2 m 

POF type Step-Index 

POF material PMMA 

M
e
a
su

re
d

 P
a
ra

m
et

er
s RF SNR 45.68 dB 

FSO Q-factor 15.69 
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5.5.6 Required Modifications 

The comparison between the simulation and prototype gain shows an acceptable 

agreement. However due to the small size of the antenna and a short distance between the 

feed and sub-reflector, the return loss measurement performance was not applicable. This 

problem was solved by adding a waveguide tuner before the antenna feed. The radiation 

patterns of the antenna before and after tuning show that the main lobe characteristics of 

the prototype were in a good agreement with that of simulation. To evaluate the antenna 

performance in a communication link, a simplex link with a distance of 15 m was used 

and it was shown that the antenna is capable of providing an error free (BER < 10-6) 

transmission. 

In addition to these results, by means of experimental investigation the following 

important design guidelines were also deducted: 

1. Using POF for transmission is not practical. Since several modes are 

propagating within the fibre, then the optical signal coupled into free space will 

propagate in the form of various modes, with each mode having its own 

characteristics and beam waist [57]. Note that for the present setup there are 

almost 2.75 million possible propagation modes inside the fibre. Since the 

collimators are designed for a single beam waist, therefore only the fundamental 

mode is collimated properly and the other modes will be divergent. Therefore, 

it is wise to use a single mode fibre (SMF) at the Tx. 

2. Employing only a single small aperture at the Rx does not provide enough gain 

[93]. Therefore, in the modified design multiple Rx apertures should be used. 

3. In addition to using several Rx apertures, the spatial diversity technique should 

be used to improve the performance of the system, especially under turbulence 
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condition [7]. 

4. Since the antenna is intended for the last mile access network outdoor 

applications, appropriate methods should be used to combat the effect of 

ambient light [35]. 

5. Since the optical aperture is mounted on Cassegrain antenna, the movement of 

Cassegrain antenna on the mast will introduce pointing errors to the FSO system 

[136],which needs addressing. 

Considering the above points, the next section outlines the modified design. 

5.6 Final Hybrid FSO/RF Antenna Design 

5.6.1 RF Antenna 

The schematic diagram of the proposed antenna design is illustrated in Figure 5.18. As 

mentioned before, the basic concept in this design is to utilize the available shadow region 

of the sub-reflector for locating the optical elements. This will ensure no blockage 

because of the OTx and ORx. In order to reduce the interference between FSO and RF 

signals, the electrical components of the FSO link are not directly placed within the 

shadow region. Instead, they are located at a distance from the antenna and the light 

signals are launched and captured using a combination of optical lenses (i.e., transceiver 

apertures) and optical fibres. In the following subsections, the function and 

characterization of each part individually will be discussed. 
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Figure 5.18: Schematic diagram of the proposed hybrid antenna with multiple collimators. 
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5.6.1.1 Cassegrain Antenna 

In [127] a straight-forward design procedure for Cassegrain antennas based on the 

combination of a parabolic main-reflector and a hyperbolic sub-reflector was given. 

Considering the schematic diagram depicted in Figure 5.19, the goal is to find out the 

optimum values for the sub-reflector diameter 3�0 in order to minimize its blockage 

effects.  

Assuming that the main-reflector diameter .�0 and its focal length Q�0 are known, for 

minimum blockage, the optimum sub-reflector diameter 3�/�� is given as [127]: 

3�/�� = � �D� n1jQ�0, (5.2) 

where the feed beam-width constant fg = 2 for an average feed with a 10 dB taper and 

n1j is the RF carrier wavelength. If 3�/�� .�0⁄ > 0.2 then 3�0 = 3�/��, otherwise 3�0 =
0.1.�0 [127]. For the available main reflector with given parameters in Table C.3, the 

sub-reflector diameter is calculated to be ∼99 mm. However, due to experimental 

limitations, the sub-reflector diameter of 85 mm will be used in the final prototype. 

 
Figure 5.19: Schematic diagram of a Cassegrain antenna. 
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For a given feed HPBW of 2Ψ1j, see Figure 5.19, from the geometry the hyperbolic 

focal length B�0 is given by [127]: 

 B�0 = ������h��zÝ �8Q�0.�0cot Ψ���, + 16Q�0� − .�0��. (5.3) 

And the hyperbolic eccentricity @ the distance between the apex and the focal point of 

the hyperbolic trajectory ��0 can be readily determined as [127]: 

 @ = ¯.�0 cot �Ä���� + 4Q�0´ ¯.�0 cot �Ä���� − 4Q�0´ý , (5.4.a) 

 ��0 = B�0 ¯.�0 cot �Ä���� + 4Q�0´ý . (5.4.b) 

These equations are based on geometrical optics and they are applicable if the resultant 

sub-reflector or the main reflector are electrically large (i.e., 3�0 ≥ 10n1j or .�0 ≥
100n1j). Note that for smaller antennas losses due to spillover and blockage will be 

significant [127]. Diffraction phenomena in small Cassegrain antennas leads to a lower 

return loss and degradation of the overall radiation pattern [133]. Therefore additional 

methods like the diffraction methods in [129] are required to modify the design based on 

Equs. (5.3) and (5.4). In this thesis, the optimization of the RF antenna is carried out using 

CST STUDIO SUITE® in order to achieve the maximum gain and the desirable good 

side-lobe levels. 

The gain of Cassegrain antenna is given by [129]: 

 ^JK = ¯õ���(ç° ´� IJK, (5.5) 

where IJK is the total efficiency of Cassegrain antenna for the combination of blockage 

and spillover losses, illumination, cross-polarization, feed, VSWR, and reflector tolerance 

(roughness of reflector) efficiencies [69]. These efficiencies are well studied and a 

number of techniques have been proposed for their improvement [69, 129, 133]. For a 

typical Cassegrain antennas IJK is in the order of 55% to 85% [129]. Since the Cassegrain 
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antenna structure are being modified, there will be other efficiency coefficients, which 

will be the focus of the rest of this chapter.  

5.6.1.2 Sub-reflector Shadow Region 

Locating the optical aperture in the shadow region of sub-reflector minimizes the 

deviation in Cassegrain antenna characteristics with an optical aperture from Cassegrain 

antenna without any optical components. From geometrical optics it is easy to find out a 

rough estimation for the shadow region. Various scenarios can be used to outline the 

boundary of the shadow region. The first one is based on pure geometrical optics, which 

leads to a region that half of it is distinguished by vertical-hatched area in Figure 5.20. In 

this scenario it is assumed that wave emerging from Cassegrain antenna is traveling along 

the line-of-sight path and the effect of edges are ignored. This is the least accurate 

approximation. Due to diffraction phenomena, the propagating wave also exists in front 

of the sub-reflector. The analysis of diffraction from an edge is given in [137]. In this 

thesis another approximation is used, which has no complexity of diffraction theory but 

is still more accurate than the simple geometrical optics approximation. The horizontal-

hatched region in Figure 5.20 shows half of this approximation. In the design procedure 

 
Figure 5.20: Diagram of different shadow region approximations in front of sub-reflector. Two 
approximations are shown in this figure. The simplest one is outlined with vertical-hatched line, while 
the more accurate one is shown with horizontal-hatched line. The former is used in this project. 

srp
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it is aimed to place optical aperture in this region. Note that due to lack of space one can 

break this rule particularly in case of small Cassegrain antennas. By performing a full 

wave simulation of Cassegrain antenna with and without an optical aperture one can 

check the impact of added components. 

5.6.1.3 The Sub-Reflector with Optical Fibre 

As shown in Figure 5.18, the optical fibre cables are passed through the sub-reflector 

as well as the main reflector. For simplicity a number of assumption are made; (i) holes 

(with the diameter of 3�0_=� �) are located at the apex of the sub-reflector; (ii) the field at 

the sub-reflector surface is a far-field plane wave; and (iii) the sub-reflector surface is flat 

and the effect of edge is ignored. As seen from Figure 5.21, a fraction of the incident 

wave {z is leaked through the hole {È while the rest is reflected back {�. The ideal 

efficiency of the sub-reflector with a hole is I=� � = {� {z⁄ = 1, however since {È ≠ 0, 

that is not the case. For the incident wave with the electrical field amplitude C4 the total 

incident power at the sub-reflector {z is given by: 

 {z =  |ì³|Ð
� ³ ß ¯���� ´�

, (5.6) 

where �4 ≈ 376.7 Ω is the impedance of free space. 

Note that in real scenarios 3�0_=� � is a faction of n1j, therefore waves cannot propagate 

through the holes (i.e., if the hole is considered to be as the open end of a circular 

waveguide, the frequency of the RF signal must be greater than the TE11 cut-off frequency 

of the equivalent circular waveguide). However, the energy can leak through the hole as 

an evanescence wave. In the case, the thickness of the sub-reflector conductor is slightly 

greater than skin-depth δ [138] (for an aluminium conductor a thickness of 40 µm was 
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used, which is almost 50 times greater than δ). Therefore, based on the evanescence wave 

propagation, the amplitude of the leaked signal is C4exp�−40×10:Ý× 2ß 3×10:�⁄ � ≈
C4. Thus the leaked energy though the hole is given by: 

 {È =  |ì³|Ð
� ³ ß ¯h��_¢ÅÔ�� ´�

. (5.7) 

The imposed loss due to the radiation from the hole, introduces the fibre hole efficiency 

coefficient I=� � = {� {z⁄ = 1 − {È {z⁄ , which is given by: 

 I=� � = 1 − ¯h��_¢ÅÔ�h�� ´�
. (5.8) 

5.6.1.4 Polyethylene Tube 

Typically, the sub-reflector is fixed by means of the feed support struts. The presence 

of these struts introduces another blockage that leads to a less efficient Cassegrain antenna 

[139]. To avoid this issue, a polyethylene tube is used to attach the sub-reflector to the 

feed. By using this technique not only the blockage is avoided but also the fibre passing 

though the waveguide can be secured. To study the effect of tube the structure is modelled 

using the geometrical optics technique, see Figure 5.22. 

 
Figure 5.21: Diagram of the power leakage due to the fibre hole in the sub-reflector. P1, P2, and P3 are 
RF power emerging from the feed, RF power reflected back towards the feed, and RF power leaked to 
the front of the sub-reflector. 
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 The feed diameter and the polyethylene tube thickness are 3���, and Ù�L*�, 

respectively. Also HPBW after the tube is denoted by Ψ;���,. With no tube, the incident 

ray is supposed to encounter the equivalent sub-reflector interface at 0.53�0, see Figure 

5.22. However, in the presence of the tube due to the refraction phenomena the new 

incidence point will be 0.53;�0. Given that M8 denotes the relative permittivity of the tube, 

then from Snell's law [138] and following some mathematical simplifications, one 

obtains: 

 Ψ;���, =  Ψ���,, (5.9.a) 

 3;�0 = 3�0  + 2Ù�L*� �1 − ��+�Ä���Þ`ÏÐ:���Ð�Ä����. (5.9.b) 

From Equ. (5.9.a), it can be figured out that the angle of incident at the sub-reflector 

equivalent surface is the same. However, Equ. (5.9.b) shows that in the presence of tube, 

the foot print of feed is larger than the sub-reflector area; therefore another loss is added 

to the Cassegrain antenna total loss. From Equ. (5.6) it is known that the power is 

proportional to the square of diameter, therefore the tube efficiency I�L*� = {� {z⁄  can 

be written as: 

 
Figure 5.22: Diagram showing the effect of tube on the radiation of the feed. 
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 I�L*� = 3�0� �3�0  + 2Ù�L*� �1 − ��+�Ä���Þ`ÏÐ:���Ð�Ä������ý . (5.10) 

5.6.1.1 Circular Feed, Rectangular to Circular Transition and Fibre in the 

Waveguide 

The implemented feed in the proposed antenna scheme is an open ended circular 

waveguide, see Figure 5.19. The fundamental propagating mode inside the circular 

waveguide is TE11, which gives the following E/H-plane HPBW [70]: 

 Ψ���,|�:� �+� = 58.4 (ç°hÄ���, 
(5.11.a) 

 Ψ���,|£:� �+� = 74 (ç°hÄ���. 
(5.11.b) 

The average of E- and H-planes HPBW will be considered in the proposed design. A 

rectangular to circular transition is required to connect the circular-shaped feed to the 

rectangular-shaped waveguide components [140, 141]. In addition to connecting 

waveguides with different cross sections, transition guarantee the efficient conversion 

between the fundamental modes TE10 and TE11 of the rectangular and circular 

waveguides, respectively [138, 141]. 

It is important to ensure that the presence of the optical fibre especially in the feed has 

a minimum effect on the antenna performance. The existence of a dielectric object within 

a waveguide changes the propagating guide field distribution. In particular, the enforced 

boundary conditions change the fundamental mode to a hybrid mode [138]. If the 

travelling RF wave inside the waveguide is able to generate a propagating mode in the 

optical fibre as well, then it can be expected that the distribution of the RF electromagnetic 

field inside the waveguide is also affected by the optical fibre; otherwise the optical fibre 

only introduces a loss and a local perturbation of the RF electromagnetic field profile 

inside the fibre. Section 9.5.1 in [70] is devoted to analysis of the propagation mechanism 

in dielectric waveguides. By solving [138, Eqs. (9-91)], one can investigate the first 
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HEM11 propagating mode in the fibre.  

5.6.1.2 E-Plane Bend and the Fibre Hole 

In order to take the optical fibre out of the waveguide, an E-plane bend with a hole on 

the wall is used as shown in Figure 5.18. The E-plane bend has been studied previously 

[142, 143] and here only the analysis of the hole on wall of the bend is presented. First it 

is assumed that the physical structure can be replaced with the hole on the wall of a 

waveguide. Then as in [144], it is assumed that the hole on the wall with a diameter 3*�+, 

can be modelled by the infinitesimal electric and magnetic dipoles as [145]: 

 {|9 = z
z� 3*�+,ÈC�GGGGH>�A − A4�, (5.12.a) 

 {|e = − z
Ý s43*�+,Èc#GGGGH>�A − A4�, (5.12.b) 

where s4 and A4 are the vacuum permeability and the hole coordinate, respectively. C�GGGGH 
denotes the normal component of the waveguide electrical field whereas c#GGGGH refers to the 

tangent component of the waveguide magnetic field at the hole. Sec. 8.2.3 in [138] 

summarizes a closed-form expressions of the TE10 mode of a rectangular waveguide. 

Knowing {|9 and {|e, one can calculate the radiated power due to the hole given by [146]: 

 {Ç = Dç°�Ýõ ³ �|{|9|� + -�|{|e|��, (5.13) 

where - is the speed of the light in a vacuum. Considering that the hole is located at the 

middle of the wall, and following mathematical simplifications, one gets: 

 {Ç = Dç°�Çõ ³ ¯ õ`³¤h���´� ¯hh���Ð
Ý ´È �5 − T (ç°¤h���U�� |C4|�, (5.14) 

where M4 is the vacuum permittivity, and �*�+, denotes the cross section width of the 

waveguide where, the hole is positioned. On the other hand, the flowing power inside the 

waveguide is given as [138]: 
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 {þ = \h���� ³ ¯ õ`³¤h���´� �4 − T (ç°¤h���U� |C4|�, (5.15) 

where �*�+, denotes the area of the waveguide cross section. The ratio of �*�+, =
{Ç {þ⁄  will be used to assess the imposed loss. 

