## Northumbria Research Link

Citation: Dean, John (2009) Heavy metal bioavailability and bioaccessibility in soil. In: Bioremediation: methods and protocol. Methods in Molecular Biology, 599 . Springer, London, pp. 15-36. ISBN 978-1607614388

Published by: Springer

URL: http://dx.doi.org/10.1007/978-1-60761-439-5\_2 <http://dx.doi.org/10.1007/978-1-60761-439-5\_2>

This version was downloaded from Northumbria Research Link: https://nrl.northumbria.ac.uk/id/eprint/3607/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to access the University's research output. Copyright © and moral rights for items on NRL are retained by the individual author(s) and/or other copyright owners. Single copies of full items can be reproduced, displayed or performed, and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided the authors, title and full bibliographic details are given, as well as a hyperlink and/or URL to the original metadata page. The content must not be changed in any way. Full items must not be sold commercially in any format or medium without formal permission of the copyright holder. The full policy is available online: <a href="http://nrl.northumbria.ac.uk/policies.html">http://nrl.northumbria.ac.uk/policies.html</a>

This document may differ from the final, published version of the research and has been made available online in accordance with publisher policies. To read and/or cite from the published version of the research, please visit the publisher's website (a subscription may be required.)





## Metadata of the chapter that will be visualized online

| ChapterTitle                | Heavy Metal Bioavailal                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pility and Bioaccessibility in Soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chapter Sub-Title           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chapter CopyRight - Year    | Humana Press, a part<br>(This will be the copyrig                                                                                                                                                                                                                                                                                                                                                                                                                                              | of Springer Science+Business Media, LLC 2009<br>ght line in the final PDF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Book Name                   | Bioremediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Corresponding Author        | Family Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             | Particle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | Given Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | John Richard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                             | Suffix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             | Division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Biomolecular and Biomedical Research Centre, School of Applied Sciences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | Organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Northumbria University                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Newcastle upon Tyne, UK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | Email                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Abstract                    | This chapter considers<br>of metals in soil. The b<br>methods, including the<br>acid (DTPA), ammonin<br>metals using a three-s<br>the environmental hea<br>physiologically based<br>pseudo-total metal co<br>approaches can be per<br>of the different extracti<br>measurement of metals<br>cell. A detailed Notes se<br>of the procedures. Fina<br>described including sin<br>vitro gastrointestinal ex<br>time on the intestinal fl<br>TL-1 (tea leaves) is inv<br>period by in vitro gastro | the use of a variety of approaches to assess either the bioavailability or the bioaccessibility<br>bioavailability of metals from soils is considered with respect to a series of single-extraction<br>use of ethylenediaminetetraacetic acid (EDTA), acetic acid, diethylenetriaminepentaacetic<br>um nitrate, calcium chloride and sodium nitrate. Then, a procedure for the recovery of<br>tage sequential extraction protocol is described. Two alternate approaches for assessing<br>lith risk to humans by undertaking in vitro gastrointestinal extraction (also known as the<br>extraction test, PBET) are considered. Finally, two acid digestion protocols that allow the<br>ntent of samples to be assessed are provided.In all cases details of how the different<br>formed are provided, including the specific reagents required (and their preparation), details<br>ion and acid digestion protocols to be followed and suitable analytical details to allow the<br>s by inductively coupled plasma mass spectrometry (ICP-MS) with/without a collision/reaction<br>ection provides experimental details to guide the reader through some of the practical aspects<br>ally, some experimental results are provided as evidence of the suitability of the approaches<br>gle-extraction data, using EDTA and acetic acid, for metals in CRM BCR 700. In addition, in<br>traction data are provided for metals in CRM SRM 1570A (spinach leaves) and CRM INCT-<br>estigated, as well as the repeatability in terms of recovery of metals from soil over a 3-week<br>bintestinal extraction. |
| Keywords (separated by '-') | Single-extraction methors gastrointestinal extract                                                                                                                                                                                                                                                                                                                                                                                                                                             | bds - sequential extraction method - physiologically based extraction test (PBET) - in vitro ion - inductively coupled plasma mass spectrometry (ICP-MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Chapter 2

## Heavy Metal Bioavailability and Bioaccessibility in Soil

John Richard Dean

## Abstract

01 02

08 09 10

11

13 14

15

16 This chapter considers the use of a variety of approaches to assess either the bioavailability or the bioaccessibility of metals in soil. The bioavailability of metals from soils is considered with respect to a series of single-extraction methods, including the use of ethylenediaminetetraacetic acid (EDTA), acetic acid, 18 diethylenetriaminepentaacetic acid (DTPA), ammonium nitrate, calcium chloride and sodium nitrate. 19 Then, a procedure for the recovery of metals using a three-stage sequential extraction protocol is 20 described. Two alternate approaches for assessing the environmental health risk to humans by under-21 taking in vitro gastrointestinal extraction (also known as the physiologically based extraction test, PBET) 22 are considered. Finally, two acid digestion protocols that allow the pseudo-total metal content of samples 23 to be assessed are provided.

In all cases details of how the different approaches can be performed are provided, including the specific 24 reagents required (and their preparation), details of the different extraction and acid digestion protocols 25 to be followed and suitable analytical details to allow the measurement of metals by inductively coupled 26 plasma mass spectrometry (ICP-MS) with/without a collision/reaction cell. A detailed Notes section 27 provides experimental details to guide the reader through some of the practical aspects of the procedures. 28 Finally, some experimental results are provided as evidence of the suitability of the approaches described 29 including single-extraction data, using EDTA and acetic acid, for metals in CRM BCR 700. In addition, 30 in vitro gastrointestinal extraction data are provided for metals in CRM SRM 1570A (spinach leaves). The 31 influence of time on the intestinal fluid phase on the recovery of metals in CRM SRM 1570A (spinach leaves) and CRM INCT-TL-1 (tea leaves) is investigated, as well as the repeatability in terms of recovery 32 of metals from soil over a 3-week period by in vitro gastrointestinal extraction. 33

Key words: Single-extraction methods, sequential extraction method, physiologically based extraction test (PBET), in vitro gastrointestinal extraction, inductively coupled plasma mass spectrometry (ICP-MS).

## 1. Introduction

The release of metals from soil is normally accomplished using heat and concentrated acids (in a process termed acid digestion)

DOI 10.1007/978-1-60761-439-5\_2, © Humana Press, a part of Springer Science+Business Media, LLC 2010

48

34

35

36

38 39

40 41 42

43

44 45

<sup>46</sup> S.P. Cummings (ed.), *Bioremediation*, Methods in Molecular Biology 599,

49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

67

68

69

70

71

72

78 79 80

(1). The aim of this approach is to destroy the soil matrix releasing metals into solution. In reality, depending upon the choice of acid (or acid combination) this may or may not be possible, but the approach is nevertheless used to determine the metal (pseudo)total in the soil matrix. Approaches to assess the metal bioavailability and bioaccessibility are available (2). In the case of metal bioavailability, the approaches are based on the use of selective chemical extractants to liberate the metals from the soil matrix by overcoming specific interactions. These approaches are based on single- or sequential extraction methods, which were originally developed by the Standard, Measurements and Testing Programme (SM & T – formerly BCR) of the European Union (3–5). Single-extraction methods are based on the use of ethylenediaminetetraacetic acid (EDTA), acetic acid or diethylenetriaminepentaacetic acid (DTPA) as well as some other reagents, whereas the sequential extraction method uses specific reagents to assess the exchangeable, reducible and oxidisable fractions of metals in soil. In the case of metal (oral) bioaccessibility, the approach is based on the use of reagents that seek to mimic the human digestive system (2). This method is often described as either in vitro (simulated) gastrointestinal extraction or the physiologically based extraction test (PBET). In each case the use of specific extraction scenarios to provide an estimation of the environmental risk to humans and plants from heavy metal contaminated soil is done.

### 2. Materials

- 81 **2.1. Extraction**
- 82 **Reagents for**
- 83 Single-Extraction
- 84 Methods
- 85 86

88

89

90

91

92

93

94

95

96

1. 50 mM ethylenediaminetetraaceticacid (EDTA): In a fume cupboard add 146 +/- 0.05 g of EDTA (free acid) to 800 + /-20 mL of distilled water (see Note 1). To aid dissolution of EDTA, stir in 130 + / -5 mL of saturated ammonia solution (prepared by bubbling ammonia gas into distilled water). Continue to add the ammonia solution until all the EDTA has dissolved. The resultant solution should be filtered, if necessary, through a filter paper of porosity 1.4–2.0 μm into a pre-cleaned 10 L polyethylene bottle and then diluted to 9.0 + / -0.5 L with distilled water. Adjust the pH to 7.00 +/- 0.05 by addition of a few drops of either ammonia or concentrated hydrochloric acid, as appropriate. The solution should then be made up to 10 L with distilled water to obtain an EDTA solution of 50 mM. Analyse a sample of each fresh batch of EDTA solution for its metal impurity content (see Notes 2 and 3).

