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Abstract

This investigation focuses and analyses the theoretical and practical performance of ¢
dynamic system, which affords condition monitoringd ambust fault diagnosis. The
importance of robustness in fault diagnosis is becoming significant for controlled dynamic
systems in order to improve operating reliability, critisafety and reducing the cost often
caused by interruption shut down and gament repairing. There is a strong motivation to
develop an effective rediime monitoring and fault diagnosis strategy so as to ensure a timely
response by supervisory personnel to false alarms and damage control due ftc
faults/malfunctions. Environmentatlisturbances/noises are unavoidable in practical
engineering systems, the effects of which usually reduce the diagnostic ability of
conventional fault diagnosis algorithms, and even cause false alarms. As a result, robust fau
diagnosis is vital for pracal application in control systems, which aims to maximize the
fault detectability and minimize the effects of environment disturbances/noises.

In this study, a genetic algorithm (GA) optimization meldased fault diagnosis algorithm

is investigated foapplications in wind turbine energy systems and induction motors through
concerns for typical types of developing (incipient) and sudden (abrupt) faults. A robust fault
detection approach is utilized by seeking an optimal observer gain when GA optimisati
problems become solvable so that the residual is sensitive to the faults, but robust agains
environmental disturbances/noises. Also, robust fault estimation techniques are proposed b
integrating augmented observer and GA optimisation techniquestsbdtestimation error
dynamics have a good robustness against environmental disturbances/noises. The two ca
studies investigated in this project are: a 5MW wind turbine model where robust fault
detection and robust fault estimation are discussed wiliisleand a 2kW induction motor
experimental setup is investigated, where robust fault detection and robust fault estimatior
are both examined, and modelling errors are effectively attenuated by using the proposet
algorithms. The simulations and experirta@mesults have demonstrated the effectiveness

of the proposed fault diagnosis methods.
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Chapter One: Introduction

7R LPSURYH LV WR FKDQJH WR BH SHUIHFW L

WinstonChurchill

1.1 Basics of Fault Diagnosis

Modern industrial dynamic control systems are becoming more complex, sophisticated and
expensive, which provides the driving force for the ever rising demand to continually
improve the system reliability, safetperation product quality and redudée cost caused
by shutdown time and component repairing. These concerns are not generally relevant to
safetycritical systems such as aircraft, nuclear reactors pstagons, chemical plants etc.
The costs of sudden abnormabkages in a dynamic controlled system could be extremely
severe in rgardto environmental impact, financial loss, humerous and serious accidents.
As a result, the use of condition monitoring (CM) and fault diagnosis (FD) techniques is
essential for recagzing abnormal circumstances in the system, which is the driving force
behind the extensive research into FD over the last four decades. In order to ithprove
availability of the dynamig system reliability and reduce the cost of repairing and
maintenane in controlled systems, effective fault detection and diagnosis (FDD) systems
are necessarilyp beintegrated with modern industrial automation processes/systems.

7KH WHUP pIDXOWY LPSOLHV WiV ndr@enDrie@RHdIBsE O L \
there is a need for early fauliagnoses even at its inception period in order to avoid any
critical concers. It is evident that early wang of emerging faults can save the system from
failure, operational interruption and unanticipated emergency. Hdtdejs a major
neassity when planning suitable maintenance and for the avoidance of severe accidents
The design of FD also considered as fault detection and isolation (FDI)deagsetemuch
attention sincd 970s, great contributions and an extensiverdityeof methods have been
suggested and developed in solving some of the sensitivity, stability as well as problems
robustnes§l]-[4]. Traditionally, in the control systems community the term Fi2Bcribes
a monitoring technique for detecting all pdde unexpected changes in the normal healthy
working operation of a process system, by identifying the existence of faults, determining the

location and analysing their tolerana@pacity The monitored health of a dynamic system



can respond to practicabnormal changes by utilizing early fault detection, fault isolation
and fault identification, so that the system operating personnel can take appropriate
measures to avoid further damage to the system, and sustain some functionality with
tolerated systenperformance degradation. There have been fruitful tedar early
detection fault isolation, and identificatioaf fault. There are and still exist different tools

for early detection of faults, isolation of faults, and the identification of theergg\wof

faults in systems which will be later discussed in the next chapter.

With their rapid development there is an increasing need for modern control systems to
keep on operating reliably in satisfying crucial functions in the event of system éaulitsg
to the idea that faulblerance could determine the success of FDI. Unexpected components
failure could cause the system to be less tolerance which could be risky to the system
However WKH JRDO RI IDXOW WROHUD Q My opevatMhRasWEINag/ D L ¢
give the operational staff enough time to repair the system or to detesmiaalifferent
measureo prevent catastrophes.

FDI methods/techniques are based on the redundancy of hardware or software (so calle
analytical redundancy)Firstly, the standard method khown asphysical (hardware)
redundancy demanding at least double arrangements of physiahdant devices,
nevertheless the challenge of this approach is the use of additional hardware to back up th
system which makethe method costly as well as resulting in extra load and physical
equipment space worries. Secondipalytical redundancy operates using a mathematical
PRGHO WR UHSOLFDWH WKH UHDO V\VWHPTV SHUIRUI
analytical modebased FDI approaches require either quantitative models using measured
variables of the monitored process or a qualitative blueprint (knowledge from experts to
express the system). In quantitative modelling, the plant is expressed in respect of the
availabke mathematical relationship between input and output variables, where the modelling
errors must be overcome during control and monitoring design. In a qualitative model, these
relationships of the input/output variables are expressed explicitly, ofteg based on
knowledge from experts or dal@ased training analyses are assumed as regards to preceding

information about the model.



1.2 Basics of ModelBased Fault Diagnosis

Modekbased fault diagnosis can basically be explained as the assessment ofrynsiste
between the actual process and the model output, which is called the residual, as the fau
indicator. Modelbased fault diagnosis is on no occasion dependent on the model which
represents the healthy systems and processes. It is noticed that thet@@rafithe system
may fluctuate along the process when the characteristics of the uncertainties are unknowr
then the system cannot be modelled accurately. In other words, modelling errors are
unavoidable, which brings a challenge for mel@éed fault chgnosis techniques. In real
world dynamic systems case, disturbances, noises, and modelling errors are unavoidable
therefore there is a need to reduce the rate of false alarm posed by these uncertainties a
also, improve the success rate of early fdatection by overcoming the adverse effects of
the uncertainties. Therefore, an effective FDD system must be sensitive to faults but robus
against modelling errors, disturbances, and noises. Previous approaches to FDD generall
include quantitative, quaédtive and intelligent computing based approaches. In this study,
quantitative modebased fault diagnosis methods are combined for overcoming the
modelling uncertainties challenges, thus reducing the false alarm rate, generally caused b
unknown charactestics of environmental disturbances, and prevent the missing of fault

signals.

It is evident that the difference between a real system and the modelled system coulc
cause complications in FD, which may positively establish false/missed alarm and corrupt
the FD system performance, and even lead to total failure of the FDtilRegdarameter
perturbations are major influences that can reduce the control and monitoring performance
of industrial systems/processes, and the consequence of modelling erdsrsoneeamine
in the context of FD theory. Many efforts have been made to solve this problem by using
optimisation methods [J[/]. However, the investigation is still ongoing for developing

novel robust fault diagnosis practices and their applicatioas#miety of industrial systems.

In fault diagnosis detector, there is a tradiebetween improving the sensitivity to the
faults and reducing the sensitivity to the uncertainties. Therefore, the optimisation technique
is a natural choice for solving thiradeoff problem. The main aim of this thesis is to develop
novel robust fault detection, and fault estimation techniques for systems subjected to proces
disturbances, measurement noises, and modelling errors, as well as to investigate the

applicatios to wind turlme systems and induction motors



1.3 Motivation and Justification

FD is a vital tool for reatime industrial monitoring and malfunction diagnosis, which
aims to improve system reliability, availability, and safety operation, to also, régucest
due to the unexpected shildwn and unscheduled repairing and maintenance. Fault
diagnosis is used to determine when and where a fault occurs so that a timely alarm can b
provided. For a modddased fault diagnosis method, the diagnosis perforenaas to be
dependent on the rejection ability of the fault diagnosis scheme against such sorts of
uncertainties, as modelling errors, process disturbances and measurement noises, such
frequently unavoidable in practical engineering systems. Therenvardéypical faults in
industrial processes, that is, the incipient, and abrupt fault. In this study, the two typical types
of faults will be both examine. It is noticed that incipient faults might have a small influence
on residuals so therefore, it is mateallenging to detect the incipient type of faults. The
uncertainties may prevent the faults being recognized in the residual, which can cause a fau
to be missed or false positives alarms. As a result, it is vital to improving the uncertainty
rejectionability to distinguish the fault effects from the disturbance effects in the design of
fault detection algorithm. In this study, a novel robust fault detection algorithm is developed
by attenuating the signals associated with dominant faults at specéigebhcies subject to
an optimisation framework. It is evident the disturbance attenuation ability would be
improved if the dominant disturbances are minimized. In addition, the faults such as actuator
faults and sensor faults could occur simultaneoudlyimthe monitored period. It would be
challenging to detect all of them by using a single fault detector due to the effects of
uncertainties, and the differences of the input and output signals in magnitudes. Multiple
faults are also to be investigatedhis study.

Along with fault detection, and fault isolation, it is also important to determine or
estimate the severity of faults in components. Such a technique is called fault identification.
In this study, a novel fault identification technique caftadt estimation is to be developed.

By using the proposed fault estimation technique, the dynamic system states, and the fault
concerned are to be reconstructed, which lays a foundation for advanced control and decisio
making. The fault tracking abilitagainst the uncertainties is also the key challenge for
developing an effective fault estimation technique. Genetic Algorithm (GA) is a popular
optimisation tool, which could find a global optimum solution, GA avoids the need to
establish gradients ofehcost functions, it is easier to ufar solving various optimisation

problems with multiple objectives, and even for complex dynamic systems. In this study,
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GA optimisation algorithms are utilized to seek optimal gains of the fault detector and fault
estimators for achieving optimal robust performance for both fault detection and fault
reconstruction. The case studies of the research are concentrated on a wind turbine ener

conversion system, and an induction motor system.

1.4 Research Aim and Objectives

This research work is aimed to develop novel fault detection and fault reconstruction
approaches with applications to wind turbine systems and induction motors for improving
system operation reliability and safety operation by overcoming the effects of the
uncertainties (including modelling errors and process/measurement uncertainties). To

achieve the aim above, the research objectives of this study are outlined as follows:

1. To review the state of the art of the fault diagnosis techniques and their appdicat

2. Toinvestigate robust fault detection techniques such that the fault detection indicator
can achieve an optimal performance by enhancing the effects from the faults signals,
but attenuating the influence of modelling errors, process disturbances and
measurement noises.

3. To discuss the muHfiault detection problem under disturbances environments.

4. To investigate the fault reconstruction problem by integrating an augmented system
approach with the GA optimisation technique.

5. To investigate the case diufor wind turbine systems by using both robust fault
detection and robust fault estimation techniques.

6. To investigate the case study for induction motors by using both robust fault

detection and robust fault estimation techniques.

1.5 Thesis Organisation

This thesis is arranged into seven chapters. Following the general introduction from

Chapter One, gives geeral introduction overviewnterest of study.

Chapter Two reviews the state of the art of the moebaked fault diagnosis. This section
enlightenedhe nontechnical audience on true monitoring of a healthy dynamic system and

review of variougnvestigation techniques &dults diagnosis.



Robust modebased fault detection is discussedimapter Three, where an algorithm is
addressed by integratirige dominant disturbance frequency checking method (frequency
spectral analysis) and the genetic algorithm optimisation for seeking an optimal gain of the
fault detector.

In Chapter Four, robust modebased fault estimation is investigated, where thensunged
observer is designed to simultaneously estimatesiystem states and faults, whéw is
utilized to find the optimal gain of the observer by minimizing the estimation error against

modelling errors and environmental disturbances/noises.

Case stug for wind turbine system is investigated @hapter Five, where robust fault
detection for wind turbine systems and robust fault estimation for wind turbine systems are
both discussed. A stagpace mathematical model of 5SMW wind turbine system is ugéd wi

a rotational speed of 10m/s.

The second case study is investigate€livapter Six, where uses the redhta of an AC
inductionmotor collected irChapter Six, uses the redime data of an AC induction motor

collected in theexperimental setum verify the proposed methods.

Finally, in Chapter Seven key contributions and achievements of the research are

summarised and concluded, as well as potential works in the future are remarked.

1.6 Original Contributions *Uniqueness of the investigation

Throughouthe progres of this studynew ideashas beemesearctand investigated

1. To discuss GAbased robust fault detection problems for systems with multiple faults
so that the residual (fault indicator) is sensitive to the faults, but robust against

uncertainies.

2. To propose novel fault estimation techniques by integratiegaugmented system
methods and GA optimisation approaches so that the abrupt faults and ingpecoit
faults can be effectively reconstructed. Fault estimation can give the sizeaslddppe
of the faults, which can provide valuable informationtfe@advanced systems control

and management.

3. To investigate the casstudy of the robust fault detection and robust fault estimation

problem for a 5MW wind turbine conversion system.



4.

To investigate the case study of the robust fault detection and robust fault estimation

problem for a thre@hase inductor motor.

To use the Fourier transform approach to obtain the frequencies of the dominant
disturbance components, where are then utilize@Anoptimisation for seeking an
optimal gain for fault detectors and fault estimators. This integration leads to novel

robust fault diagnosis algorithms.

In the GA optimisation, the selection of the cost functions is an original contribution
leading to anultiple-objective optimisation problem for seeking optimal fault detectors

and fault estimators.
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Chapter Two: Fundamentals of Fault Diagnosis

S'LDIJQRVLV LV QRW WKH HQG EXW WKH EHJLC

Martin H. Fischer

2.1 Introduction

Diagnosis is a modern Latin word from Greek which simply mehssnguishthat is
interpreted as recognizing the nature and source of an element or distinguishing any form o
nature of problem. The act of distinguishitige existence of syndrome from its signs or
symptoms all started in the health sector, with doctor and patient relatienBigoprocess

of describing the identification of a condition symptoonuld basically illustratehe
background of the real natuamd cause of an unhealthy circumstance that could result to
criticality. Diagnosis can provide an accurate picture of a true system condition and
indicates healthier decisions or idems the nature of a root problem through logical
analysis of the histy or backgroundThe derived judgement facilitates the generation of
data from which valuable information about the problem can be extracted as these question
are raised: who has piloted to the problem? What it is? And in what way can the problem be
communicated across to others, what way it will be treatedvémat the outcome result
might be B]. Diagnosis is aimed at defining the causes of the automatically monitored or
observed system with malfunction symptoms or signals through perception and
investgation.Diagnosis scheme could be carried out through offline or online analysis based
on knowledge gained from the observer or monitoring procedure, gdfihem histoical

information or in respect to the define root causes of problem.

2.2 Background of Fault Diagnosis

One of the traditional techniques of early diagnosis is the Failure Mode, Effects and
Criticality Analysis (FMECA) which is a means of measuring reliability costidgsign
approach to observe the possible failure conditions inside a sgsteparticular device, to
compromise the issues on system and devices operation. Individually possible failure
operations or methods are standardized to be irdu@m assignment of device/people
safety FMECA is comprisd of two distinct analyses, Faie Mode and Effect Analysis
(FMEA) and the Criticality Analysis (CA).



,Q WKH 1 Vn niilikaky WaskHe first to introduce FMEA as a detection tool to
improve and, assess effects/roots of all possible faults during Apollo misSjoirs grder
to document system design, distinguish error, define the severity of faibgeimplication,
as well as tadetermine systesreliability and control effect of equipment failure for war
performance. National Aeronautics and Space Administration (NASA) i 486 the first
to implement, identif and recognise the step by step fault supervision procedures of FMEA
as a forward practical technique to evaluate, decide, dgsimressand determine all
possible failure in systesnNASA employed FMEA approach to téemine any potential
failures or accidents that can occur, and to control the actions to avoid the conditions tha
may lead to failures. In 1974he Navy establisheMIL-STD 1629 with the practice of
)O($ DQG LQ TV WKH DXWR P R&U hyvtihe laf)li®y Xosa/t ampioyw P F
FMEA tool of which the benefits of applying the tool to lower the danger associated to
imperfect condition.