5.6.2 FSO Antenna 

As mentioned earlier, the fundamental concept of the optical transceiver is based on 

using an optical aperture in the shadow region of the sub-reflector, which connects it to 

the circuitry by means of optical fibres. Figure 5.23 depicts the schematic diagram of the 

optical aperture. The optical aperture consists of a Tx lens with a diameter of 2��2 and 

"-Rx lenses with the diameter 3� and a focal length of B�. The smallest circumcircle 

embedding all the lenses has the diameter .12, see Figure 5.23. A Tx lens is located at 

the centre whereas the Rx lenses are scattered equally in the circumcircle. The distance 

of a Rx lens to the centre of the circumcircle is denoted by 30:�. The geometry of the 

aperture and some mathematical simplifications leads to the following equations: 

.12 = 3� + 230:�, (5.16.a) 

 
Figure 5.23: Schematic diagram of optical transceiver aperture. 
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max" = ¥ß tan:z ¯Çh��¦Ð
h�Ð − 1´:4.þ⁄ §, (5.16.b) 

30:0 = 230:� sin õ5, 
(5.16.c) 

max��2 = .12 2ý − 3�. (5.16.d) 

The effect of turbulence on each individual received optical signal will be independent 

if the distance between the centres of two adjacent lenses 30:0 > 34 or 30:0 > �� ≈
34� ß�4ý  [90]. Since the dependency of the channel degrade the link performance [90], 

this leads to the following requirement: 

 30:0 ≥ max ¨34, h³Ð
õY³©. (5.17) 

In addition to the lens configuration, it is also needed to consider optical fibres used for 

the FSO link. Since in the proposed design OTx and ORx are distinct, they will be dealt 

with separately. The OTx is basically an SMF positioned in the focal length of the Tx 

lens, which is connected to a laser source being intensity-modulated with the data signal. 

As discussed in [147] to achieve efficient conversion of > 0.94 from the optical fibre 

mode to the fundamental FSO Gaussian mode, the �-number of the optical fibre should 

be in the range of 1.2 < � < 4.0. The V-number is defined as � ≜ ß356789NA n�\«⁄  

where 356789, and NA are the optical fibre's core diameter and numerical aperture, 

respectively [53]. Having obtained the �-number the optimum FSO beam radius at the 

output of the step-index SMF can be approximated [147]. By using optical lenses it is 

possible to collimate the output beam for a given distance and in [114] the required 

expressions are derived for a single lens collimator system. Although the output beam of 

the Tx lens is supposed to be collimated, in real systems a small divergence half-angle 

�4 ≪ 1 is expected. 
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The beam radius at the Rx is �12 = ��2 + �4m [57]. Letting .�/ to be the diameter of 

a single lens at the Rx of a LOS link, the FSO geometrical attenuation ���� in dB will be 

given as [62]: 

 ���� = 20 log �√2]çè�Ó��. (5.18) 

Since the Rx proposed here is not made of a single lens, then it is essential to adopt 

Equ. (5.18). To do this, the plane wave propagation is assumed. Therefore, it can be 

shown that the ratio of total optical power impinging the circumcircle with the diameter 

.12 to the optical power captured by a single lens with diameter is given by: 

 �%) = Rõ¯��Ð ´Ð

Rõ¯¬çèÐ ´Ð = ¯ h��çè´�
, (5.19) 

where �%) is the ratio and [ is the optical intensity of the plane wave. Therefore, the total 

attenuation from Tx to a single Rx lens including the geometrical loss is given by: 

 ����� = 20 log ¯√2]çèh� ´. 
(5.20) 

At the Rx side the optical beam is captured by each Rx lens and focused onto a 

multimode fibre (MMF). Note that MMF is used because of its larger NA. The main issue 

with MMF is the dispersion and since MMF used in the scheme is very short (a few meters 

long), the dispersion is almost negligible. However, the coupling loss from FSO to the 

MMF and the fibre loss cannot be ignored. The criterion 356789 ≥ 2n�\«B� 3�⁄  ensures 

that the spot size of the focused beam after the lens is smaller than the fibre core diameter 

[148]. In the ORx module, the output beams of MMFs can be used to perform desired 

combining methods. 
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5.6.3 Simulation Results 

5.6.3.1 Initial Design 

The RF part of the antenna was designed based on the steps outlined in Section 5.6.1 

with the key parameters summarized in Table 5.7. Note that FSO parameters are also 

summarized in Table 5.8. Based on the shadow region approximation .12 = 3�0 (see 

Figure 5.19 and Figure 5.23) and for the link distance and the FSO wavelength given in 

Table 5.7, 34 ≈ 26 mm. In the practical design 3� = 25 mm, and using Equ. (3.10) one 

obtains AF = 0.34. For the weak turbulence condition (i.e., �_� = 0.3), from Equ. (3.6) 

Table 5.7: RF antenna with multiple collimators parameters. “Initial Design” is based on the steps given 
in Section 5.6.1. “Modified Design” refers to design based on the experimental limitations. 

 Parameter Value 

G
iv

e
n

 P
a

ra
m

et
er

s 

Wavelength n1j at 10 GHz 29 mm 

Modulation scheme BPSK 

Tx module total loss 5 dB 

Rx module total gain 10 dB 

Rx noise figure -91.5 dBm 

Signal Bandwidth 10 MHz 

Parabola diameter .�0 475 mm 

Parabola focal length to diameter ratio Q�0 .�0⁄  0.24 

Required HPBW 5º 

Required gain > 25 dBi 

HPBW of feed 90º 

Circular feed diameter 3���, 23.7 mm 

Tube thickness Ù�L*� 2 mm 

Tube relative permittivity M8 2.3 

Rectangular feed dimensions 22.86×10.16 mm2 

Fibre hole diameter 3�0_=� � 2.5 mm 

In
it

ia
l 

D
es

ig
n

 Hyperbolic diameter 3�0 99 mm 

Hyperbolic focal length B�0 47 mm 

Hyperbolic position ��0 13 mm 

Feed aperture distance to main reflector apex B�0 − ��0 66 mm 

M
o

d
if

ie
d

 D
es

ig
n

 Hyperbolic diameter 3�0 85 mm 

Hyperbolic focal length B�0 47 mm 

Hyperbolic position ��0 13 mm 

Feed aperture distance to main reflector apexB�0 − ��0 57 mm 
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��� = 5.7×10:zþ m:� È⁄ . Thus, using Equ. (3.3) �4 ≈ 19 mm and hence the criteria 

30:0 ≥ max&26 mm, 11 mm'.  On the other hand, using (5.16.a) 30:� = 30 mm, but 

30:� = 34 = 26 mm, which makes the aperture smaller and also avoids dependency on 

the Rx apertures. By using Equ. (5.16.b) and based on the parameters calculated so far, 

the maximum " of 6 was determined. In the proposed design " = 3, thus resulting in 

30:0 of 26 mm, which is acceptable based on the criteria of Equ. (5.17). Also the Tx 

diameter 2��2 = 3� was selected, which conforms to the criterion ��2 ≤ .12 2⁄ − 3� 

obtained from Figure 5.23. All the key FSO transceiver aperture parameters are presented 

in Table 5.8.  

Table 5.8: FSO aperture with multiple collimators parameters. NEP is the receiver noise equivalent 
power. 

 Parameter Value 

G
iv

en
 P

a
ra

m
et

er
s 

Wavelength njkl 670 nm 

Modulation Scheme NRZ-OOK 

Aperture diameter .12 85 mm 

Link length m 1 km 

Rytov variance �_� 0.3 

Fading correlation length 34 26 mm 

Tx/Rx fibre cable diameter 2.5 mm 

Tx fibre loss 0.2 dB 

Rx fibre loss 2 dB 

Coupling loss from FSO to fibre/fibre to FSO 2 dB 

NEP 35 pW √Hz⁄  

Bandwidth 50 MHz 

Full angle beam divergence �4 8 mDeg 

In
it

ia
l 

D
es

ig
n

 Rx lens diameter 3� 26 mm 

Rx lens to centre distance 30:� 30 mm 

Maximum M 6 

Tx lens diameter 2��2 26 mm 

M
o

d
if

ie
d

 D
es

ig
n

 Rx lens diameter 3� 25 mm 

Rx lens to centre distance 30:� 26 mm 

Chosen M 3 

Tx lens diameter 2��2 25 mm 

Rx lens to Rx lens distance 30:� 26 mm 
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The initial sub-reflector was designed based on the given method; and later on the final 

design was determined by means of CST STUDIO SUITE®. Figure 5.24 illustrates 

simulated normalized radiation patterns of the initial antenna in E- and H-planes.  

5.6.3.2 Parametric Analysis 

The side-lobe levels of the antenna based on the steps in Section 5.6.1 for both E- and 

H-planes are unacceptable. Besides due to the experimental limitation, the feed aperture 

distance to the main reflector apex must be < 57 mm. Therefore, in the next step, while 

the sub-reflector diameter is set to 85 mm and the distance from the feed aperture to the 

main reflector apex is fixed to 57 mm, a parametric analysis is performed to achieve the 

 
(a) 

 
(b) 

Figure 5.24: Simulation results for initial antenna with multiple collimators design scheme based on 
steps given in Section 5.6.1: (a) antenna profile (the distance between the feed and sub-reflector is 37.2 
mm and the sub-reflector diameter is 99 mm), and (b) E-, H-planes, and X-pol radiation normalised to 
the antenna gain of 28.2 dBi. 
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optimum gain, side-lobe level and X-pol performances. 

The outcome of the parametric analysis is depicted in Figure 5.25. Based on the 

analysis, the optimum displacement of 0 mm is choosen. This value was adopted and 

further simulations on the radition patterns of the antenna were carried out with results 

presented in Figure 5.26 and summarised in Table 5.10. To study the effect of adding an 

optical aperture on the distributions of near fields, the power spatial patterns in E- and H-

planes are presented in Figure 5.27. Also shown are power distributions prior to inclusion 

of an optical aperture. As in Figure 5.12, the power distributions have changed 

significantly with inclusion of an optical aperture, since the number of apertures is higher 

than the case in Figure 5.12. However, as it was mentioned before, the performance of 

 
(a) (b) 

 
(c) 

Figure 5.25: Parametric analysis on the initial design with multiple collimator part and tube: (a) gain 
and X-pol discrimination, (b) side-lobe level in E- and H-planes, and (c) half-power beam-width 
(HPBW) in E- and H-planes. Negative displacement denotes moving the sub-reflector towards the feed. 
At displacement of 0 mm, the distance between the feed and sub-reflector is 40.96 mm. 
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the antenna in the far-field should be taken into account.  

5.6.3.3 Sub-reflector Misalignment Analysis 

Furthermore, to see the effect of misalignment of the sub-reflector on the antenna 

performance, two more analyses are performed. Note that the effect of sub-reflector 

misplacement is already done in previous section, see Figure 5.25. The goal is to find the 

effect of sub-reflector rotation along the two vertical (E-plane) and horizontal (H-plane) 

directions. The result of the analysis is plotted in Figure 5.28, which shows that in 

contrary to the displacement of sub-reflector, the rotation has no significant effect of the 

antenna characteristics in the maximum radiation pattern direction. 

  

 
Figure 5.26: Simulated radiation pattern for optimised antenna with multiple collimators design scheme. 
The distance between the feed and sub-reflector is 40.96 mm and the sub-reflector diameter is 85 mm. 

E-, H-planes, and X-pol radiation are normalised to the antenna gain of 29.3 dBi. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.27: Near field power distribution of the antenna with and without optical aperture for multiple collimators scheme in E- and H-planes: (a) without optical aperture in 
E-plane, (b) without optical aperture in H-plane, (c) with optical aperture in E-plane, and (d) with optical aperture in H-plane. The distance between the feed and sub-reflector, 

the sub-reflector diameter, and the distance from the feed aperture to the main reflector apex are 40.96 mm, 85 mm and 57 mm, respectively. 

1
6
2

 



A Hybrid Free Space Optics/Radio Frequency Antenna – Design and Evaluation 

 

163 

5.6.4 Design Steps Summary 

In this section, the steps taken to design the antenna based on the given parameters (i.e., 

required RF gain ^JK and operating RF wavelength n1j) as well as the required formulas 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 5.28: Misalignment analysis on the optimised design with no optical part and tube: (a, d) gain 
and X-pol discrimination, (b, e) side-lobe level in E- and H-planes, and (c, f) half-power beam-width 
(HPBW) in E- and H-planes. In (a-c) the angle is in vertical (E-plane) direction, whereas (d-f) the angle 

is in horizontal (H-plane) direction. The distance between the feed and sub-reflector is 40.96 mm. 
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from previous sections, are summarised as below: 

1. Assuming a typical value for the antenna efficiency (IJK), the required antenna 

diameter (.�0) is calculated from Equ. (5.5) as: 

 .�0 = (ç°õ �æ­®(­®.  

2. Based on available parabolic diameter and the focal length ratio, focal length of 

the main reflector (Q�0) is determined. (fg) is also decided based on the 

available feed. Then using Equ. (5.2), the optimum diameter for the sub-

reflector (3�/��) is defined as: 

3�/�� = � �D� n1jQ�0.  

3. If 3�/�� .�0⁄ > 0.2 then the sub-reflector diameter (3�0� is set to 3�/��, 

otherwise 3�0 = 0.1.�0. 

4. If the half of E/H-plane HPBW (i.e., Ψ���,|� � �+� and Ψ���,|£ � �+�) are known, 

then the step 4 is not necessary. Otherwise for available feed with a known 

aperture diameter (3���,), the half of E/H-plane HPBW (i.e., Ψ���,|� � �+� and 

Ψ���,|£ � �+�) are obtained using Equ. (5.11) as given: 

 Ψ���,|� � �+� = 58.4 (ç°hÄ���,  

 Ψ���,|£ � �+� = 74 (ç°hÄ���. 
 

5. Ψ���, can be set to the average of Ψ���,|� � �+� and Ψ���,|£ � �+�. Another 

option is to set Ψ���, to the maximum value of Ψ���,|� � �+� and Ψ���,|£ � �+�. 

6. By using (5.3), the hyperbolic focal length (B�0) is determined as: 
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 B�0 = ������h��zÝ �8Q�0.�0cot Ψ���, + 16Q�0� − .�0��.  

7. Next step, the geometric parameters of hyperbolic sub-reflector are determined 

using Equ. (5.4), which are given as: 

 @ = ¯.�0 cot �Ä���� + 4Q�0´ ¯.�0 cot �Ä���� − 4Q�0´ý ,  

 ��0 = B�0 ¯.�0 cot �Ä���� + 4Q�0´ý .  

8. Based on the practical limitation, the sub-reflector diameter (3�0) is set to the 

available value. 

9. Knowing the FSO link wavelength (njkl) and required link distance (m), 

correlation length (34) is calculated using Equ. (3.2), which is given by: 

 34 ≈ Þnjklm.  

10. With the expected turbulence strength defined in terms of the scintillation index 

(�R��0�), it is possible to calculate the required receiver lens diameter (3�) using 

Equ. (3.10), which is given as: 

 3� = h³z.�!zÝ¯¯ Ñ�Ð�4�
Ñ�Ð�h��´

Ý ¬ý − 1.  

11. Based on the practical limitation, the receiver lens diameter (3�) is set to the 

available value. 

12. Knowing the sub-reflector diameter (3�0), from the step 8 the optical aperture 

diameter (.12) is decided accordingly. 

13. Using Equ. (5.16.a), the distance between receiver lenses (30:�) is determined 

as: 
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30:� = �çè:h�� .  

14. Using Equ. (5.16.b), the maximum number of lenses at the receiver side (") is 

obtained, which is given by: 

max" = ¥ß tan:z ¯Çh��¦Ð
h�Ð − 1´:4.þ⁄ §.  