| 97<br>98 |                                       | 2. | 0.43 M acetic acid: In a fume cupboard add $250 + / - 2 \text{ mL}$ of glacial acetic acid (AnalaR or similar) to approximately 5 L of distilled water in a pre-cleaned 10 L polyethylene bottle |
|----------|---------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100      |                                       |    | and make up to 10 L with distilled water. Analyse a sample of                                                                                                                                    |
| 100      |                                       |    | each fresh batch of acetic acid solution for its metal impurity                                                                                                                                  |
| 102      |                                       |    | content (see Notes 2 and 3).                                                                                                                                                                     |
| 103      |                                       | 3  | 5 mM diethylenetriaminepentaacetic acid (DTPA): In a                                                                                                                                             |
| 104      |                                       | 0. | fume cupboard dissolve 149.2 g triethanolamine (0.01 M).                                                                                                                                         |
| 105      |                                       |    | 19.67 g DTPA (5 mM) and 14.7 g calcium chloride in                                                                                                                                               |
| 106      |                                       |    | approximately 200 mL distilled water. Allow the DTPA to                                                                                                                                          |
| 107      |                                       |    | dissolve and then dilute to 9 L. Adjust the pH to $7.3 + /-$                                                                                                                                     |
| 108      |                                       |    | 0.5 with concentrated HCl while stirring and then dilute to                                                                                                                                      |
| 109      |                                       |    | 10 L in distilled water. Analyse a sample of each fresh batch                                                                                                                                    |
| 110      |                                       |    | of DTPA solution for its metal impurity content (see Notes                                                                                                                                       |
| 111      |                                       |    | 2 and 3).                                                                                                                                                                                        |
| 112      |                                       | 4. | 1 M ammonium nitrate (NH <sub>4</sub> NO <sub>3</sub> ): In a fume cupboard                                                                                                                      |
| 113      |                                       |    | dissolve 80.04 g of NH <sub>4</sub> NO <sub>3</sub> in water, then make up to 1 L                                                                                                                |
| 114      |                                       |    | with water. Analyse a sample of each fresh batch of NH <sub>4</sub> NO <sub>3</sub>                                                                                                              |
| 115      |                                       |    | solution for its metal impurity content (see Notes 2 and 3).                                                                                                                                     |
| 110      |                                       | 5. | 0.01 M calcium chloride: In a fume cupboard dissolve                                                                                                                                             |
| 118      |                                       |    | 1.470 g of CaCl <sub>2</sub> 2H <sub>2</sub> O in water, then make up to 1 L with                                                                                                                |
| 119      |                                       |    | water. Verify that the Ca concentration is $400 + /-10 \text{ mg/L}$                                                                                                                             |
| 120      |                                       |    | by EDTA titration. Analyse a sample of each fresh batch of                                                                                                                                       |
| 121      |                                       |    | $\mbox{CaCl}_2$ solution for its metal impurity content (see Notes 2                                                                                                                             |
| 122      |                                       |    | and 3).                                                                                                                                                                                          |
| 123      |                                       | 6. | 0.1 M sodium nitrate (NaNO <sub>3</sub> ): In a fume cupboard dissolve                                                                                                                           |
| 124      |                                       |    | 8.50 g of NaNO <sub>3</sub> in water, then make up to 1 L with water.                                                                                                                            |
| 125      |                                       |    | Analyse a sample of each fresh batch of NaNO3 solution for                                                                                                                                       |
| 126      |                                       |    | its metal impurity content (see Notes 2, 3 and 4).                                                                                                                                               |
| 127      |                                       |    |                                                                                                                                                                                                  |
| 128      | 2.2. Extraction                       | 1. | Solution A: 0.11 M acetic acid. Add in a fume cupboard                                                                                                                                           |
| 129      | Reagents for<br>Sequential Extraction |    | $25 \pm -0.1$ mL of glacial acetic acid to approximately 0.5 L                                                                                                                                   |
| 130      | Method                                |    | of water in a 1 L polyethylene bottle and make up to 1 L with<br>water Take 250 mL of this solution (acetic acid 0.42 M) and                                                                     |
| 131      | mothod                                |    | dilute to 1 L with water to obtain an acetic acid o.45 M) and                                                                                                                                    |
| 133      |                                       |    | 0.11 M Analyse a sample of each fresh batch of solution A                                                                                                                                        |
| 134      |                                       |    | for its metal impurity content (see Note 2).                                                                                                                                                     |
| 135      |                                       | 2  | Solution B: 0.5 M hydroxylamine hydrochloride or hydrox                                                                                                                                          |
| 136      |                                       | 2. | varmonium chloride. Dissolve 34.75 g of hydroxylamine                                                                                                                                            |
| 137      |                                       |    | hydrochloride in 400 mL of water Transfer to a 1 L vol-                                                                                                                                          |
| 138      |                                       |    | umetric flask and add 25 mL of 2 M HNO <sub>2</sub> (prepared by                                                                                                                                 |
| 139      |                                       |    | weighing from a concentration solution) (the pH should be                                                                                                                                        |
| 140      |                                       |    | 1.5). Make up to 1 L with water. Prepare this solution on                                                                                                                                        |
| 141      |                                       |    | the same day as the extraction is carried out. Analyse a sam-                                                                                                                                    |
| 142      |                                       |    | ple of each fresh batch of solution B for its metal impurity                                                                                                                                     |
| 143      |                                       |    | content (see Note 2).                                                                                                                                                                            |
| 144      |                                       |    |                                                                                                                                                                                                  |

| Dean                                                                        |                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                             | <ol> <li>Solution C: (8.8 M hydrogen peroxide (300 mg/g). Use H<sub>2</sub>O<sub>2</sub> as supplied by the manufacturer, i.e. acid-stabilized to pH 2–3. Analyse a sample of each fresh batch of solution C for its metal impurity content (<i>see</i> Note 2).</li> </ol>                                        |
|                                                                             | <ul> <li>4. Solution D: (1 M ammonium acetate). Dissolve 77.08 g of ammonium acetate in 800 mL of water. Adjust to pH 2 +/- 0.1 with concentrated HNO<sub>3</sub> and make up to 1 L with water. Analyse a sample of each fresh batch of solution D for its metal impurity content (<i>see</i> Note 2).</li> </ul> |
| 2.3. Extraction<br>Reagents for In vitro<br>Gastrointestinal<br>Extraction: | 1. Gastric solution: 1.25 g pepsin (1 Anson unit/g lactose as diluents), 0.5 g sodium malate, 0.5 g sodium citrate, 420 $\mu$ L lactic acid and 500 $\mu$ L acetic acid made up to 1 L with water, adjusted to pH 2.5 with concentrated HCl.                                                                       |
| Approach 1                                                                  | 2. Intestinal solution: 52.5 mg bile salts (bovine) and 15 mg pancreatin (pig) added into the sample-gastric solution mixture and the pH adjusted to pH 7.0 with saturated NaHCO <sub>3</sub> .                                                                                                                    |
| 2.4. Extraction<br>Reagents for In vitro<br>Gastrointestinal                | 1. First add 145 mg of $\alpha$ -amylase (bacillus species), 50.0 mg mucin and 15.0 mg uric acid to a 2 L HDPE screw-top bottle.                                                                                                                                                                                   |
| Extraction:<br>Approach 2<br>Simulated Saliva<br>Fluid                      | <ol> <li>Separately add 896 mg of KCl, 888 mg NaH<sub>2</sub>PO<sub>4</sub>, 200 mg KSCN, 570 mg Na<sub>2</sub>SO<sub>4</sub>, 298 mg NaCl and 1.80 mL of 1.0 M HCl into a 500 mL volume container and make up to the mark with water (inorganic saliva components).</li> </ol>                                    |
|                                                                             | 3. In a second 500 mL volume container, add 200 mg urea and make up to the mark with water (organic saliva components).                                                                                                                                                                                            |
|                                                                             | 4. Then, simultaneously pour 500 mL of inorganic and 500 mL of organic saliva components into the 2 L HDPE screwtop bottle.                                                                                                                                                                                        |
|                                                                             | 5. Shake the entire contents of the screw-top bottle thoroughly.                                                                                                                                                                                                                                                   |
|                                                                             | 6. Measure the pH of this solution (gastric-simulated fluid).<br>The pH should be $6.5 \pm 0.5$ . If necessary, adjust the pH by adding either 1.0 M NaOH or 37% HCl.                                                                                                                                              |
| 2.5. Simulated<br>Gastric Fluid                                             | 1. First add 1000 mg of bovine serum albumin, 3000 mg mucin and 1000 mg pepsin to a 2 L HDPE screw-top bottle.                                                                                                                                                                                                     |
| 5                                                                           | <ul> <li>Separately add 824 mg of KCl, 266 mg NaH<sub>2</sub>PO<sub>4</sub>, 400 mg CaCl<sub>2</sub>, 306 mg NH<sub>4</sub>Cl, 2752 mg NaCl and 8.30 mL of 37% HCl into a 500 mL volume container and make up to the mark with water (inorganic gastric components).</li> </ul>                                    |
|                                                                             | 3. In a second 500 mL volume container, add 650 mg glucose, 20.0 mg glucuronic acid, 85.0 mg urea and                                                                                                                                                                                                              |
|                                                                             |                                                                                                                                                                                                                                                                                                                    |

- 5. Shake the entire contents of the screw-top bottle thoroughly.
- 6. Measure the pH of this solution (gastric-simulated fluid). The pH should be within the range 0.9–1.0. If necessary, adjust the pH to this range (0.9–1.0) by adding either 1.0 M NaOH or 37% HCl.
- 7. Check that the combination of mixed saliva fluid (1 mL) and gastric fluid (1.5 mL) is in the pH 1.2–1.4. If the combined mixture is not within this range, it is necessary to adjust the pH of the gastric fluid by adding either 1.0 M NaOH or 37% HCl.
- 8. Re-check that the combination of mixed saliva fluid (1 mL) and gastric fluid (1.5 mL) is in the pH 1.2–1.4.
- 2.6. Simulated
   Duodenal Fluid
   1. First add 200 mg of CaCl<sub>2</sub>, 1000 mg bovine serum albumin, 3000 mg pancreatin and 500 mg lipase to a 2 L HDPE screw-top bottle.
  - 2. Separately add 564 mg of KCl, 80 mg KH<sub>2</sub>PO<sub>4</sub>, 50.0 mg MgCl<sub>2</sub>, 5607 mg NaHCO<sub>3</sub>, 7012 mg NaCl and 180  $\mu$ L of 37% HCl into a 500 mL volume container and make up to the mark with water (inorganic duodenal components).
  - 3. In a second 500 mL volume container, add 100 mg urea and make up to the mark with water (organic duodenal components).
  - 4. Then, simultaneously pour 500 mL of inorganic and 500 mL of organic duodenal components into the 2 L HDPE screw-top bottle.
  - 5. Shake the entire contents of the screw-top bottle thoroughly.
  - 6. Measure the pH of this solution (simulated duodenal fluid). The pH should be within the range  $7.4 \pm 0.2$ . If necessary, adjust the pH of the duodenal fluid by adding either 1.0 M NaOH or 37% HCl.
- 234 2.7. Simulated Bile 235 Fluid

- 1. First add 222 mg of CaCl<sub>2</sub>, 1800 mg bovine serum albumin and 6000 mg bile to a 2 L HDPE screw-top bottle.
- 2. Separately add 376 mg of KCl, 5785 mg NaHCO<sub>3</sub>, 5259 mg NaCl and 180  $\mu$ L of 37% HCl into a 500 mL volume container and make up to the mark with water (inorganic bile components).

| 289 | 3.1.1. Ethylenedi-    | 1. | 2 g of soil sample is weighed into a 50 mL Sarstedt extraction  |
|-----|-----------------------|----|-----------------------------------------------------------------|
| 290 | aminetetraacetic Acid |    | tube and 20 mL of 0.05 M EDTA (pH 7.0) is added (see            |
| 291 | Extraction            |    | Note 5).                                                        |
| 292 |                       | 2  | The mixture is shaken in an end-over-end shaker at 30 rpm       |
| 293 |                       | 2. | for 1 h at ambient temperature $(20 + 2^{\circ}C)$ (see Note 6) |
| 294 |                       | -  | For $1$ in at an order temperature $(20 \pm 2)$ (set $1000$ c). |
| 295 |                       | 3. | Then centrifuge the mixture for 10 min at 3000g.                |
| 296 |                       | 4. | Remove the supernatant with a pipette and store in a            |
| 297 |                       |    | polyethylene bottle at 4°C.                                     |
| 298 |                       | 5  | Prior to analysis re-homogenise the sample by manually          |
| 299 |                       | 0. | shaking for 5 min                                               |
| 300 |                       |    | shaking for 5 min.                                              |
| 301 |                       | 6. | Analyse by ICP-MS (see Notes 10 and 11).                        |
| 302 |                       | 1  | Example results for the EDTA extraction of nine elements        |
| 303 |                       | 1. | Example results for the ED IA extraction of thire elements      |
| 304 |                       |    | from a certified reference material (BCK / 00) are shown in     |
| 305 |                       |    | 1able 2.1.                                                      |
| 306 |                       |    |                                                                 |
| 207 |                       |    |                                                                 |