The purpose of FMEA is to explore the effects of systéalure operation and to
identify conforming to theraount of each possible failure. The failure mode was described
as ways or methods that could fail to achi#har predicted function estimated for health
management. FMEA drive is to inspect possible faiapproaches, designed operations to
avoid breakdwn and regulate the influence of these failures on a product with a valuable
tool for analysing and preventing process problems before they [@€i3]. This action
is implemented to apprehend possible techraagers in order to take challenge capacity
to on those risks to reduce the chance of failure, where uncertainty is identified could
continually sustain to regulate failure. FMEA has been applied to analyse risk assessmen
via various multidiscipline, Wen improperly executed, FMEA wastes tingedebatable,
could be inconsistent, unsuccessful and at its worst direct the operator analyst in wrong
directions. Risk priority numbers (RPN) is the phase of FMEA process, t6 finedsure
analyse the risk rated with possible problems recognized in FMEA. RPN considered at the
aim of possible causes of failure severity, occurrence and detection, though the informatior
for occurrence ranking, evaluating and CA is severity rankings according to the shared effec
of severity, chance of incident and detection. Deciding the potential failure modes, based or
severity of the failure mode which aimed at emerging an active quality control system,
prevention methods and design process control (protection of customengréwze high
value and reliability of product. The rapid development of modmrtomatic control

technology, the automotive industry in 1970 adopted FMEA technique to classify changes

10



using predictive maintenance tools and a failure in the system. 8bthe significance

diagnosis is as shown in Figure 2.1

Figure 2.1:  Justification for diagnosis

Currently, one of the most serious concerns surrounding the design of automatic system:
are thereliability due to the system comgiitiors, cost, environmental impact, availability
and the security of automation amount of practical processes are continuously growing.

In process, of modern control system, the often used diagnosis system is to monitor the
movement of a specific signahd actively sorting out a measure when the signal attained a
given threshold (point). There B growing need for online supervision to increase the
reliability of safety critical system as explained by the propostileafetection filter, which
produceerror signals indicating the position of a change or failure in a systewever the
need to guarantee plant safety and availability, at the same time preventing expensive
maintenance during plant interruption can provide awareness of the system npndtiai
tolerates an appropriate given maintenance plan to be instigated-Jde@si revealed a
proposalto create a filter model proficient at detecting a considerable quantity of diverse
changes or failures in the visible dynamics of a system[[I15]] This initiated the statef-
the-art in the modetbased techniques, which allewa true orline condition maintenance
plan to be implemented. Practical algorithms are designed as weHiag ¢m produce any
desired closedbop poles for the controllakl portion of the system due to feedback

reorgangation problem [16].
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2.3 Overview of Fault Diagnosis Techniques

An overview of FD technology is discussed in this chapter and it makes a sustainable
corresponding access to industrial technolo@yough the gromg request for a
sophisticated safetgritical, availability to increase reliability and reduce the costs of
maintenance as well as component repairing has motivated a comprehensive investigatio
of FDI as in the early 1970s. FDI is still emerging andtiomesto advanceas a key and
profitable measure of modern control, and agreeable remlitisen stated extending from
physical hardware redundancy, analytical redundancy to algebraic knowledge and artificial
intelligence.In a simplesummary Fault isknownasany error that may cause a failure to
happen or any sudden deterioration of any part of the systauit is an abnormal condition
that is responsible for changes in the behaviour of a systam whpermitted deviation of
at least one normal prepty of the system from the satisfactory, typical standard condition
This could be a suddamexpected¢hange which is extended to failure of a component or a
state within the system which leads to irregular form of deterioration or initial faacdt
may not necessarily affect the current system performance but might lead to failures if propet
measure is not put in place and even to breakdowns in the systems, so therefore, there is ne
to be diagnosed as soon as possible. Hence, fault is oftenereasadthe primary stage of
failure recognitionFD is a monitoring schemihat is used to detect faults in a controlled
system, diagnose itscation,type, size and the nature about the irregular working parts in
the systemFD is a vital factor of anliservant control system, which consists ofttiree
detailed properties:

I. Fault Detection: Identifying when faulhappens in the system

il. Fault Isolation: To determine the location of a faulty place in a system.

iii. Fault Identification: To decide the type, siznd the nature of the fault

FD characteristics can be considered in the diagram as shduiguine 2.2

Figure 2.2: Framework of Fault diagnosis
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2.3.1 Model-Based of Fault Diagnosis

The Failure diagnosis could be further explainet imodelbased and information
driven, both could be analytical at the same time, but the data driven are statistical anc
artificial intelligence while the modddased could be both quantitative and qualitative
methods. Fault, also known as unpredicteahgfes that may be acceptable at current level,
failure or physical breakdown of a system operation while failure desdfilgesntire
breakdown of a system element. Potenpi@mature faults may be benefictal reveal
abnormality that need to be investigd aBnacceptable point, to avoid any severe concerns.
Information interruption requires extensitesting to confronthe challenges of modern
control system. Motivated by rising more advanced safety and rapid improvement of modern
automated system, iapnosis has been considered comprehensively. The diagnosis
techniques could be qualitative, quantitative, real and systematic steps of identifying
prospective difficultieswhich can be allocated into practices to reduces substitute failure
such as conveional FMEA, hardware (physical) and analytical (functional) redundancy as

shown in Figure 3.

Figure 2.3: Description of failure diagnosis

In the field of analytical redundancy, modelsed makes use of a (quantitative)

mathematical representation of the monitored method to get related information on fault
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diagnosis instead of additional hardware components to recognised FD algoritHaB]17]
Monitoring of faultinformation in a system, a scale can be set as a basis te ded
boundary of the abnormal changes. One of the roaletd benefits is that no extra hardware
components are required in order to recognise FDI system of which is always executed ir
software on the control computer system.
Such process consists ofetifollowing three main methodologies which have been
developed

x Parameter estimation method based oresystientification [6] [19][20] 23]

x Parity relation method [24R9]

x Observer/filtetbased method [2] [5] [36]81] and[32]-[38]
The properties athe following stated statistical based approaches will further be discussed

in this section.

2.3.2 Traditional Hardware fault diagnosis scheme

Inspired by the increasing request for sophisticated safety and rapid growth of modern
control systems, fault diagnosisormally acknowledged as FDI has been studied
extensively, since earlin the 1970s. Thetudy of FDI has been fast cumulative lot of
attention globally in both principle and applicat§®]. Oneof the traditional classifications

of FDI is based on pdtal extra hardware redundancy as a physical duplication which uses
multiple components in a systeifthematching hardware components which are employed

to improvesystemsreliability, usually for a standby practice. The use of various excess
equipment ap@ LFDWLRQV LV XQLY Y ¥ DOH Z LDMHK REQ D XWDL 6 D3DC
example (which is known as a kind of twin engine airliner) and its results [39] also as in
nuclear reactors control systems. The FDI issues hattdware, additional equipment
redundnt is relatively at a high castlue to extra space needed to accommodatexitess
equipment and maintenance cost thus the applicadibtinis scheme is only restricted to a
number of key components. The degradation of system value could be either sioiv

fault performance. Diagnosing fault in the plant component is spotted if the output of the
component is changed from the set of additional hardware component as demonstrated i
Figure 24. The main advantage of this systenitssigh reliabilityand the precise location

of the fault. The tradition of exact hardware effects on the additional expenses likewise
mainly carried out offline, hence the application of this scheme is only limited to a quantity

of basic components [17].

14



Figure 2.4: Representation of Hardware Redundancy

Hence, faults can be weéthown by their performancéentity, location, arrangement,
size, nature and magnitude. The traditional hardware system requires designed witt
additional physical egpment and challenges the complication of hardware backup espense

and capacity to shelter tleguipment

2.3.3 Analytical (systematic) fault diagnosis scheme

The knowledge of switching from hardware to analytical redundancy, invented by Beard
[40] in 1971, use matrix algebra mathematicalodetbased concept to descrilfelure
detection of a physical linear systerproperty Failure detection observers or filters
producing residuals indicator for FDI was suggested. The notion of the analytical system is
to asess the real system behaviour for reliability with a model which no additional hardware
is allowed in analytical structure and the actual system is being remodelled in a state spac
model and monitored via online software. Analytical bapkor redundancwpplies the
reliability between the unpredictable alarm signs to acknowledge any case of abnormality.
Compaedto the hardware redundancy systems, in the outline of the software redundancy
idea the plant component model will be in matching to the reat pamponent and be
motivated by the same plant component inputs. It is rational to assume that the duplicate
plant component provided by the plant component model will monitor the corresponding
real plant component variables in the healthy operating stamgsndicate an apparent
abnormality in the system. In order to obtain information about resulting changes, an
evaluation of the real output signals with their estimates delivered by the plant components
model will then be made.
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The reconstructed systeiexpected to be working normally in an occasion of fault
free operating mode parallel to the real system but when there is an obvious change in th
monitored system by a fault signal in the system sending an alert to be detected by faul
indicator as shon in Figure Za. On-line diagnosis is usually a mixture of qualitative and

guantitative approaches to identify faults as earlier revealed.

Figure 2.5  Representation of Analytical Redundancy

The analytical moddbased methal are the techniques to substitute hardware
redundancy with a developed prototype which is applied in the software [17]. Quantitative
or qualitative method explains tie&ectiveand reliability of theSODQW FRPSRQHQW
behaviour with modelling mbbd. The behaviour of a plant system is defined by its solution
path or its frequency response. To monitor reliability in analytical redundancy is generally
realized through an assessment between controlled (measured) signals with its estimatior
which isproduced by a mathematical model of the considered sygtlemt. Figure Zb
gives a clear comparison between traditional hardware and +hadsetl analytical fault

diagnosis.

Figure 2.%:  Comparison in traditional hardware azdhalytical software baekp system
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The benefit of modebased analytical over tradition@rdwaresystem is that no extra
hardware components are required in order to recognize fault diagnosis scheme. Model
based FD system can be executed during compubeess operating control lspftware
There has been collection of approaches proposed in the literature, established on the use
analytical mathematical model of the system in research and contribtdgiantomation
control concept. There are threaline analytical (software) or systematic redundancy
methods is predominantly metheeld into three which are; signal processing based, model
based methods and knowledggsed methods which help to modeertheon-line process

performance

A. The signal pracessed based (SPB) method

This simply allows the demonstration of a physical, descriptive, abstract to be generally
selected as signals from the system to give enough information on potential failure notice a:
in Figure 26a. Faults can be identified bg@osing symptoms from the signals. This process
involves earlier information about the relationship among symptoms from thessighl
unexpectedchanges. Utilizing a mathematical model with the aid of frequency or time
domain, it is assumed that signaén carry positive information about faults that can help
to identify and detect any changes that occurred. Standard indicators of SPB are magnitud
of a time domain function, or spectral frequency analysis, Fourier transforms are
representativef function in frequency domain which is predominantly designed for the
monitoring of states at given conditions. SPB notion is to give a good chance of fault validity
test established on physical laws that would provide information about faults but are limited
in their effectiveness in identifying early fault that could occur in a dynamic system [17].
Abnormalities from the standard performanceédim be spotted by systems of abnormal
changes recognition, the SPBethod is principally described for condition moning at
the constant state.

Figure 2.&  Description of signal processed based validity method
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B. Knowledge based techniques

Knowledge based approach (KBA) is kind of approach for collection of data to facilitate
failure diagnosisinformation to sustairthe wholeconditionstage and defined reports of
developments to assist the advance reprocess of the information together during analysi
which introduce computing intelligence. Gathering knowledge, responsibility information
provides effective strategy for health management progress could be classified by historic
datadriven based anddentified by symptom based and qualitative meuakded The
essential features of this knowledgstablished on gathering of érwata, rules or
information to deal with the ability to detect the fault condition and predict the behaviour of
a system on previous performance or base on information that relates from knowledge
established of the system. KBA malkamploystraditional previous history anartificial
intelligence methods in problem solving to support human judgment, knowledge and
achievemerst act to modebased diagnosis4ll]. KBA in the background of diagnosis
proficient systems or in combination with a human professional is only achievapldy
breaking the acquired knowledge into parts of selined facts, rules taken from behaviour
of professionals. There was a later outline tool of fuzzy madeddifferent way torganise
decision making which allows direct use of human norntallact concept to make sound
practical judgement as well as neural knowledge network to generate error residual,
valuation and possibly indicate a possible cause. Diagnosis based on knowledge starte
aroundthe 1980s, which was achieved established onagsessment of dine observed
information in terms of a set of instructions, knowledgeable by professionals from ancient
knowledge. The ability to purpose under indecision, and the proficiency to explain the results
provided. Some of the industrial apgatiors are the supervisory control and data acquisition
(SCADA) system and smart metashich are normally mounted in nowadays industrial
computerization schemesnportant to a great quantity of information accessible [59].
Knowledge based method requirenformation of the method by investigating the
information history or difficult systems that cannot be model in contrast the rAoatd
that requires mathematical mode of the observed process. These connected with both da
from professional and humamdwledge, mostly appropriate for large system whose model

is difficult to get, alternative historical method information is available.
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C. Model-based Techniques

The development of a modeased methodhat makes use of mathematical models
(which could be gantitative or qualitative) to mimic the healthy system behaviour and the
reliability difference of the real system and the model to detect faults and symptom signals.
Modetbased FD employs previous information of the system to develop analytical
mathematial models that can, in proper sequence, be used as conditions to estimate th
current information. A good model has been achieved at a good condition the important of
this method isesidual generation which usually measuhe predictability of the sysirs.
The consistency is typically deliberated as residuals which represent symptom / indicator
signal. The residual is the function of time defined by the mathematical difference between
the measured output variables process and the output estimatedgdadiodel signahlso
known to befault indicator. All modetbased approaches employ model of the observed
system to generate an indicator alarm or sign. Duringh@ssdthy working operation
condition of the system, the residual is consider to be zeeuhtffee occasion, but in the
event of fault, the indicator signal (residual) become slightly different from zero. Thus,
modelbased fault diagnosi&atesthe valuation of faults in a system from the observation
of input/output available system measurataevith previous information represented by the
system's mathematical model, via residual quantities generation and their investigation.
manage the behaviour of a healthy system thus, there is constantly inconsistency betwee

the real system and the thamatical mimic model being monitored to identify faults.

2.3.4 Model-BasedJustification

The concept of moddlased reconstruction of the systenplant detailed the
mathematical representation of dynamic systems in the real work and was distinguished by
Jones in 1973 8], [17]-[18]. The increase of calculation influence makes it likely to use
systens descripton for suitable parameter modelreal data. Hence, the representation of
dynamic modelling for fault detection has gained more interests from babhetical
research and practical applications. Many ahiaen techniques construct on the consistent
handled data, which have been used in assigned model description and condition monitorin
that could take significant time and expertise assistance dhemrg and plant staff
RSHUDWRUVY SULRU D F F X2}-@6)N Fhissapirda@rRs/ddastiGhhblet W V
active when a vital amount of faults can happen with parameter wariatpractice.
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The papers [47]49] investigatedthe time domain nthods for estimating discrete
models. In the 1980s, maximum word suggested review papers [26], FpB9]
correspondingly, give a decent framework of recent mbdséd FDI techniques. In 1999,

a unified background of modéksed FDI was available in addowhich exposed the
foundational knowledge of modbhsed FDI. Fault detection is basically on generating a
signal and comparing the physical measurements provided by the associated system mod
via the observer gain that is used to increase systemitgtaliwell as the accuracy of the
system assessmeREesidualbased is a kind of fault indicator that gives an alarm for possible
present faults, which reveals failure condition or provides fault alarm of a supervised system
and likewise gives a vital inchtion for an effective FD. For a faultless system, the reference
model also calculates the system output precisely but if there is a fault, the output of the
reference model differs from the real system output. A resiolsegd algorithm is a good

tool for an active fault detection which normally holds a restricted capacity for fault
estimation due to lack of access to the main plant compdtente, a residual signal carries

the most vital communication for an effective fault diagnosis [17] which revisd
probability of faults conditions and a decision rule (based on threshold testing) to determine
if any faults have occurred on the monitored system as typically shown in Fighr& Be
modern standard technique phases of mbdekd was originally escribed by [3] as
residual generation and decisioraking (plus residual estimation). The stateart in the
subject of FDI is still pretty new and presently getting substantial attention in the

conventional engineering field and still open for knowledde contributions.

Figure 2.®:  Framework of modebased fault diagnosis

Residual generation can also be studied as an extensive of fault indication test whose
input and output description behaviour are modelled as a techiougugentifying fauls

information from the system. Faults in the con@olsystens may be from an input
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(actuator) or output (sensor) signalsouldwithin the plant system. Some researchers have
been proposing new approaches in improvement of rddida#thiness. The abstract model
of the residual generation is to provide signal that carries information about any changes ir
the system and the location where there is abnormality. Meanwhile, it is frequently
impossible to model a practical system aately without interference of unknown
disturbances and existence of uncertainties which often corrupt the fault message
information generated by the residual signisllodel-based fault diagnosis is concerned with
ortline monitoring of a normal working opsgion of a systemThe context of residual
evaluationpresents th signal processduased (SPB) structuregichis incorporated to the
newest development technology for fault diagnosis. Among a number of estimation systems
the geometric methodproposed E\ -RQHV ZKLFK ZDam\EW B WG G- DWW
(evaluate, compare and teat® the most standard which are regularly functional to succeed
best support processing of the residual produced by an observer. These two costing system
which typically produce guaranteed boundary thabncerns all potential system
uncertainties, disturbances and the changes in the system. Beyond the boundary specifies
fault in the process model that will announce an alarm signal as a fault indicator.