15. The maximum transmitter lens radius (��2) is calculated using Equ. (5.16.d) as: 

max��2 = .12 2ý − 3�.  

16. In case that the divergence angle of the transmitter (�4) is not given and the 

maximum transmitter lens radius (��2) is known, it is possible to ensure the 

required divergence angle of FSO beam using �4 = (°±²õ]°è [57]. 

17. The beam radius at the receiver (�12) is obtained using �12 = ��2 + �4m. 

18. The geometrical loss for each receiver lens (����� ) is calculated using Equ. 

(5.20), which is given by: 

 ����� = 20 log ¯√2]çèh� ´. 
 

19. If the calculated geometrical loss (����� ) is more than the acceptable level, by 

changing the conditions in the step 10 and going through the steps, one should 

try to approach the required criteria. In case it is not possible to satisfy the entire 

conditions, a trade-off between the transmitter/receiver lens size and the 

independency of the receiver apertures might be necessary. 

20. In the last step, the structure needs to be simulated to ensure the required 

characteristics are achieved. Note that by changing the distance between the 
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sub-reflector and the feed aperture, it is possible to perform a simple 

optimisation. 

The calculation steps for the antenna with multiple collimators is summarised in Table 

5.9.  

5.6.5 Hybrid Antenna Fabrication 

Based on the available resources and the optimised design, the antenna was fabricated. 

More details on the fabrication and antenna components are available in Appendix C. 

Figure 5.29 shows the picture of the assembled prototype. 

5.6.6 Hybrid Antenna Characteristics 

In this section, the main characteristics of the hybrid antenna are presented. The 

Table 5.9: Hybrid antenna design calculations based on the steps given in Section 5.6.4. 

Step Number Given Values Calculated Values 

1 ^JK = 30 dBi, IJK = 0.55, n1j = 30 mm .�0 = 407 mm 

2 .�0 = 475 mm, Q�0 .�0⁄ = 0.26, fg = 0.7 3�/�� = 99 mm 

3 3�/�� = 99 mm 3�0 = 3�/�� 

4 3���, = 23.8 mm 
Ψ���,|� � �+� = 73.6 Deg, Ψ���,|£ � �+� = 93.2 Deg 

5 Ψ���,|� � �+� = 73.6 Deg, Ψ���,|£ � �+� = 93.2 Deg Ψ���, = 90 Deg 

6 Q�0 = 114 mm, .�0 = 475 mm, 3�0 = 99 mm, Ψ���, = 90 Deg B�0 = 47.4 mm 

7 
Q�0 = 114 mm, .�0 = 475 mm, 3�0 = 99 mm, Ψ���, = 90 Deg, B�0 = 47.4 mm 

��0 = 13.5 mm 

8 3�0 = 99 mm 3�0 = 85 mm 

9 njkl = 670 nm, m = 1 km 34 = 25.9 mm 

10 34 = 25.9 mm, �R��0� = 1, �R��3�� = 0.3 3� = 27 mm 

11 3� = 27 mm 3� = 25 mm 

12 3�0 = 85 mm .12 = 85 mm 

13 .12 = 85 mm, 3� = 27 mm 30:� = 30 mm 

14 30:� = 30 mm, 3� = 27 mm max" = 6 

15 .12 = 85 mm, 3� = 25 mm max��2 = 17.5 mm 

16 ��2 = 17.5 mm, njkl = 670 n �4 = 700 sDeg 

17 ��2 = 17.5 mm, m = 1 km �12 = 87 mm 

18 �12 = 87 mm, 3� = 25 mm ����� = 14 dB 
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parameters are either theoretically calculated or are determined experimentally. The 

measured return loss and VSWR of the antenna before and after tuning are shown in 

Figure 5.30. The bandwidth before tuning is in the range of 9.75 GHz-9.98 GHz, where 

with tuning the correct bandwidth of ∼800 MHz is achieved.  

Figure 5.31 illustrates the measured and simulated radiation patterns in the E and H-

planes. The summary of the radiation pattern measurement including gain, side-lobe 

level, HPBW, FNBW and bandwidth are presented in Table 5.10. Note the improvement 

in gain by 2.7 dB, which is due to the increased VSWR efficiency. HPBWs of antenna in 

both E- and H-planes after tuning are acceptable, however that is not the case for side-

lobe level. With the tuner the side-lobe level in the E-plane at both negative and positive 

angles has improved, but in the H-plane the side-lobe level in the positive angle range 

shows a significant degradation. Also observed is the asymmetric radiation pattern, which 

can be enhanced by improving the antenna fabrication process. Next we consider the 

effect of fibre on the waveguide field distribution, fibre hole efficiency coefficient (I=� �), 

tube efficiency (I�L*�), and bend hole coupling ratio (�*�+,�. 

  

 
Figure 5.29: Fabricated hybrid antenna with multiple collimators under radiation pattern test. The 
distance between the feed and sub-reflector is 40.96 mm and the sub-reflector diameter is 85 mm. 
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(a) 

 
(b) 

Figure 5.30: (a) Measured return loss of the antenna with multiple collimators before and after tuning, 
and (b) equivalent voltage standing wave ratio (VSWR) from the measurement before and after tuning. 
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(a) 

 
(b) 

Figure 5.31: Radiation pattern of hybrid antenna with multiple collimators measured in a near field 
chamber as well as the simulated one for: (a) E-plane, and (b) H-plane. 
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Table 5.10: The antenna (design with multiple collimators) characteristics obtained from simulation. X-pol disc, SLL, HPBW, and FNBW are X-pol discrimination, side-lobe 
level, half-power beam-width, and first null beam-width, respectively. 

 E-plane H-plane  

Design stepa Gain (dBi) X-pol disc (dB) SLL (dB)b HPBW (Deg) FNBW (Deg) SLL (dB)b HPBW (Deg) FNBW (Deg) Bandwidth (MHz) 

Target 30 20 < -20 < 5 - < -20 < 5 - 100 MHz 

Simulation, initial 28.2 22.9 -12.7 4.2 9.5 -12.6 3.9 9.9 - 

Simulation, optimised 29.3 25 -17.7 4.4 10.7 -19.3 4.4 10.8 - 

Measurement, before tuning 26.5 - [-13.4, -13.6] 4.4 10.8 [-16.2, -18.6] 4.3 10.8 < 100 

Measurement, after tuning 29.2 - [-19.2, -21.6] 4.2 10.8 [-20.1, -15.4] 4.3 11.6 > 100 

a “Target” is based on the desired characteristics in Table 5.3. “Simulation, initial” is simulation of the antenna with multiple collimator based on the steps given in Section 
5.6.1. “Simulation, optimised” is the simulation of the optimised antenna with multiple collimator based on the experimental limitation and performed parametric analysis. 
“Measurement, before tuning” is the measurement of the fabricated antenna with tube and multiple collimator based on the optimised antenna before tuning. “Measurement, 
after tuning” is the measurement of the fabricated antenna with tube and multiple collimator based on the optimised antenna after tuning. 
b The first number is side-lobe level for negative angles, whereas the second one refers to the positive angles. 
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Given that the fibre's numerical aperture NA = �y��0�� − y� �,�� where y��0� = 2.24 

is the refractive index of the dielectric material (jacket is made of hytrel plastic), y� �, =
1 is the refractive index of surrounding free space, then the V-number of the dielectric rod 

is almost zero for the RF wavelength. For � ≈ 0 the propagation inside the dielectric is 

literally the same as the propagating mode of the waveguide, see [138, Figure (9-11)]. 

Knowing that replacing the cladding with other materials will even result in a smaller V-

number, it is guaranteed that the presence of the fibre inside the waveguide has no effect 

on the field distribution within the waveguide. 

Next the efficiency coefficients for the fibre holes and the polyethylene tube as defined 

in Equs. (5.8) and (5.10), respectively are determined. Assuming identical holes for the 

Tx and Rx fibres Equ. (5.8) can be re-written as: 

 I=� � = 1 − �" + 1� ¯h��_¢ÅÔ�h�� ´�
. (5.21) 

For the given parameters given in Table 5.7 and Table 5.8, I=� � = 0.9939, and I�L*� =
0.9392 meaning that the effect of fibre holes and polyethylene tube are almost negligible. 

There is an additional effect of the hole on the E-plane bend, due to the inclusion of optical 

aperture to the RF antenna, defined as �*�+, = {Ç {þ⁄  where {Ç and {þ are given by Equs. 

(5.14) and (5.15), respectively. Using the parameters Table 5.7, �*�+, = −48.87 dB, 

which is quite small and can be ignored. The summary of the calculated parameters is 

presented in Table 5.11.  

Based on the simulation and measurement results so far, the following points are 

concluded: 

• Due to the mismatch of rectangular to circular transition, the E-plane bend and 

the waveguide to coax adaptor, a tuner waveguide was used to achieve the 

required bandwidth. 
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•  Tuning the antenna improved both the gain and the VSWR efficiency within a 

certain frequency range.  

• The inclusion of optical components had no significant effect on the antenna 

efficiency, and had the minimum effect on the radiation pattern when the optical 

aperture is positioned in the shadow region of the sub-reflector. 

• Although tuning has improved the radiation pattern including the gain and the 

side-lobe level, the side-lobe level, which is mainly caused by illumination 

pattern and radiation from edges, is still not within an acceptable range. 

An effective method to address the last comment on the side-lobe level would be to 

look at the total and illumination efficiencies of the antenna in different steps of the 

design. Equ. (5.5) can be used to estimate the total efficiency of the antenna IJK =
I�  L�×I����,where I�  L� is the total efficiency and I���� represent other efficiencies 

[69]. Additionally, IJK can be written in terms of the antenna gain and directivity as [70]: 

 IJK = K+��++� ±��+
K+��++� t�0����²��³. (5.22) 

 The total efficiencies of the antenna obtained from measurement are summarised in 

Table 5.12. Considering the side-lobe level, bandwidth, and total efficiencies of the 

antenna in Table 5.5, Table 5.10, and Table 5.12, it is observed that the fabricated antenna 

suffers from inefficient illumination and a mismatched impedance. The prototype antenna 

with a multiple collimator has a total efficiency of ~0.6, which is less than the typical 

Table 5.11: The hybrid antenna calculated characteristics based on section 5.6.1. 

Parameter Value 

V-number of the fibre inside the waveguide ∼0 

Efficiency of the hole on sub-reflector I=� � for multiple holes " = 4 
0.9939 

Efficiency of the tube I�L*� 0.9392 

Coupling ratio of the bend �*�+, -48.87 dB 
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value of 0.85 for a quality reflector antenna. The ratio of measured gain and measured 

directivities of the antenna before and after tuning are 0.57 and 0.59, respectively. After 

tuning the efficiency is still low, therefore considering the geometry of the antenna, the 

total efficiency is not high due to the low illumination and spillover efficiencies. Thus, an 

optimisation method is required to address side-lobe level, illumination pattern and 

mismatched impedance. Optimisation might be employed to improve the profile of 

reflectors, which is the subject of the future work. For more on this the readers are referred 

to [129].  

5.6.7 Hybrid FSO/RF Simplex Link 

5.6.7.1 Link Budget Analysis 

The FSO link with the proposed antenna has three aperture receivers. Therefore, there 

is a need for a combining method. For the FSO link with EGC and SC combining schemes 

the BER performance has been investigated as a function of the SNR using Equs. (3.22) 

and (3.25) for the weak turbulence regime, and Equs. (3.28), and (3.31) for the strong 

Table 5.12: Comparison of gain, directivity and total efficiency (ηCA) of the antenna for design steps. 

Design stepa Gain (dB) Directivity (dB) ´µ¶ 

Target 30.0 31.5 0.55 

Measurement, tube added 27.9 31.5 0.44 

Measurement, single Collimator, Before tuning 26.8 28.8 0.63 

Measurement, single collimator, after tuning 27.5 28.8 0.74 

Measurement, multiple collimators, before tuning 26.5 28.9 0.57 

Measurement, multiple collimators, after tuning 29.2 31.8 0.59 

a “Target” is based on the desired characteristics in Table 5.3. “Measurement, tube added” is the 
measurement of the fabricated antenna with tube based on the optimised antenna in Section Error! 

Reference source not found.. “Measurement, single collimator, before tuning” is the measurement of 
the fabricated antenna with tube and single collimator based on the optimised antenna before tuning. 
“Measurement, single collimator, after tuning” is the measurement of the fabricated antenna with tube 
and single collimator based on the optimised antenna after tuning. “Measurement, multiple collimators, 
before tuning” is the measurement of the fabricated antenna with tube and multiple collimators based 
on the optimised antenna before tuning. “Measurement, multiple collimators, after tuning” is the 
measurement of the fabricated antenna with tube and multiple collimators based on the optimised 
antenna after tuning. 
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turbulence regime as illustrated in Figure 5.32. At a BER of 10:Ý the target SNR values 

for the EGC and SC are ~21 dB and ~24 dB, respectively for �_� = 0.5. For �_� = 1, the 

SNR values are increased to ~24 dB and ~27 dB for EGC and SC, respectively.  

The link budget analysis is outlined in Table 5.13 showing the required power values 

for both turbulence regimes and the combining methods. Note that a high extinction ratio 

is assumed for the optical sourse and the receiver is considered with responsivity of 1 

A/W. The fibre losses are measured, whereas the total geometrical loss is predicted. The 

transmit power of the laser is limited due to the health and safety reason. The significe of 

this table is the achieved link margin for each scenario. EGC offers the best performance 

even for the moderate turbulence regime.  

5.6.7.2 Link Measurements 

Finally, for testing the proposed antenna over a hybrid link, the measurement was 

carried out in an indoor environment over a 13.3 m link span using two antennas with 

gains of ~28 dBi and ~31 dBi, see Figure 5.33. The FSO and RF transceivers parameters 

are the base on Table 5.6. The measured received power of the RF signal and measured 

SNR at the Rx were ∼-30 dBm and ∼42 dB, respectively. Note that the predicted transmit 

 
Figure 5.32: BER versus SNR for the FSO link with equal gain combining (EGC) and selection 
combining (SC) for two turbulence regimes. 
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power of the RF signal is -26 dBm, which is 4 dB higher than the measured value. This 

difference is due to antennas misalignment and cable losses. The SNR was measured 

while a 6.7 Mbps BPSK signal was transmitted over the link. For a BER of 10-6 the 

required SNR for the RF signal is ~8.8 dB [67]. For a longer range transmission link one 

could include additional amplification stage at the Rx side to achieve the required SNR.   

For the FSO path the output power of the Tx aperture was set to be ∼0 dBm. The 

diameter of the optical beam footprint at the Rx was 400 mm, which was much larger 

than the optical aperture. The measured optical power at the output of fibres were -22.3 

dBm, -21.5 dBm, and -22.7 dBm, thus the measured average loss of the free space channel 

being ∼22.2 dB. Considering the RX footprint of 400 m, the predicted value of channel 

loss is ����� = 21.1 dB from Equ. (5.20). For a BER of 10-6 in clear channel, the required 

Q-factor will be 4.8, which is lower than the measured Q-factor of 5.8. The Q-factor of 

5.8 is almost equivalent to a SNR of 15 dB [149]. 

All the measured and predicted values are summarised in Table 5.14. Note that there is 

a significant difference between the predicted and measured RF SNR, which is due to. 

Table 5.13: FSO Link budget for different turbulence conditions and combining methods. 