### 307 Table 2.1

308

309

## Example results for selected single-extraction protocols

|         | EDTA extraction                               |                                                | CH <sub>3</sub> COOH extraction               |                                                  |
|---------|-----------------------------------------------|------------------------------------------------|-----------------------------------------------|--------------------------------------------------|
| Element | CRM organic-rich<br>soil (BCR 700)<br>(mg/kg) | Concentrations (mg/kg)<br>Mean $\pm$ SD, $n=6$ | CRM organic-rich<br>soil (BCR 700)<br>(mg/kg) | Concentrations (mg/kg)<br>Mean $\pm$ SD, $n = 6$ |
| Cr      | $10.1\pm0.9$                                  | $9.2 \pm 0.2$                                  | $19.0 \pm 1.1$                                | $20.5\pm0.7$                                     |
| Mn      | na                                            | $146 \pm 6$                                    | na                                            | $266\pm19$                                       |
| Fe      | na                                            | $1224\pm95$                                    | na                                            | $33.0\pm1.8$                                     |
| Ni      | $53.2\pm2.8$                                  | $51.5\pm1.0$                                   | $99.0\pm5.1$                                  | $102.8\pm2.6$                                    |
| Cu      | $89.4\pm2.8$                                  | $91.9 \pm 1.3$                                 | $36.3\pm1.6$                                  | $37.3\pm2.6$                                     |
| Zn      | $510 \pm 17$                                  | $455\pm5$                                      | $719\pm24$                                    | $715.7\pm55.5$                                   |
| Мо      | na                                            | $1.10\pm0.08$                                  | na                                            | $0.06\pm0.01$                                    |
| Cd      | $65.2\pm3.5$                                  | $65.7 \pm 5.1$                                 | $67.5\pm2.8$                                  | $67.1\pm2.5$                                     |
| Pb      | $103 \pm 5$                                   | $101.9\pm0.9$                                  | $4.85\pm0.38$                                 | $4.82\pm0.44$                                    |
|         |                                               |                                                |                                               |                                                  |

na = not available

| 328 | 3.1.2. Acetic Acid | 1. | 1 g of soil sample is weighed into a 50 mL Sarstedt extrac-         |
|-----|--------------------|----|---------------------------------------------------------------------|
| 329 | Extraction         | 7  | tion tube and 40 mL of 0.43 M CH <sub>3</sub> COOH is added (see    |
| 330 |                    |    | Note 5).                                                            |
| 331 |                    | 2. | The mixture is shaken in an end-over-end shaker at 30 rpm           |
| 332 |                    |    | for 16 h at ambient temperature $(20 \pm 2^{\circ}C)$ (see Note 6). |
| 333 |                    | 2  | Then containing the ministry for 10 min at 2000 r                   |
| 334 |                    | э. | Then centrifuge the mixture for 10 min at 5000 <i>g</i> .           |
| 335 |                    | 4. | Remove the supernatant with a pipette and store in a                |
| 336 |                    |    | polyethylene bottle at 4°C.                                         |

336

326 327

|                   | Dean                                           |     |                                                                                                                                                         |
|-------------------|------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 337<br>338        |                                                | 5.  | Prior to analysis, re-homogenise the sample by manually shaking for 5 min.                                                                              |
| 339<br>340        |                                                | 6.  | Analyse by ICP-MS ( <i>see</i> Notes 10 and 11).                                                                                                        |
| 341               | m                                              | nen | ts from a certified reference material (BCR 700) are shown in                                                                                           |
| 342               | T                                              | 'ab | le 2.1.                                                                                                                                                 |
| 343               |                                                |     |                                                                                                                                                         |
| 344<br>345<br>346 | 3.1.3. Diethylenetri-<br>aminepentaacetic Acid | 1.  | 2 g of soil sample is weighed into a $50 \text{ mL}$ Sarstedt extraction tube and $4 \text{ mL}$ of 0.005 M DTPA is added ( <i>see</i> <b>Note 5</b> ). |
| 347<br>348        | Extraction                                     | 2.  | The mixture is shaken in an end-over-end shaker at 30 rpm for 2 h at ambient temperature $(20 \pm 2^{\circ}C)$ (see Note 6).                            |
| 349               |                                                | 3.  | Then centrifuge the mixture for 10 min at 3000g.                                                                                                        |
| 350<br>351        |                                                | 4.  | Remove the supernatant with a pipette and store in a polyethylene bottle at $4^{\circ}C$ .                                                              |
| 352<br>353        |                                                | 5.  | Prior to analysis, re-homogenise the sample by manually                                                                                                 |
| 354               |                                                |     | shaking for 5 min.                                                                                                                                      |
| 355               |                                                | 6.  | Analyse by ICP-MS (see Notes 10 and 11).                                                                                                                |
| 356               |                                                |     |                                                                                                                                                         |
| 357               | 3.1.4. Calcium Chloride                        | 1.  | 2 g of soil sample is weighed into a 50 mL Sarstedt extraction                                                                                          |
| 358               | Extraction                                     |     | tube and 20 mL of 0.01 M CaCl <sub>2</sub> is added ( <i>see</i> Note 5).                                                                               |
| 359<br>360        |                                                | 2.  | The mixture is shaken in an end-over-end shaker at 30 rpm for 3 h at ambient temperature $(20 \pm 2^{\circ}C)$ (see Note 6).                            |
| 361<br>362        |                                                | 3.  | Decant 12 mL into a centrifuge tube and centrifuge for $10 \text{ min}$ at $3000 a$                                                                     |
| 363<br>364<br>365 |                                                | 4.  | Analyse extracts immediately by ICP-MS (see Notes 10 and 11).                                                                                           |
| 366<br>367<br>368 | 3.1.5. Ammonium<br>Nitrate                     | 1.  | 2 g of soil sample is weighed into a 50 mL Sarstedt extraction tube and 5 mL of 1.0 M $NH_4NO_3$ is added ( <i>see</i> <b>Note 5</b> ).                 |
| 369<br>370<br>371 |                                                | 2.  | The mixture is shaken in an end-over-end shaker at 50–60 rpm for 2 h at ambient temperature $(20 \pm 2^{\circ}C)$ (see Note 6).                         |
| 372               |                                                | 3   | Then pass the supernatant through an acid-washed filter                                                                                                 |
| 373               |                                                | 0.  | paper into a 50 mL polyethylene bottle (discard the first                                                                                               |
| 374               |                                                |     | 5 mL of the filtrate). Stabilise by adding 1 mL of concen-                                                                                              |
| 376               |                                                |     | trated HNO <sub>3</sub> .                                                                                                                               |
| 377               |                                                | 4.  | If solids remain, centrifuge or filter through a 0.45 µm mem-                                                                                           |
| 378               |                                                |     | brane filter.                                                                                                                                           |
| 379               |                                                | 5.  | Analyse extracts immediately by ICP-MS (see Notes 10                                                                                                    |
| 380               |                                                |     | and 11).                                                                                                                                                |
| 381               |                                                |     |                                                                                                                                                         |
| 382<br>383<br>384 | 3.1.6. Sodium Nitrate<br>Extraction            | 1.  | 2 g of soil sample is weighed into a 50 mL Sarstedt extraction tube and 5 mL of $0.1$ M NaNO <sub>3</sub> is added ( <i>see</i> <b>Note 5</b> ).        |

Heavy Metal Bioavailability

- 2. The mixture is shaken in an end-over-end shaker at 120 rpm for 2 h at ambient temperature  $(20 \pm 2^{\circ}C)$  (see Note 6).
- 3. Then centrifuge the mixture for 10 min at 4000g.
- 4. Remove the supernatant with a syringe and filter through a 0.45  $\mu$ m membrane filter into a 50 mL polyethylene bottle. Add 2 mL of concentrated HNO<sub>3</sub> to a 50 mL volumetric flask and make up to volume with the filtered extract.
- 5. Analyse extracts immediately by ICP-MS (see Notes 10 and 11).

The procedure adopted for the sequential extraction of metals from soil/sediments is based on three distinct stages (6). In stage 1 (exchangeable fraction), the metals released are representative of those that are the most bioavailable (and hence most mobile). They include those metals that are weakly absorbed on the sediment/soil surface by relatively weak electrostatic interaction, metals that can be released by ion exchange processes or metals that can be co-precipitated with carbonates present in many sediments/soils. Any changes in the ionic composition, influencing adsorption-desorption reactions, or lowering of pH could cause mobilisation of metals from this fraction. In stage 2 (reducible fraction), the metals bound to iron/manganese oxides are identified; they are therefore unstable under reduction conditions. Changes in the redox potential  $(E_h)$  could induce the dissolution of these oxides, leading to their release from the soil/sediment. Finally, in stage 3 (oxidisable fraction), those metals bound to organic matter within the sediment/soil matrix are released into solution. The residual fraction is then acid-digested (see Section 6).

- 3.2.1. Stage 1 Extraction
- 1 g of soil sample is weighed into a 80–100 mL PTFE centrifuge tube and 40 mL of acetic acid (0.11 M) Solution A is added (*see* Note 5).
- 2. The mixture is shaken in an end-over-end shaker at 30 rpm for 16 h at ambient temperature  $(22 \pm 5^{\circ}C)$  (see Notes 6 and 7).
- 3. Centrifuge at 3000g for 20 min.
- 4. Remove the supernatant with a pipette and store in a polyethylene bottle at 4°C.
- 5. Analyse extracts by ICP-MS (see Notes 10 and 11).
- 6. Wash the residue with 20 mL of water by shaking for 15 min.
- 7. Centrifuge the residue for 20 min at 3000g and discard the supernatant. Take care not to lose any of the solid residue.