The analytical quartative modelbased started in the early 1970s, FDI tradition is
considered into three main principles approaches: parity space, OB and parameter estimatio

techniques.

2.4 Parity Space Relation Model Approach

Parity state space model makese of the knowlegke about the model to improve the
fault performance of the system. This also gives a derivative chance of scheming
inappropriate diagnosis physically comparable to the OB model with unlike design ways.
Parity is based on correct cheul investigation of omputation consistency of the
monitored plant variable system, expressed in order to find the minimum for a quadratic
form of a matrix [6(Q-[63]. The change of the system calculations focuses at separate diverse
faults to improve their decision. Parity wésst used to check the error reliability of a
computer software and digital logics systems before it was later applied to FD as an indicatol
to point out the presence of failure in components of a system [3]. This approach was
functional FDI to get tolemt information of quantities with error bound technique which
was proposed to check and isolate the consistency of the redundant set of measurement

also to systematic residual problen5)[ However, this method was autonomously
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proposed by various audts among which af@6], [27] [49] and B8] recommended a parity

relation design method in the discréitee concern.

2.5 Observer-Based Approach

Luenberger was the first to discover the output of a system as an observer (motoring
scheme) for deterministisystem in 1964 and 1971 which has been widely ensploy
extensively in various divisions of engineering and science for stable sy@ém3Jhe
diagnosis of observer system could be clas$iés regulatory system [37], [63] and [65]
although Kalman filtes (observer) proposed for unreliable (stochastic) system calculations
[3]. OB modelling is an active system mainly via an online software device that permits
provided an estimation of the unreachable states variables of a sisteragmatic The
basic ida of an observer is to substitute or replace the development model, which delivers
a reliable estimate of the process output as well as provide design freedom for the designe
to realize the anticipated behaviour. An observer is an active system thaheisesual
available inputs and outputs (measurements) of a system to provide an online estimation o
the unmeasured state variables [37] and.[66¢ key idea of generation of residuals, and
over the last two decades robustness has being theobtagart concern. Basically an
observer is an accurate online clo$eop dynamic system that uses the available quantities
inputs and measured outputs to provide an estimation of the state variables that are nc
presented to be measurdthe OB is a feedbackatrix that motivates the detectability,
handling of multiple faults and state estimatidine basic block diagram of Luenberger
observer with precisely considered feedback gain matrix are as shown in Figué& 2.
Figure 27b. This method allows output @®ation errors to have indicator properties

connected with some identified fault directions.

Figure 2.&: Block diagram of an observer
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The observer evaluate the real plant components, modifies the behaviour of a system ir
a cesired way and compare it with the estimated signals, The observer uses general outpt
residual signals to calculate the behaviour of the system from archived observations. Beard
Jones suggested failure detection observer, however, the robustness agarnatnties
was not considered. Most researchers proposed this approach to improve fault robustnes
with respect to process parameter changes and unknown input signals entering the syster
Among the accepted scheme for robust fault diagnosis (RFD) obserte approach
uncertainties express as differentiate disturbances label as unknown inputs and decouple
from residual thereby making it robust against model uncertainties (unknown inputs). [37]
was the first that applied Luenberger observers for Fidl\aarious sensor fault isolation
schemes was later suggested by [6[3]1]. While the broad review in [68] recognized the
place of observebbased techniques in model based FDI, by linear andinear observers
with some demonstrated practical cases.

The Plant system original condition state is unidentified, while the observed state
estimate is chosen randomlyault detection system is based on the plant system output
error.Hence to determine the difference between the plant system state and the observe
state estimate is considered to produce an error signal. The generate@:&rérUP is
predictable to be zero or minisaito be nearly zero which is then used as a feedback signal
into the observed system [69here is a certain sufficient amount of design freedom of
benefits and challenges in the choice of an obsef@w dhe eigenvalues of to be

dynamically freely chosen.

Figure 2.b: Structure of Plant System Observer

The Plant system observer model is arranged sucltbginbolizes the observgain

which is chosen abhe observatio error is reducedhis could affect the dynamic behaviour
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of the state estimate and hence the state error. The function of the feedback is to minimiz
the observation error to zero or approximately zero (at stable state) and through it the outpu
of the observed system is fed back as an input of the plant system. Mathematically, we
defined the observation error &P, L T:P F UP.
Fault detection model is developed if and only if the systété) is observablethis
promises the ability to choosewhich assist to assign the eigenvalue#d¥ - % randomly
to detect a unidirectional fault [52]. In surarg a linear state space with input and output
relationship of singlenputsingleoutput and multiplenputmultiple-output will be
consider with transfer functions.
7KH OLQHDU VA\VWHP PXVW KDYH DQ HTXLOLEUL&MUWRSSRLC
of matrix Alies in the lefthand complex equation. To monitor a system, the system must be
observable. The linear system is observable if the rank of its observability matjixaisto
J
%
1oL f PF 2.1)
% %ﬁ?S

That is,where ranki g L J Therefore, one can find a matrixsuch that:# F - %; is
stable The observer theory can produce the estimate of the state which cahéedtilized
for observeibased feedback controller design. Moreover, the observer can also give the
estimate of the system output, which can be used to compare with thieneealitput of the
system process for the purpose of #t@ake monitoring and dult diagnosis.On-line
monitoring tools not only provide early warning of plant malfunction (including loss of
safety, environmental degradation, poor economy,, état)also information as to how to
minimize maintenance schedule costs. Precise diagnio$tirmation must be generated
quickly to protect the plant / system fromterruptedshut down and provide human
operators with appropriate process status information to help take correct decisive action:s
not only when faults become serious but also wiaeilts are developing and difficult to
detect (also called incipient faults). It is clear that the application of supervisikueon

diagnosis schemes can be profitable in terms of a decrease in service costs.
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2.6 Parameter Estimation Model Approach

Parameteestimation (PE) technique is based on the assumption that faults are revealed ir
the physical system parameters identification. This apprisachal in precisely defining
system behaviour through mathematical models such as algebraic likelihood sharing
functions, parametric dynamic moddkE method develop balanced parameter report of an
object, which is aimed at judging the position of an obggahodel data. Commonly, the
total number of changes or achievement information is used to estimatedire{sas of a
particular systemThis method was first shown clarified by [4¥4] and has since been
worked on to demonstrate the process of FD using estimation of unmeasurable proces
parameters and state variables, with up to date practical exparjsaod[76]. The approach
is that parameters of real development predictably use PE techniques to detect faults and tf
results processed are related with the parameters of the position model achieved originall
under faultfree circumstances. Any significadifference indicates a change in the plant
component and is often deduced as a fault illustrated in Figure ZId83 approach is
achieved based on the assumption that system parameters are changed when faults occ
laterally with the total number ofr@rs related with the evaluations and allow normal
computation of errorsChis technique was initially measured to resolve the performance of
premature fault finding and analysis for serious systems which is fit for real operation in
control applicationsparticularly in the framework of the modern industrial developments
about calculating [77] and [78]. Since time delay has no limit, parameter estimation is
problematic due to straight calculation of parameter estimate is impossible because of large
amount of computation and physical parameters do not distinctively match to model
correctly. To calculate the loss function error has to be reduced by mathematical
optimization techniques since, the more computation is required as determination is muct
bigger aml online reatime application is normally impossible. Furthermore, this approach
combines parameter identification and experimental process knowledge whose performanc
is greatly dependants on the sigt@hoise ratio (SNR). Due to the immeasurability el
disturbance in the higbain observer methods, disturbance estimates are needed for PE. The
estimation of uncertainties involved in the observer makes the time delay has no limit which

is problematic.
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Figure 2.8: Represgation of parameter estimate approach [17]

The outline of parameter estimation is performedioa with the residual incorporated

into the observer for fault diagnosis [17].

2.7 Significant Issues in residual generation of FDI

Modeklbased background piced the true nature tfe on-condition monitoring, of FDI
stateof-the-art which discovered the contribtle LGHDV R1 UHVHdveaiCeésU V
residuals generation by optimization analytical observers to monitor the system
performance. Though the mded®ased system for residual generation has been predictable
as an active method for FDI, but the essential issue of inevitable uncemaidéjiinghas
remained entirely difficult. The emerging advancing applications of FDI, generally driven,
by the demadh for reliability, maintainability, availability and safety for controlled systems
to be robust. There is constant need to frequently avoid high expensive at the event of plar
respite period in the modern automotive industry. The difficulty concernings€tdmes
reliability is the uncertaintynodellingas stated in the inductor sessi®nnavoidablen real
practicalindustrial systemsThe scheme of an operative and reliable FDI system should be
considelin modellinguncertainty during faults sensitiyitletectability. Residual generation
and errors are known as crucial problems in FD robustness, as assuming it is not observ
properly in the presence of uncertainties, some fault information could be lost and
degradation of the signal performance. Expgateterioration, is inevitable practically to
happen in a model of a normal healthy working operation of a system possible due to the
gap between the real system and the model system. The consequence of modellin

uncertainties mostly caused by parametiedinces, process noise and nonlinearities could
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downgrade the performance of system majorly triggering poor reliability of FDI schemes.
Hence, the concern is vital in the robustness of mbdséd FDI theory and the clarification

of this issue in practaily applicability and significance of robustness has been extensively
acknowledged by industry and academia. To conquer the problems of uncertainties receive
by any model as earlier stated in Chapter One, a niiadeld FDI has to be made effective,
reliable and robust governing the importance of in FDI methods. The theory of robust FD
Is to measures the robustness and sensitivity of faults, firstly by the define performance inde»
as a model of transfer function matrices (TFMs), then pararsetasi a p@ assignment
method eigenstructure Assignment parametrises the feedback gain matrix with eigenvalues
and a set of free parameters, in addition to the benefits, also gives design freedom an
randomly assigns the closed loop poles to desired places [#][19F and [80] and lastly
optimize to solve the proposed concerns.

The nature of modddased FDI is the construction of residuals, and the robustness has
become the main problem of observer (fitbglsed approaches [24]. As one of principal
methodologis, robust fault detection has been developed more than two decaféls [2]
[19] and [57]. The following detection methods are briefly summarized]if49], [53],

[63] and [81]. The moddbased FDI practice requires a high mathematical precision account
of the observed system in order to monitor the performance of uncertainties which is
extremely allocated by a sigrt@knoise ratio (SNR) [18]. The system can be develdped

be less sensitive tancertaintymodellinga right accurate model is not esselhiatéquired.

The healthier model signifies the improve system dynamic performance of the FDI accuracy.
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2.8 Summary

This section presents the fundamentals of diagnosis, the various ways it was briefly
outlined, the revised past techniques for identifyggts like FMEA which is done offline
naturally as a reliability engineering activity, which is independent of current conditions or
faultsthatwere studied. Diagnosis is done to determine one or more root causes of problems
and to obtain evidence of clges based on observable symptoms / signals. Looking at the
ortline diagnosis based on sensor information with signal fault which led to the concept of
fault diagnosis overview was defined with the three overall basics tasks of defining fault
diagnosis. Thdraditional physical hardware redundancy via the degradation of system,
signatbased process can identify faults by intellectual symptoms from the generated signal
which provides faults information. The modedsed analytical way of diagnosing faults by
mathematical model was also introduced, whereby the musdedd is further considered
and studied by parity space model approach, Luenberger obbasad and parameter
estimation model approacA. common design for failure diagnosis in a system has been
presented and a relation to methods based on propositionabfogidicated. Finallythe
analyticatredundancy was further extended to knowledge based where the health
management is achieved by human facts, understanding, evaluation and acknowledge
history. The information is recogsed by qualitative based methods which are an
interpretation of théotally observed, adequate understanding of the behaviour and the cause
that manage such performaraced symptom based likechange present in the conditimhn
a systemSome earliest work on dynamic observers has been done, but the attentions hav
been mostly on robustness in metaked fault diagnosis which has been a key issue in fault
diagnosis community. Observbased robust fault detection dynamicteys has received
much attention during the last years and brief major challenges of FDI were introduced.
Different variations and techniques were also discussed and it was concluded that there sti
exists the requirement to come up with a better technsged that uncertainties and
parameter perturbation need to be dealt with. Now, in the subsequent chapters of this study
newer modified methods will be proposed and explained investigating for quality of residual
bank on the FD success, also, the dynamacletbased fault information will be further

investigated.
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Chapter Three: Robust Observer Based Fault Detection Approach

3$Q HUURU GRHVQTYW EHFRPH D PLVWDNH XQWLO

O.A Batists

3.1 Introduction

An overview of the observdyased robust fault detection technology (OBRFDT) is
presented in this chapter to give critical appraisal of contributed methods related to the
subject of study. Over the ysamany approaches have been proposed for achieving
robustness which has being one of the key issues in fault diagnosis community. The fas
rising for dynamic system is becoming complicated and management are innovatory to
improve the overall critical safetreliable FRQGLWLRQV ORVW UHVH
uncertainties as disturbances functional on the system [7], marked out the effect of modelling
faults on FDI behaviour [77Avhich was the first to challenge the robustness increase in
observeibased FDI metbd. Inappropriately, modelling errors often lead to a poor
degradationn the systenperformance. Nevertheless, disturbances and modelling errors are
predictable in complex industrial system, for these reasons it is vital to imgineve
robushess infault diagnosis system. The central observeibased QOB) FD is the
generation ofesiduals, and the robustné®sng contributing to be the attractive issue in the
last two decades. Amongst the methods contribstmnobustness in modern conttmsed
robug fault diagnosis is the residuals generation which are the differences between model
predictions and measured outputs, here, the uncertainties andfemtisturb the residual.
Hence the design decision, in this situation impacts to become chatj¢apmdistinguish.

So, there is need to maintain a healthy operational system to have a good FD robustness th
will be sensitive to various typical type of faults irrespective of any natural disaster and

uncertainties that might practically act on tkalrsystem [3].

3.2 Background of Robust Fault Detection

In the simple terms, robustness issues have generally gained a considerable attentio
with various operational methodologies. Over the years, neural netwsrien ideal
estimated means for managemehhonlinear complications was suggested to overcome

problems in predictable stakdtate systems for handling nonlinearity that is it is not
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effective in indicating linear systems. There is petite to be achieved by practicing neural
networks to linear theconstant systems. Neural networks are properly intended at
developments that are inaccurate, complicated, nonlinear and indeterminate. This can b
used in several of techniques to challenge fault diagnosis issues ftinemmdynamic
systems. It may @& effective to usdor only system outputs to identify faults for some
stationary systems, but this is not the case for detecting faults in dynamic systems becaus
the change in system inputs can also affect unpreventable types of the system outputs. Th
approach is suitable for ndimear system, which makes it not very dynamic in describing
linear system and could be complicated as well as also inefficient to apply to a linear systen
[38].

To challenge robustness problem, one of the general acceptabteqtee to handle
modelling uncertainties as a characteristic of unknown input observer (UlIO) which simply
means to decoupled uncertainties from residual signal according to [30]. UIO is a remarkable
way for explaining robust fault diagnosis, which hagneed much attention during the last
three decades [7879]. More researchers have facilitatesageipling of disturbances to be
accomplished by using UIO and lots of contributions has also been made [384B@hich
are extended to nonlinear systeam&l [82] or alternately eigenstructure approaches. Some
of the theory for UIOs is that the unknown input distribution matrix has been given
significance, while some of the hypothesis is that decoupled disturbances, in the situation o
the distribution maix for model uncertainties is usually anonymous. The presence
circumstances for comprehensive decoupling have been originated in the UIO apprhach [31
[85]- [87], through eigenstructure assignment approach by Patton [[88], properly. The
complete disturbnce decoupling, still, might not be potentially possible, in some events,
because the absence of design freedom. It also noticed that most conventional UIC
technigues are under the assumption that unknown inputs can be completely decoupled [91
Neverthegss, this assumption cannot always be met in some practical systems. Additionally,
it may be difficult due to the imgh of fault performance to baetached alongside. If the
satisfactory state of comprehensive decouple is not encountered, an estimatethmoetd
be hired. In this condition, the residual is not entirely decoupled from disturbances,
nevertheless has a small sensitivity to disturbances and high sensitivity to faults.

Another concept to achieved disturbance decoupling design is by freql@meyn design
investigation method known &S, norm optimization techniques index [62],[92] suggested
to increase the robustness of frequency and [93] which are excellent in handling resolvec

bounded disturbances caused by modelling uncertaintiesortle robustness promise FD.
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Whose objective was to reduce the influence of disturbances and modelling errors on the
estimation error and successively on the residual using optimally robust fault detection
observers for creating analytical redundancy. Scomeplex frequency optimization process
was suggested to design robust PR.norm (also known as Kalman observer for optimal
design built on stochastic noise model with recognized power spectrum output) [94], but this
approach is very complex to parameter changes or unknown disturbahidessome
proposed to achieve robussiseobjective by using optimization approach to minimize
disturbances to its minimal using performance index in regards to the norm of transfer
function matrices (TFMs). Some gave a mixed approachqof ¢ [95]-[96] discourse to
support the model wertainty considering to improve tradeoff of observation and attenuation
performance and , *q [97]-[102] were also recommended, norm is for enhancement
impact of faults by maximising the minimum TFMs cost of fault sensitiViibe problems

with * ¢ norm complication which requires calculation of the whole frequency range?

and to definite the particular value of a matrix which makes the computation problem too
heavy for the optimization algorithm to evaluates the objective funcitso, the other
disadvantage of this approach is best at the poorest event occurrence which mostly produce
by the system plant and not by exterior disturbance frequency for providing the most basic
performance guarantee. Though, the present record BDQRRsigns are proposed in both
continuous and discretene domain or based ohg [18], and [100]. The frequency domain
robust FDI is unsuccessful in dealing with modelling errors though it can challenge
disturbances and fault issues and the serious challenge is absence of design software as w
as due to bandwidth selection tlaa&bid comprehensive approval of this method.