Turbulence condition <O? = >. @ <O? = P.0 

Combining method EGC SC EGC SC 

Required SNR (dB) 20.7 24.1 23.6 26.9 

Tx SMF loss (dB) 0.2 

Tx fibre to FSO coupling loss (dB) 2 

Total geometrical loss £¨¦¨§· (dB) 14 

Rx FSO to fibre coupling loss (dB) 2 

Rx POF loss (dB) 2 

Total loss (dB) 20.2 

Noise floor (dBm) -51.06 

Required laser power (dBm) (
P? ò¸¹ + P?¸¦ÊË¥ ª·¦¦÷ +º¦¨§· ·¦ËË ) -10.16 -6.76 -7.26 -3.96 

Maximum safe pointer laser power (dBm) 2.2 

Link margin (dB) (Maximum safe pointer laser power 

– Required laser power) 
12.36 8.96 9.46 6.16 
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larger noise temperature. The difference between the predicted and measured Q-factor is 

also due to the ambient noise was not considered in the calculation and the noise floor of 

the receivers were calculated based on the provided technical specifications. 

According to Table 5.13, a minimum SNR value of 21 dB is required to combat the 

turbulence with �_� = 0.5 using the EGC method, which the link with a large optical 

footprint cannot achieve it. However, by reducing the size of the optical footprint to 85 

mm at the Rx, the total loss, including the fibre and coupling, drops down to 11.6 dB. 

Thus the received optical power level and the SNR will be of -12 dB and ~26 dB, 

respectively, which are higher than the case with a large optical footprint. With this SNR 

value it is therefore possible to mitigate even the turbulence (i.e., �_� = 2) with employing 

the EGC method.  

  

Table 5.14: Summary of the measured and predicted link characteristics of the hybrid link of 13.3 m. 

Parameter Predicted Measured 

RF received power -26 dBm -30 dBm 

RF SNR at the receiver >  50 dB 42 dB 

Received optical power after the fibre 1 -21.1 dBm -22.3 dBm 

Received optical power after the fibre 2 -21.1 dBm -21.5 dBm 

Received optical power after the fibre 3 -21.1 dBm -22.7 dBm 

Optical channel loss 21.1 dB 22.2 dB 

Received FSO QQQQ -factor > 10 5.8 
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(a) 

 
(b) 

Figure 5.33: (a) Block diagram of the performed hybrid link test, and (b) image taken from the experimental hybrid link setup. 
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5.7 Detection Method 

As mentioned before, a proper method to combat the ambient light effect is also 

required to improve the performance of the hybrid antenna for outdoor applications. This 

matter will be discussed in the next chapter.  

5.8 Summary 

A practical hybrid antenna design was proposed and then characterized. The antenna 

was based on Cassegrain antenna design with FSO part embedded later on. First in a step 

by step design guideline, the effect of adding extra parts regarding the FSO antenna was 

simulated and described. Then closed-from equations were derived to describe the effect 

of optical part on the RF part. The simulation results were used to support the theory and 

confirm the design. Then the antenna was fabricated and radiation pattern measurement 

as well as assessment of the antenna in a hybrid link were carried out. The measurement 

showed that the initial design of antenna without optical part had a total efficiently of 

44% while after optimisation and the inclusion of the FSO part the efficiency reached to 

59%. It was shown that the overall low efficiency of antenna was due to insufficient 

illumination efficiency. A link budget analysis was performed to investigate the 

performance of the FSO part in weak and moderate turbulence regimes. Since the final 

design of the antenna implemented FSO spatial diversity, the performance of FSO link 

using three receiver apertures for EGC and SC combining techniques was also presented. 

For a test indoor environment, the SNR of received RF signal as well as the Q-factor of 

received optical signal were measured. To extend the range of hybrid link from the 

experimental indoor test to an outdoor practical link, the link budget analysis for FSO 
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part was carried out and the required changes to the system were investigated. Since the 

ORx had multiple output signals, also the required combining technique to combat the 

turbulence was discussed, and it was shown that the proposed antenna is operational over 

a 1 km link under turbulent condition.  
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 HYBRID FSO/RF LINK 

6.1 Introduction 

In this chapter, the performance of hybrid antenna in a real scenario is evaluated, where 

the condition of the channel is based on the recorded data. First, the chapter outlines a 

communication system based on the proposed hybrid antenna, and then the process of 

simulating the performance of the entire system is described. Finally, the requirements of 

the system to extend the link range, data rate, and system availability are discussed. 

6.2 FSO System Configuration 

In Chapter 5, the need for a method to combat the effect of ambient light in FSO system 

in outdoor applications was mentioned.  In [35], the authors used a differential technique 

to eliminate the background noise in OOK based intensity modulation FSO system. The 

basic concept outlined is similar to the proposed differential signalling technique in this 

research, see Chapter 4. Therefore, employing the differential signalling technique at each 

aperture to mitigate the effects of turbulence and pointing errors will also reject (or 

reduce) the background noise level. Thus, to mitigate turbulence, pointing errors and 

background noise, a FSO system implementing the differential signalling technique and 

spatial diversity method is proposed. 
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The proposed FSO system is shown in Figure 6.1, where two different wavelengths are 

adopted for optical transmitters OTx1 and OTx2, which are passed through two individual 

optical fibres. After combining the optical signals are coupled into free space and 

transmitted. At the receiver side, three individual collimators are used to capture the 

received beam. Then two different wavelengths are separated by means of optical splitter 

and proper optical filters OF1 and OF2 tuned for each wavelength. The received optical 

powers are converted into electrical signal by using PD ORxs. Three subtractions stages 

are needed to perform differential signalling and to reduce the background noise and a 

summation module is used as part of the EGC. Since the same Rx aperture for differential 

signals are being used, then the channels are assured to be highly correlated in order to 

significantly reduce effects of weak turbulence and pointing errors, see Chapter 4. 

Provided the ORxs are not saturated the effect of background illumination is also 

mitigated as outlined in [35]. However, under severe weather conditions (e.g., fog, smoke, 

strong turbulence) and severe pointing errors where the FSO link fails to operate the back-

up RF link will ensure link availability with maintained performance quality. 

6.3 Switching Technique 

In hybrid systems, FSO is the default link and in case of any link failure, the data 

transmission is carried out using the RF link. Switching between FSO and RF link is a 

vast topic to be studied and the detailed discussion on this is out of the scope of this 

research.  
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Figure 6.1: The block diagram of the proposed FSO link with hybrid antenna. OTx, SMF, MMF, OF, and ORx are optical transmitter, single mode fibre, multimode fibre, 
optical filter, and optical receiver, respectively. Green dashed line and solid red line corresponds to two separate wavelengths. 
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However, in order to evaluate the functionality of the proposed antenna, a simulation 

will be performed under fog and rain channel situations. The channel conditions are set 

based on the recorded data from outdoor meteorological instrument over a transmission 

range of 500 m in the Faculty of Electrical Engineering, Czech Technical University in 

Prague, Czech Republic. The measurement was performed from 2013 to 2014, which 

includes the precipitation level in millimetre and the visibility in metre. 

6.4 System Specifications 

The parameters used for antenna structure are based on Chapter 5, which includes the 

known gain and coupling losses. Other parameters such as the output power, data rate, 

etc. are fixed to typical values. All the parameters are given in Table 6.1. For the required 

BER of 10-6
 and the NRZ-OOK based FSO system, the required minimum SNR is 13.54 

dB. On the other hand, for the RF link with BPSK, the required SNR is at least 8.79 dB. 

Knowing the required SNRs and the noise floor, the necessary thresholds (i.e., the 

minimum detectable received power (min {8)) for both FSO and RF links can be defined 

as: 

min {8 = SNR + » NEP√BW, FSO Linkfg��9 + ��+��++��BW , RF Link , (6.1) 

where NEP (W ÞHz⁄ ) denotes the noise equivalent bandwidth of the ORx. BW, fg, �9, 

and ��+��++� are the bandwidth, Boltzmann's constant, RF Rx noise temperature, and RF 

antenna noise temperature, respectively. Therefore, the switching threshold levels for 

FSO and RF links are -21 dBm and -82.71 dBm, respectively. 
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6.5 Recorded Data 

Before describing the simulation procedure, it is a good practice to study the channel 

conditions. The data collected from meteorological measurement is for the January 2014. 

The visibility was recorded at the rate of one sample per every 5 seconds whereas the 

precipitation measurement was carried out at the rate of one measurement per minute. 

Figure 6.2(a) illustrates the recorded visibility. The average, standard deviation, 

minimum and maximum of the recorded visibility in this period are 11.76 km, 6.68 km, 

0.14 km, and 20 km, respectively. A maximum range of 20 km was the measurement 

Table 6.1: hybrid FSO/RF system parameters. 

Parameter Value 

njkl,z 780 nm 

njkl,� 830 nm 

Modulation scheme NRZ-OOK 

FSO data rate 100 Mbps 

Noise equivalent power of optical receiver 35 pW √Hz⁄  

FSO/Fibres coupling losses at receiver 3.5 dB 

Optical power after Tx aperture 3 dBm 

FSO total geometrical loss 8.57 dB 

FSO source extinction ratio 20 

FSO PD responsivity 1 A W⁄  

B1j 10 GHz 

Modulation scheme BPSK 

RF data rate 6.7 Mbps 

RF receiver noise temperature 4.1° kK 

Antenna gain 31.4 dBi 

RF power before Tx antenna -10 dBm 

Gain from Tx antenna to receiver (direct wired connection) 7.84 dB 

Switching method TH 

Time threshold 10 s 

Switching delay 1 s 

Link Distance 500 m 
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device limitation. The histogram of visibility is plotted in Figure 6.2(b).  Apart from the 

spike, which is due to the device limitation, the histogram shows that most of the recorded 

visibility data are within the visible range of 1 km to 10 km and for only several occasions 

the visibility is reduced below 1 km. From the visibility plot and Equ. (2.2), the parameter 

µ is determined as depicted in Figure 6.2(c). Having µ, it is possible to determine the 

attenuation of the FSO link in fog condition. As mentioned before, two distinct 

wavelengths have been used and the shorter wavelength have been considered for the 

worst case scenario, which results in higher attenuation, see Figure 6.2(d). 

Figure 6.3(a) shows the precipitation data with the average, standard deviation, 

minimum and maximum of 38.05 mm, 12.01 mm, 1.4 mm and 102.3 mm, respectively.  

 
(a) (b) 

 
(c) (d) 

Figure 6.2: (a) Recorded visibility for January 2014; (b) histogram of recorded visibility. The spike is 
due to the measurement limitation of the gauge and the visibilities more than 20 km are truncated to 
20km; (c) calculated q parameter based on the recorded visibility; and (d) FSO attenuation based on the 
recorded visibility. The average, standard deviation, minimum and maximum of the recorded visibility 

in this period are 11.76 km, 6.68 km, 0.14 km, and 20 km, respectively. 
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As seen from Figure 6.3(b), the distribution concentrated around a mean value of 38.05 

mm shows no significantly heavy rain in that month of the year. To be able to use standard 

formulas for the rain attenuation, the raw data needs to be changed into precipitation per 

hour. This was done by performing the moving averaging over 60 span points for the 

entire month, and the result is illustrated in Figure 6.3(c). The final step was to convert 

the data in Figure 6.2 into rain induced attenuation. This was easily done by using Equ. 

(2.14). The rain attenuation based on the recorded data is depicted in Figure 6.3(d). 

In the next section the simulation procedure for the given parameters in Table 6.1 is 

described.  

 
(a) (b) 

 
(c) (d) 

Figure 6.3: (a) Recorded precipitation for January 2014; (b) histogram of recorded precipitation, (c) 
processed precipitation per hour; and (d) RF attenuation due to the rain. The average, standard deviation, 
minimum and maximum of the recorded precipitation in this period are 38.05 mm, 12.01 mm, 1.4 mm 
and 102.3 mm, respectively. 
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6.6 Simulation Procedure 

In the simulation the smallest time step of 5 seconds was chosen. It was assumed that 

during this period the channel status is the same and information on CSI is already 

available at both Tx and Rx or provided via a feedback path. Considering these 

assumptions, the flowchart for the switching mechanism is the same as in Figure 6.4. The 

simulation was performed based on the algorithm and given parameters.  

First, the links status are studied as shown in Figure 6.5(a), which  shows two states of 

‘Off’ and ‘On’. The ratio of FSO ‘On’ to ‘Off’ state ℝjkl = 303.64 (i.e., the FSO link is 

active and transmitting), which is quite large for the case where the FSO link the dominant 

transmission path. As for the RF link the histogram is depicted in Figure 6.5(b). The RF 

‘On’ and ‘Off’ state ratio ℝ1j is infinity, which indicates that the RF link is always 

operational under the given channel condition. The ‘On’ and ‘Off’ ratio is also used as a 

useful guide to optimize the design. For instance, the transmit power or the amplification 

at the Rx can be reduced while keeping ℝ1j as large as possible. 

The histogram of the link connectivity is plotted in Figure 6.5(c). “-1” and “+1” are 

used to indicate ‘On’ and ‘Off ‘states of FSO and RF links, respectively. For the case that 

none of the links are available, “0” is used. The link load for each case is given as: 

Link Load =
vL�*�0 �� �0�+���� *��� *³ jkl×:zÛvL�*�0 �� �0�+���� *��� *³1j×ÛzvL�*�0 �� ����  �0�+���� *��� , 

(6.2) 

where −1 ≤ Link Load ≤ +1. The ideal in a hybrid system is to make Link Load as 

close as possible to -1. For the given communication system, the Link Load is -0.93. 

Apart from the aforementioned analysis, one also can use the histogram data to estimate 

other useful parameters such as the power consumption.  
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Figure 6.4: The Flowchart of the time hysteresis (TH) switching process in a hybrid communication system. The TH delay is 10 seconds. 
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Link load value of -0.93 shows that the FSO link is the dominant link, which is also 

reflected by observing the link activity trace over the entire time period as shown in Figure 

6.5(d). Finally, the link availability and the average data rate were determined by 

considering the delay time of 1 sec for switching. Based on the simulation, the link 

availability and the average data rate were 99.9964% and 51.41 Mbps, respectively. Table 

6.2 compares the performance of the current system with the results from other 

investigations including: soft switching [82], raptor code [2], and hard switching [84].  

 
(a) (b) 

 
(c) (d) 

Figure 6.5: (a) Histogram of the FSO link status; (b) histogram of the RF link status; (c) histogram of 
active link; and (d) trace of active link versus time. 
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Table 6.2: Comparison between various hybrid system performances in terms of data rate and 
availability. 

Scheme Reference Average data rate (Mbps) Availability (%) 

Soft switching, raptor code [82], [2] 587.9 64% 

Hard switching, TH [84] 66.5 99.28% 

Hard switching, PH [84] 60.6 99.69% 

Proposed system - 51.4 99.99% 
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Although the proposed system cannot provide the average data rate of 587.9 Mbps (see 

Table 6.2) as in soft switching method, it provides the same availability range compared 

to the reported systems in Table 6.2.  