431 432

385

386 387

388

389

390

391

392

393

394 395 396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415 416

417

418

419

420

421

422 423

424

425

426

427 428

429

430

3.2. Chemical-

for Sequential

Selective Extraction

Extraction Method

|                          | Dean                      |         |                                                                                                                                                 |
|--------------------------|---------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 433<br>434               |                           | 8.      | Break the "cake" formed during centrifugation prior to stage 2.                                                                                 |
| 435<br>436<br>437<br>438 | 3.2.2. Stage 2 Extraction | 1.      | Add 40 mL of hydroxylammonium chloride $(0.1 \text{ M}, \text{ adjusted to pH 2 with nitric acid}) - Solution B - to the residue from stage 1.$ |
| 439<br>440               |                           | 2.      | The mixture is shaken in an end-over-end shaker at 30 rpm for 16 h at ambient temperature $(22 \pm 5^{\circ}C)$ (see Note 6).                   |
| 441                      |                           | 3.      | Centrifuge at 3000g for 20 min.                                                                                                                 |
| 442<br>443<br>444        |                           | 4.      | Remove the supernatant with a pipette and store in a polyethylene bottle at $4^{\circ}$ C.                                                      |
| 445                      |                           | 5.      | Analyse extracts by ICP-MS (see Notes 10 and 11).                                                                                               |
| 446                      |                           | 6       | Wash the residue with 20 mL of water by shaking for 15 min                                                                                      |
| 447                      |                           | 0.<br>7 | Centrifuge the residue for 20 min at 2000 g and discard the                                                                                     |
| 448<br>449               |                           | /.      | supernatant. Take care not to lose any of the solid residue.                                                                                    |
| 450                      |                           | 8.      | Break the "cake" formed during centrifugation prior to                                                                                          |
| 451                      |                           |         | stage 3.                                                                                                                                        |
| 452                      | 2.0.2. Stage 2 Extraction | 1       | Add ampfully to graid losses due to any violant mation                                                                                          |
| 453                      | 3.2.3. Staye 3 Extraction | T       | . Add carefully, to avoid losses due to any violent reaction,<br>10 mL of hydrogen perovide (8.8 M) $-$ Solution C $-$ to                       |
| 454<br>455               |                           |         | the residue from stage 2.                                                                                                                       |
| 456                      |                           | 2       | . Allow the sample to digest for 1 h with occasional manual                                                                                     |
| 457<br>458               |                           |         | stirring. Ensure the container is covered with a watch glass                                                                                    |
| 459                      |                           | 2       | (or similar).                                                                                                                                   |
| 460<br>461               |                           | 3       | with occasional manual stirring for the first 30 min, for 1 h                                                                                   |
| 462                      |                           |         | in a water bath or similar.                                                                                                                     |
| 463                      |                           | 4       | . Reduce the volume of liquid to 2–3 mL by further heating, after removal of the watch glass.                                                   |
| 465                      |                           | 5       | Add a further 10 mL of hydrogen peroxide (Solution C)                                                                                           |
| 466                      |                           |         | and heat to $85 \pm 2^{\circ}$ C for 1 h in a water bath (with occa-                                                                            |
| 467                      |                           |         | sional manual stirring for the first 30 min).                                                                                                   |
| 468                      |                           | 6       | . Remove the watch glass and reduce the volume of liquid to                                                                                     |
| 469                      |                           |         | approximately 1 mL by further heating.                                                                                                          |
| 470                      |                           | 7       | . Add 50 mL of ammonium acetate $(1.0 \text{ M})$ – Solution D –                                                                                |
| 472                      |                           |         | to the cooled, moist residue.                                                                                                                   |
| 473                      |                           | 8       | The mixture is shaken in an end-over-end shaker at 30 rpm for 16 h at ambient temperature $(20 + 5^{\circ}C)$                                   |
| 4/4                      |                           | 0       | Centrifuge at $2000 a$ for 20 min                                                                                                               |
| 476                      |                           | 7       |                                                                                                                                                 |
| 477                      |                           | 10      | . Kemove the supernatant with a pipette and store in a polyethylene bottle at $4^{\circ}C$                                                      |
| 478                      |                           | 11      | An characteristic log LCD MC ( N ( 10 111))                                                                                                     |
| 479                      |                           | 11      | . Analyse extracts by ICP-MS (see Notes 10 and 11).                                                                                             |
| 480                      |                           |         |                                                                                                                                                 |

SPB-157128 Chapter 2 August 13, 2009 Time: 18:12 Proof 1

Heavy Metal Bioavailability

| 481<br>482<br>483<br>484<br>485<br>486<br>486 | 3.3. Physiologically<br>Based Extraction<br>Test or In vitro<br>Gastrointestinal<br>Extraction | In vitro gastrointestinal extraction consists of two sequential pro-<br>cesses, a gastric and an intestinal digestion, each one carried out<br>employing simulated human conditions (enzymes, pH and tem-<br>perature) (2). Several distinct approaches for performing in vitro<br>gastrointestinal extraction are available (7, 8); however, two are<br>considered in this chapter. |
|-----------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 488<br>489<br>490<br>491                      | 3.3.1. Approach 1:<br>Gastric Extraction                                                       | 1. 0.3 g (accurately weighed) of sample is placed into a 50 mL screw-cap Sarstedt tube and treated with 30 mL of gastric juice.                                                                                                                                                                                                                                                      |
| 492<br>493                                    |                                                                                                | 2. The mixture is then shaken at 100 rpm in a thermostatic water bath maintained at 37°C.                                                                                                                                                                                                                                                                                            |
| 494<br>495<br>496                             |                                                                                                | 3. After 1 h, the solution is centrifuged at 3000 rpm for 10 min and a 5 mL aliquot is removed and filtered through 0.45 $\mu$ m filter disk.                                                                                                                                                                                                                                        |
| 497                                           |                                                                                                | 4. The extracts are analysed by ICP-MS (see Notes 10 and 11).                                                                                                                                                                                                                                                                                                                        |
| 498                                           |                                                                                                | 5. 5.0 mL of the original gastric solution is then backflushed                                                                                                                                                                                                                                                                                                                       |
| 499<br>500                                    |                                                                                                | through the filter into the sample tube to retain the original                                                                                                                                                                                                                                                                                                                       |
| 501                                           |                                                                                                | solid:solution ratio, i.e. 0.3:30 g/mL.                                                                                                                                                                                                                                                                                                                                              |
| 502                                           | 222 Approach 1.                                                                                | 1 Intertinal initia (E2.5 mg hile rate and 15 mg pangreatin) is                                                                                                                                                                                                                                                                                                                      |
| 503                                           | Intestinal Extraction                                                                          | added into the sample tube and the mixture is adjusted to                                                                                                                                                                                                                                                                                                                            |
| 504                                           |                                                                                                | pH 7.0 with saturated NaHCO <sub>3</sub> .                                                                                                                                                                                                                                                                                                                                           |
| 505                                           |                                                                                                | 2. The sample is shaken at 100 rpm in a thermostatic water                                                                                                                                                                                                                                                                                                                           |
| 507                                           |                                                                                                | bath maintained at 37°C for a further 2 h.                                                                                                                                                                                                                                                                                                                                           |
| 508<br>509                                    |                                                                                                | 3. A 5.0 mL aliquot is removed and filtered and analysed by ICP-MS.                                                                                                                                                                                                                                                                                                                  |
| 510<br>511<br>512                             |                                                                                                | 4. After an additional 2 h, a second 5.0 mL extract aliquot is removed, filtered and analysed by ICP-MS ( <i>see</i> Notes 10 and 11).                                                                                                                                                                                                                                               |
| 513                                           |                                                                                                | 5. The second intestinal aliquot is used to check that the small                                                                                                                                                                                                                                                                                                                     |
| 514                                           |                                                                                                | intestinal equilibrium has been reached (9).                                                                                                                                                                                                                                                                                                                                         |
| 516                                           |                                                                                                | Example results for the in vitro gastrointestinal extraction of                                                                                                                                                                                                                                                                                                                      |
| 517                                           |                                                                                                | nine elements from two certified reference materials (INCT-TL-                                                                                                                                                                                                                                                                                                                       |
| 518                                           |                                                                                                | 1 and SRM 1570a) are shown in Table 2.2. Data indicating that the additional 2 h aguilibration partial (as Section 3.3.2, Stan 4)                                                                                                                                                                                                                                                    |
| 519                                           |                                                                                                | had no significance at the 95% confidence interval are shown in                                                                                                                                                                                                                                                                                                                      |
| 520                                           |                                                                                                | <b>Table 2.3</b> for the two certified reference materials. The repeata-                                                                                                                                                                                                                                                                                                             |
| 521                                           |                                                                                                | bility of the in vitro gastrointestinal extraction for the recovery of                                                                                                                                                                                                                                                                                                               |
| 523                                           |                                                                                                | eight elements from a contaminated soil digest on three separate                                                                                                                                                                                                                                                                                                                     |
| 524                                           |                                                                                                | occasions is shown in Table 2.4.                                                                                                                                                                                                                                                                                                                                                     |
| 525                                           | 222 Approach 0:                                                                                | 1.06 a (accurately weighed) of complete standings of 0 wit                                                                                                                                                                                                                                                                                                                           |
| 526                                           | S.S.S. Approach 2:<br>"Stomach" Extraction                                                     | screw-cap Sarstedt tube and treated with 9 mL of simulated                                                                                                                                                                                                                                                                                                                           |
| 527<br>528                                    |                                                                                                | saliva fluid ( <i>see</i> Note 12).                                                                                                                                                                                                                                                                                                                                                  |

| Dean |      |
|------|------|
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      |      |
|      | -    |
|      | ach  |
|      | proś |

Table 2.2 Example results for in vitro gastrointestinal extraction using app (A)

| 2       | Certified values<br>of tea leaves<br>(INCT-TL-1) |                                                    |       | Concentration (mç     | 1/kg) |                       |       |                         |
|---------|--------------------------------------------------|----------------------------------------------------|-------|-----------------------|-------|-----------------------|-------|-------------------------|
|         | (mg/kg)                                          | Gastric stage                                      |       | Intestinal stage      |       | Residual stage        |       | $\Sigma$ Total stages   |
| Element | Mean ± SD                                        | $\begin{matrix} Mean \pm SD \\ (n=3) \end{matrix}$ | %     | Mean $\pm$ SD $(n=3)$ | %     | Mean $\pm$ SD $(n=3)$ | %     | Mean $\pm$ SD $(n = 3)$ |
| Cr      | $1.91 \pm 0.22$                                  | $0.67 \pm 0.13$                                    | 32.57 | $0.73 \pm 0.09$       | 35.73 | $0.65\pm0.09$         | 31.70 | $2.04\pm0.11$           |
| Mn      | $1570\pm110$                                     | $998 \pm 298$                                      | 58    | $356 \pm 231$         | 21    | $360 \pm 32$          | 21    | $1714\pm105$            |
| Fc      | (432)                                            | $1 \pm 1$                                          | 0.2   | $6 \pm 2$             | 1.5   | $429 \pm 46$          | 98.3  | $437 \pm 43$            |
| ïŻ      | $6.12\pm0.52$                                    | $2.68\pm0.57$                                      | 39.82 | $2.43\pm0.24$         | 36.05 | $1.63\pm0.46$         | 24.13 | $6.74\pm0.43$           |
| Cu      | $20.4\pm1.5$                                     | $3.7\pm1.0$                                        | 17.3  | $7.2 \pm 0.5$         | 33.3  | $10.7 \pm 1.1$        | 49.5  | $21.7\pm0.4$            |
| Zn      | $34.7\pm2.7$                                     | $17.0 \pm 2.8$                                     | 40.8  | $10.9\pm1.3$          | 26.2  | $13.7 \pm 2.6$        | 32.9  | $41.7 \pm 4.9$          |
| Mo      | Na                                               | $0.005\pm0.003$                                    | 6.13  | $0.024\pm0.005$       | 27.20 | $0.058 \pm 0.002$     | 66.67 | $0.087\pm0.003$         |
| Cd      | $0.030\pm0.004$                                  | $0.016\pm0.013$                                    | 41.69 | $0.004\pm0.003$       | 9.91  | $0.018\pm0.020$       | 48.40 | $0.038\pm0.012$         |
| Pb      | $1.78\pm0.24$                                    | $0.13\pm0.02$                                      | 7.45  | $0.20\pm0.02$         | 11.51 | $1.40 \pm 0.01$       | 81.04 | $1.73\pm0.05$           |
|         |                                                  |                                                    |       |                       |       |                       | ,     | (continued)             |