An observer is likely to be robust to disturbance, if the performance index is optimized
at the disturbance frequency relatively to the nastiest incident mostly determined by the
plant. The conventional* 4 optimisation method was to clarify the Algebraic Riccati
Equation [100J102] which consider integrating modelling uncertainty into standard
optimization problem. This best observation issue was advised to be explained with the aic
of a prescribed lingamatrix in equations (LMIs) [94], [99] and [103] as a convex
optimization tool, this method was successful in the simultaneously in view of disturbance
robustness and fault sensitivity. However, the subject of dealing with modelling uncertainty
is yet to be investigated fully. Alternativenethod is frequency dependent weighting
functions practice as in [104]. Preventing guaranty of worst case, the performance index is

recommended by switchingFMs *¢ norm will require the evaluation of disturbance
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frequency with a mathematical matrix norfWith the parameit eigenstructure to
parameterise and optimise by minimgs the performance index having a measure of the
effects of both disturbance and Itsuover a specified range [102] and [104] in the event
where the decoupling conditions is not met. Another suggestion on how to explain the FDI
robustness problem is a mathematical illustration for defining modeling uncertainties is
required. Numerous dites to characterize modelling uncertainties from many causes as
additive disturbances with an estimated distribution matrix F037], [51], and 91], based

on decoupling condition method for robust FDI, the practical operation of fault is complex.
Oneof the contributions is assumption that disturbance matrices are identified, but the theory
is not effective for most practical system. [27] and [105] have some outcomes to lead off for
applied practical application of robust FDI approaémequently, theeigenstructure
assignment has concerned more debate in parameterisation, because the observer gain ma
and the performance index (stated in terms of TFMs) can simply expressed explored in &
certain eigenstructure system with align of eigenvalues gpaled secure free parameters
[90] and [100]. Then, many iterative accepted optimisation algorithms, such as gradient
search [75], Genetic Algorithms [IP- [118] are used to find the optimal gain filter matrix

in order to further attenuate uncertainties

3.3 Design Idea of Robust ObserveBased Fault Detector

The basic theory is to degree the robustness and sensitivity by an appropriate
performance index and then improve it. The idea of decoupling the impacts of residual on
model uncertainties explains thefahifilty of FDI robustness of which lots of work has been
broadly contributed to this subject [234], [28], [39] and [40]. Sensor faults have direct
impacts on the measurement outputs, therefore the sensor faults would not be so difficult tc
be detectetdy using the residual (fault indicator). Many results on sensor FDD are available
in the literature, e.g., see(B[82]. The proposal of robust actuator fault detection isolation
system (AFDIS) as confirmed in a chemical process system [38] and [83]stRdbment
FDI method was also suggested by [85]] using observation approach to solve
uncertainties which is simply comparable to UIO. However, actuator faults have unplanned
impacts on the measurement outputs; therefore, it is more challengingetd aetuator
faults from the residual More contributions were also made on AFDIS, nevertheless, the
robustness concern was not considered in this case [46] and [87]. According to [80],
approach robustness problem and also elimination of disturbances effiectsiduals are
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performed with inflexible conditions applied to the ogpeop which is also often not
practicable. On the other hand, performance index is measured suitable for robust residue
design which reveal a justification for both faults sengytiand consequence of modeling
uncertainty. Gathering, this theory, [13}4] calculated the strategy of optimal parity
relations by assuming an improved performance index which is the relationship of the
modeling uncertainty response consequence to dhafault sensitivity. Though, the
modelling uncertainty account was measured to be bounded, while the unknown input (or
disturbance) explanation which is difficult to represent in an extensive choice of uncertain
situations without any modification and apgimation. This inadequate factor was as a
result of applied application matching in a simple academic application or model situation.
Based on the existing background and inspiration briefly stated in chapter one and
chapter two, the observbased contiuous time fault detection design via eigenstructure
assignment and GA optimization will be investigated in this study to achieves a better
performance than other metle&enerally these indicators are defined in a practical type
of behaviours represengrabrupt also known as step and incipient faults recognized as ramp
(bias or drift), respectivelyrigure 3.1 illustrates the scheme of meblased fault detection
for systems subjected to faults (e.g., actuator SagttP, &ensor fault B; P.&nd parameter
faults By P and disturbances (e.g., input disturban@g: P rocess disturbanse@) P, and

measurement disturbarscé; P.

Figure 3.1: Scheme of modehsed fault diagnasi

Consider a general case of a dynamic system degraded by distsylaateator and sensor

faults in a continuous state spaces linear system:

33



TR L #T.R E$SQP E $B:P E $,6@®:P.

\U:P,L%TP, E &R P E & 4P (3.1)

where T &2 is the state vectorQD82 s the system control inputl d2 is the
measurement output} &b &@re known matrices of appropriate dimensioBsP 8" and
B. D 8" represergactuator and sensor fault vectdy,, &are the distribution matrices of
the actuator fault and sensor fault, respectivey;D 8* and @b 8*represent input and

output disturbance vecto$. s and &, zare the distribution matrices of input and output
disturbances.

Let

_ P, @:P
B:P L GE)E;RFH@P, L d@Rm

$yL Bo ranm? &L Fanp S
$ L B0 Tanp? & L Fang & a?
Therefore, the system (3.1) can be rewritten as

JT6P,L#T:P, E$QPRP E $B:P E $.@P 39
UP L %P E &B:P, E & @P, (3.2)

The scheme of the observeased fault detection filter is shown in Figure 3.2.

Figure 3.2: Scheme of observmased fault detection filter

From Figure 3.2, one can see the measureable input and output are used to construct :
observetbased fault detector, which can give tiséiraate of the system output of the real

time dynamic process. The residual is defined as the weighted term of the difference of the
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reattime output and estimated output. If the residual signal is zero (disturbances are not
considered) or less than a thineld value a(under disturbances/noises environmetitg
system is healthy. Otherwise, If the residual signal is not zero (disturbances are not
considered) or largghan a threshold valué&(under disturbances/noises environmettig
system is faultygiving an alarm.

However,to design an obserwased fault detector shown by Figure 3.2 is the task of

the session.

The observebased fault detection filter can be described as:

WP L#UPRESQR E- UF U
PUP L 9%IP (3.3)
NP L 9 kUP FUWUPO

where TR, D 82is the estimate of the stafeE P, UR D 8% is the estimate of the system
output U: B; the residual signal is theeighted difference between the real outpulP, and
the estimated outputll P, defined byNP, L 9 :PkU:P, F UP 04

Letting AP L T:P F TP, and using (3.2) and (3.3), one has the following form:

MR L #F-%ABEKSF-&OBPE:$ F-&;Q@P
3.4
]NP,L9 B®0 /A E &B:P E & @R AC (34)

For simplicity, one choose8 L +t+here. Taking the Laplace transform for (3.4), one has

NQL *,.:Q@Q E *3;:QB:Q (3.5)
where

* QL BOFHE-%75:$, F- & E &

*3:Q L %O F #E -%7°k$y F - &OE & (3.6)

where *,:Qdenotes the transformation matrix of disturban@Q, *.:Qis the
transfer matrix of the faulB: Qdn order to make the estimation error dynamics (or the
dynamics of the fault detection filter) stable, the eigenvaluesmf %should be stable, that
is, all the eigenvalues of F - %should locate at the openliraomplex plane.

It is noted that the residual signal in (3.5) is corrupted by both thes fgttal and
disturbancs signal. Therefore, the key task is how to distinguish the effects of the faults
from the influences of the disturbances. In other wptbe desirable residual should be
robust against disturbances, but sensitive to the faults. In order to achieve this, the observe

- should be solved satisfying the following optimal index:
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TAj (@l g
T 3.7)
In (3.7), fi,is the frequency of the dominant disturbance component, which can be
obtained by using signal procesgimethod; for instance, one can observed by using the
Fourier Transform Analysis on the output signal of the healthy system. The faults concerns
are incipient faults (represented as ramp signals) and abrupt faults (represented by ste
signals), which arento typical faults in engineering practices. As a result, the frequency of
the fault can be assumed to be zero. By solving the above optimal problem, one can obtail
an optimal fault detection filter so that the residual is robust against the dominantofaiults
sensitive to the concerned abrupt faults and incipient faults. More specifically, the
subsequent criteria should be achieved:
o Stability: The eigenvalues of F - %should be assigned to located atapen, lefthalf
complex plane.
0 Robustness: To iprove the robustness against dominant disturbances by minimizing
l'OF#E-%"%:%$,F- & E&!'when OL Fi,a
0 Sensitivities: To improve the sensitivity to the faults by maximizirigO ¥ # E
- %;?5k$y F - &0E &.when OL F &

where the operatol ®represents the Frobenius transfer function matrix norm.

It is noted that- is thematrixto be establishtherefore it is not straightforward to solve
the optimal problem described by (3.7). A natural idea is howatwster the optimization
problem for seldng an optimal - into an optimisation problem for considering a set of

scalars, which will be addressed in the nextsegsion.

3.4 Eigenstructure Assignment Techniques

During the last the 20 years, several authergehadvanced robustsidual generators
design usinghe eigensticture assignment to parameterisf which some left eigenvectors
of the observer are allocatedjuatsided to the disturbance distribution guidelines which
simply implies that the residuean be made robust against disturbances. The eigenstructure
assignment is a technique used to allocate the entire eigenstructure (eigenvalues an
eigenvectors) of a linear system through feedback control law, which is selected to give the
parameterizatiof the gain matrix- according to [8Q] This means theole assignment

method, of which eigenstructure assignment parametrises the feedback gain matrix with
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eigenvalues and a set of free parameters, which assigns the closed loop poles arbitrarily t
desied places. One of the benefits of employing the parametric eigenstructure design is tha
the eigenvalues can be detailed in determining the position of poles prior to vital residual
responses.Here, the eigenstructure assignment method is chosen to gwe th
parameterization of the gain matrixdriven by [53], [79] and [123].

The multiobjective function is used to minimize the objective function because it is
dual problems of robustness and sensitivity that needs to be solved. This method wa:
originally proposed and has been more contribptadtically by Pattoet al of which other
researchers also considered the left observer eigenvectors assignment to appropriatel
achieve robustness. This technique illustrates the continuous time or disneetebust
fault detection observer and syt TFMs to have design freedom by a free set of closed
loop poles as lot of literature has revealed it. Eigenvalue assignment techniques in the syster
matrix of observer dynamics design to arbitrarily assign the eigenvaluesFof %; poles
to assign placesi; by choosing an appropriate observer mati&83™@ to satisfy certain
additional performance indices [4B4], [88], [92], [100], [119]-[126]. The observer gain
matrix - in (3.2) and the TFM$ ,:Q, *;:Q [104] applied to optimization algorithm

esential to be firstly parametegd.

The mathematical expression of the relationship among eigenvalues, eigenvectors ant

the observer gain can be shown as:
#F-%'RL &R (3.8)

where # F - %is the system matrix of the observer dynamigs the Eh eigenvalue of the
system matrix# F - %and Rjis the corresponding ofiz The observer poles can be either
real or complexconjugate. It is assumed to have bathreal poles:&; EL sd & a ay;, and
Jppair of complexconjugate eigenvalue®Rg 4G F ) s FL s& & &g dt is evident that:

JaEtJsL J (3.9)

The reformation of the observer gaincan be addressed by considering both real

eigenvalue case and complex conjugate eigenvalue case as follows.
A). Real eigenvalue case

Assume one &s Jsreal eigenvalues among the observer eigenvalue. As defindd @), (
Ryis the Eh right eigenvector of:# F - %' corresponding to theEPeigenvalue &;of
#F -0, thatis,:# F - %' RyL &R;One carpbtain
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RyL F:&F # ;750 sy (3.10)

Syl - 'Ry (3.11)
where EL s& & &lza

B). Complexconjugate eigenvalue case

Assume one hagdgpair of complexconjugate eigenvalues.Rg gE Ry 5 represents the
Eh right eigenvector of:# F - %X corresponding to thefh eigenvalue &g gE Fyy) 5 Of

#F -9/ alt is evident that
# FU-T; KipcE GgroL Kl E g K rpc E Gy kO (3.12)

which is equivalent to:

klhpc F#I O~hi)CF If@kN@kL F%-I’h‘h'pc

; . 3.13
If@k~f¢)CEklfﬁ)C F#I ONF@kL F%-I~@k ( )
From (3.13), one can obtain
Eg:‘:a F/;'-’5x0|§z‘:c (3.14)
where & s& & axand
Swaol - Rao
3 , 3.15
Siwal - ' Raa (3.15)
(| JacFH Famt
L H™, . F 3.16
AN s GagF (3.16)
Mo
xe L o|°r o B (3.17)
Let
9 L S5 ® Sy Ssap® Sy aeSsara ® Sy 429D 8%H (3.18)
8L R ®R,Rap® RyagRaua® RygagD8™M (3.19)
According to (3.11) and (3.15), one has
9L-'8 (3.20)
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leading to
- L >0 8?7 (3.21)

As a result, seeking an optimalcan be transformed to searching a set of optimal scalar

parameters:

[85 8B 8y, g B &y, 4 Foo4) 2 B &gy 43855 ® Sy Ssap® Sz 80Ss61a ® Sy a1a(3.29

3.5 The Cost Function for Optimisation
The cost function can be formulated as follows:

LAj ee! cePeSAY - H >% .
Agree;. Viae RO > AYAT- ke ? AV 0> Uy

(3.23)

where s, L @&y * L @&, ¢ Ayis the angular frequency of the fault signal. The concerned

fault signal (abrupt fault and incipient fault) is ldvequency signal, therefordigis chosen

as zero in this studyX, is thefrequency of the dominant uncertainty (e.g., modelling error,

process disturbances), which can be obtained by using Fourier transform analysis.
Minimization of the cost function (3.33) indicates to maximize the effects from the fault

signals, but minimie the effect from the disturbances. As a result, the cost function (3.23)

can be used to produce a robust optimal desifpr the observebased fault detector.

From (3.21), - L > 8°5?, where 9 and 8can be determined by the set of the scalar

parameters:

# L [Ga® 85, B AR By, 4 Foog) 2 BB By, 4) 5855 ® S5y S580® Sga0Ssa1a ® Sz a0a
(3.24)

As result, the matrix- in the cost function can be replaced the scalar parameter set
denoted by (3.24)here is a variety of optimisation methods can be used to GR&). In
this study, Genat algorithm (GA) will be utili®d.
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3.6 Genetic Algorithm (GA)

Genetic algorithm (GA) is a stochastic optimization method for solving constrained and
unconstrained problems based on natural selection that is a process that bisfmogcal
evolution. Algorithm is known as a precise procedure of guidelines on how to execute a task
/ a highly effective method for problem solving. GAs is a search algorithm based on the
system of natural selection and natural genetics, that is dineam search evolutionary
optimization algorithms motivated by the biological (natural) methods of natural selection
and survival of the fittest mainly for optimising models. This universal philosophy is
employed to solve the robustness concern in rAbdeéd FD. To tentatively find the
effective cost or locate the main practicable best performance solution of a
physical/behawural representative by optinaigon techniques is known as GA. GA is an
Artificial Intelligence @Il) for solving extensive colléion of problems naturally based on
searching rule to exhibit robust quality anticipated search set which guide the design proces
[123].

3.6.1 Overview of GAs

GA is employed to search a dominant global optimal population solution to complex
problem which comlinie Charles Darwin philosophy of survival of the fittest approach to
reduce the unhealthy features of weak survivor and casually exchange information. Recently
advanced tolerant soft computing method in artificial intelligence, GA was inspired by
"D U Z L Qifpsop8y of natural selection by the survival of the fittest and evolution. The
theory of GA was first published in 1975 by Hollan®9]-[113] who was the first founder
to experimentally mimic the observed process in natural evolution in the field imfsBited
E\ 'DUZLQYY $GDSWDWLRQ LQ 1DWXUDO DQG DUWLILFL
The application was successfully implemented by Goldberg in 1989 [114] and lot of research
and applicatioawere reported in the last two decades [189]. 7TKH SULQFLSOH RI
RI WKH ILWWHVW" LV HIIHFWLYH LQ HDFK JHQHUDWL
chromosome (populatioonly adapt to the environmental influences where there is potential
to distribute their hereditary formation to neeneration. In the natural genetics, genes are
UHSUHVHQWHG DV FKURPRVRPHY WKDW H[SUHVV WKH S
of parameters. Traits of individuals are passed to next gemesdty GA operator that would
later be discuss irthis section. Another thought of applying the optimization purposes are

the minimization of consequence respect to the modeling uncertainty and the maximization
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of fault sensitivity. Collectively the applied principle is comprehensive as a-ohjctive
optimization (considered as more than one problem) which is explained by establishing a

"mixed or compound goal optimization purpose problem.