6.7 Numerical Analysis 

 Using the parameter given in Table 6.1 and Equ. (6.1) the calculated minimum required 

received power of FSO and RF systems for given data rate is shown in Figure 6.6. In the 

FSO link for a data rate of 1 Mbits/sec the received power of ∼-30 dBm is needed, which 

increases to ∼-10 dBm for 10 Gbits/sec. Since the maximum RF bandwidth in the existing 

system is 100 MHz, and using Equ. (2.10) the RF data rate is set to a maximum value of 

67 Mbits/sec. However, the data rate of the FSO link is varied from 10 Mbits/sec to 10 

Gbits/sec. For a clear channel of 1 km long, the required RF transmit power was obtained 

to be ∼-32 dBm while for the FSO link transmit power against the data rate of 10 

Mbits/sec to 10 Gbits/sec is shown in Figure 6.7. Based on the laser safety regulations, 

the output power of an infrared laser must be less than 2.5 mW (i.e., ∼4 dBm) if the laser 

is a pointer source [150]. However, if a wide collimated laser beam is used, the total 

 
Figure 6.6: Minimum required received power versus data rate for FSO and RF links where the system 
parameters are based on the values from Table 6.1. 
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power could be different.  Therefore, first it is essential to calculate maximum permissible 

exposure (MPE) of the laser given as [151]: 

MPE = 10��®°±²� ½�:4.¬�×10:È � ¤
��Ð�. (6.3) 

For wavelengths of 780 nm and 830 nm the MPEs are 1.5 mW ∙ cm:� and 1.8 mW ∙
cm:�, respectively. The maximum safe output power of the laser with beam radius of 

��2 emerging from the collimator is given by: 

Maximum Safe Power = MPE×π ��2� (W). (6.4) 

For the collimator used at the Tx aperture, the maximum safe power levels are 11.4 

dBm and 12.4 dBm for wavelengths of 780 nm and 830 nm, respectively. Thus, 

considering the required transmit power for the 10 Gbits/sec data link and the maximum 

safe powers the link margins are ∼5 dB and ∼6 dB, respectively. 

6.7.1.1 Fixed Link Distance 

In this section, the link distance was fixed to 0.5, 0.75, 1, and 1.5 km and to achieve 

higher average hybrid link data rate, the FSO data rate was varied from 100 Mbits/sec to 

10 Gbits/sec. Following the procedure in Section 6.6 and considering the channel 

conditions, the link load, average hybrid data rate and availability of the link were 

 
Figure 6.7: Required FSO transmit power versus data rate for 1 km long clear channel where the system 
parameters are based on the values from Table 6.1. 
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calculated, see Figure 6.8.  The link load curve shows that for link spans of 500 m and 

750 m, most data transmission is via FSO link, see Figure 6.8(a). However, for a link of 

1.5 km long, at higher data rates (i.e., > 8 Gbits/sec for the FSO link) the RF link is the 

dominant link (note that link load graph drifts towards +1).   

The more RF is active, see Figure 6.8(a), the less the average hybrid data rate will be, 

see Figure 6.8(b). For the link distance of 1.5 km, the FSO link is not available; whereas 

the RF link is frequently available with an average received power level higher than -72 

dBm, see Figure 6.9. For a 1.5 km link span, the average hybrid data rate drops from 

∼150 Mbits/sec to ∼43 Mbits/sec. Therefore, for this link span, the hybrid system is 

 
(a) (b) 

 
(c) 

Figure 6.8: Hybrid link simulation for link distances of 500 m, 750 m, 1 km, and 1.5 km for FSO data 
rate of 100 Mbits/sec to 10 Gbits/sec: (a) link load, (b) average hybrid data rate, and (c) link availability. 
The RF link has a fixed data rate of 67 Mbits/sec and the other system parameters are according to 
Table 6.1. 
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practically not useful and it is better to use a single RF link. Considering the link 

availability as in Figure 6.8(c) the hybrid link offers lower link availability for a 

transmission span of 1.5 km. Therefore, it would be wiser to use a single RF link, which 

offers 64 % link availability and an average data rate of ∼43 Mbits/sec. The link 

availability for 500 m, 750 m and 1 km link is > 99.45 % for a given FSO data rate range. 

6.7.1.2 Fixed RF and FSO Data Rate 

This section includes the assessment, where the data rate of both FSO and RF links are 

fixed. Here the goal is to change the link span and determine the same parameters as in 

the previous section, with results depicted in Figure 6.10. For a link distance > 2.5 km 

both FSO and RF links are not available, see Figure 6.10(a). For short ranges, FSO can 

deliver the required data rate, but not for longer transmission spans because of increased 

attenuation. At a distance between 1 km to 2 km, RF attenuation is also high and making 

it unavailable. Thus, the link load drifts towards ‘None’ (i.e., none availability of both 

FSO and RF links), as indicated by the peaks in the link load graphs. Note that, for higher 

speeds the peak is more noticeable. 

The average hybrid data rate illustrated in Figure 6.10(b) shows a rapid drop after a 1 

 
Figure 6.9: Received RF power versus time of channel state. The RF link has a fixed data rate of 67 
Mbits/sec, the link span is 1.5 km, and the other system parameters are according to Table 6.1. The 
black dashed line is the threshold level for acceptable RF performance. 
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km, reaching 10 kbits/sec for a transmission span of 4 km. Note that, reduction  in the 

average data rate is compatible with the FSO and RF link unavailability as shown in 

Figure 6.10(a). The hybrid link availability is depicted in Figure 6.10(c), where for a link 

distance > 2.5 km the hybrid link availability is 0 % as expected. Note that, prior to 

deterioration of the hybrid link availability both links display a minimum link availability 

of 99.48 %.  

6.7.1.3 Maximum Average Hybrid Data Rate and Guaranteed Link 

Availability 

To increase the hybrid average data rate, one approach would be to increase the FSO 

data rate. However, for higher data rates a Rx employing a PD with a higher sensitivity 

and smaller surface area is needed. The latter has implications on the influence of the 

 
(a) (b) 

 
(c) 

Figure 6.10: Hybrid link simulation for FSO data rate of 100 Mbits/sec, 1 Gbits/sec, 5 Gbits/sec, and 
10 Gbits/sec for link distance of 100 m to 4 km: (a) link load, (b) average hybrid data rate, and (c) link 
availability. The RF link has a fixed data rate of 67 Mbits/sec and the other system parameters are 
according to Table 6.1. 
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turbulence as well as the pointing errors (i.e., worsening link performance). Thus for the 

same Rx system, increasing the FSO bandwidth will not necessarily improve the 

performance of hybrid link. Therefore, there is a trade-off between the given link distance 

and availability, Rx size, and the maximum data rate. This is also the case for the RF link. 

Therefore, this whole design problem turns into an optimisation problem, where the goal 

is to maximise the average hybrid data rate while the link availability is constrained to be 

greater than a given value. 

Since the states of individual FSO and RF links are dependent on the channel, therefore 

adopting a closed form expression for the optimisation problem is a challenging task. 

However, it is possible to solve this problem by means of numerical analysis. Table 6.3 

represents a set of results for given specifications determined by means of a trial and error. 

The RF link is bounded to have a data rate in the range of 1-67 Mbits/sec while the FSO 

link data rate can be from 10 Mbits/sec to 10 Gbits/sec. The guaranteed link availabilities 

are 90, 99, 99.5 and 99.8 % and the hybrid link distance are 0.5, 0.75, 1, 1.25, 1.5, 1.75 

km. The results in Table 6.3, confirms the previous conclusion that a FSO or a RF link 

with a higher data rate does not ensure higher link availability or higher hybrid data rate. 

For example, for a maximum average hybrid data rate of 1990 Mbits/sec and a link 

distance of 750 m, the FSO link with a data rate of 6.85 Gbits/sec offers improved 

performance than a FSO data rate of 10 Gbits/sec. Indeed, for the same parameters but 

for a data rate of 10 Gbits/sec the link availability drops to 99.5 % although the average 

data rate is 2.2 Gbits/sec. 

Solutions to increase the data and achieve higher link availability are: (i) to redesign 

the optical aperture at the Rx in order to capture more optical power, (ii) more advanced 

modulation schemes, (iii) increase the transmit optical power, and (iv) employ an ORx 
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with much higher sensitivity.  For example for the aforementioned case, using an ORx 

with a NEP of 25 pW √Hz⁄  and a data rate of 10 Gbits/sec, an average data rate and a 

link availability of 1 Gbits/sec and 99.84 %, respectively can be achieved. 

6.8 Summary 

In this chapter, the detection threshold method, combining method and required 

switching method were proposed for a communication system employing the hybrid 

antenna. By using the differential signalling method, the FSO system was protected 

against the weak turbulence regime, background illumination and pointing errors. It was 

also discussed that EGC improves the performance of the FSO link under the moderate 

to strong turbulence regime. Under fog conditions the FSO link was changed to the 

backup RF link and the link performance was investigated based on the recorded data. 

Both the link availability and the average data rate were assessed using the recorded 

Table 6.3: Maximum average hybrid data rate and guaranteed link availability for various distances. 
The required FSO and RF data rates are denoted for each case and the other system parameters are 
according to Table 6.1. The FSO data rate range was from 10 Mbits/sec to 10 Gbits/sec, whereas the 
RF data rate range was from 1 Mbits/sec to 67 Mbits/sec. 

Maximum average 

hybrid data rate 

(bits/sec) 

Guaranteed link 

availability (%) 
Link distance (m) 

FSO data rate 

(bits/sec) 

RF data rate 

(bits/sec) 

346 M 98 1.25 k 10 G 42.68 M 

2.28 G 99 750 m 10 G 67 M 

340 M 99 1.25 k 10 G 35.74 M 

113 M 99 1.5 k 3.16 G 7.95 M 

2.12 G 99.5 750 m 7.90 G 67 M 

337 M 99.5 1.25 k 10 G 32.26 M 

110 M 99.5 1.5 k 3.16 G 4.47 M 

39 M 99.5 1.75 k 1.06 G 1 M 

4.63 G 99.8 500 m 10 G 67 M 

1990 G 99.8 750 m 6.85 G 67 M 

770 M 99.8 1 k 10 G 67 M 

317 M 99.8 1.25 k 10 G 11.42 M 

106 M 99.8 1.5 k 3.16 G 1 M 

1 M 99.8 1.75 k 1.59 G 1 M 
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channel condition. Link assessment were performed to investigate the effect of FSO data 

rate on the link availability, and on the hybrid data rate. It was shown that for higher FSO 

data rates, the hybrid system offers higher speed but lower link availability. Another 

assessment where the distance was varied showed that as expected the longer link 

distances lead to less availably and lower hybrid data rates. Finally, the method to obtain 

the maximum data rate and a guaranteed availability for a given distance was presented. 
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 CONCLUSIONS AND 

FUTURE WORK 

7.1 Conclusions 

This thesis has outlined the design, optimisation and evaluation of the hybrid antenna 

for a hybrid FSO/RF system. The proposed hybrid system benefits from the high speed 

transmission capability of FSO and the backup link availability of RF in situations where 

the FSO link is down. The thesis started by introducing the fundamentals of FSO and RF 

schemes followed by the channel effects such as fog/smoke and rain on the performance 

and link availability of both FSO and RF links. For the FSO link, three Rx configurations 

with the spatial diversity scheme as an optimisation and mitigation method to combat the 

effect of turbulence was introduced. A new combining method of MLC, adopted from RF 

technology, implemented in the logical domain was further introduced. The closed-form 

BER expressions for this combining scheme were presented and the link performance in 

terms of the BER and optical power penalties were assessed and compared. It was shown 

that the SC scheme offered the lowest implementation complexity, whereas it was shown 

that the AOT scheme may not be suitable due to its relatively high cost and complexity. 

The proposed MLC method offered the best performance for M > 3 and high SNR values. 

The thesis also proposed a detection method based on the differential signalling 
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technique with no requirement for CSI at the Rx, thus no pilot overhead or any noticeable 

increase in the Rx computational complexity. Using the derived analytical expression for 

the variance of the detection threshold, it was shown that the fluctuation in the optimal 

threshold level highly depended on the correlation between the propagating optical 

beams. Thus the proposed technique is attractive when highly correlated FSO channels 

can be established. This deduction was validated by means of experimental investigations 

under uncorrelated and correlated conditions. Also it was discussed that to achieve a high 

correlated-channel condition, closer wavelength, spatially closer beams and longer 

transmission distance are critical. 

It was also shown with the IM/DD NRZ-OOK FSO modules mounted on the same 

fixture structure in a building, employing the differential signalling technique with a zero 

detection threshold level eliminates the effect of pointing errors. The condition that led to 

highly correlated received signals was studied and a method to obtain the equivalent jitter 

standard deviation was given. Experimental investigation was carried out to validate the 

proposed concept. Measured results confirmed that the effect of pointing errors on the 

received signal was highly correlated (i.e., � = 0.92), thus resulting in reduced variance 

value of the combined signal threshold level.  

A practical hybrid antenna design was proposed and then its RF and FSO parts were 

characterized. The antenna was based on Cassegrain antenna design with the FSO part 

embedded as part of the design. The closed-from equations to describe the effect of optical 

components on the RF section were derived and simulations were carried out to confirm 

the predicted results and validate the proposed design. The antenna was fabricated and its 

radiation pattern and return loss measurements as well as assessment of the antenna for a 

hybrid link were determined. The measurement showed that the initial design of antenna 

without FSO had a total efficiently of 44 %; while following optimisation and inclusion 
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of FSO, the efficiency was increased to 59 %. It was discussed that the overall low 

efficiency of antenna is due to insufficient illumination efficiency. For the hybrid antenna, 

the SNR of received RF signal as well as the Q-factor of received optical signal were 

measured. It was shown that the predicted results were in a good agreement with the 

measured values. To extend the range of hybrid link, mainly for outdoor applications, the 

link budget analysis for FSO part was carried out and the required changes that needed to 

be made to the system were outlined. The report also showed that the proposed antenna 

could operate over a 1 km link and it was outlined that the combining technique together 

with an optical Rx can combat the turbulence effects. 

Finally, using the recorded channel data from the measurement carried out in Prague, 

Czech Republic, the performance of a hybrid FSO/RF system employing the proposed 

antenna was simulated. The TH switching method was used to control the flow of the 

data. The evaluation showed that the proposed system is capable of providing a high speed 

link with high availability. The effects of FSO data rate and the transmission span on the 

link availability and the hybrid data rate were discussed. It was shown that increasing the 

FSO data rate did increase the hybrid data rate but at the cost of reduced link availability. 

As it was expected the longer distances led to lower link availability and data rate. The 

required modifications to achieve the desirable specifications were discussed, for 

example it was shown that with the existing system one can achieve 1 Gbits/sec hybrid 

data link under fog and rain channel conditions by using an optical Rx with NEP of 

25 pW √Hz⁄  and a data rate of 10 Gbits/sec.  
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7.2 Future Work 

For the future work the following needs investigating: 

1. In this thesis only the performance of differential signalling under a weak 

turbulence regime was considered. As an extension to the current work, one can 

look at the behaviour of the FSO system using differential signalling under 

moderate and strong turbulence regimes. The outcome of such investigation can 

result in the closed-form expression for BER. Also it will be possible to compare 

the performance of the differential signalling technique with other existing 

methods; 

2. In this work pointing errors without turbulence was investigated. This work can 

be extended by investigating the FSO link performance with both pointing 

errors and turbulence. 

3. The differential signalling technique was only studied for a two-level signal 

(i.e., NRZ-OOK), and showed that in addition to the mean value of the received 

signal the signal levels were also affected. Therefore, the differential signalling 

technique should also investigated with higher order modulations such as M-

order pulse amplitude modulation ("-PAM). 

4. Only Cassegrain configuration was considered as in Chapter 6. Alternatives 

configurations could be investigated considering the critical parameters such as 

the gain, radiation/illumination efficiency, SLL, beam-width and cross 

polarization, and then prose a design guidelines and specifications.  