|                            |        |                  |       |        |             |        |                  | Н             | eavy | / Me   | etal               | Bioavailability |
|----------------------------|--------|------------------|-------|--------|-------------|--------|------------------|---------------|------|--------|--------------------|-----------------|
|                            |        | 1                |       |        |             |        |                  |               |      |        |                    |                 |
| 577                        |        |                  |       |        |             |        |                  |               |      |        |                    |                 |
| 578                        | ges    |                  | 8     |        |             | 0      |                  |               | 086  |        | 076                |                 |
| 579                        | sta    | SD               | 0.0   | 4.0    |             | 0.2    | 0.4              |               | 0.0  | 0.3    | 0.0                |                 |
| 580                        | tal    | <sup>++</sup> ຄົ | ++    | Ĥ      | ÷           | ÷      | +                | 3             | 4    | ++     | $2 \pm$            |                 |
| 581                        | 10     | n =              | .54   | 3.0    | 89          | .06    | 4.2              | 5             | .55  | .73    | .39                |                 |
| 583                        | Μ      | 23               |       | ~      | Γ           | 0      | Γ                | 6             | 0    | 0      | 0                  |                 |
| 584                        |        |                  |       |        |             |        |                  |               |      |        |                    |                 |
| 585                        | 1      | 1                | 5     |        |             | 33     |                  |               |      | 4      | $\sim$             |                 |
| 586                        |        |                  | 1.8   | 5.7    | 6.5         | 2.3    | 4.9              | 0.7           | .94  | 9.1    | 1.1                |                 |
| 587                        |        | 8                |       | Γ      | 4           | 0      | 1                | Г             | 9    | 3      | 4                  |                 |
| 588                        |        |                  |       |        |             |        |                  |               | _    |        | ~                  |                 |
| 589                        | age    |                  | 5     | _      |             | 8      |                  |               | 01]  | 8      | 083                |                 |
| 590                        | l st   | SI               | 0.0   | 2.0    |             | 0.1    | ю.               | 4             | Н 0. | 0.0    | E 0.               |                 |
| 591                        | dua    | ⊔ ⊔ ⊔<br>⊒       | ++    | +      | 1<br>1<br>2 | +      | +                | ± 0           | 39 - | +      | 51 =               |                 |
| 592                        | esic   | Mea<br>n =       | E.    | 13.(   | 88 -        | ).4(   | 2.1              | 10 =          | 0.03 | 1.07   | 0.16               |                 |
| 593                        | ~      |                  | , ,   | , ,    |             | Ŭ      |                  |               | Ŭ    | , ,    | Ŭ                  |                 |
| 594                        |        |                  |       |        |             |        |                  |               |      |        |                    |                 |
| 595                        |        |                  | 4     | ~      | ~           | 33     |                  | ~             | 66   | £2     | 15                 |                 |
| <sup>596</sup> <b>(b</b> ) |        | ~                | 18.5  | 37.3   | 33.3        | 35.5   | ±0.4             | 32.2          | 55.5 | 23.4   | 28.]               |                 |
| <sup>597</sup> <b>3/6</b>  |        |                  | , ,   |        |             |        | 4                |               |      |        |                    |                 |
| <sup>598</sup> <b>E</b>    | e      |                  |       |        |             |        |                  |               | 2    |        | 2<br>L             |                 |
| <sup>599</sup> <b>i</b>    | stag   | 9                | 07    | 6      |             | 60     |                  |               | .05  | 11     | .07                |                 |
|                            | als    | s<br>H           | 0.0   | 4      | ~           | 0.0    | 0.4              |               | 0 ++ | 0.     | 0 #                |                 |
|                            | stin   | an .             | 6     | + 0    | +           | 3      | $+\!\!\!+\!\!\!$ | Ξ             | 12   | 4<br>+ | 10                 |                 |
| 603 <b>G</b>               | nte    | Me<br>( <i>n</i> | 0.2   | 31.    | 63          | 0.7    | 5.7              | 30            | 0.3  | 0.6    | 0.1                |                 |
| 604                        | -      | 1                |       |        |             |        |                  |               |      |        |                    |                 |
| 605                        |        |                  |       |        |             |        |                  |               |      |        |                    |                 |
| 606                        |        | 1                | 4     | 0      | 7           | 13     | 5                | -             | 07   | 44     | 68                 |                 |
| 607                        |        | %                | 9.6   | 47.    | 20.         | 42.    | 44.              | 57.           | 37.  | 37.    | 30.                |                 |
| 608                        |        |                  |       |        |             |        |                  |               |      |        |                    |                 |
| 609                        |        |                  |       |        |             |        |                  |               | 41   |        | 68                 |                 |
| 610                        | age    | S                | .02   | 9.     |             | .06    |                  |               | 0.0  | .19    | 0.0                |                 |
| 611                        | st     | H 6              | 10    | 0<br>∓ | 33          | ∓<br>0 | 0.]              | 5             | H    | ∓<br>0 | $+\!\!\!+\!\!\!\!$ |                 |
| 612                        | ŝtric  | an               | 15    | 0.     | ++          | 87 :   | 4                | H             | 206  | 02 =   | 120                |                 |
| 613                        | Gas    | ž S              | 0.    | 39     | 38          | 0.0    | 6.4              | 52            | 0    | Ι.     | 0.                 |                 |
| 614                        |        |                  |       |        |             |        |                  |               |      |        |                    |                 |
| 615 <b>df</b>              |        |                  |       |        |             |        |                  |               |      |        |                    |                 |
|                            | kg)    |                  |       |        |             | ~      |                  |               |      |        |                    |                 |
| ela valt                   | ng/    | SD               |       | 6.1    |             | ).1(   | 0.0              |               |      | 0.02   |                    |                 |
|                            | ц<br>( |                  |       | Ŧ      |             | +      | )<br>++          | 3             |      | +      |                    |                 |
| in ac CO                   | 70a    | ear              | en la | 5.9    | [A          | .14    | 2.2              | $\frac{1}{2}$ | в    | 89     | а                  | able            |
|                            | 15     | Σ                | n     | ~      | Z           | 2      | Γ                | 8             | ü    | 2      | ü                  | vail            |
|                            |        | Ħ                |       |        |             |        |                  |               |      |        |                    | lot a           |
|                            |        | mei              |       | , c    |             |        | H                | -             | 0    | 73     | ~                  |                 |
| 624 <b>E B</b>             |        | Ele              | O     | Х      | Fe          | Z      | Ō                | Z             | Z    | Ŭ      | Pl                 | па              |

| 6 | 2 | 9 |
|---|---|---|
| 6 | 3 | 0 |
| 6 | 3 | 1 |
| 6 | 3 | 2 |
| 6 | 3 | 3 |
| 6 | 3 | 4 |
| 6 | 3 | 5 |
| 6 | 3 | 6 |
| 6 | 3 | 7 |
| 6 | 3 | 8 |
| 6 | 3 | 9 |
| 6 | 4 | 0 |
| 6 | 4 | 1 |
| 6 | 4 | 2 |
| 6 | 4 | 3 |
| 6 | 4 | 4 |
| 6 | 4 | 5 |
| 6 | 4 | 6 |
| 6 | 4 | 7 |
| 6 | 4 | 8 |
| 6 | 4 | 9 |
| 6 | 5 | 0 |
| 6 | 5 | 1 |
| 6 | 5 | 2 |
| 6 | 5 | 3 |
| 6 | 5 | 4 |
| 6 | 5 | 5 |
| 6 | 5 | 6 |
| 6 | 5 | 7 |
| 6 | 5 | 8 |
| 6 | 5 | 9 |
| 6 | 6 | 0 |
| 6 | 6 | 1 |
| 6 | 6 | 2 |
| 6 | 6 | 3 |
| 6 | 6 | 4 |
| 6 | 6 | 5 |
| 6 | 6 | 6 |
| 6 | 6 | 7 |
| 6 | 6 | 8 |
| 6 | 6 | 9 |
| 6 | 7 | 0 |
| 6 | 7 | 1 |
| 6 | 7 | 2 |

> Table 2.3

| phase         |
|---------------|
| fluid         |
| intestinal    |
| of the        |
| equilibrium ( |
| extraction    |
| or the        |
| results f     |
| Example       |
|               |

|                                                      | Bioaccessil                                               | ble metals (                                                      | mg/kg) – te:                                                     | a leaves (INt                     | CT-TL-1)                         |                                | Bioaccess      | ible metals ( | (mg/kg) – sł | oinach leave | s (SRM 157)    | Ja)             |
|------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------|----------------------------------|--------------------------------|----------------|---------------|--------------|--------------|----------------|-----------------|
|                                                      | Intestinal si                                             | tage IIA                                                          | Intestinal st                                                    | tage IIB                          |                                  |                                | Intestinal     | stage IIA     | Intestinal   | stage IIB    |                |                 |
| Element                                              | Mean $(n=3)$                                              | SD                                                                | Mean $(n=3)$                                                     | SD                                | <i>t</i> -stat                   | <i>P</i> -value                | Mean $(n=3)$   | SD            | Mean $(n=3)$ | SD           | <i>t</i> -stat | <i>P</i> -value |
| Cr                                                   | 0.730                                                     | 0.093                                                             | 0.760                                                            | 0.100                             | -0.512                           | 0.660                          | 0.286          | 0.073         | 0.302        | 0.098        | -0.794         | 0.511           |
| Mn                                                   | 356.020                                                   | 230.635                                                           | 324.751                                                          | 201.412                           | 1.737                            | 0.225                          | 30.972         | 4.873         | 30.086       | 3.757        | 0.946          | 0.444           |
| Fe                                                   | 6.415                                                     | 1.901                                                             | 5.990                                                            | 1.912                             | 5.899*                           | $0.028^{*}$                    | 62.857         | 3.005         | 59.936       | 1.364        | 2.752          | 0.1111          |
| ïŻ                                                   | 2.429                                                     | 0.236                                                             | 2.208                                                            | 0.101                             | 1.247                            | 0.339                          | 0.733          | 0.091         | 0.720        | 0.117        | 0.873          | 0.475           |
| Cu                                                   | 7.212                                                     | 0.465                                                             | 7.147                                                            | 0.985                             | 0.162                            | 0.886                          | 5.741          | 0.431         | 5.923        | 0.601        | -0.773         | 0.520           |
| Zn                                                   | 10.934                                                    | 1.264                                                             | 10.832                                                           | 1.304                             | 0.191                            | 0.866                          | 28.621         | 1.011         | 28.731       | 2.432        | -0.109         | 0.923           |
| Mo                                                   | 0.024                                                     | 0.005                                                             | 0.020                                                            | 0.003                             | 3.417                            | 0.076                          | 0.312          | 0.052         | 0.278        | 0.059        | 3.687          | 0.066           |
| Cd                                                   | 0.004                                                     | 0.003                                                             | 0.003                                                            | 0.001                             | 1.153                            | 0.368                          | 0.639          | 0.115         | 0.603        | 0.131        | 2.705          | 0.114           |
| pb                                                   | 0.199                                                     | 0.024                                                             | 0.215                                                            | 0.038                             | -1.019                           | 0.415                          | 0.110          | 0.075         | 0.115        | 0.078        | -1.982         | 0.186           |
| Note: <i>t</i> -crii<br>*1% signific<br>Intestinal s | tical (two-tail) i<br>ance level givir<br>tage IIA refers | is 4.303 and .<br>ag <i>t</i> -critical =<br>to <b>Section 3.</b> | <i>P</i> -values are re]<br>: 9.925.<br>. <b>3.2</b> , Step 1–3, | ported at 5%;<br>, while intestii | significance la<br>ral stage IIB | evel.<br>refers to <b>Sect</b> | tion 3.3.2, St | ep 4.         |              |              |                |                 |