3.6.2 Advantages of GAs

The multiobjective optimization is applied to minimise the dual optimization objective
function of robustness and sensitivity through GA that was originally designed for natural
selection. GAs is a useful tool that is capable of solving large complex problems which is
apparently difficult to be solved using other traditional techniques. Totlady en GAs is
comprehensive growing since early 1970 from computing to practical engineering and other
branches of sciences where there is quest of optimization concern. Cebaset®GA has
been successful to model and described the evolution behawbdault analysis of
observation concerns approach. GA is employed to search a paramount global optima
population solution to complex problem which combine Charles Darwin philosophy of
survival of the fittest approach to reduce the unhealthy featuresadf survivor and casually
exchange informatiorGA avoids the cumbersome complexity requirement for calculation
of cost function gradients. For the design problem presented in this section, the calculatior
of gradients is very complicated. Even the caliofaof gradients is straigiiorward, the
GA procedure is less probledependent because the only probigmecific requirement is
the ability to evaluate the trial solutions for relative fitness. Another benefit of GA is that it
increases the possibilif finding the global optimum. GAs constitutes a parallel search of
the solution space, as opposed to a ployapoint search in gradiemtescent methods. By
using a population of trial solutions, the GA can effectively explore many regions of the
search pace simultaneously, rather than a single region. This is one of the reasons why GAs
is less sensitive to local minima. This is especially important when the cost function is not
smooth, e.g. the maximal singular value functions used in this paper. FiGsy
manipulate representations of potential solutions, rather than the solutions themselves, an
consequently do not require a complete understanding or model of the prolleitn-
objective is a GA technique employed as a decision making tool to eaeprefine or

solving to improve inconsistent of more thareabjective functions simultaneously.
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3.6.3 Flow Chart of GA Optimisation and Design Procedure

The binary GA is the most commonly used where the variables are changed into bit
numbers with the encady of the values of chromosome (gene) parameters operating in the
population. GA operates with an initial random population using a stochastic operator to
determine the global optimum for the solution to a given problem. The local optimum can
be determinedising other optimization methods like calculus based methods. The vital
knowledge in GA is to exchange a set of population from initial random places to a global
minimum point. GAs further adopts probabilistic standard operation in the investigation
procedure, and they can usually predict better optimisation performances for challenging,
irregular and multmodel tasks. To produce a new population with better individuals, the
GA modifies population of individual solutions repeatedly. Although their nature
distinctiveness and flexibility application abilities makes it stand out amongst other
optimization method, that promise GA to potentially find the global solution, though, this is
employed for attenuating external disturbances and model uncertaintiefraegntly
determine a satisfactory (acceptabkdntively rapidly realizationThe structure flow chart
of GA is shown below in accordance to solving FD complex issues [3].

Figure 3.3 The computational structure of GA optimisation

The optimization eplanation process comprises of a set of parameters of participant
element which forms the vectors that represent the variables of GA in each chromosome o

the population and helps to determihe design of the stateedback gain-. GAis used to
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searchfor a suitable parameter sahd also employed as aptimisationnatural solution
techniquédor solving the tradeff problem.GA algorithm is used to search a set of optimal
scalar parameters, where the GA optimization tool is convenient for utilizatder Matlab
software platformThe GA can be run by using Matlab optimization toolbox, whose running

procedure can be described as follows:

1) RepresentationThe primary parameter element of a GA is the gene, which in natural
setup decides the specifiedtdiguishing of an individual, such as hair colour gene is
determined by the physical model description i.e., matrix formation of various
chromosomes representation of individual population describes a parameter that is to be
optimised. The parameter setdkaracterised by eigestructure assignment coding
systentransformed to searching a set of optimal scalar paraniktgrs acceptable by
gatool GA solver. The total sum of the parameters is defined las) E J H L[122].
Parameters are represented as the number chrom®sloatenake up the population.

The chromosome code population or parameters to be eptims described in the
form of (3.24).

2) Health Evaluation The costing assessment is essentiaGify, the link of individual
with the location provides a quantity of its capability that GA uses before reproduction
is taken place [117]. This fitness amount is used to define the sum of offspring that will
be created to form a detailed chromosome. Thamni assessment stage which helps to
define the objective fitness of the current population by providing two input arguments
which is declared as the dual problems of disturbance robustness and faults sensitivity.

s L 1% Qlugy, - Min
6 L .*U:Q.a@: Max
Therefore, the cost function i,sL—? : Min, which is the same as defined in (3.23).

3) Selection: The aforithm frequently selects individuals chromosomes based on best
fitness values determined by objective function. This operator compromise, the trade
off between the global solution and convergence speed. The selection is carried out by
probability stochasc uniform (random chance related to increase in convergence). This
operator avoids the best parameter set from loss during iteration and also boosts th
convergence rapidly. The best chromosomes which are the fittest survived are selecte
randomly seleed for the parents of the reproduction operation meaning the specific
function that the algorithm uses to selected parents in the function field are comparably
UHODWHG WR WKH VXUYLYDO RI WKH ILWWHVW 32Q0
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4) Reproduction:Choosng the parents from current population for the next generation,
determine how the GA produces children at each generation. This stage allows GA to
make apply survivabf-thefittest scheme [3]. A heathier solution is generated with
better fithess value viaptional choice of parameter to provide a consistency in its
probability choice with an increase in convergence speed. The key genetic cpamtor

as follows.

Recombinationrecombines each chromosome to produces new chromosomes from
earlier generatio features but the new chromosome do not occurs in the previous
generation. The crossover operator creates new chromosome with a regular ideals
parents. In normal development, recombination and reproduction happen in the same
period of which individual ararbitrarily selected from population. Crossover is the
mating process, in which a position along the chromosome is arbitrarily selected that
dissects the two parent chromosomes into two sections, which are then exchanged. Th
new offspring population arembraced of a diverse section from each parent and thus
inherit genes from the two parents. Here the accurate chromosome is passed to the ne
generation for crossover fraction whose default is selecteghtiool as scattered to
increase chance of survivgiving room for more opportunity, which replaces current
chromosomes with the children to form next generation. Priority chance of survival is
given to the healthy chromosome or healthier chromosome of which the crossover helps
to recombine survival parenin order to produce new offspring, the offspring is

generated by mutation.

Mutation: The second operator in the reproduction process employed to avoid finding
local solutions to problems which is inspired by the chance initial random population
do nothold all of the information necessary to solve the global prol#smlioring many
regions of the search space simultaneously, rather than a single region helps to introduc
changes in each generatidime mutation function is defined as the constraineddpnt

of which are limited to the lethalf complex plane to concentrate on the stability
conditions. A constraint dependent is chosen as defined in the constraint function to
ensure the poles are rightly place within the eigenvalues as in (3.15) a6)d Gddbal
solution is always suggested in the optimization process, but if a quick convergence
happens then the solution achieved could be localised minimum or maximum solution.

Furthermore, it is possible that the individuals that produce no offsprigdnanee had
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5)

some information that is crucial to the solution therefore, there is need to input new
information into the population. Mutation presents the random selection of variables to
change the value of some physical parameters in the chromosomeoN tagei of 0.2

set in the solver, is used which slows down the convergence process, to ensure globe

solution is obtained.

Elitism: The elitist approach repairs possible source of loss by replication the best
member of each individuals in the current getion with the best fithess values into

the subsequent generation, which makes best individuals to automatically survive to the
next generation. The elitist improve the performance of GA, increase the speed of
convergence as well as find the local minmmindividual due to the supremacy of best
survival. This is the greatest member of the population that are weak to produce an
offspring in the next generation. The elitism approach could increase the speed of
control of a population by a strong individualternatively it helps to improve GA
performance.

Stop Check:When the optimal results convergence, the algorithm terminate if the
stopping conditionsra reached or a generatio&yond thesetperimeter, alternatively
return to health (fithess evalimn) to continue the evolution. The stopping principles
guarantee that at least one minimal solution is found which could be: Generations, time
limit, fitness limit, stall generations, stall time limit, function tolerance, nonlinear

constraint tolerance.
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3.7 Summary

In this chapter, robust obserdeased fault detection filter is addressed by integrating
eigenstructure assignment method and GA optimisation technique. The design procedure c

the GA optimization for seeking can be summarized as follows.

Set the sizes of the population and generation.
Set the parameters to be optimized in form of (3.24).

Set the cost function in form (3.23).

O O O o

Set the constraint such that the observer system mitFix %is stable, that isall the
real parts of the eigenvalues must be less than zero, in every iteration.

0 GA runs until the stop condition is satisfied.

The addressed robust fault detector is designed to be sensitive to the faults but robus
against disturbances. Thereforeg thaults can be effectively distinguished from the
disturbances. In the optimisation design, the dominant disturbance is minimized at the
specified frequency, which can be observed from the Fourier Transform Analysis. The
addressed methods will be appltedhe case studies for wind turbine systems and induction

motor systems in the following chapters.
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Chapter Four: Robust Observer Based Fault Estimation Approach

$Our goal is to show that you can develop a robust, safe manned space program and do

| LW DW DQ H[WUHPHO\ ORZ FRVW~’
Burt Rutan

4.1 Introduction

In distinction to the prior chapter three, that demonstrates robust fault detection to seek
optimal observer gain such that residual signal isitea to faults, but robustgainst
disturbances. The robustness issues of FD still requires turther investigated due to the
continuous increase in industrial system complicateomd cost triggered by less tolerance
for performance corruption and safety risks, which poses a need to improve fault diagnosis
performance. The advanced fault diagis technique ighe fault reconstruction or called
fault estimation, which can provigeore information about systems litee size, shape and
types offaults. Therefore, fault reconstruction (or fault estimation) can be utilized to assess
the strict dggreeof the monitored faults. This kind of faulty information is paramount for
control and managnent to take proper measuresfuther damages and apply tolerant
control actions.

Fault Estimation (FE) employs modehsed approach of industrial proses or applied
practical systems to give the estimation of all likely faults. The effect of uncertainties on an
observer can be amplified unavoidabhpwever the conventional approach cannot
adequately achieve the system performance. There is need toatdtahe effect of
modelling error in order to improve the performance of the system and reducegthe bi
experimental worries in realigy a reliable robust FE via models of the industrial practices.
Faultestimation is defined as adhnique to estimate onoderni® the size, type and shape
of faults, which can provide more information on the nature of the faults and facilitate the
fault-tolerant (FT) designFault estimation is a kind of fault diagnosis method that gives
estimation of possible fault andgwides the estimate of the state at the same time using
available input and output. Noticing that environmental disturbances are unavoidable,
therefore how to improve the robustness of FD system against disturbances/noises has be
a key issue in FD commiiy. The principle of theobust fault estimation technologFET)
stateof-the-art observers is to construct an augmented system by presenting the alarmec
fault as an extra state, and the comprehensive state vector which is subsequently predictabl

and also essential to the estimates of the disturbed fault signal together with innovative
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system states. Therefore, the sophisticated (inventive) observers are also named &

simultaneous state and fault observers.

4.2 Literature Review of Fault Estimation Techniques

A variety of fault estimation/reconstruction methods have been developed to improve
the efficient and reliability oF T design for early detection of developing faults such as
adaptive system PI7]-[132] methods based on linear matrix inequality (LMpproach to
solve the considered parameters. The steadiness analysis of thd@bpsedntrol system
in the presence of unknown faults and modeling errors was first proposed3pyTha
accommodation of faudtwas[128], the systendesignreduces ttg assumption by allowing
the bounddto be unidentified explicitly, and the scheme uses an adaptive bounding method
where the bouretis estimated online. The adaptive for informing the neural network error
that could raise as a consequence failure obtifiee estimation to contest the fault function
precisely, even with optimal weights and bounding estimate, as well as the design of the
corrective control fuation to avoid unpredictaplin the presence of a fault. The closedp
stability of the suggestl fault accommodation scheme wstsictly recognied with
Lyapunov concept to reshape technique focus to abrupt faRikand[134]. The drawback
of adaptive fault diagnosis system in relation to precision, tracking error delay original
estimate whichcould cause missed alarm and speed to reach the performance
condition/convergence error leading to reduced transient performance, to achieve the rigic
limitation by explaining thelesigned parameters. Fast adaptive fault estimation (FAFE)
approximator wadater proposed to increase the speediness, guarantee an acceptable
dynamical steady state performances of fault estimation of which LMI algorithm technique
was investigated to effectively solve the designed parametets4hd[135]. The system
is exposedo either model uncertainty or external disturbance is discussed in detail and a
modification to the adaptive diagnostic algorithm is proposed to enhance its robustness
which s limited in application to real systemdoreover,[129] suggested linear queadic
control to improve the system performance behaviour and system steadimesdiding
mode approach was introduced more than 60 years ago with growing research contributior
to be known as one of the competent tools to design robust controllessldwesensitivity
to elimination of inevitability of strict disturbances modelling and variation plant
parameter behavior for a dynamic plant operating under uncertainties environb®hts [
Sensor and actuator faults have been deliberated for raulisteconstruction techniques
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for linear parameter varying (LPV) systems based on sliding mode observers by LMIs to
minimize the impact of uncertainties and size manipulation on moralredhstruction
performance [135]n [136-[138, the sliding sgnal is permitted to interrupt in the existence

of faults/failures in the system. Some latest contributioB9]{140] and principally [14]-

[142] use the robustness materials of sliding modes to contribute getting information about
WKH pVL]H Y dbtleGayliyacdfsutt fetection. This is reached through reconstruction
RI WKH IDXOWV E\ LQYHVWLJDWLQJ WKH pH[WUD RXWS
continue sliding at the existence of faults43[Ldiscussed that systems where réjuet is

not available, the reconstruction of faults can be advantageous particularly for sensor faull
progressive device complicatioridie outline of the design process based on the exposition
and developments in the previous sectiiserver to handleaviations in the operating
condition shows faults has been reconstructed with satisfactory accsiideyy mode does

not depend on plant dynamidsjt oftenresolute by systesmMR XW S XW SO UPdfi W H U
which the observer is designed using LMIs. Hoamlinear dynamics in a lineaed plant
whichare presumed to be an agent of uncertainties of which could motivate some variations
which could provoke false alarm interference leading to poor performance therefore, the
overall performance needs furthemimvement in terms of highlighting the sensitivity and
robustnessThe renovation performance is accomplished by enhancing the plant conditions
with the observed output measurements that are liable to faBis [Another proposed
technique allowed comgle decoupling of bounded noises as well as estimation of
measurement noises, input disturbances and system states simultaneously with the conce
of derivative and proportional gain designed observer to change a multivariable system with
measurement noisdo an augmented descriptor system. Control community has suggested
Proportional Multiple Integral Observer (PMIO) for stafgace systems with unknown input
disturbances are only states estimators, and cannot give the estimation of unknowr
disturbances145-[148]. This method along with the modified proportional and integral
derivative (PID) observer tolerates decouple of the measurement noise compi&led [1
[150]. The LMI with Lipschitz constraint robust filter was applied to a nonlinear descriptor
sydgem to concurrently modernize the uncontrolled fault sifft@&r] and other approaches

in [151] and [152] Also, descriptor systemeduce the input bounded disturbances but
nevertheless, little efforts were suggested on robust fault estimation for uebloiaudts

and disturbanceshére is room for improvement dhis approach. Augmented system
observer and high gain design method is one of the novel robust observers to simultaneousl
predict faults time results, modernize fault signals and providesagstifithe states at the
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same time using available input and output which is more efficient than other estimation
approach [B4]. It is of interest to continuously improve the efficient of the related
progressive observer systethatare beneficial bothor estimating measured unpredictable
advancing faults (Pl and PMI observers), gradual changing parameter faults (adaptive
observers), actuator faults with simulating (sinusoidal) waveforms (sliding mode observers),

and highfrequency sensor faults (des¢dpsystem approache$]].

The above observer methods can be combined (incorporated) uninterruptedly to dea
with applied concerned set up complications. Comparatively,48],[Integral observer,
sliding observers, and adaptive observers are integi@tenovate sensor faults for satellite
control systems. In [A8], Pl observer and descriptor observer techniques are incorporated
to evaluate the parameter faults for aero engine syst€umssidering the strength of
combined methods to tackle robustnessild be evaluated in this section.

4.3 Fault Estimation via Augmented System Approach

Dynamic system corrupted by faults and disturbances is described as follows:

TR L #TR E$SQP E$B:R E $. @R

JU:P,L%TI'P, E & QP E &B:P, E & @P, (4.1)

where T:P 82 s the state vectorQ P, 82 is the system control input; P 8%is the

measurement output@P, 8°%is the disturbance vectand B: P,68"is the fault vector.