5. In this project the antenna with offset structure was not considered due to the 

degradation of X-pol performance. However, with the offset scheme, it is 
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possible to integrate the FSO aperture without blocking the RF antenna, one 

needs to investigate the trade-off between the FSO/RF performance and the X-

pol discrimination. 

6. To fix the sub-reflector a hollow tube was used. However, another option, as 

mentioned in the text, would be to use a dielectric cone. Therefore, one can 

consider the possibility of using a dielectric cone not only to hold the sub-

reflector in front of the main reflector but also to alter the illumination pattern 

of Cassegrain antenna. Note that by optimising the illumination pattern it is 

possible to improve the illumination efficiency of the antenna. 

7. The possibility of integrating an optical system with 1550 nm wavelength needs 

to be studied. In particular, the possibility of using an optical amplifier to 

improve the overall system performance is an interesting topic for further 

investigation. 

8. In the Design of the optical aperture, a solid lens was used. As a future work, 

one can investigate the concept of using Fresnel lens as part of the system 

design. 

9. To evaluate the antenna in a real channel conditions, only one switching method 

was considered. Future work should consider analyses for other switching 

methods such as PH and combined method.  
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APPENDIX A: DERIVATION 

OF MATHEMATICAL 

EXPRESSIONS  

A.1 Introduction 

This appendix is devoted to derivation of mathematical used in the thesis. Note that 

only the original expressions are included and for the rest the reader is referred to the 

corresponding reference. Also application formulas used through the thesis are also 

summarised at the end. 

A.2 BER Expression in Weak Turbulence 

When dealing with the BER expression in weak turbulence in Euqs. (3.19), (3.22), and 

(3.25); the mathematical simplification will results in an expression in the following form: 

 {�@|1� = Ø z
�R

z
√�õÑÐ exp ¯− � +�R R³⁄ �:���Ð�ÑÐ ´ ��¿[� 3[ÛÜ

4 . (A.1) 

By replacing [ = [4exp�2�� where � has a normal random distribution in Equ. (A.1), 

one will obtain: 
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 {�@|1� = Ø z
�R

z
√�õÑÐ exp ¯− �`:��Ð

�ÑÐ ´ �Ö¿[4exp�2��× 3[ÛÜ
4 . (A.2) 

 

By replacing 3[ = 2[3� and setting the integral range one will have: 

 {�@|1� = z
√�õÑÐ Ø exp ¯− �`:��Ð

�ÑÐ ´ �Ö¿[4exp�2��× 3�ÛÜ
:Ü . (A.3) 

Next step by replacing á = �� − s� √2��⁄ , the expression will become: 

 {�@|1� = z
√õ Ø @:àÐ� ¯¿[4@��Ûà√�ÑÐ´ 3áÛÜ

:Ü . (A.4) 

And at the end in above expression, one spots the following integral: 

 Ø @:`ÐB��� 3�ÛÜ
:Ü , (A.5) 

which can be approximated by Gauss-Hermite quadrature formula as in [105] as: 

 ∑ ,6B��6�D66z , (A.6) 

where f is the order of approximation, �6 is the zero of the fth-order Hermite polynomial 

and ,6 denotes the fth-order weight factor. 

A.3 BER Expression in Strong Turbulence 

To obtain the BER expression for the SC combining method under a strong turbulence 

regime, the following expression from Section 3.6.3 is considered: 

 {�@|1� = " Ø BR�[�DQR�[�E5:z� � (
Þ�5î³ [�3[ÛÜ4 , (A.7) 

where BR�[� and QR�[� are defined as Equs. (3.12) and (3.30), respectively. one can rewrite 

Equ. (A.7) as: 
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 {�@|1� = " Ø @:RÀ�[� 3[ÛÜ
4 , (A.8) 

where À�[� is defined as: 

 À�[� = @ÛRBR�[�DQR�[�E5:z� � (
Þ�5î³ [�. (A.9) 

In Equ. (A.8), one spots the following integral: 

 Ø @:`B��� 3�ÛÜ
4 , (A.10) 

which can be approximated by Gauss-Laguerre quadrature formula as in [105] as: 

 ∑ ,6B��6�D66z , (A.11) 

where f is the order of approximation, �6 is the zero of the fth-order Laguerre polynomial 

and ,6 denotes the fth-order weight factor. 

A.4 Tolerance of Parameters in Differential Signalling 

technique 

The criterion in Equ. (4.27) will be described here. To derive Eq. (4.27.a) and (4.27.b), 

one can start from Equs. (3.6) and (3.3), respectively. The next step is to use central 

difference to approximate the definition of derivative as following: 

 B;�á� = h5
hà ≈ 5¯àÛ�Ð∆`´Û¯à:�Ð∆`´∆` = ∆J∆`. (A.12) 

Therefore, one has: 

 ∆� ≈ B;�á�∆� = h5
hà∆�. (A.13) 

To derive Equ. (4.27.c), one can start from Equ. (4.10) which is as following: 



A Hybrid Free Space Optics/Radio Frequency Antenna – Design and Evaluation 

 

207 

 �z,� = exp �− ¯hÏY³´þ È⁄ �. (A.14) 

Taking the derivative with respect to �4 results in: 

 
hY�,ÐhY³ = þ

È
Y�,ÐY³ ¯hÏY³´þ È⁄

. (A.15) 

From Equ. (A.14) one has ¯hÏY³´þ È⁄ = − ln �z,�. Therefore, Equ. (A.15) will be 

simplified to: 

 
hY�,ÐhY³ = − þ

È
Y�,ÐY³ ln �z,�, 

(A.16) 

which will be approximated as: 

 ∆�z,� = − þ
È
∆Y³Y³ �z,� ln �z,�. 

(A.17) 

Finally 
∆Y³Y³  can be replaced from Equ. (4.27.b) and one will obtain: 

 ∆�z,� = −2�z,� ln �z,� ∆z
(³. 

(A.18) 

A.5 Applicable Formulas 

1- The return loss (RL) to VSWR conversion is defined by: 

 VSWR = zÛz4çÁ Ð³⁄
z:z4çÁ Ð³⁄ . (A.19) 

2- The S parameter to return loss (RL) conversion is given as: 

 RL = 20 logz4|Szz|. (A.20) 

3- Far-field distance based on the antenna aperture size (.) and the wavelength (n) is 

defined as: 
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 Far − field Distance =  ��Ð
( . (A.21) 

4- Number of modes (") in a fibre with a known �-number is: 

 M ≈  gÐ
� . (A.22) 

5- Radius (A) of a circumcircle of a regular polygon with  y number of sides and side 

length of Â is given as: 

 A = %
� ��+�Ã. 

(A.23) 
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APPENDIX B: SIMULATION 

B.1 Introduction 

In this research two types of simulation methods were used for design and confirmation 

purposes. The commercial package software CST STUDIO SUITE® version 2012 was 

used for the RF antenna design and optimization whereas for the RF transceiver circuits 

AWR Design Environment® version 2010 was adopted. In order to carry out simulations 

related to FSO, Monte-Carlo method code written in MathWorks MATLAB® R2013a 

script was implemented. In the following sections, each simulation method will be briefly 

described.  

B.2 CST STUDIO SUITE® 

CST Microwave Studio is a tool included in CST STUDIO SUITE® package for 

simulating high frequency electromagnetic structures [123]. CST Microwave Studio has 

several solvers available to simulate. The time domain finite integration technique (FIT) 

and frequency domain method of moments (MoM) were used, which are named as ‘time 

domain solver’ and ‘integral equation solver’, respectively. FIT was used for obtaining 

the near field distribution on desired planes and return loss of the antenna whilst MoM 
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simulates the structure to get the far field radiation pattern. The structures used for 

simulations are illustrated in Figure B.1. The electromagnetic constitutive parameters of 

materials as well as dimensions were adopted from the physical structure. The same 

structures were used in both time domain and integral equation solvers. Depending on the 

complexity of structure and the used solver, the simulator parameters were configured 

based on the Table B.1.  

B.3 AWR Design Environment 

AWR Design Environment includes the tool Microwave Office, which is capable of 

simulating microwave/RF circuits [152]. APLAC linear solver of Microwave Office was 

used to obtain S parameters of the Tx and Rx. The equivalent components were taken 

 
(a) 

 
(b) 

 
(c) 

Figure B.1: Antenna physical structure modelled in CST Microwave Studio: (a) RF antenna without 
FSO aperture, (b) RF antenna with FSO implementing single collimator, and (c) RF antenna with FSO 
implementing multiple collimators. 
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from the available library and connected as seen in Figure B.2. The parameters used for 

components were adopted from the corresponding datasheets. 

 

Table B.1: Configuration used in CST Microwave Studio to simulate the antenna structure. 

 Time domain Integral equation 

Frequency 9 to 11 GHz 10 GHz 

Excitation port Waveguide port with 1 mode 

Symmetry Magnet YZ Plane, (Electric XZ Plane) No symmetry 

Cell type Hexahedral Surface 

Solver accuracy -50 dB 1e-3 

Maximum number of cells 3×10Ý 35×10È 

 
(a) 

 
(b) 

Figure B.2: Microwave circuit schematic used in Microwave Office: (a) transmitter module and (b) 
receiver module. 
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B.4 Monte-Carlo Method 

Monte-Carlo method is a popular computational algorithm, which can be used in 

problems dealing with the random nature. Since turbulence effect in FSO channels are 

random fading phenomena, which can be describe by well-defined mathematical 

expressions, Monte-Carlo method was used to simulate an FSO communication link in 

turbulent conditions. In this section the used procedure will be briefly described and 

whenever necessary MATLAB functions implemented in the simulation code will be 

introduced. 

The general block diagram of the simulation is illustrated in Figure B.3. A set of random 

0, 1 value is created as random data bits. The MATLAB function randi is used for this 

step. Next step is to change the random raw bits into electrical signal. This is done first 

by resampling each bit into n samples and then scale samples appropriately. The 

MATLAB function rectpulse is used for resampling. Next step will be converting 

 
Figure B.3: Block diagram of the performed FSO communication link in turbulence channel based on 
Monte-Carlo simulation. 
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electrical signal into optical signal � by changing the scale and applying desirable 

extinction ratio and also adding required optical DC component. 

In parallel, the fading coefficient will be also created to represent the turbulence in the 

channel. This is done by generating random values based on the desired random 

distribution. For instance, in weak turbulence regime, the distribution follows Log-normal 

pattern and the MATLAB function lognrnd can be used to generate random values based 

on given parameters. The only exception is where two correlated channels are required. 

Therefore, the following steps are taken to produce random numbers: 

1. Generating sets of Ä and � random numbers based on the normal distribution. 

The MATLAB function randn is used to generate normally distributed random 

numbers, 

2. Creating two auxiliary variables �z = �zÄ + sz and �� = ��Ö�Ä +
Þ1 − ���× + s� where �6�, s6, and � denote variance, mean value and 

correlation coefficient, 

3. Using correlated normal random numbers �z and �� to create correlated Log-

normal numbers mz and m� where m6 = exp�2�6�. 

Once the random numbers are available, they are resampled with appropriate ratio to 

obtain the fading channel coefficient ℎ. The required ratio is decided based on the channel 

coherence time. Considering the FSO turbulence frequency of 400 Hz [117], the channel 

coherence time of FSO turbulence will be 25 ms. 

It is possible to produce the arrived optical signal at the Rx side A by multiplying the 

optical signal � and the fading channel coefficient ℎ (i.e., A = �×ℎ). Next step will be 

converting the received optical signal into electrical signal. This is done by applying PD 

responsivity and TIA gain and adding AWGN regarding the required SNR. 
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The obtained electrical signal is then resampled at the mid-point of each arrived bit. 

These samples can be used to calculate Q-factor and SI of the received signal. Also these 

samples are quantized later and converted into binary bits. By comparing the transmitted 

and received bits, BER value is also calculated. To calculate BER, the MATLAB function 

biterr is used. 

Another important issue is that how many bits are required to achieve a specific BER 

in either simulation or experiment. To guarantee the required BER with a desired 

confidence level of CL, one needs to transmit # number of bits with no error as given by 

[153]: 

 # = :  +�z:JÅ�
g�1 . (B.1) 

In the thesis, when a BER of 10:Ý was considered at least 1 million bits with 10 

repetitions were transmitted, hence resulting in a confidence level of 99.9955 %. The 

other case was transmitting 10,000 bits with 500 repetitions, which results in a confidence 

level of 99.3262 %.
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APPENDIX C: 

EXPERIMENTAL SETUPS 

C.1 Introduction 

To prove the concept of differential signalling technique and hybrid FSO/RF antenna, 

various measurements on the provided experimental setups were performed. These setups 

were carefully designed and prepared for the specific purposes and in this section they 

are represented. In general, the experiments can be divided into two groups of RF and 

FSO parts. In this section the manufacturing and setup preparation procedure of tools, 

components, and devices will be exclusively introduced for each technology (i.e., RF and 

FSO). 

C.2 RF Setups 

RF setups used in the project are Tx Module, Rx module, Cassegrain antenna. 

C.2.1 Tx Module 

The block diagram of the Tx Module is illustrated in Figure C.1(a). This module 

consists of a mixer, a band-pass filter (BPF) and an amplifier. The purpose of this module 



Appendix C: Experimental Setups 

 

216 

is to up-convert an intermediate frequency 2.45 GHz signal into RF 10 GHz output while 

using a local oscillator signal at 7.55 GHz. 

The up-conversion operation is done by the mixer component, which gives other 

products in addition to up-converted version of the signal (see Figure C.1(b)). Thus the 

 
(a) 

 
(b) 

 
(c) 

Figure C.1: RF Tx module: (a) block diagram, (b) practical setup, and (c) packed Tx module. IF, LO 

BPF, and Amp are intermediate frequency, local oscillator, band-pass filter, and amplifier, respectively. 
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mixer is followed by a BPF tuned at RF desired frequency range (see Figure C.1(b)). Due 

to mixer conversion loss and BPF insertion loss, an amplifier is also used at the final stage 

to boost power (see Figure C.1(b)). Table C.1 summarises the measured components 

characteristics at central operating frequency. Note that the table only includes the 

parameters required in initial design. The whole Tx module was packed inside a metal 

box for protection and shielding against electromagnetic interference (see Figure C.1(c)). 

To perform simulation in Microwave Office tool S parameters of the BPF and amplifier 

over the required frequency range were also measured. Figure C.2 depicts the measured 

values. 

C.2.2 Rx Module 

The block diagram of the Rx Module is illustrated Figure C.3(a). The same as Tx 

module, Rx consists of a mixer, a BPF and an amplifier. This module is used to down-

convert RF 10 GHz signal into intermediate frequency 2.45 GHz output by using a local 

oscillator signal at 7.55 GHz. The down-conversion procedure is done by the mixer 

component which gives other products in addition to intermediate frequency signal (see 

Figure C.3(b)). Therefore a tuned BPF is required to reject unwanted frequency range 

(see Figure C.3(b)). To compensate for the channel attenuation and Rx module loss, an 

Table C.1: Tx module measured components characteristics at central frequency. CL, LO, IL, and NF 
are conversion loss, local oscillator, insertion loss, and noise figure, respectively. 

 Parameter Value (dB) 

Mini-Circuits Coaxial Package ZX05-

153MH+ Mixer 

CL 9.0 

LO to RF isolation 40.5 

IF to LO isolation 35.0 

RF to LO isolation 44.4 

TTE Elliptical K5553-10G-100M-A 

BPF 
IL 3.5 

Marki microwave AP-20 Amplifier 
Gain 13.5 

NF > 3 
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amplifier is used at the final stage (see Figure C.3(b)). 