Dean

V

|     |                    |           |                 |          |                  |      |          | ŀ        | leav     | y M    | leta | l Bioavailability |
|-----|--------------------|-----------|-----------------|----------|------------------|------|----------|----------|----------|--------|------|-------------------|
|     |                    |           |                 |          |                  |      |          |          |          |        |      |                   |
| 673 |                    |           |                 |          |                  |      |          |          |          |        |      |                   |
| 674 |                    | es        |                 |          |                  |      |          |          |          |        |      | Intec             |
| 675 |                    | tag       | ß               |          |                  |      |          |          |          |        |      | , iii             |
| 676 |                    | al s      | <sup>+1</sup> 6 |          |                  |      |          |          |          |        |      |                   |
| 677 |                    | Tot       | an 🔋            | 4.3      | 11               | 4.   | ×.       | 9.2      | 10       | 22     | 0.   |                   |
| 678 |                    | $\square$ | ž S             | 14       | 49               | 65   | 19       | 13       | 3.5      | 0.8    | 43   |                   |
| 679 |                    |           |                 |          |                  |      |          |          |          |        |      |                   |
| 680 |                    |           |                 |          |                  |      |          |          |          |        |      |                   |
| 681 |                    |           |                 | 0        | 33               | 5    | 9        | 33       | 0        | 0      | 2    |                   |
| 682 |                    |           | %               | 88.      | 26.              | 79.  | 64.      | 82.      | 70.      | 78.    | 97.  |                   |
| 683 |                    | 1         |                 |          |                  |      |          |          |          |        |      |                   |
| 685 |                    | ge        |                 |          |                  |      |          |          |          |        |      |                   |
| 686 |                    | sta       | 8               | 2.5      | 3                | 10   | 3        | 2        | 02       | 01     | ~    |                   |
| 687 |                    | al ;      |                 |          | 12               |      | 0.       | ++       | 0.       | .0     | 0    |                   |
| 688 |                    | sidu      | an<br>3         | 2.0      | 33 =             | 8    | 8        | 4.6      | 10<br>11 | 4<br>+ | 8    |                   |
| 689 |                    | Re        | ( <i>n</i>      | 127      | 129              | 51.  | 12.      | 114      | 2.4      | 0.6    | 41.  |                   |
| 690 |                    |           | I               |          |                  |      |          |          |          |        |      |                   |
| 691 |                    |           |                 |          |                  |      |          |          |          |        |      |                   |
| 692 |                    |           |                 |          | 10               |      | 10       |          |          |        |      |                   |
| 693 | <u>i</u>           |           | %               | 5.8      | 27.5             | 8.9  | 26.5     | 3.5      | 17.3     | 4.9    | 1.2  |                   |
| 694 | g/k ach            |           |                 |          |                  |      |          |          |          | 4      |      |                   |
| 695 | Ű LŐ               | ge        |                 |          |                  |      |          |          |          |        |      |                   |
| 696 | tion b             | sta       | <b>D</b>        | 32       | (                | 11   | 6(       | Ξ        | )]       | ]]     | 33   |                   |
| 697 | g a<br>trai        | Jal       | S<br>H          | 0.3      | - 10             | 0.2  | 0.0      | 0.]      | 0.0      | 0.0    | 0.0  |                   |
| 698 | sin<br>cen         | stii      | = 3             | 6        | ∓ 6.             | + 0  | ++<br>10 | 6 ±      | 5<br>+   | 4      | +    |                   |
| 699 | in uo              | Inte      | Me:             | 9.8      | 134              | 5.8  | 5.2      | 4.8      | 0.6      | 0.0    | 0.5( |                   |
| 700 |                    | -         |                 |          |                  |      |          | 1        | -        | -      | -    |                   |
| 701 | act                |           |                 |          |                  |      |          |          |          |        |      |                   |
| 702 | xt                 |           | I               |          |                  | ~    |          |          | ~        |        |      |                   |
| 703 | ē                  |           | ~               | 5.2      | <del>1</del> 6.2 | 11.5 | 8.9      | 14.2     | 12.3     | [7.]   | 9.1  |                   |
| 704 | ina                |           |                 | 11,      | 1                |      | $\sim$   |          |          |        |      |                   |
| 705 | est                |           |                 |          |                  |      |          |          |          |        |      |                   |
| 706 | <u>it</u>          | ge        |                 | വ        |                  | 2    | 33       |          | Ξ        | 0      | 9    |                   |
| 707 | iro.               | sta       |                 | 0.1      | 66               | 0.2  | 0.0      | 1.4      | 0.0      | 0.0    | 0.0  |                   |
| 708 | ast                | tric      | = 3)<br>- 3     | +        | 1                | +    | ++       | ++       | ++       | +      | +    |                   |
| 709 | 0 0                | as        | Nea<br>n =      | 7.46     | 226              | 7.80 | 1.78     | 3.61     | ).43     | 0.14   | 0.67 |                   |
| 710 | iti                | U         |                 |          | (1               |      |          |          | 0        | 0      |      |                   |
| 712 | est n v            |           |                 |          |                  |      |          |          |          |        |      |                   |
| 713 | k 1<br>dige        | kg)       | 6               | $\infty$ |                  |      |          | $\infty$ |          | 5      |      |                   |
| 714 | s fc<br>/ee        | ng/       | SI              | 4.       | 20               | 3.3  | 2.8      | 5.       | 4.       | 0.0    | 0.4  |                   |
| 715 | rec rec            | il (n     | ++<br>_         | .2 ∃     | $\pm 0$          | H    | +        | 4.<br>E  | 0 #      | H      | ++   |                   |
| 716 | esi<br>on          | SO        | Иеа             | 30       | 98               | 1.9¢ | 5.0      | 33.      | 2        | 16.0   | 8.6  |                   |
| 717 | Ac ler             | ō         | -               |          | 4                | 0    | ~        | -        | 4        | 0      | u)   |                   |
| 718 | e 2<br>npl<br>ati  |           | ut (            |          |                  |      |          |          |          |        |      |                   |
| 719 | abl<br>Xar<br>D (i |           | eme             | 5        | In               | :=   | , T      | u        | lo       | q      | 4    |                   |
| 720 | (a E)              |           | Ele             | 0        | Z                | Z    | 0        | N        | Z        | 0      | Р    |                   |

## -

|     | Dean             |        |                 |               |         |      |        |            |           |         |      | 11   |
|-----|------------------|--------|-----------------|---------------|---------|------|--------|------------|-----------|---------|------|------|
| 721 |                  |        | 1               |               |         |      |        |            |           |         |      |      |
| 721 |                  | Ś      |                 |               |         |      |        |            |           |         |      |      |
| 723 |                  | ige    | _               |               |         |      |        |            |           |         |      | cd)  |
| 724 |                  | Sta    | SI              |               |         |      |        |            |           |         |      | tinu |
| 725 |                  | otal   | n ⊕             | 6             | 9       |      |        | 4          |           |         |      | con  |
| 726 |                  | н<br>П | Nea<br>n =      | 39            | 25      | 5.6  | 5.8    | 28         | 6.        | 6.0     | 6.6  | Ĵ    |
| 727 |                  |        |                 |               | ц,      | ц,   | (1     |            | Ţ         | 0       | ц,   |      |
| 728 |                  |        |                 |               |         |      |        |            |           |         |      |      |
| 729 |                  |        | 1               |               |         |      |        |            |           |         |      |      |
| 730 |                  |        |                 | 7.8           | 5.2     | 5.2  | 0.5    | 7.5        | 3.9       | 9.1     | 8.4  |      |
| 731 |                  |        | 8               | ∞             | 2<br>L  | ~    | $\sim$ | ~          | $\sim$    | Ň       | 6    |      |
| 732 |                  |        |                 |               |         |      |        |            |           |         |      |      |
| 733 |                  | age    |                 |               |         |      |        |            | <u>``</u> | _       |      |      |
| 734 |                  | lst    | S               | 8.8           | 70      | 3.1  | 1.1    | 3.6        | 0.0       | 0.0     | 1.5  |      |
| 735 |                  | dua    | n 🖓             | 6             | +       | ++   | H      | H          | ÷         | +       | H    |      |
| 736 |                  | esi    | n =             | 22.           | 90(     | 1.8  | 8.2    | 9.6        | .59       | .72     | 5.7  |      |
| 737 |                  | ~      | 23              |               | 0       | 4    | Γ      | 6          | 3         | 0       | 5    |      |
| 738 |                  |        |                 |               |         |      |        |            |           |         |      |      |
| 739 |                  |        | 1               |               |         |      |        |            |           |         |      |      |
| 740 | =                |        |                 | 5             | 5.2     | 3.7  | 3.2    | ιΩ.        | 5.6       | 9       | 1    |      |
| 741 | //kg             |        | 8               | 2             | Ξ       | -    | 0      | ŝ          | Ξ         | 6       | 1    |      |
| 742 | (mg              | പ      |                 |               |         |      |        |            |           |         |      |      |
| 743 | uo               | tag    |                 | 82            | 2       |      | _      | ~          | ~         | <i></i> | 2    |      |
| 745 | rati             | als    | SD              | 0.            | : 18    | 0.3′ | 0.2    | 0.2        | 0.0       | 0.0     | 0.0  |      |
| 746 | ent              | ŝtin   | <sup>++</sup> € | 8             | + 0     | ++   | +      | +          | ++        | +       | +    |      |
| 747 | onc              | Ites   | 1eal<br>7 =     | 0.7           | 02.     | .59  | 00.    | .44        | .76       | .06     | .62  |      |
| 748 | 5                | -      | 23              |               | ~       | ~    | 9      | 4          | 0         | 0       | 0    |      |
| 749 |                  |        |                 |               |         |      |        |            |           |         |      |      |
| 750 |                  |        |                 |               |         |      |        |            |           |         |      |      |
| 751 |                  |        |                 | ю.            | 9.6     | 1.1  | .03    | 9.0        | 0.5       | 4.3     | 5.   |      |
| 752 |                  |        | ~               | 4             | 0       | Γ    | 9      | -          | Γ         | -       | 0    |      |
| 753 |                  |        |                 |               |         |      |        |            |           |         |      |      |
| 754 |                  | ge     |                 | 8             | 0.2     | 0    | 10     |            | _         |         |      |      |
| 755 |                  | sta    | SD              | 0.1           | о<br>Н  | 0.4( | 0.0    | 4.9        | 0.0       | 0.0     | 0.0  |      |
| 756 |                  | ric    | n<br>U<br>U     | +             | t.3     | ++   | ÷      | ÷          | ÷         | +       | +    |      |
| 757 |                  | iast   | n =             | .31           | 554     | .20  | .62    | 4.4        | .51       | .13     | .29  |      |
| 758 |                  | Ċ      |                 | 0             | Г       | 9    | Γ      | 0          | 0         | 0       | 0    |      |
| 759 | est              |        |                 |               |         |      |        |            |           |         |      |      |
| 761 | k 2<br>dige      | kg)    | <b>_</b>        | 8             |         |      |        | ~          |           | 5       |      |      |
| 762 | nur<br>ee        | ng/l   |                 | 4.            | 20      | 3.3  | 2.8    | 1 3.       | 4.        | 0.0     | 0.4  |      |
| 763 | n ti<br>reç      | ii (n  | <del> </del>    | $\frac{2}{1}$ | $\pm 0$ | ++   | +      | <b>4</b> . | 0 #       | H       | ++   |      |
| 764 | ton for          | SO     | Иеа             | 30            | 198     | 1.9¢ | 5.0    | 33.        | t.2       | 16.(    | 59.8 |      |
| 765 | Ac Ac            | ö      |                 |               | 4       | 0    | (1     |            | 4         | 0       | Ω,   |      |
| 766 | e 2<br>)ati      |        | int             |               |         |      |        |            |           |         |      |      |
| 767 | abl<br>(         |        | )<br>me         | 4             | In      | ÷    | Ę      | ų          | 10        | p       | .p   |      |
| 768 | 1<br>1<br>1<br>1 |        | Ele             |               | N       | Z    | 0      | Ζ          | N         | 0       | Ρ    |      |