As the incipient and abrupt faults are considered in this study, the seoded

derivative of the fault vector should be zero, that is,

B/P L . (4.2)
In terms of (4.1) and (4.2), the augmented s$aBce system can benstructed as follows:
alh  #r & TR 3 $,
ANB/PROL er r riNBSROEeriQPR Eeri@P
Opép  acrédcyd A T r
~ 0§ e§ )$ )$X (43)
0 T:P
OUP L g5 880NBOR CE &QP E & QP
o) y8 B:P
Let
TSP L TR BB:P B :Rg (4.4)

50



# r %
#§ e r ri g & (4.5)
r + T

$ $x
$Leri D8 4B L eri D%, (4.6)
r r
o8 % r B?8aH® (4.7)
SLIEtG (4.8)

Therefore, the system (4.3) can be written as:

T8RP L #%8P E $QP E . QP (4.9)

J UP L 98P E & CE & @P,

For system (4.9), one can construct an observer in the following form:

#P L #88P E$QP E %UP F & QP F 988P; (4.10)

where #P, 8%is the estimatef the augmented stat€8R, 8%aand % 8% s the state
feedback gbservey gain to be designed.
Let

ASP, L TSP F ), (4.11)

The estimation error dynamics is governed byfttiewing equation:

PP L #F Yo8reP E $ F Y& ;@P (4.12)
As a result, the design goal is to designo make (4.12) asymptotically stable when
@P, L réaand reduce the effect from the disturbatwehe residual signal in (4.13) when

@P,. Mra
Existence condition of the observer:
In order to make:#¥ Y08 stable, the sufficient conditionf the pair (#®8is

observable, that is,

SLIEtGL N= € gé#%for any complexumbers. (4.13)
It is noted that
OsF# 1 FSy_
_ F# I ¢ G r g
JEtGLN_Jcﬁo/é%LN-Jg ' Fi Oph
I % r &o
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N=38 F e taaomra
%

LA~ # %y ] ) (4.14)
N=J @, o hEGAOL ra
If the pair : #4% is observableN = J@ OF/O#CL Ja (4.15)
Assumption

Supportingconditions (4.15), can derive that the pa#&)8s completely observable, as in
(4.13)and(4.14) implies that

N =J& ;é#%L $ (4.16)

Therefore, the observer gaincan be found so thatt¥F Yo/8is asympotically stable.

The next task is how to design gairto attenuate the effect from the disturbar@® & an
effective observer (4.10) can be designed, shienates of the state and facdin be given as
follows:

JBiP, L ¥pus TpHp b 8P

. R 4.17
UPR L >&s laip a0 8P @10

The design of the augmented observer can be depicted by Figure 4.1.

Figure 4.1 Diagram of augmented observer
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4.4 Eigenstructure Assignment for Seeking Optimal Observer Gain

The eigenvalues of the observer can be real or congale)igate. Assume that there
are Jreal eigenvaluesi;: <L sd &® &% ; and pairs of complexconjugate eigenvalge
&5 oG Ry 5 (FL sd & a%ky, and & and Hssatisfy the following relation:

Js EtIsL (4.18)
Real eigenvalue case:

Assume thatRyis thei™ right eigenvector of # Fo- ; corresponding to thé"
g g

. ORI B, S|
eigenvaluegof :# F % - ;, one thus has:
_i ?5_j
R\LF@uF# A %Sy (4.19)
where
SyL %R, (4.20)

Complexconjugate eigenvalue case:

Assume thatRg zE FRy) 2is thej right eigenvector of# F - ;corresponding to the
@

" eigenvalued g oE g 20f F F%- .. Itis evident that

Y R N

@ F %- AkRagE R0l ki oE Ry a0kRa oE FRy) 20 (4.21)
which is equivalent to:

JK8ia o+ F #50RaoF & Rwal FBY%Rag

) N ) iy (4.22)
84 2R oF Kdia g F #30Rga L F9B% Ry,
Define:
| GagFHS Fagar o 0B
#L H Sort g otF Jgh oL A7 gh (4.23)
el R
JSYaaQ %Raaﬂ (4.24)
Stan L " Raa
Therefore, from (4.2)-(4.24), one can obtain:
Ra 25 Sta g
. 790,
ER@'J aCL F#y /@Bsm @ (4.%5)
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By integrating the two cases (real eigenvalues and complex conjugate eigenvalues), on

can define the following two vectors:

9 L S5 ® Sy Ssaip® SaapSsara ® Sy 429D B8R (4.26)

8L R ®R, Rag® RiaoRaa® Ry0:0D8% . (4.27)
In terms of (4.R) and (4.2), one can calculate the augmented observer gain as follows:
T L>08%%4 (4.28)

4.4.1 Cost Function

The transfer function of (4.12) cée given as follows:
AQ L :OF #E %F5 3, F %, ;@04 (4.29)

In order to minimis the influences from the disturbangethe observer gaiﬁ should

meet the following performance index:

‘(‘('(CE,:F; (43))
where

,L1OF#E YF5: 8, F %! gy | (4.31)
where fi, is the dominant frequency of the disturbance.

Based on Session 4.4, the gaian be obtained from a set of scalars:

WL [&a® 8, &g AR By, 4 P4y 2 B By, 92855 ® Siy Ssag® Sz80S541a ® Sx 4
(4.32)

Therefore the cost function (8)8can be reformulated as follows:

ecececW; (4.33)
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4.4.2 Designfor GA Based Robust Fault Estimator

The design procedure of seeking optiraatan be outlined as follows.

o Population Representation:Many coding techniques have been suggested, like gray
coding, and binary bit strings. The total number of the parantetbesoptimized isd L
$E $H L and the set of the parameters is defined ag)(4.3
o Fitness Evaluation:The fitness function is defined as (3.3
o Constrains: The eigenvalues of the#¥ Yo/&are ensured to be stable.

0 Selection:Same as chagt three, In order to search the area of concern effectively
for a global result occursnany regions of the search space is explore randomly, rather
than a single regiofmhis operator is responsible for randomly stochastic uniform search
(selects some &dtions from the population by repetitive random sampling, helps to
select potential useful solutions for recombination) to filter for the better fitness values
survival.

0 Reproduction: The algorithm selects the individual parameters that have bettessfitne
values as parents to breed children at each fresh generation to make random changes
the individual population. The processre€ombining the survivdb generate value of
parents. This create a kind of diversity, the selected parent (parametstgnmsure
the system#&F Y9/fies within the eigenvalues plane, the selected parent (parameters)
which must ensurgthe system are placed in the open, left complex plane hand lies
within the eigenvalues plane, mutation is a kind of change introduced randomly to a
single @mrent. The repetition of the population of super chromosomes copied to the next
generation.

0 Stop: The global minimum point is reached, where the stopping conditions determine
the end of the algorithm is terminated when the number of generations exceeded,
otherwise return t&ITNESS FUNCTION to continue the evolution.

55



4.5 Summary

By integrating augmented system approach, eigenstructure assignment method and G
optimisation technique, a novel fault reconstruction method is proposed. The frequency of
the dominant disturbance can be obtained from the signal processing technique (Fourie
Transform and analysis), which enhance the disturbance attenuation ability. As a result, the
proposed GA based fault estimation technique is a hybrid fault diagnosisqtextoy
synthesising modddased method and signal processing method. The proposed methods will

be applied to the case studies of wind turbine systems and induction motor systems.
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Chapter Five: Wind Turbine Technology and Fault Diagnosis

37 KH | Xi$\gkthHsustainableDQG UHQHZDEOH HQHUJ\’

Arnold Schwarzenegger

Windmills have been a significant evolution from mill grinding, sawing wood, water
pumping mostly by the Persians in the middle east to modern power technology [153].
Fossil fuels hag created alternative energy sources which were relatively cheap but has
some increasing concerns on global warming and environmental hazards and contain a hig
measurement of carbon. The traditional fossil fuel resources are becoming exhausted ot
with presently 11 billion tonnes been consume every year, and fuel importation are at a top,
from statistic fossil fuels will run out soon with reserves predictable or become costly to be

genuinely afforded and continuously affecting severe environment impadt [15

Fossil fuels are gradually exhausting at a quicker rate with the negative effect on the
environment. There is the need for an overthrow of fossil fuels energy values getting its
scarcity limit with renewable energy resources which contributed inglyres part of the
world's power production which is considered in this study. Most Power production around
Europe continues its exchange of fossil fuel oil, coal and gas respectively with knowledge
continuing to neutralize more than it installs. In ortecreate a sustainable system, this
implies a significance fact to keep the energy going forever into the future, to significantly
reduce greenhouse gases like carbon dioxide and lasting energy predictability as well a:
energy security. As a result, reveble energy technology refers to as clean sources of
energy, with far trivial environment effect than the fossil fuel traditional energy will be of

interest in this study.

5.1 Introduction - Review of Wind turbine renewable energy

Wind energy has become the ns promising, nature of clean and fastest growing
renewable energy source with the high market impact which increases as well as contributing
to world's power production with an unlimited energy source. Lots of contributions have
been made to support md turbine renewable energy sources that have many advantages
over the traditional fossil fuels. The European wind power installed capacity has reached &

volume of 320 GW and wind energy contributes currently about 4% of the world's power
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demand. The newdure of installed capacity in the European Union is 128.8 GW of almost
120.6 GW onshore and nearly 8 GW offshore [155]. The normal annual growth amount of
wind turbine installation is about 30% in the past ten years, with annual growth of about
37.1%.

By the end of 2020, it is expected that this number will rise to above 1,260,000 MW,
which will be satisfactory for 12% of the global electricity production supply to give the
industry a new boost. The European Union (EU) installed capacity achievemen2@irt
has increased by 14.8GW to 910.1 GW with wind energy power increasing by 11.4 GW
benefit of electricity generation analysis of 14.1% [1H%6]. The healthy growth of US
wind target power installation capacity is 712 GW by 2020 of about 20% p@nerajion
[157]-[168] for offshore placement. The global market for wind renewable energy continues
to grow as technologies is more environmentally friendly with a total worldwide installation
capacity of 2000 GW by 2030 with supplied of about 19% of dleletricity [159] and
[160].

Accelerated growths of standard renewable energy have potentially boosted the numbe
of installation in the market. Wind turbines (WT) have been a significant role in the
origination of cleaner energy in the UK, the knowleddligating substantiated over the last
20 years. The technology is swiftly emerging industrial area and large turbines like 6MW
are being created both offshore and onshore. The worries over environmental variations an
energy safety rise, faulty compongmmerging concern in renewable energy schemes that
can cause a high loss in energy production as well as possible damage of the turbines.

Arnold Schwarzenegger orientation on green sustainability future is simply to increase
the environmental safety, seay, reliability fit for the function of energy supply and to
moderate addiction on traditional oil and other fossil fuels. WT have been reserved to play
a vital role in the generation of clean energy in the UK, known as one of the substitute energy
souces and are estimated to produce energy with very little interruptions. Though, in the
past, as the wind turbine life, the impact of a resourceful assessment or components stat
valuation has increased extremely. The issues that arise with the WT produettbe high
cost of production often causes losses in offshore farms comthplexity that requires
sophisticated strategies. Though, availability may fall below 60% of offshore WT due to
considerable interruption frequently caused by high incidencesroponents failure that
could decrease the reliability and increase the cost of maintenance [161] and [117]. Thes
are costly tasks as for example the cost of replacing the gearbox accounts for about tel

percent of the wind turbine construction and inatah cost, which eventually results in an
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increase in energy production cost. This is one of the driving forces to detect developing
faults of WT at an early stage in order to ensure adequate measure taken to avoid any furthe
costs and also enhance rbllay. This chapter briefly presents the basics interest on

environmental variations, reliability and an account of growing concerns in renewable
energy systems and how best to constantly increase working operation by reducing

performance degradation.

5.2 Market Forecast

It has remained a substantial increase in power energy directive due to global economic
and industrial expansions. Successively, the increasing market growth will be between Asia
and Europe till 2018, where Asia will rapidly begin to pult oithe market gradually. The
international wind turbine markets economy led by Asia, Europe, and North America are
said to the amount by 33.5GW in 2019, innovative markets begin to make an actual change
in the next five years. Brazil is expected to maoneto 3rd or 4th position in the yearly
market ranks over a subsequent couple of years, and interrupt into the top ten in positions c
increasing installations as initial as the end of 2014. South Africa is lastly attracting, and this
will expectantly led to a miniboom in Southern and Eastern Africa in the next five years.
The actual rough estimate is that Saudi Arabia, with its determined goal of up to 50 GW of
solar and the wind by 2030; and Russia, around is primary signs that it might begin tb exploi
its huge wind assets in the nearest future [159]. The growing market will lead to additional
expansion which will further reduce the cost of a wind turbine to be able to contest with
other conventional power production like fossil fuels. The increasmgty of WT market

prediction for 20142019 is shown below Figure5.1.

Figure 5.1:  The Cumulative Market forecast by Region 2D49 [159]
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There is a continuing increase growth in the yearly wind turbine installed global size,

thereby making it hava prospect in the nearest future (e.g., see Figure 5.2).

Figure 5.2:  The annual global chain installed wind power capacity from 1997 to 2014 [161]

There is an annual market growth of 44% that is authorised 50GW made a history in
2014 which is a sign aharket recovery after the previous slowdown in past years. The total
cumulative installed since 2014 according to Global wind Energy council is about 369,553
MW. Statistics shows that the United Kingdom, Denmark, Germany, Belgium, PR China,
Netherlands, ®eden, Japan, Finland, Ireland, Korea, Spain, Norway, Portugal and the
United States is leading the world in Offshore wind installation. The cumulative demand of

energy is of acute significance for the world economic growth and environmental protection.

5.3  Modern Wind turbine Aerodynamics Description

The wind is triggered by the communication of the patchy heating of the atmosphere
with the irregular outside part of the earth, and the earth's cycle. The Wind can produce bott
mechanical and electricity powen the case of electricity, the wind drives the blades of a
wind turbine, and the kinetic energy generated from the rotating motion is changed to
mechanical energy. The mechanical power is then used to drive a generator that produce
electricity that is udel in homes and industries [162]. Wind turbines convert kinetic energy
to mechanical power which induces electricity that describes the process of electricity energy
generation whose purpose is to reduce greenhouse gas. The contemporary wind turbine is

threeblade horizontal/vertical generating axis, in which the produced energy is in response
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to the obtainable wind. Horizontal axis wind turbine (HAWT) topology whose rotation is

parallel to the ground includes the following subsystems (see Figure 5.3).

Rotor: This consisof blades and supporting hub
Drive Train: This includes shafts, gearbox, mechanical brake amgtiezation
The tower and the foundation: Supports the rotor and the drivetrain.

The nacelle and the main structure: This includes yaw\amdl turbinehousing.

O O O O O

The machine controls: This includes the sensor (Speed, position, temperature,
current, voltage etc.), Controller (mechanical mechanism, computers and electrical
circuits), Actuators (Motors, pistons, solenoids and magnets)

o] Other eqipment includes electrical cables, switchgear, transformer, grawpyebrt

equipment, interconnection equipment, and feasibly electronic power converters.

Figure 5.3: Main components of a horizontal axis of wind turbine [149]

The design is based orvariable speed that can integrate a pitch parameter piece which
involves turning the blades about their sideways horizontal axes which is known as pitching
the blades to control the power removed by the rotor. This makes the turbine operate a

perfect tipspeed ratios over a larger range of wind speeds so as to collect the concentrate
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energy from wind, it supply power at a continuous voltage and frequency while the rotor
speed varies and finally it controls the active and reactive power [163]. The tigbezate

power by using the natural influence of the wind to drive the doubly fed induction generator.
The wind turbine consists of four models which are: The wind energy is transformed into
mechanical energy through rotation of the blades by the wiadeBind pitch systems drive
train, generator/ converter, and controller. By pitching the blades or by controlling the
rotational speed of the turbine relative to the wind speed, we can change the aerodynamic
of the turbine and hence we can control thi€hagical energy. The role of the drive train

is to increase the rotational speed from the rotor to the generator. The generator torque ca
be controlled by the converter as well as the rotational speed of the DFIG. The doubly fed
induction generator (DFIA}¥ a design based on induction generator which is fully coupled
with a converter that converts the mechanical energy to electrical energy. DFIG technology
permits extracting determined energy from the wind for small wind speeds by improving the
turbine sed while reducing mechanical pressures on the turbine through gusts of wind.
This makes the generator generate electricity with a full converter coupling to stabilized;
however, at this system near, the difference is small between a full converter @uriaya d

fed induction generator. The output rotor speed, the generator speed, and the pitch positior
of all blades are measured with two sensors. Both these generator types are-sjaeiadble

and pitchcontrolled turbines [164]. The normal wind turbine rabdonsists of some
subsystems, including blade and pitch systems, drive train, generator and converter, an
controller. The standard wind turbine model consists of some like the blade and pitch
systems, drive train, generator/ converter and controllsh@sn in the model arrangement

of wind power energy generation (see Figure 5.4).