Table C.2 summarises the measured components characteristics at central operating 

frequency. Note that the table only includes the parameters required in initial design. The 

same as Tx module, Rx components were packed inside a metal box for protection and 

shielding against electromagnetic interference (see Figure C.3(c)). 

S parameters of the BPF and amplifier used in Rx module were measured over the 

required frequency range. These values later were used in Microwave Office software for 

simulation. Figure C.4 depicts these measured values. 

C.2.3 RF Transceiver 

By means of Microwave Office tool the system shown in Figure C.5 was simulated. In 

the simulation power losses and in particular output power of Rx module were considered. 

The obtained results can be seen in Figure C.6. The corresponding measuring points are 

labelled in Figure C.1(a) and Figure C.5. In this section the performance of the whole RF 

Tx/Rx modules is also presented based on the experiment performed over one metre free 

space channel and standard horn antennas. This test was done to measure the 

characteristics of the system in addition to validate the design. 

 
(a) (b) 

Figure C.2: Measured S parameters of the Tx module: (a) band-pass filter and (b) amplifier. 
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As seen Figure C.5, a BPSK signal with power of -5 dBm and bit rate of 6.7 Mbps 

equivalent to bandwidth of 10 MHz at central frequency of 2.45 GHz was used as the test 

 
(a) 

 
(b) 

 
(c) 

Figure C.3: RF Rx module: (a) block diagram, (b) practical setup, and (c) packed Rx module. LO, Amp, 

BPF, and IF are local oscillator, amplifier, band-pass filter, and intermediate frequency, respectively. 
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signal. Agilent EGC Vector Signal Generator E4438C [154] was used to produce the IF 

signal (see Figure C.5).  

The local oscillator signal of 16 dBm at 7.55 GHz was generated by Agilent PSG CW 

Signal Generator E847C [154]. The power and frequency of local oscillator is given in 

Figure C.5. A 50/50 RF power divider was used to split the same local oscillator signal 

for both the Tx and Rx modules. 

A 3 dB RF attenuator was also implemented to adjust the power level for Rx. Two 

standard gain horn antennas with gain of ∿17 dBi were set up over 1 m long free space 

channel with the channel path loss of 52.44 dB.  

 
(a) (b) 

Figure C.4: Measured S parameters of the Rx module: (a) band-pass filter and (b) amplifier. 
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Table C.2: Rx module measured components characteristics at the central frequency. CL, LO, IF, IL, 
and NF are conversion loss, local oscillator, intermediate frequency, insertion loss, and noise figure, 
respectively. 

 Parameter Value (dB) 

Mini-Circuits Coaxial Package ZX05-

153+ Mixer 

CL 8.0 

LO to IF Isolation 15.6 

RF to IF Isolation 23.6 

Pasternack Combline 4 Sections 2400-

2500 MHz PE8701 BPF 
IL 1.0 

Pasternack LNA 1-4 GHz PE1519 

Amplifier 

Gain 25.0 

NF 2.5 
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Figure C.5: Block diagram of the RF transceiver test in 1 m free space channel. The cable losses are also included in the diagram. 
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At the Rx, the output of Rx module is fed into an Agilent MXA Signal Analyzer 

N9020A [154] for spectral measurement.  

In this experiment, the signal analyser was only used to measure the signal power. 

However for further measurements, Agilent 89601B VSA software [154] that uses MXA 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure C.6 – Part 1: Simulated and measured powers of the experiment setup in Figure C.5. Each 
measurement is labelled with corresponding alphabets in Figure C.1(a), Figure C.3(b) and Figure C.5. 
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Signal Analyzer for signal detection was also used. In several cases VSA software was 

used to measure SNR of the received signal.  

The measured values corresponding to each labelled point is summarized in Figure C.6. 

The difference between measured values and simulated values is due to cable losses. As 

 
(g) (h) 

 
(i) (j) 

 
(k) (l) 

Figure C.6 – Part 2: Simulated and measured powers of the experiment setup in Figure C.5. Each 

measurement is labelled with corresponding alphabets in Figure C.1(a), Figure C.3(b) and Figure C.5. 
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seen from Figure C.6(c) the mixer produces significant numbers of unwanted harmonics 

which must be removed due to increasing system performance and channel interference 

regulations. Another point at the Tx is the nonlinearity of the amplifier, which results in 

production of second harmonic at 20 GHz. However due to the low power level, this 

harmonic is not the concern in this thesis and as seen from Figure C.6(h), even after a 1 

m of free space channel the second harmonic is reduced considerably. The Rx mixer is 

also responsible for various harmonic production in Figure C.6(j). The harmonics close 

to frequency of 2.45 GHz are removed by BPF and the amplifies the final IF signal. 

For a 1 m free space channel, the path loss is 52.44 dB and if the link is increased to 1 

km the path loss will be 112 dB. This makes the received power level to be -94.29 dBm. 

To estimate the required amplification to have acceptable signal quality, the BER of 10-6 

is considered as the required performance and since BPSK is used, it interprets into SNR 

of 8.8 dB. 

Therefore, by knowing the noise power at the output of Rx module it is possible to 

decide the required power amplification for a 1 km free space RF channel. 

If NF9, ��, and �4 denote the noise figure of the Rx module, the noise temperature of 

the Rx, and room temperature (reference temperature), one has [67]: 

NF9 = 1 + �� �4⁄ . (C.1) 

On the other hand, for given Rx module, it can be shown that [67]: 

 NF9 = NF��2�0 + vj�Ç°:z±��+�iè�� + vj®��:z±��+�Ç°±��+�iè��. (C.2) 

The loss in components like passive mixer and filters is considered as xQ, therefore 

Equs. (C.1) and (C.2) will result in [155]: 

 �9 = �4 ¯CL��2�0 + lÅ�Ç°:z
z JÅ�iè��⁄ + vj®��:z

z lÅ�Ç°⁄ z JÅ�iè��⁄ − 1´. 
(C.3) 
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For given Rx module NF9 = 11.2 dB and if �4 = 290° K one obtains �9 = 3.8° kK. In 

a 50 Ohms system, the noise power generated at this temperature will be easily calculated 

by {+���� = fg��9 + ��+��++��BW where fg = 1.38×10:�È  J K⁄  is Boltzmann's constant 

[67], ��+��++� is antenna temperature which is typically 290° K for a terrestrial link and 

BW denote the bandwidth of interest [155], hence {+���� = −82.47 dBm. Those losses 

will increase the required amplification [67]. In this design the first stage of the Rx is a 

lossy component (i.e., the mixer) which is not practical in real situations. In commercial 

systems the first stage is an low noise amplifier with high gain and low noise figure, which 

effectively will reduce the equivalent noise figure of the whole Rx module [155]. 

However, since this research is only concerned with the hybrid antenna, the designed Rx 

module will be used just for the proof of concept. 

The system depicted in Figure C.5 was used for other measurements, where specific 

antenna and channel lengths were replaced with the standard gain horn antenna and a 1 

m length channel. Of course for other measurements two continuous wave signal 

generators at 7.55 GHz for local oscillators at Tx and Rx sides were used. 

C.2.4 Antenna 

The whole antenna structure was assembled at Northumbria University which will be 

described in this section. 

The main part of the antenna is a parabolic reflector illustrated in Figure C.7 with the 

characteristics summarised in Table C.3. The sub-reflector of the antenna was the only 

part fully fabricated in the university. The procedure of manufacturing included importing 

the model from CST Microwave Studio into 3DS CAD SOLIDWORKS® software [156]. 

This tool was used to convert the model to STL format [157] which is used with most 

commercial 3D printers [158] (see Figure C.8). Desktop OBJET24 3D printer [159] was 
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used to print the sub-reflector out of VeroWhitePlus FullCure 835 material. The electrical 

characteristics of FullCure are given in Table C.4.  

These electrical parameters are measured at low frequency range and the real values at 

microwave bands are different, in particular that in the design and simulation the material 

was considered to be lossless. 

The same procedure was used for different sub-reflectors made for the project. Once 

the structure was ready, an aluminium foil with thickness of almost 40 µm was used to 

cover it. Figure C.9 shows the printed sub-reflector as well as final conductive sub-

reflector.  

The sub-reflector is positioned and held in front of the antenna by means of a 

 
Figure C.7: RF Main reflector with given specification in Table C.3. 

Table C.3: Main reflector characteristics summary. 

Parameter Value 

Effective focal length (mm) 114 

Diameter (mm) 475 

Height (mm) 142.24 

Thickness (mm) 1 

Material Aluminium 

Table C.4: Sub-reflector dielectric material characteristics summary. 

Parameter Value 

Relative permittivity M8 ∿4 

Relative permittivity s8 ∿1 
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polyethylene tube. The tube was cut in required length and then one end of it was glued 

to the sub-reflector. The other end was put inside the feed. Table C.5 summarises the 

required parameters of the tube whilst Figure C.10 shows an instance of the used tube. 

A standard open-ended circular waveguide with an inner diameter of 23.8 mm was used 

as the feed. This waveguide (see Figure C.11) can support mid-range of X-band 

microwave frequency (i.e., 8.5 to 11.6 GHz).  To characterize the feed, in particular the 

radiation pattern and HPBW, a simulation was performed. The simulated results are 

presented in Figure C.12, which shows the feed HPBW of 65.1 and 64.6 degrees in E- 

and H-planes, respectively.  

The feed is directly connected to a transition component which adopts a waveguide 

Table C.5: Polyethylene tube material characteristics summary. 

Parameter Value 

Relative permittivity M8 ∿2.3 

Thickness (mm) 2 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure C.8: Modelled sub-reflector in different views used for manufacturing procedure. 



Appendix C: Experimental Setups 

 

228 

with circular cross-section to another with rectangular cross-section. In Figure C.11, also 

the transition is shown. The transitions must smoothly and efficiently convert the 

fundamental mode in circular waveguide to the one in rectangular waveguide.  

 The transition converts the aforementioned circular waveguide cross-section to WR-

90 X-band 22.7 mm×10.2 mm rectangular waveguide.   

In the experiments it was observed that the antenna was not matched to 50 Ohms line, 

thus a tuner waveguide to match the antenna was needed.  

It is better to position the tuner close to the unmatched component to reduce the loss 

due to impedance incompatibilities, thus the waveguide tuner in Figure C.13 was used 

immediately after the transition. This tuner has two arms to change the field distributions 

 
(a) 

 
(b) 

Figure C.9: A prototype of the printed sub-reflector: (a) without conductive cover and (b) with 
conductive cover. 

 
(a) 

 
(b) 

Figure C.10: The Polyethylene tube used to hold sub-reflector. 
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in E- and H-planes independently.  

As mentioned before, a waveguide bend was used to make it possible to take the optical 

fibre out of the waveguide. Depending on the plane the bending occurs there will be two 

types of E- and H-plane bends. In the project an E-plane bend (see Figure C.11) in which 

the bending happens long E-plane wall (narrow wall) of the waveguide was used. Another 

aspect of bends is the way bending is made.  

The bending can be in a shape of a curvature which is called precisions bent with given 

bending angle or in a right-angled bend which is called mitred casting. In this work both 

were used. 

 
Figure C.11: Assembled feed, circular to rectangular transition, bend, and waveguide to coaxial 
transition. 

 
Figure C.12: Simulated normalised radiation pattern of the open-ended circular waveguide with an inner 
diameter of 23.8 mm. 
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The same as transition, a bend should smoothly and efficiently convert the input field 

to output desired field. Smooth and efficient conversion, refers to a low return loss and 

less production of extra modes other than fundamental one at the output.  

The last part of the RF antenna is the rectangular waveguide to coaxial transition 

(adaptor) which transfer the electromagnetic energy from the waveguide into a 50 Ohms 

coaxial cable and vice versa. The waveguide to coaxial transition is highlighted in Figure 

C.11.   

C.3 FSO Setups 

The optical setup consists of optical transceiver aperture, SMF, MMF, OTx and ORx. 

C.3.1 Optical Transceiver Aperture 

The aperture which is fixed in the shadow region of the sub-reflector was basically 

fabricated by means of commercial collimators for appropriate wavelength and 

appropriate fixture. In this case THORLABS F810FC-780 collimators with the 

characteristics summarised in Table C.6 were used. The fixture of optical transceiver 

 
Figure C.13: Rectangular waveguide tuner with two tuning arms in E- and H- planes. 
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aperture was designed as a part of sub-reflector which made it possible to fix collimators 

in proper positions. Figure C.14 depicts a prototype of single Tx/Rx collimator.  

To specify the output pattern of the collimator, the radiation pattern of the collimator 

for two types of available fibres, SMF and MMF with 670 nm visible red laser were 

measured. Figure C.15 illustrates the measured radiation pattern of the collimator with 

SMF at various distances from the collimator aperture. It is seen that the radiation almost 

decays at the rate of 4.5 dB cm⁄  for three measured distances. The profile seems to be 

Gaussian and the output beam radius at @:� is almost 3.45 cm. Since the profile seems to 

be the same for various distances, it can be deducted that the output beam of SMF at 670 

nm is collimated with a good approximation. Note that the order of collimation will be 

larger if the laser wavelength drifts towards 780 nm. Therefore, the aforementioned 

configuration is a good candidate for the Tx aperture.  

As another alternative, MMF can be used with a collimator. However, since various 

modes are propagating inside MMF, the output of fibre and consequently the collimator 

will not be single fundamental mode of Gaussian. In that case, the output beam of the 

Table C.6: THORLABS F810FC-780 collimator characteristics summary. 

Parameter Value 

Aperture diameter (mm) 24 

Full angle beam divergence (mDeg) 8 

Central wavelength (nm) 780 

 
Figure C.14: A prototype of the optical transceiver with single Tx/Rx collimator. 
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collimator is a combination of several modes, each propagating with different 

characteristics.  

Since each mode has its own beam waist, thus for each mode an individual lens is 

required to perform collimation. However, the collimator has a fixed lens optimized for 

the fundamental mode meaning that a collimator cannot be expected to give acceptable 

result for a MMF case. The output radiation pattern of the collimator with MMF at 670 

nm at 182 cm was measured, which is depicted in Figure C.16.  

The output pattern of collimator+MMF seems to have a top-hat shape and from the 

 
Figure C.15: Measured output radiation pattern of the collimator with SMF at 670 nm at different 

distances. 
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Figure C.16: Measured output radiation pattern of the collimator with MMF at 670 nm at 182 cm 
distance. 
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measurement it is found out that the output beam diverges with the angle of 45.63 mRad. 

Such large divergence angle makes it impossible to use collimator+MMF as Tx. 

However, since usually MMF has a large NA value, in this case 0.5, it is a suitable 

candidate for Rx aperture. The coupling loss of fibre to FSO was measured to be almost 

2 dB for both MMF and SMF cases.  

Another component used in optical transceiver was fibre. As mentioned in previous 

paragraphs, two types of SMF and MMF are considered for Tx and Rx parts. SMF cable 

used in the experiment was a standard silica fibre for the operating range of 633 to 780 

nm with NA of 0.1 to 0.14. The attenuation of the such fibre in this range is less than 

15 dB km⁄  [160]. The MMF fibre however was a standard step-index polymethil 

metacrilate (PMMA) with core diameter of 1 mm with NA of 0.5. The attenuation of the 

MMF is almost 200 dB km⁄  [161]. 