SPB-157128

Proof 1

|     |            |           |                |        |       |          |            |      | He   | avy  | Meta | al Bioavailat | bility |
|-----|------------|-----------|----------------|--------|-------|----------|------------|------|------|------|------|---------------|--------|
|     |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 769 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 770 |            | ges       |                |        |       |          |            |      |      |      |      |               |        |
| 771 |            | sta       | SD             |        |       |          |            |      |      |      |      |               |        |
| 772 |            | tal       | €<br>€         |        |       |          |            | ~    |      |      |      |               |        |
| 7/3 |            | 2         | lear<br>1 =    | 90     | 161   | 5.8      | $_{\pm.0}$ | 45.3 | ιΩ   | 73   | 0.0  |               |        |
| 774 |            | $\square$ | 25             | F      | Ω.    | õ        | 5          | -    | 4    | 0    | 0    |               |        |
| 776 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 777 |            |           | 1              |        |       |          |            |      |      |      | ľ    |               |        |
| 778 |            |           |                | .3     | 4.    | 6        | 4.         | ▶.   | .2   | 9.   | 0.   |               |        |
| 779 |            |           | %              | 83     | 57    | 81       | 83         | 85   | 73   | 61   | 98   |               |        |
| 780 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 781 |            | ge        |                |        |       |          |            |      |      |      |      |               |        |
| 782 |            | sta       | S              | ю      | 101   | <i>.</i> | ŝ          | 2.3  | .18  | .01  |      |               |        |
| 783 |            | ual       | <del>,</del> " | +<br>8 | ++    | ± 2      | н<br>Т     | +    | ± 0  | + 0  | ± 6  |               |        |
| 784 |            | sid       | ean            |        | 63    | 5        | 0.0        | 4.6  | 32 - | 45   | 8.   |               |        |
| 785 |            | R         | ž S            | 88     | 29    | 46       | 20         | 12   | 3    | 0    | 58   |               |        |
| 786 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 787 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 788 |            |           |                |        | ×.    | -+       | ×.         | ~    | 9.   | 10   |      |               |        |
| 789 | (kg)       |           | %              | 9.]    | 11    | 6.4      | 10         | 1.   | 13   | 5.1  | 1:1  |               |        |
| 790 | , gr       |           |                |        |       |          |            |      |      |      |      |               |        |
| 791 | -)<br>u    | age       |                |        | 2     |          |            |      |      |      |      |               |        |
| 792 | atio       | Sta       | 9              | 57     | 14.   | 14       | 14         | 27   | 01   | 00   | 06   |               |        |
| 793 | ntr        | inal      | +              | н<br>П | +     | н<br>О   | 10         | Ε 0  | 0 ∓  | н 0. | H 0  |               |        |
| 794 | nce        | est       | an 🗍           | 52 =   | 6.6   | 54 =     | 50 =       | = 00 | 52 = | )4 = | 88   |               |        |
| 795 | Co         | Ē         | <u>ڪ ۳</u>     | 9.6    | 60    | 3.6      | 2.0        | 1.5  | 0.0  | 0.0  | 0.0  |               |        |
| 796 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 797 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 798 |            |           |                |        | ×.    | ₽.       |            | 0.   | 2    | 6.   |      |               |        |
| 800 |            |           | %              | 7.6    | 30    | 11       | 5.8        | 13   | 13   | 32   | 0.6  |               |        |
| 801 |            |           |                |        |       |          |            |      |      |      |      |               |        |
| 802 |            | d)        |                |        | ю.    |          |            | ~    |      |      |      |               |        |
| 803 |            | tag       | 9              | 43     | 34    | 30       | 10         | 0.83 | 03   | 01   | 03   |               |        |
| 804 |            | c si      | +              | 0.     | +     | -0.      | -0.        | +    | -0.  | -0.  | 0.   |               |        |
| 805 |            | stri      |                | )5 ∃   | 91.   | 74 ∃     | 88         | .83  | 0 ∃  | F 43 | 33 1 |               |        |
| 806 |            | Ga        | ₩ S            | 8.(    | 15    | 6.0      | 1.3        | 18   | 0.0  | 0.2  | 0.9  |               |        |
| 807 | ÷          |           |                |        |       |          |            |      |      |      |      |               |        |
| 808 | 3<br>ges   | 1         |                |        |       |          |            |      |      |      |      |               |        |
| 809 | ek<br>di   | J/kç      | SD             | 4.8    | 07    | 3        | 8          | 3.8  |      | 02   | 4    |               |        |
| 810 | tini<br>we | jmg       | +              | +      | $\pm$ | ± 3.     | ± 2.       | +    | 0.4  | ± 0. | ± 0. |               |        |
| 811 | a re       | oil       | an             | 0.2    | 80    | .1       | 0.         | 3.4  | ++   |      | 8.   |               |        |
| 812 | fro<br>Aqu | ofs       | Ř              | 13     | 49    | 69       | 25         | 13   | 4    | 0.9  | 59   |               |        |
| 813 | 2.4<br>ta  | -         |                |        |       |          |            |      |      |      |      |               |        |
| 814 | Da         |           | leni           |        |       |          |            |      |      |      |      |               |        |
| 815 | (c)        |           | lem            | Ċ      | Mn    | ïZ       | Cu         | Zn   | Mo   | Cd   | Pb   |               |        |
| 816 |            |           |                |        |       |          |            |      |      |      |      |               |        |

Proof 1

|                   | Dean                  |                                                                                                            |
|-------------------|-----------------------|------------------------------------------------------------------------------------------------------------|
| 817               |                       | 2. With the screw cap closed, manually shake the soil-fluid mixture.                                       |
| 819               |                       | 3 After 5–15 min add 13.5 mL of simulated gastric fluid                                                    |
| 820               |                       | 4. The issue is a labor of simulated gastre inde.                                                          |
| 821               |                       | 4. The mixture is then shaken on an end-over-end shaker main-<br>tained at $37 \pm 2^{\circ}$ C.           |
| 823               |                       | 5. After 1 h check the pH of the soil suspensions; the pH should be 1.2–1.7 ( <i>see</i> Note 13).         |
| 825               |                       | 6. The solution is centrifuged at 3000 rpm for 5 min and a 1.0                                             |
| 826               |                       | mL aliquot of supernatant is removed.                                                                      |
| 827               |                       | 7. To the supernatant add 9.0 mL of 0.1 M HNO <sub>3</sub> .                                               |
| 828<br>829<br>830 |                       | 8. The sample is then stored at <8°C prior to analysis by ICP-MS ( <i>see</i> Notes 10 and 11).            |
| 831               |                       |                                                                                                            |
| 832               | 3.3.4. Approach 2:    | 1. 0.6 g (accurately weighed) of sample is placed into a 50 mL                                             |
| 833               | "Stomacn + Intestine" | screw-cap Sarstedt tube and treated with 9 mL of simulated                                                 |
| 834               |                       | saliva fluid ( <i>see</i> Note 12).                                                                        |
| 835               |                       | 2. With the screw cap closed, manually shake the soil-fluid                                                |
| 836               |                       | mixture.                                                                                                   |
| 837               |                       | 3. After 5–15 min, add 13.5 mL of simulated gastric fluid (see                                             |
| 838               |                       | Note 12).                                                                                                  |
| 839<br>840        |                       | 4. The mixture is then shaken on an end-over-end shaker maintained at $37 + 2^{\circ}$ C                   |
| 841<br>842        |                       | 5. After 1 h check the pH of the soil suspensions; the pH should be 1.2.1.7 (see Note 13)                  |
| 843               |                       |                                                                                                            |
| 844<br>845        |                       | 6. Then, add 27.0 mL of simulated duodenal fluid and 9.0 mL of simulated bile fluid ( <i>see</i> Note 12). |
| 846<br>847        |                       | 7. With the screw cap closed, manually shake the soil-fluid mixture.                                       |
| 848               |                       | 8 Adjust the pH of the resultant suspension to $6.2 \pm 0.5$ by                                            |
| 849               |                       | the dron-wise addition of $37\%$ HCl 1 M or 10 M NaOH                                                      |
| 850               |                       | as required                                                                                                |
| 851               |                       | 0. The minimum is then shaken on an and even and shaken                                                    |
| 852<br>853        |                       | 9. The mixture is then shaken on an end-over-end shaker maintained at $37 \pm 2^{\circ}$ C for 4 h.        |
| 854               |                       | 10. Remove the soil suspension.                                                                            |
| 855               |                       | 11. Measure (and record) the pH of the soil suspension: pH                                                 |
| 856               |                       | should be $6.3 \pm 0.5$ .                                                                                  |
| 857               |                       | 12. The soil suspension is then centrifuged at 3000 rpm for                                                |
| 858               |                       | 5 min and a 1.0 mL aliquot of supernatant is removed.                                                      |
| 859               |                       | 13 To the supernatant is added 9.0 mL of 0.1 M HNO.                                                        |
| 861               |                       | 14. The second is then star have 2000 in the HNO3.                                                         |
| 862               |                       | 14. The sample is then stored at $<8^{\circ}$ C prior to analysis by                                       |
| 863               |                       | ICP-MIS (see Notes IU and II).                                                                             |
| 864               |                       |                                                                                                            |