Figure5.4: Principle of the wind turbine model [163]
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Blade pitch subsystem is to possess the rotor speed ineffective restrictions as the winc
speed changes whiaonvertthe wind energy into rotational energy and pitch, the input
power of the turbine is controlled. The drive train normally comprises a gearbox and
generator doubled induction generators are extensively used technology in wind turbines
[165]. In a fulkscak conversion drivetrain, the wind turbine gearbox is protected because
the generator is not connected directly to the grid and therefore exposed changes in the gri
that can generate extreme pressure on the drivetrain. A vastly proficient key thaoatiso aff
healthier power value to the grid, the full converter solution has a redundant converter systen
that offers security in case of a disaster. To aid the urgent need of industrial reliability in

order to stay improves.

5.4 Challenges of wind turbine technobgy
5.4.1 Cost

The request for wind power continues to grow as the best advanced aptfexiste
source of renewable energy, the actual cost of wind turbine project is around 69% of the
entire development cost. The economics rates of wind energy projeciaficubject on
the scale, location and connection requests. Various models have been advanced fc
exploiting generated wind power, reducing the turbine cost and raising the effectiveness anc
reliability. The global analyst report says there is predietabe in maintenance outflow of
wind turbines from $9.25billion in 2014 to $17 billion in 2020 [166]. The table below shows
power in numbers collected by Element Energy Saving Trust, it is possible that wind energy
will become competitive with gas poweergeration [167]

Turbine size Basic Cost per  Feedin-Tariff generation rate
turbine (E/KWh, current)
Building-Mount Micro £10,000 £0.27
(2.5kW)
Micro (6kW) £20-28,000 £0.27
Small (2650kW) £50,006£125,000 £0.24
Medium (100kW-500kW) £ 250k320k £0.22
Medium (850kW-1.5MW) £1.41.8 million £0.09£0.19
Large (23MW) £2.7-3.1 million £0.05£0.09

Table5.4: Statistics of Element Energy Saving Trust
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5.4.2 Environmental concerns

Wind power is noticed as an environmental friendly which could havgaimpact
on the climate change, eco emission environment, nevertheless, it is not completely
emissionfree. Emissions are indirectly produced based on fossil fuel used for exploration of
the material and transport of equipment leads to consumption gfyer@siources.
Environmental concern over the use of predictable sources of wind turbine renewable has
reached a disturbing time, therefore substitutes causes are the ecological future prospec
Though wind power plants have relatively little impact on ¢éhgironment compared to
fossil fuel power plants, there is some concern over the interferences that distract the powe
energy. Wind speed is one of the most important influence affecting the turbine performance.
fluctuations in wind speed could results doaotic turbulence predominantly caused by
contact with the earth's outside part or motion from the blades, which could be disturbance
triggered by humid structures and current effects which could cause air masses to move
abruptly as a consequence of afions in temperature and henceforth density of air. Most
of these social problems have been resolved or greatly reduced through technologica
development or by properly siting wind plants. As highly expected power generation in the
next future, there areoncerns on how to distinguish between real uncertainties hazards
around the system that would have less effect on the normal working condition of the wind
turbine. Early interception of a reliable to an effective technique to monitor the activities
aroundthe system could reduce the amount of unnecessary emergency in the system an
hence boost the conditions of the monitored parameters significantly to the success of energ
production. With the fact that there is industrial request target to increasenanddor
modern dynamic systems to be safe, reliable, efficient, to substantially reduce the cost to ths
consumers on utilities which make it one of the most affordable electricity power [168]

5.4.3 Repairs and Maintenance

Wind power has the potential conwiibn to the future of power energy among the
current repairs approaches, for predictive and preventive techniques to support wind turbine:
to reach availability and less expensive energy. Decreasing the operation and maintenanc
(O&M) costs and filteringeliability have developed the top significances in WT repairs
methods. The trends of how to reduce operation and maintenance (O&M) cost is researcher

concerns to guarantee the low repairs, availability period and minimizing the costs of

64



maintenance ancepair. The idea of expenses in wind industry was the growing stage of
wind turbines and the failure of electric system sensors and blade/pitch components.
Therefore, the expansion greatly advanced WT designs proposed to improve availability, the
request ofreliable and cosgffective condition monitoring (CM) techniques that motivate
monitoring a particular parameter to offers an effective method to realize this goal. CM is a
device generally active for the early finding of faults/failures so as to redigceuption and
maximize efficiency, which is also considered as a comprehensive process for defining the
complete operational health of the WT often used for the rotating parts. The key function of
a successful CM system should be to provide a reliabtaimgaof the presence of a fault
within the WT system and furthermore to identify the location and severity of the condition.
This method of monitoring is fit for design purpose, parameter state in order to predict failure
or identify substantial changes tontrol the best point between corrective and planned
maintenance schemes [169] and [170]. The wind turbines are normally planned to function
for about of 2630 years according to some study [171]. The chance that an unsuccessful
component will be reinated to operational effectiveness within a given period of time when
the repair is carried out in agreement with recommended measures. The method to optimiz
the maintenance of components which degradation can be classified according to the severit
of thedamage. Maintenance for these components can often be based on different eondition
based maintenance (CBM) strategies for uninterrupted monitoring which are economically
justifiable. The scrutiny practices are employed to identify early developing gignti

faults and to decide any needed maintenance assignments ahead of failure to ensure syste
reliability and to improve from interruptions [17P]76]. A major issue of WT is the
relatively cost of O&M which often increases maintenance costs which caukk poor
reliability that could reduce the availability thereby triggering stawn and component
repairing. The operating functional tifbased maintenance is assumed that the fault
behavior of WT is estimated. Basically, three fault outlines defiaddatures state of WT.

The bathtub curve shown in Figure 5.5 illustrates the notional fault rate against process
OLIHWLPH LQ D SURFHVV V\VWHP > @ ZKHUH U~ UH
represents a constant fault proportion which irfplf QRUPDO ZRUNLQJ FRQG

denotes a cumulative fault level.

65



Figure 55: The technical reliability analysis of the fault in bathtub [171]

The fault presented in the curve above, the early fault free rate is the first part of the
curve wherdault period is decreasing also known as infant mortality failures. The middle
section is referred to as a basic fault which is also the useful life, which assumed that faull
exhibit a constant fault. The final part of the curve defines the catastroplie exygbcted

that failure/fault rate increases as a wear out current mechanisms.

5.4.4 Failure Rate

The desired rate and act developments could be reached witbfstlageart variations
in current designs that integrate original improvements in resourcesnptaods, device
approaches, and industrial processes. The fixed cost of a wind power project is subject to th
straight principal rate. The capital cost can be classified into Wind turbines (includes blades,
tower, and transformer) to be 64% which is exgpee of the wind farm, Groundwork 16%,
Grid Construction 11%, Planning, and Miscellaneous to be 9%. Most failures were linked to
the electrical system followed by sensors and pitch/blades components [177] (see Figure
5.6).
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Figure 56: The component failres of wind turbine system [17[]78]

The total percentage of failures is shown above instituting the huge influence of a
component / parameter failure on wind turbine reliability. The prospective unexpected
changes in component could affect the repaist,c hazards and performance of the
component failure on WT reliability, this focus on the availability as presented in [171] that
revealed about 75% of the yearly interruption is triggered by about 15% of the average
failure rate and downtime per compohenWTs. The assessment with the Electrical system
repairs, Electronic control unit, Hydraulic system and sensor device that are majorly
subjected to high failure rates, requiring so often repairs, maintenance and possibly extrz
redundancy. In the wind tiine, the sensor has as key unbiased to identify in prior any
destruction of the wind turbine nacelle components, in order to allow the proposal of
operative and precisely upkeep operations and repairs. In this network, the secured data fror
the sensor dece are sent to a control system, from where the plant state can be constantly
observed. Likewise, this method increases the value of the upkeep and maintenance proce
as well as prevents unwanted extra interruptions of the plant. The highest medaaitical
rate and the assessments, which have to be achieved, will be defined. Furthermore, it will b
obtainable statef-art assessment performances and technologies in the wind turbine sector
[171]. As the request for wind energy is growing quickly prégjseis essential to guarantee
a good excellence of the power supplied and an improved temporary permanence of the win
farm, so that the wind farm can overwhelm the variations triggered by the error as rapidly
potentially. The wind turbines need to ogter reliably at all times, despite the possible

occurrence of faulty system components and sensors to achieve the purpose of the syster

67



which one of them is availability. Fault detection avoids catastrophic failures by making
possible for scheduled maintnce to keep the turbines running, improvement in the
reliability of wind turbines would both greatly reduce the amount of interruption
considerable of the present and high maintenance expenseq18@P] Therefore, the
design of fault diagnosis and acemodation techniques is a crucial step in achieving
reliable operations of wind turbines. The expenses of wind turbine repairs can be lessene
by emerging wind turbines that need less planned and principalgnganised service and

has less interruptiohny failure. This is essential particularly for offshore wind farms where
the fee related to O & M is sophisticated and where climate circumstances may avert repair:
upkeep for an extended time. The analysis to moderate O & M expenses is the answer thg
affords us the prospect of generating power, possibly with some deprivation in the
performance, subsequently, failure has happened till the subsequent planned check. Th
control system is of high importance for detection, isolation and accommodation sfrfiault
wind turbines since it has access to information from the different components of the wind
turbine. Early stage engineering, monitoring, and maintenance are vital to keeping turbines
available to generate energy and improve performance. Control syateraombined into

all turbines to permit them to function unattended and device an uninterrupted optimisation
of power performance. Comprehensive Supervisory Control and Data Acquisition (SCADA)
controller systems monitor, data collection, reportingrdioate the operation to original

and shut down turbine operator are employed in all commercial wind farms and which are
economically justifiable. They collect data from individual turbines and from substations.
Often there are meteorological masts thataso used to gather wind data for the site. A
high level of understanding has been developed, allowing optimisation of both wind farm
design and operation [18]1184]. A comprehensive investigation by monitoring engineers
with the aim of diagnosing thaudlt is their core values. Plant operator's key importance is
observing for alarms are reliable so that they can take assured action with regard to warnin
power downtime or shutting down a turbine to escape severe or risk failure happening. This
point is the relationship between CM and diagnostic systems where CM leads to the
diagnosis. A competent scheme to moderate O & M costs is initial and precise fault detectior
and diagnosis (FDD)
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5.5 Fault Detection for wind turbine technology

The concepts of fault dettion and diagnosis are a condition monitoring system that
monitors to detect chne fault performance of the rotating dynamic system and diagnose
irregularities to provide information about the irregular working parts of the dynamic system
[184]. To cotinuously ensure reliable working process of the modern control system in WT,
avoid abnormal event progression, reduces productivity losses and system breakdown whic
means, dangerous faults are not acceptable and must be spotted earlier before they tru
occur. Though, the condition for soft (incipient) faults is very small of which is nearly
invisible to be seen. Small faults progress gradually to cause severe impact on the systen
An initial onset warning of soft faults can provide sufficient informatio® operator and
interval to take proper actions to avoid any severe concern on the system. Unknown
disturbances always exist in the practical environment, which could cause false alarms.
There is the need to design a robust optimal fault detectionvalngermake the residual
sensitive to faults but robust against disturbances. A UIO was intended for detection of
sensor faults around WT drive train with the assumption that UIO can be completely
decoupled. Nevertheless, this theory cannot always be mmebre practical events,
additional motivation has been positioned on the electrical change system in the WT with

some relevant examples in [185].

5.5.1 Types of faults in a controlled systems

Modeklbased FD system is practical primarily with-lore fault diagnosis, in which the
analysis is supported during system working operation. The rvadeld FD requires the
system obtainable input and output information when the system is in operatiofill88p6]
The modeled faults considered are the sensor, actuatgoraness faults in the different

fragments of the wind turbine

Figure 57: Types of faults in a control system
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Figure 5.7 illustrates the scheme of the WT mdubded fault diagnosis, whevft) is
the reference command(t) is the control inputy(t) is the measured output. The symbols
da(t), de(t), ds(t) are the input disturbances, process disturbances (due to the modelling errors
and parameter variations), and sensor disturbancefa@ndc(t) andfst) are the actuator
fault, process fault (oratled parameter fault) and sensor fault, respectively. In this study,

we focus on actuator faults and sensor faults in types of incipient faults and abrupt faults.

5.5.2 Wind Turbine System Model

A 5MW wind turbine system model corrupted with system faultsdastdirbances can
be represented in the form:

T6R L # TR E$QPR E $B:P E $.@PR,

JU:P,L%TI'P, E&QP E &B:P E & @P, (6.1)

where T:P. 8is the state vectorQ P 82 is the system control input): P 83is the
measurement output}&b &@8 are known matrices of appropriate dimensioBsP, P 8P
represents the fault vectofy,and &jare the fault distribution matrices@P, b 8"is the
disturbance vector, andl, and &, are disturbance matrices. The gystparameter matrices

of thewind turbine system are given below’g:
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The symbols of the 5MW wind turbine model are defined in Table 8],[Where the wind

turbine is operating at wind speed of 10 m/s.
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Table 5.5: Symbols of 5MW wind turbine Parameters [178]

DESCRIPTION SYMBOL DESCRIPTION SYMBOL
I Turbine Inertia Jr Leakage coefficient é I
Gearbox ratio Ng Stator current Id, Iq
Generator inertia Je Pitch angle U
Torsional stiffness Ks Desired pitch angle ¥
Torsional damping Cs Mechanical torque Bt
Synchronous spee fis Electrical torque &
Stator resistance Rs Control torque 65
Rotor resistance R Control rotor voltages Vdr, Vgr
I Stator inductance Ls Wind turbine speed Pt I
I Rotor inductance Ls Generator speed Aim I
Mutual inductance Lm Stator voltage
Gearbox ratio

The statesT, inputs Qand outputy, of the windturbine model are defined as:

Refers to the entire system health state condition

Predictive or known input value of the WT

WT output
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5.5.3 Robust Fault Detection for WT

For the wind turbine wdel (5.1), the obserwrased fault detection filter can be described
as:

WP L #UPRES$SQPE-:UFU
PUP L 9P E &QP (5.3)
NP L9 kUPFUPO

where T Pis the estimated statd] P.is the system output estimate; the residual signal,
denoted byN B, as the weighted difference between the real output state of the wind turbine

system U: P, and the estimated outpdlfl P. Forbrevity, we choose9 L +n this study.

Let,
AP L T:RFUPRA (5.4)

In terms of (5.1) and (5.3), one has

MP, L #F-%APEk$F-&OBPE:$ F-& QP

NP L % E &B:P E & @P, (5.5)

Therefore, the residual of the equation can be expressed by frequency dwdain

NQL *,.:Q@Q E *3;:QB:Q (5.6)

where,
*«'OQL %OFH#E-%":$5F - & @0 E &g (5.7)
*0'Q L %OF#E-%"Sk$g F - &0E &g (5.8)

It can be perceived from (5.6) that, due to the existence of disturbances, the residua
would not be zero even at the event of fault free. The upshot of disturbances behaviour coulc
cause a missed or wrong alarm. Hence, the key goal obblstfault detectiordesign is
to seek an optimum observer gain'to attenuate disturbances influence and to enlarge fault.

If the residual signal is less than a threshold valelg., under disturbances/noises
environment)the system is healthy. Otherwise, the system is faulty, giving an alarm.

In terms of Chagtr 3, GAbased fault detection fét design method can be summedlis

as follows:
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Algorithm 5.5: GA-based fault detection filter design
o0 Set the sizes of the population and generation.

0 Set the parameters to be optimized in form of (3.24), that is,

# L [Ga® 85, Bos AR By 4 Fog) 2 B® By 412855 ® Sy Ssa0® S5,80S54)a ® Sy a8

(5.9)
0 Setthe cost function in the form of (3.23), that is,
LA il g0 PSRV i 2AYy > 180 | .
Agiee; l Yiee B0 > A vl - k»? AVR0> ¥4 ~ (wasr;

where fi, is the frequency of the dominant disturbance, and the frequency of the fault

concerned is chosen to be zero.