The optical Tx used in the project was basically a Beta-Tx FSO red laser operating at 

670 nm with the bandwidth of 50 MHz. The output power of the laser was ∼3 dBm. To 

launch the laser into SMF, THORLABS 50-850-FC GRIN lens was used whereas for the 

MMF experiments, the laser was directly focused into the fibre. Depending on the 

coupling and alignment a minimum coupling loss of ∼2 dB was expected. Figure C.17 

shows the fixture used to couple the red laser into MMF.  

 
Figure C.17: The red laser to MMF fibre coupling structure. 
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For ORxs THORLABS PDA10A-EC fixed gain detectors with 180 MHz bandwidth 

were used. The ORx is basically for FSO application. However, a holder as shown in 

Figure C.18 was used to adopt it with fibre applications.  

Depending on the performed experiment, OTx and ORx were directly used in FSO 

channel or fibres as well as collimators at Tx and Rx sides were implemented between 

FSO channel and OTx/ORx (see Figure C.19(a)). The block diagram of the typical FSO 

setup used in the PhD is  also depicted is Figure C.19(b). A Tektronix arbitrary waveform 

generator (AWG) was used to generate modulating signal for the laser. The required 

signal was previously arranged in MATLAB software and then downloaded into AWG. 

Depending on the experiment, one or two channels of AWG and lasers were used. In the 

experiments where only the link performance in clear chamber matters, the oscilloscope 

was used directly to analyse the received signal. However, in experiments where random 

fading channel is present, the output of PD was sampled by an Agilent oscilloscope 

connected to a computer and the captured voltage was controlled and recorded by 

LabVIEW software. In next appendix the details of analysing the captured data is briefly 

described.  

  

 
Figure C.18: Coupling multimode fibres (MMFs) to optical receivers (ORxs). 
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(a) 

 
(b) 

Figure C.19: (a) Laser to PD connection block diagram, and (b) FSO experiment block diagram. SMF and MMF are multimode fibre and single-mode fibre, respectively. 
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C.4 Antenna Components Dimensions 

A graphical representation of the antenna size and dimensions, in particular the sub-

reflector dielectric is illustrated in Figure C.20. Note that the sizes of other parts are 

already presented in the previous sections. 

 

 

 
Figure C.20: Sub-reflector, tube, and feed size and dimension diagram. 
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APPENDIX D: 

EXPERIMENTAL 

MEASUREMENTS  

D.1 Introduction 

In this appendix it is tried to briefly explain the practical measurements performed 

during the PhD. Basically two types of measurements were performed, RF and FSO setup 

measurements. RF measurement includes measuring return loss, SNR of the received 

signal and radiation pattern of the antenna. For FSO, measuring statistical features such 

as scintillation index, Q-factor, ���, and detection threshold level are discussed. 

D.2 RF Measurement 

Return losses of the RF modules were all measured by means of Agilent E8364B PNA 

Series Network Analyzer. The details of return loss measurement method can be found 

in [162]. The other important RF parameter to measure was SNR of the received RF 

signal. The term ‘the received signal’ is refereeing to the output of Rx Module in Figure 

C.5 where the down-converted signal is ready to be analysed by MXA device. It is 

possible to measure SNR automatically by means of VSA software; however an easier 
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way is to estimate it based on power spectrum of the signal. Assume that the spectrum in 

Figure D.1(a) is the received signal. This spectrum belongs to a 10 Mbps BPSK signal at 

2.45 GHz. The first step is to average the received signal to get rid of noise variations. 

Depending on how fast the equipment can do averaging, one can set the appropriate 

averaging order. For the experiment the default 100 averaging order was used. After 

 
(a) 

 
(b) 

 
(c) 

Figure D.1: RF received signal captured using the spectrum analyser: (a) received signal, (b) received 
signal after averaging, and (c) received signal with markers. 
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averaging the signal looks like Figure D.1(b). 

It is assumed that the noise level within the signal is almost the same as adjacent 

frequencies and since the power unit spectrum is in dBm, then by measuring the 

difference between signal and noise floor, SNR value is obtained approximately. 

However, to increase the accuracy, in particular when the spectrum is not uniform, it is 

better to consider various points within the bandwidth of the signal and around it. Figure 

D.1(c) depicts the same signal which is marked by several markers. Having the measured 

power levels, it is possible to estimate SNR using the following expression: 

 SNR = z
î�∑ {�,6î�66z − z

îÃ∑ {�,6îÃ66z , 
(D.1) 

where x�, {�,6, x�, and {�,6 denote the number of measured powers within the signal, 

i-th measured power within the signal, the number of measured noise powers, and i-th 

measured noise power, respectively. Thus for the signal in Figure D.1, SNR is 26.54 dB. 

To measure the radiation pattern of an antenna the near-field measurement system, 

available at the university was used. The near-field system is patented technique by 

Nearfield Systems Inc. (NSI) to visualize the far-field of any radiator based on the near-

field sampled fields [163]. The basic idea of near-field system is to measure the near-field 

radiation of antenna under test (AUT) and convert the measurement near-field data set to 

far-field radiation pattern. This approach is done by means of fast Fourier transform 

(FFT). The simplified block diagram of the available NSI-200V-5×5 near-field system is 

plotted in Figure D.2. In the available system, the AUT was fixed while the probe was 

travelling. Both AUT and probe were connected to a network analyser (Agilent N5230A 

PNA-L Network Analyzer). The probe was a standard open-ended rectangular waveguide 

with part number of NSI-RF-WR90. The probe mobility was possible through a 

mechanical structure which could move the probe in a two dimensional plane. The 

movement of the probe as well as the network analyser synchronization was controlled 
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by a separate unit, which is labelled as Synchronization and Processing Unit in Figure 

D.2. 

Finally, the whole process was conducted by a software called Antenna Measurement 

Software NSI2000 Standard Edition 4.11.202. The software also was in charge of 

collecting measured near-field data, performing FFT, and delivering the results [164]. 

Depending on the operating frequency, distance between AUT and the probe, and 

required far-field radiation pattern angle; the system calculated proper scanning span. 

Once the near-field measurement is complete, it is possible to convert the measured data 

set to far-field radiation. 

However, in this way a normalized radiation pattern is obtained. If the gain is also 

required, a calibration has to be done before the main measurement. This calibration can 

be performed by connecting the SMA cables attached to Network Analyser, or by means 

of antenna with a known gain at the same position of AUT. The former method was used 

to do the calibration. Figure D.3(a) shows the near-field system whereas the typical 

produced results by the software are depicted in Figure D.3(b). The calculated results 

 
Figure D.2: The block diagram of the near-field system. AUT denotes antenna under test. 
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were transferred to MATLAB for further work. 

In the experimental results for the return loss an odd periodic behaviour was observed, 

which could be due to impedance mismatch between cables and connectors, in particular 

cables connected to the network analyser, see Figure 5.15. To confirm the origin of the 

periodic mismatch, two individual return loss measurements with two different cables 

and the same antenna tuned for 10 GHz were performed. The measured data are plotted 

in Figure D.4. Apart from the ripples, the peaks and troughs of the return loss response 

are almost at the same frequencies. Therefore, the measured periodic pattern is not due to 

cables. 

 
(a) 

 
(b) 

Figure D.3: (a) Near-field system used for radiation pattern measurement, and (b) produced results by 
NSI software. 
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D.3 FSO Measurement 

 In contrary to RF, FSO measurements deal with statistical data. It means that the same 

measurement needs to be repeated several times and appropriate statistical analysis are 

required to extract the final desired data set. Several experiments in the FSO artificial 

turbulence channel at NCRLab, Northumbria University, Newcastle upon Tyne, UK were 

performed. The interesting parameters were SI, Q-factor, ���, and detection threshold level 

that deal with channel situation and the effect of channel on the signal, respectively. The 

block diagram of the experimental setup is depicted in Figure D.5 and Figure D.6 shows 

the image of the setup used for most of the turbulence channel experiments. 

The Tx side (see Figure D.6(a)) consists of any number of LD (for this example two 

LDs) driven by appropriate modulating signal. An AWG is used to produce transmit 

signal based on random bits and the used data rate to perform the measurement and in 

this project NRZ-OOK signal was used. To check the ambient light at the desired 

wavelengths, a pair of optical power meter and optical detector was used.  

 
Figure D.4: Performed return loss measurement for the same tuned antenna set and two different cable 
connections. 
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Figure D.5:The block diagram of the experimental FSO setup. This setup was used for turbulence assessment purposes. ORx, TIA, Si, OTx, LD, and AWG are optical receiver, 
transimpedance amplifier, i-th temperature sensor, optical transmitter, laser diode, and arbitrary waveform generator, respectively. 
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Logically, the power detector should be used at the same location of Rx. However, in 

this case the ambient light was almost the same in the laboratory area, thus the power 

detector was used at the Tx side.  

Depending on the experiment, the channel (see Figure D.6(b)) could be equipped with 

sophisticated accessories. For instance in the case of turbulence twenty thermal sensors 

(S1 to S20 in Figure D.5) were planted inside the chamber (ten on each side wall) at equal 

 
(a) 

 
(b) 

 
(c) 

Figure D.6: Typical FSO experimental setup: (a) transmitter side, (b) channel, and (c) receiver side. 
OTx, AWG, ORx are optical transmitter, arbitrary waveform generator, and optical receiver, 
respectively. 



A Hybrid Free Space Optics/Radio Frequency Antenna – Design and Evaluation 

 

245 

distances. To generate turbulence, cooler and heater fans were used to blow hot and cool 

air into the optical chamber. According to [118] and [165] in a fixed pressure condition 

the turbulence is generated due to the temperature gradients along the optical channel. 

Thus by controlling the intensity of blowing air into the chamber one can change the 

gradient of temperature along the chamber and as a consequence can control the 

turbulence intensity. 

The optical chamber was 5.5 m long with a cross section in shape of a 280 mm × 280 

mm rectangle. The cooler and heater fans are set to blow air in this sub-chamber through 

the air vents of 60 mm × 85 mm size on the side wall. 

An exhaust of the same size on the top wall was considered as the outlet. Using this 

structure, it is guaranteed that the artificial turbulence affects the beams where both pass 

through the same channel. The temperature sensors read the temperature every 4 seconds 

and were monitored during the experiment and after all the temperatures reached a stable 

status the measurements were carried out. 

 At the Rx side, the arrived optical power is converted to electrical signal by means of 

ORxs and a real time oscilloscope (in the experiments either Agilent DSO9254A 

infiniium Mixed Signal Oscilloscope, or Agilent DSO80604B infiniium High 

Performance Oscilloscope were used) was used to record the voltages. A virtual 

instrument script in National Instrument (NI) LabVIEW 2012 [166] was developed to 

control devices and record required data sets, see Figure D.5 and Figure D.7. The captured 

signals were processed in MATLAB. To evaluate the quality of each signal two 

parameters were extracted from the captured signals. The first parameters is normalized 

variance of the intensity fluctuation (�R�) or scintillation index which is defined as [30]: 

 �R� = 〈RÐ〉〈R〉Ð − 1, (D.2) 
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where [ is the received optical signal intensity and 〈∙〉 denotes ensemble average. 

Assuming that the received power over PD area ��t is constant and by introducing the 

amplifier gain ^�lK and PD responsivity ℛ, one can write the received optical intensity 

as: 

 [ = _
æ°Ë®ÃÇÌℛ, 

(D.3) 

where � is the ORx output voltage. Thus (12) can be rewritten as: 

 �R� = 〈_Ð〉〈_〉Ð − 1. (D.4) 

�R� can be used to evaluate the effect of turbulence inside the chamber on the optical 

signal so that �R� ≪ 1 and �R� ≫ 1 denote weak and strong turbulences [91]. Another 

parameter which quantifies the optical link performance is Q-factor calculated as 

following [116]: 

 Q = _Î:_ÏÑÎÛÑÏ, (D.5) 

where �£ and �Å denote average of received high and low voltages. �£ and �Å also refer 

to standard deviations for high and low voltages, respectively. In MATLAB each captured 

signal is filtered using a second order Butterworth digital low pass filter with a cut-off 

frequency twice as signal bandwidth. Since in most practical optical Rxs the received 

 
Figure D.7: The screenshot of the virtual instrument script created in NI LabVIEW. 
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signal is AC coupled, the DC component of the captured signal is removed from the signal 

thus Equs. (D.4) and (D.5) consider only AC part of received signal. The signal is then 

sampled at the middle of each bit and entire calculations of Equs. (D.4) and (D.5) are 

carried out using these sampled values. 

To calculate ���, first the recorded temperatures are averaged to obtain twenty mean 

temperature values. Knowing the thermal distribution along the FSO path, it is possible 

to determine the temperature structure constant �a�, which depends on the temperature 

difference between two selected adjacent thermal sensors �z − �� distant by m),6  as [30]: 

 �a�|6 = ��6 − �6Ûz�� m),6� È⁄ý . (D.6) 

The refractive index structure parameter ���|6 is given as [30]: 

 ���|6 = �79×10:Ý Î
aÓÐÆÐ���a�|6, (D.7) 

where { is the atmospheric pressure in millibar and ��²� = ��6 + �6Ûz� 2⁄  is the average 

temperature in Kelvin. Thus the variance of log-intensity signal fluctuation defined by 

Rytov variance �_� is given by [91]: 

 �_� = 1.23f�� ∑ ���|6×m),666&z,È,⋯,z!' , (D.8) 

where f = 2ß n⁄  is the wavenumber, and n is the transmission wavelength. 

To obtain the detection threshold level of a stream of bits, first both high and low levels 

of signal corresponding to bits ‘1’ and ‘0’ were extracted. Then by performing the 

averaging over the adjacent high and low bits, the appropriate detection threshold level 

was determined. In this thesis averaging was performed for the sequential bit stream of 

‘0’ and ‘1’. 
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APPENDIX E: STUDENT’S T-

TEST 

E.1 Introduction 

The experimental investigation generated a large sets of raw data which were 

statistically processed in MATLAB. In particular, the data related to the differential 

signalling were taken for uncorrelated and correlated channels; and it was shown that 

there is a significant enhancement in term of detection threshold standard variation when 

channels are correlated. In this Appendix, the t-test method is adopted to show that the 

observed enhancement is statistically significant. 

E.2 Student’s t-test 

A t-test is a statistical exercise based on the t-distribution, which is used to show if two 

sets of data are significantly different [167]. Consider two sets of data � and e, where 

both have normal distributions. Based on the t-test, a null hypothesis means that mean 

values of � − e is zero (i.e., � and e have the same mean value). 

By setting 3 = � − e, one can define Ù� as: 
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 Ù� = h|
Ñ� √�⁄ , (E.1) 

where 3̅, �h, and y are mean value, standard deviation, and number of samples of 3, 

respectively. With Ù� and defining the degree of freedom as y –  2, a null hypothesis is 

assumed and by using the t-distribution the �-value for the observed data is determined. 

In MATLAB, the ttest function can be used to perform the test. Outputs of the function 

are c and �, which are interpreted as: 

1. If c =  0 then t-test does not reject the null hypothesis at 5% significance level. 

2. If c =  1 then t-test rejects null hypothesis at 5% significance level. 

3. A small � means that null hypothesis is not valid. 

E.3 Results 

Table E.1 summarises the t-test results for the measured differential signalling data. 

The obtained detection threshold levels for uncorrelated and correlated data sets are used 

as the input data.  

Table E.1: Student’s t-test calculated results for performed differential signalling experiments in the 
thesis. For each case, uncorrelated and correlated data sets are used as input data. 

Experiment Section ÓÔ Calculated H Calculated Õ-value 

Turbulence, dark room 4.3.6 2.5×104 1 0 

Turbulence lit room 4.3.6 2.9×104 1 0 
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