Heavy Metal Bioavailability

| 865<br>866<br>867 | 3.4. Method: Soil<br>Digestion Procedure     | An aci<br>analys | id digestion procedure is used to provide pseudo-total metal is.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 868<br>869<br>870 | 3.4.1. Acid Digestion<br>Procedure           | 1.               | Approximately 1 g of soil sample is accurately weighed into a digestion tube (250 mL volume).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 871               |                                              | 2.               | Add 0.5–1.0 mL of water to obtain a slurry.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 872               |                                              | 3                | Then add while mixing 7 mL of 12.0 M HCl followed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 873               |                                              | 01               | by 2.3 mL of 15.8 M HNO <sub>3</sub> (drop by drop, if necessary to reduce foaming) (see Note 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 875               |                                              | 4                | Add 15 mL of 0.5 M UNO to the meetion wood and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 876               |                                              | 4.               | Add 15 mL of $0.5$ M HNO <sub>3</sub> to the reaction vessel and connect to a water-cooled reflux condenser.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 877               |                                              | 5.               | Allow to stand for 16 h at room temperature to allow slow oxidation of the organic matter of the soil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 879               |                                              | 6                | Raise the temperature of the reaction mixture until reflux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 880               |                                              | 0.               | conditions are achieved and maintain for 2 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 882               |                                              | 7                | Allow to cool slowly to room temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 883               |                                              | · · ·            | Pinot to cool slowly to room temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 884               |                                              | δ.               | with 10 mL of 0.5 M HNO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 885               |                                              | 0                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 886               |                                              | 9.               | Quantitatively transfer the contents of the reaction vessel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 887               |                                              |                  | HNO, and transfer as well. Make up to the mark with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 888               |                                              |                  | water stopper and shake                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 889               |                                              | 10               | All and the set line has described and the set of the s |
| 890<br>891        |                                              | 10.              | supernatant solution by ICP-MS ( <i>see</i> Notes 10 and 11).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 892               |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 893<br>894<br>895 | 3.4.2. Alternate Acid<br>Digestion Procedure | 1.               | Approximately 1 g of soil sample is accurately weighed into a digestion tube and 10 mL of 1:1 v/v concentrated HNO <sub>3</sub> :water is added.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 896<br>897        |                                              | 2.               | The mixture is then heated at 95°C on a heating block for 15 min without boiling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 898               |                                              | 3                | After cooling at room temperature for 5 min 5 mL con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 899               |                                              | 5.               | centrated HNO <sub>2</sub> is added and the sample is heated at 95°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 900               |                                              |                  | for 30 min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 901               |                                              | 4                | An additional 5 mL of concentrated HNOs is added until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 902               |                                              | 1.               | no brown filmes are given off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 903               |                                              | E                | Evaporate the solution to $z \in mI$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 904               |                                              | э.               | Evaporate the solution to <5 mL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 906               |                                              | 6.               | After cooling, 2 mL of water and 3 mL of 30% $H_2O_2$ are added and heated (<120°C) until effervescence subsides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 907               |                                              |                  | and the solution cools. Additional $\mathrm{H}_2\mathrm{O}_2$ is added until                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 908               |                                              |                  | effervescence ceased (but add no more than 10 mL $H_2O_2$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 909               |                                              |                  | This stage is continued for 2 h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 911               |                                              | 7.               | Evaporate the solution to $<5$ mL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 912               |                                              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Dean                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 213                                                                                                                             | <ol> <li>After cooling, add 10 mL of concentrated HCl and heat<br/>(&lt;120°C) for 15 min.</li> </ol>                                                                                                                                                                                                                                                                                 |
| 215<br>216<br>217                                                                                                               | 9. After cooling, filter the sample through a Whatman No. 41 filter paper into a 100 mL volumetric flask, and then make up to the mark with water.                                                                                                                                                                                                                                    |
| 219                                                                                                                             | 10. Analyse by ICP-MS (see Notes 10 and 11).                                                                                                                                                                                                                                                                                                                                          |
| <ul> <li>3.5. Method: Sample<br/>Analysis by ICP-MS</li> <li>222</li> <li>223</li> <li>224</li> <li>225</li> <li>226</li> </ul> | ICP-MS measurement conditions are optimised daily using the built-in PlasmaLab software procedure. Samples of the soil extracts/digests are analysed by ICP-MS using an external calibration technique. Sc, In and Tb internal standards (10 $\mu$ g/L) are added to all samples, blanks and standard solutions. A blank is analysed with each analytical batch ( <i>see</i> Note 9). |
| 3.5.1. ICP-MS Operating<br>Conditions: Standard                                                                                 | 1. In standard mode the following elements can be analysed: >90 amu                                                                                                                                                                                                                                                                                                                   |
| Mode<br>131<br>132<br>133                                                                                                       | <ol> <li>Forward power, 1400 W; coolant gas flow, 13.0 L/min; auxiliary gas flow, 0.90 L/min; nebuliser gas flow, 0.80 L/min; quadrupole bias, -1.0 V; hexapole bias, 0.0 V; dwell time per isotope, 10 ms.</li> </ol>                                                                                                                                                                |
| 334<br>3.5.2. ICP-MS Operating<br>Conditions:                                                                                   | 1. In collision/reaction cell mode the following elements can be analysed: <90 amu                                                                                                                                                                                                                                                                                                    |
| Collision/Reaction Cell<br>Mode                                                                                                 | <ol> <li>Forward power, 1400 W; coolant gas flow, 13.0 L/min;<br/>auxiliary gas flow, 0.90 L/min; nebulizer gas flow, 0.80<br/>L/min; collision cell gas, 4.50 L/min of 7% H<sub>2</sub>/93% He;<br/>quadrupole bias, -14.0 V; hexapole bias, -15.0 V; dwell<br/>time per isotope, 10 ms.</li> </ol>                                                                                  |
| 943<br>944<br>945                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                       |
| 4. Notes                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                     |
| 949<br>950<br>951                                                                                                               | 1. Unless otherwise stated, all solutions should be prepared in water that has a resistivity of 18.2 $M^{\Omega} \times cm$ . This standard is referred to in the text as "water".                                                                                                                                                                                                    |
| 253<br>254<br>255<br>256                                                                                                        | 2. All laboratory ware should be made of borosilicate glass, polypropylene, polyethylene or PTFE, except for the centrifuge tubes, which should be made of borosilicate glass or PTFE.                                                                                                                                                                                                |
| 257<br>258<br>259<br>260                                                                                                        | 3. All vessels in contact with samples or reagents should be cleaned in $HNO_3$ (4 mol/L) for at least 30 min, then rinsed with distilled water, cleaned with 0.05 mol/L EDTA and rinsed again with distilled water. Alternatively clean all                                                                                                                                          |

 vessels by immersing in  $HNO_3$  (4 mol/L) overnight and then rinse two to three times with water.

- 4. When extracting with sodium nitrate (NaNO<sub>3</sub>), it is necessary to correct the results for the difference in final volume, i.e. 2 mL of HNO<sub>3</sub> was added to 48 mL of extract to give a final volume of 50 mL.
- 5. When using sequential extraction methods for the analysis of sediment or soil samples, a separate sub-sample should be dried (in a layer of approximately 1 mm depth) in an oven at  $105 + /-2^{\circ}C$  for 2–3 h, transferred to a desiccator and allowed to cool prior to weighing.
- 6. Ensure that the sample, i.e. sediment/soil, does not form a "cake" during the extraction procedure. If a cake is formed, either adjust the shaking speed to ensure that the suspension is maintained or mechanically break the solid "cake" with a pre-cleaned glass rod. It is important that the sample remain in complete suspension during the extraction process.
- 7. In sequential extraction the mechanical shaker, preferably of the end-over-end type, should be operated at a speed of 30 + /-10 rpm and a temperature of  $22 + /-5^{\circ}$ C. All samples should be centrifuged at 3000g for 20 min.
- 8. The combination of 12.0 mol/L HCl and 15.8 mol/L HNO<sub>3</sub> in a volume ratio of 3:1, respectively, is known as aqua regia.
- 9. Calibration solutions for ICP-MS should be prepared with the appropriate extraction solution, i.e. use matrix-matched calibration solutions.
- 10. It is important to prepare a sample blank for every batch of extractions, i.e. prepare a container with no sediment/soil, but treated in the same manner as though it contained the sample.
- 11. It is recommended for ICP-MS that all extracts be filtered  $(0.45 \ \mu m)$  prior to analysis.
- 12. Simulated gastrointestinal fluids are stored at room temperature overnight prior to use. Prior to their use for bioaccessibility studies, the fluids need to be heated to 37°C at least 2 h before their use on the day following their preparation.
- If the pH of a sample suspension is not within the guideline of 1.2–1.7, the sample should be discarded and subsamples re-extracted. Before re-extracting, however, add an additional amount of 37% HCl (up to a maximum of 1.0 mL).



| 1009<br>1010<br>1011<br>1012 | Acknowledgements             | The author would like to thank Dr Marisa Intawongse for evalu<br>ation of some of the methods described. Also, the technical assis<br>tance of Mr. Gary Askwith is acknowledged. |
|------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1013<br>1014                 | References                   |                                                                                                                                                                                  |
| 1015<br>1016                 | 1. Dean, J.R. (2003) M       | <i>Lethods for Environmen</i> -<br>sequential extraction (three-step) procedure<br>for the determination of extractable trace                                                    |
| 1017                         | Chichester.                  | metal contents in a sewage sludge amended                                                                                                                                        |
| 1018                         | 2. Dean, J.R. (2007) Bi      | oavailability, Bioaccessi-<br>Soil reference material (CRM 483), com-                                                                                                            |
| 1019                         | inants, John Wiley an        | d sons Ltd., Chichester. acetic acid and EDTA extractable metal con-                                                                                                             |
| 1020                         | 3. Quevauviller, Ph.,        | (1998) Operationally tent J. Environ. Monit. 2, 228–233.                                                                                                                         |
| 1022                         | sediment analysis I. S       | Standardization. Trends Zeijdner, E., Schoeters, G., Verstraete, W.                                                                                                              |
| 1023                         | Anal. Chem. 17, 289          | -298. et al. (2002) Comparison of five in vitro                                                                                                                                  |
| 1024                         | 4. Quevauviller, Ph.         | (1998) Operationally digestion models to study the bioaccessibil-<br>ity of soil contaminants. <i>Environ Sci Technol</i>                                                        |
| 1025                         | sediment analysis: I         | I. Certified reference <b>36</b> , 3326–3334.                                                                                                                                    |
| 1026                         | materials. <i>Trends Ana</i> | <i>I. Chem.</i> 17, 632–642. 8. Intawongse, M. and Dean, J.R. (2006) <i>In</i>                                                                                                   |
| 1027                         | defined extraction p         | rocedures for soil and of trace metals from soil and food samples.                                                                                                               |
| 1020                         | sediment analysis. Pa        | urt 3: New CRMs for Trends Anal. Chem. 25, 876–886.                                                                                                                              |
| 1030                         | Anal. Chem. 21, 774          | -785. Methods for the Measurement of the Oral                                                                                                                                    |
| 1031                         | 6. Rauret, G., Lopez-Sa      | nchez, J.F., Sahuquillo, Bioaccessibility of Selected Metals and Metal-                                                                                                          |
| 1032                         | et al. (2000) Applicat       | tion of a modified BCR tal Agency, Bristol, UK.                                                                                                                                  |
| 1033                         |                              |                                                                                                                                                                                  |
| 1034                         |                              |                                                                                                                                                                                  |
| 1036                         |                              |                                                                                                                                                                                  |
| 1037                         |                              |                                                                                                                                                                                  |
| 1038                         |                              |                                                                                                                                                                                  |
| 1039                         |                              |                                                                                                                                                                                  |
| 1040                         |                              |                                                                                                                                                                                  |
| 1041                         |                              |                                                                                                                                                                                  |
| 1043                         |                              |                                                                                                                                                                                  |
| 1044                         |                              |                                                                                                                                                                                  |
| 1045                         |                              |                                                                                                                                                                                  |
| 1046                         |                              |                                                                                                                                                                                  |
| 1047                         |                              |                                                                                                                                                                                  |
| 1048                         |                              |                                                                                                                                                                                  |
| 1050                         |                              |                                                                                                                                                                                  |
| 1051                         |                              |                                                                                                                                                                                  |
| 1052                         |                              |                                                                                                                                                                                  |
| 1053                         |                              |                                                                                                                                                                                  |
| 1054                         |                              |                                                                                                                                                                                  |
| 1055                         |                              |                                                                                                                                                                                  |
| 1030                         |                              |                                                                                                                                                                                  |