0 Set the constraint such that the observer system mitFix %is stable, that is, all the

real partof the eigenvalues must be less than zero, in every iteration.
o GA runs until the stop condition is satisfied. The optifgis thus obtained, that is,
#o L [B08® 8y, Foa ad® By & 0% 0 8B By 4a 04
S50 ® Say0Ssam ® SyamSsaa0 ® Sy (5.11)

o The optimal- gis thus calculated by

-0 L 0087572, (5.12)
9L S5y ® Ssyy Ssaa ® Saam Ssaran ® Sy 09D 83 (5.13)
L Ry ®R,0Raw® RiawRaw ® Ry axngb82H (5.14)
RpL F:&g+F # ;°°% Sypa EL s& &® aly (5.15)
Ei_-szLpL FAlS oaif‘“”ca & s& & &g (5.16)

(e atF # o Fagor
oot HagtF#

AgL H la (5.17)
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o
LB g 1
X3 ) % G (5 8)
o Apply the observebased fault dettion filter in the form of (5.4), that is,

P L #UPES$SQRE-gUPR F UPR;
PUPR L %XIP E & QP (5.19)
NP L URFUPR

5.5.4 Simulation Results for Robust Fault Detection

To illustrate the proposed robust fault detection filter and robust fault estimation
observer approach on sensor and actuator scenarios, the model is simulated based on 5M
continuoustime wind turbine system as illustrated above. The investigation is caurtieuh
Matlab/Simulink platform. The optimization is demonstrated on gatool toolbox in Matlab
environment to operate the genetic algorithm method of typical abrupt and ramp types of
faults are considered in this simulation
There are two match approacheslesign observer gailk", the first method is GA and the
second method is place command function in Matlab. Considering the possibility and the
error in the simulation, it is needed to simulate the parameters with two main types of faults,
step and rampignal. Disturbance is defined as a sine wave, with the process disturbance

injected to the 5SMW wind turbine system is defined as follows:

@P, L rdrsecesteP (5.20)

A. Robust Fault Detection For Sensor Faults

The Multi-objective optimization problem is to attenuate the robustness to disturbance
and enlarge the sensitivity to faults. Scenario One: For sy&®&n considersensor fault
only by letting $y L r, while & L + The frequency of the disturbancefis L ste The
sensor faults considered are abrupt faults and incipient faults, and the frequency of the fault
is chosen as zero. Inis mmd thatJ L xand L L vdhus the number of parameters to be
optimized is =L XxExHvVv L ur Following the GAbased fault detection filter design
algorithm (see Algorithm 5), one can obtain the optima fitness value (see 5.8) and the

resulting optimal observer ga
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Figure 58: The sensor best fitness value by using GA optimization

The computed generated optimakerver gain is
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Al). Single incipient sensor fault detection
Considering individual single faults
(@) Pitch angle sensor fault

SPErarsOEdsP PRsr
ae@é@d'aq POsr

(b) Wind turbine sensor fault

dé‘sPErarsO EdsP PRtr
r

Begamda POt

(c) Generator speed sensor fault

dé’sPErarsO EdsP PRur
v

Begamda POUT
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(5.22)

(5.23)

(5.24)



(d) Electromagnetic torque

DsrPEr&rsOEnJé’sP, PR vr
A

POvr (5.25)

Begasds

(a) Fault detection for the pitch angle incipient sensor fault

(b) Fault detection for the wintdlirbine speed incipient sensor fault

(© Fault detection for the generator speed incipient sensor fault
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(d) Fault detection for the electromagnetic torque incipient sensor fault

Figure 59: Single incipient sensor fauletkction by using GAased fault detector

According to Figure B, it can be clearly seen that the the first three sensor fatdisangle
sensor fault, wind turbine speed sensor fault, and generator speed been successfully detect
repectivley at 10s,@ and 30s. However, the electromagnetic torque sensor fault occuring
at 40s is not clearly detected, although the change at 40s can be seen if the figure is zoome
in. It seems to be reasonable as the amplitude of the steady electromagnetis tmome

50000 so that a ramp fault with a small gradient is challenging to be detected. When one
increases the gradient of the fourth sensor fault, thatdsiromagnetic torque sensor fault,

it is evident that the detabablity should be é@sed. For instare; the electromagnetic torque
sensor fault is modified as follows:

Bepgamda

I:):,rrPEriirsO EdasP PRvr (5.26)

POvr

The residual norm for the wind turta system subjected to thkectromagnetic torque
sensor fault is shown by Figure 5.10. One can see the fault decribed by (5.26) has bee

successfully detected.
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Figure 510: Incipient fault detection of thelectromagnetic torque sensor

A2). Detectionof multiple incipient sensor faults

Now one assumes the four sensor faults occur sequentially at 10s, 20s, 30s and 40:
respectively. The first, second and fourth sensor faults are given respectively by (5.23),
(5.24) and (5.27), and the third sensortf@ibiven as follows:

%@ée@d—é[)rsrPE rarsO EdaP PRur (5.27)

POur

The residual is shown by Figure 5.11.

Figure 5.11  Multiple sensor fault detéion: GA-based approach

From Figure 5.11, one can see the residual has shown the changes respectively at 10

20s, 30s and 40s. In other words, the four sensor faults have been successfully detected.
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A3). Single abrupt sensor fault detection

The abruptdults of the four sensors are assumed to be as follows:

(@) Pitch angle sensor fault
réaErarsOEI&R PRsr
%e@éeﬁd—aDr PO ST (5.28)
(b) Wind turbine sensor fault
SErarsOEd&SP PRtr
Bepamds D ot (5.29)
(c) Generator speed sensor fault
EErarsOEdsR, PRur
Begamda D o (5.30)
(e) Electromagnetic torque
rEErarsOEd&R, PRvr
Begamsdal POVT (5.31)

For single abupt sensor fault, the residuals are shown by Figur2 ®ne can see the
residuals have successfully catched tlgnadi changes respectivley at 10s, 20s, 30s and

40=cs

(@) Fault detection for the pitch angle abrupt sensor fault
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(b) Fault detection for the wind turbine speed abrupt sensor fault

(©) Fault detection for the generator speed abrupt sensor fault

(d) Fault detection for the electromagnetic torque abrupt sensor fault

Figure 5122 Single abrupt sensor fault detection by using-k&a&ed fault detector
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A4). Detection of multiple sensor faults with comparisons

One supposes the four sensor faults described by {f28)) sequentially occur at 10s,
20s, 30s and 40s respectivelyolder to make the comparison, one also designed observer

based fault detection with the conventional pa¢signment method without considering
disturbance attenuatioithe place command function is used to assign poles to the set of

L L <t & uéd v& Wi x& ydeading to the observer gain as follows:

.rd&rrv  Fra&rrr ré&rrr rdrrr

i o)

Trarrr  ra{zx tqvzr FrarrrN

TFra'trrr rarsv rarrs rarrr N
Gaovk + ] ] N (5.32)

Prarrr rarrs rarxr FrarrrN

N

jFrarrr Frarrr t&{{t Frarrrg

IFrarrr Frarrr réarsy rarrr O

By using GAbased fault detection filter and pedssignment based fault detection
filter, the residuals are shown by Figure 5.13. One can see thagsidgmment based fault
detection filter can only detect the apt fault occurring at 30s, but failed to detect the faults
happening at 10s, 20s and 40s. On the contrary, thdasAd fault detection filter can
successfully detect all the four sensor faults respectively happening at 10s, 20s, 30s and 40
Therefore, @-based fault detection has shown a better fault detection ability.

Figure 513: Multiple abrupt sensor fault detection

Now we can look at the multiple incipient faults again in order to compare with the pole
assignment based fault detection methuk incipient sensor faults are defined by (5.22)
(5.25). The residuals are shown by Figure 5.14. One can see thaspigement method
only can detect the incipient faults occurring at 30s, but failed to detect the faults happening

at 10s, 20s and 40dowever, the GAbased fault detection filter can successfully detect the
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incipient faults occurring at 20s, 30s and 40s, although the change at 10s is not shown ver
clearly. As a result, the Ghased fault detection filter has shown better fault deteetdity
comparing with the polassignment based fault detection filter.

Figure 5.4: Multiple incipient sensor fault detection

B. Robust Fault Detection For Actuator Faults

Let us consider actuator faults only, that #; L $, and &; L rgyg&et the sizes of the
population and generation are both 100. Use theb@ged algorithm (see Algorithm5.

one can obtain the optimal fitness value (see Figure 5.11) and the corresponding optima
gain.

Figure 515:  Fitness value via GA optimization: actuator faults

The optimal observer gain is given as follows:
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Trssx trdwrx Fudsz Frarrr
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fr&rss rdasrz Frdarty réarrrg
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r&urv sd{rv FraiuuruFrarvxy

IFrgz{wF{&vyw tarrt FrarrxO
The five abrupt actuator faults are defined as follows:
(a) Pitch angle actuator fault

dasErarsO EdsP PR sr

(b) Wind turbine torque actuator fault
%o;eoe,i-a\sr ErédrsOESR I;g;: (5.35)
(c) Electrical control torque actuator fault
E OEild&P, PR
B 0ceor ks XS ETATSOEIR PRuUT (5.36)
(d) Active contol rotor voltage actuator fault
E O EidsP, PR
%Ogé@&i—adas rarsOEr ot (5.37)
(e) Reactive control rotovoltage actuator fault
&sErdarsOE&SP, PRwr
%Ogéé&i—ad POW T (5.38)
The five incipient actuator faults are defined as follows:
(a) Pitch angle actuator fault
PE OEW&R PR
%Ogé()@&-adas rars : POSSI’r (539)
(b) Wind turbine torque actuator fault
By o exto L\srPErarsOEn]esP PR tr (5.40)

POtr
(c) Electrical control torque actuator fault
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PE O Eid&sP PR
%C)gé@?;i—adas rars K Pouurr (5.41)

(d) Active control rotor voltage actuator fault

PE O Eid&aP, PR
Bﬁ@gé@&i—adas rars - PO\\//I’r (5.42)

(e) Reactive control rotor voltage actuator fault

dsPErarsOEMdBP, PRwr
%Ogé@&;é—ad POWT (5.43)

It is noticed that the coefficients of the second control input are one million times smaller
than the coefficients of the other input signals, therefore the second actuator fault is
extremely difficult to detect. Aa result, the second actuator fault can only be detected with
a sufficiently large size (Here, one can choose 105 as the fault amplitude or gradient for the
second actuator fault). Actually, in this case, the signal intensity (i.e, the product of the
cortrol coefficient and actuator fault signal) of the second actuator fault and those of the

other actuator faults added to the system dynamics have the same order.

In order to make comparison, the paksignment based fault detection filter gain is also

given by locating the poles to the setsf{ Fud ua u & s& t&F s&& sdr wéF v u wi

rarvr Frarrr rarrr r&rrrn

—_

Tréarrr ra{zx tqvzr FrarrrN

e

N
Fréarrr rarsv rdarrs rarrr

NH s 7 (5.44)
Frarrr rarrs rarxr Frarrrl)l

-_—

Gaovde

—_ -

N
,Frarrr Frarrr ta&{{t Frarrrg

IErdrrr Frarrr rarsy rdrrr 0

The residuals for the abrupt faults and incipient faults are shown in Figure 5.16. From
Figure 5.16 (a), one can see the pmdsignment based fault detection filter can only detect
the abrupt actuator faults occurring at 40s and &0ly. However, the GMAased fault
detection filter can successfully detect all the five abrupt actuator faults sequentially
happening at 10s, 20s, 30s, 40s, and 50s. In addition, from Figure 5.16 (b), the pole
assignment based fault detection method aetect incipient actuator faults happening at
40s and 50s, however, the dxased fault detection approach can successfully the signal
changes at 10s, 20s, 30s, 40s and 50s. Therefore, tiva28l fault detection method has a
better fault detection perfolance compared with the pedssignment based fault detection

approach.
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@) Fault detection for abrupt faults

(b) Fault detection for incipient faults

Figure 5.B5:  Fault detection for multiple actuator faults

5.6 Robust Fault Estimation for Wind Turbine Systems

5.6.1 The design algorithm of the wind turbine system

Fault estimation can provide the size, shapestgpes of the monitored faulésd this
kind of information is important for control/management centre to take proper actions to
protect the system amst potential further damages. Consider the wind turbine system

subjected disturbance and faults in the form of:

T6P L # TR E$SQP E $B:P E $.@P

JU:P,L%TIP, E&QP E &B:P, E & @P, (5:45)

where, TD 82 QD 82, UD8E @P b 8%s the disturbance vector, a8l P, B 8Pis the
fault vector.The matries $yand &;yare known as fault entry matrices which represent the

effect of faults on the systen$, and & are known as disturbance entry matrices which
represent the effect of disturbances on the sygte®. %and &are known costant matrices

of appropriate dimension&or the abrupt and incipient faults, the seconder derivative
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of the fault should be nerero piecewise function. However, in practical conditions, some

oscillations are found in incipient and abrupt typicalgpical type of faults that could leads

to some variations.

Certainly, it can be challenging to distinguish the influences of faults from the

consequence of active environmental discrepancies on wind turbine system. Environmenta

disturbance could uncemdy reduce the performana# FD which could act as a sourck

false and missed alarms. So, there is need to study disturbance in wind turbine, in order t

minimize the amount of false alarms in the systémarefore, the considered fafili.e., B/

is bounded [134]. In contrast to chapter 4, (4.2),

B/P Mr

Let

TL ¢ B85 B g P8R

The augmentedtate spacsystem came written as follows:

T8RP L #3SR E$QR ES. @P E) B/R
J
UP L 988 E & QP E & @P,

where

T #or %y $
T§_eB§ #8 o ¢ ria®Leri
B

r + r r

$ r
$Leri, YL eH

r r

B % r &E

The augmented fault observer can be constructed as follows:

#p L #98P E $QP E %UP F & QP F 988P;

(5.46)

(5.47)

(5.48)

(5.49)

(550)

where 8P, 8%is the estimate of the augmented statetor TSR 8%and Y0 8 ¥ |s the

observer gain to be designed.

Let
AP, L TSP F %8P,

The estimation error dynamics is governed by the following equation:
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AP L #F %8reP E§ F Y%, ;@P E VBP (5.52)

The transfer function of (53) can be given as follows:

AQL :OF #E %F°5:$, F % ;@0 E:OF #E %F°)85B.Q; (5.R)

Hence, the cost function can be given as follows:

L sE; (5.54)

where,
s L OF#E Y058, F %! gy | (5.55)
6L 1:OF #F YF°) 8.4, (5.56)

Following Chapter 4, the sufficient condition for the matt$§ 2o4% stable is:

The pair:#a%is observable,

$u

# <
N=Jd, o hL JEGA (5.57)

Based onhie above and Chapter 4, the design procedure of the fault estimatamdor

turbine system is summaed as follows.

Algorithm 5.6 GA-based fault estimator design

o

Check condition of observer:Check whether4.15 and (5.5) are satisfied. If
yes, go tahe next step; otherwise, stop the procedure.

Set the parameters to be optimized:The total number of the parameters to be
optimized is $E $H L and the set of the parameters is defined as (4.32).
Fitness Evaluation: The fitness function is defined as (%5

Constrains: The eigenvalues of thettF Y8@Bare ensured to be stable.

GA running: Run GA until one of stop conditios met.
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5.6.2 Simulation study for wind turbine system

A. Fault estimation for multiple sensor faults
It is assumed that the first three sensor faults occur sequentially. In this simulation study,
the disturbance is assumed to be the same as (5.20). By usimihihg.6, one can obtain

the optimal fitness value (see Figure 5.17).

Thefinal evolutional optimal process can be displayed below.

Figure 5.7: The evolutional final optimal process for sensor.

The optimal GAbased observer gain matrix sensor fautialeulated and verified as

iFrz'i'{ruy Frarwu rarys réirrsn
IFsyaru{r Ftx&Zsuw Fusiuty raxy{N
%théijyuuFuta(swaxv&zt{ riivzvk:
%Fr:‘i(tzu Fravzy Fraytr réarry ’%:
jFuiyur Fxav{ws Fsxdsvs Fxraxut@

([ N i .. NI
Tu{zxv{s tvyzusr svx@uvr vaa;xvaI

_U{ROL ! o (5%)
I'sgayz{ Frawvr Fukyvt réa&rswN
i \
iFs&ztu udtzy Ftauw{ Frarrwg
1 N

usvw{ s@ryy zaxvu Frf;‘{rvrﬂI

uiyvz Frautw Fsit{t rarrv N

—_—) —) =—)

N
T tway{r ux¥xt{ xtaiuwy Frdvzxyg

I tdvsx  s&twr yavuxy FrarszO

Al) Incipient sensorfaults:

The first three sensor faults are assumed to be as follows:
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rdasPErarsOEMsPaPR vao (5.58)

Begoaal \\ PO vO
rasPErérseceraPaPR srO

Beaoaal \ 4 PO s 1O (5.59)
rasPErédrse<erdPa PRsvD

Brgoaal \| 4 PO svD (5.60)

Wind turbines operate at a low frequency sensitivity of fault performance index to be
maximized and the robustness disturbance frequency information is designed to attenuat
the disturbance to its minimal. Figubel8 demonstrateshe wind turbine parametees
stated in each curves displayed in the figure below with sensor faults with their estimations
UHVSHFWLYHO\ ZKHUH WKH 3UHG OLQH™ YLHZV WKH Ul
estimation The proposed observerig is calculated by GA with excellent estimation
performance for abrupt / incipient faults and states.

The estimates of the three sensor faults above are depicted by Figure 5.18, which ha

shown that three sensor faults in the types of ramp signalstaratd excellently.

(@) The pitch angle and its faudstimation.

(b) The wind turbine speed and its faektimation.
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© Thegenerator speed and éstimate

Figure 5.B:  Sensoiincipient faults and theirstimate WT
A2) The Abrupt sensor faults are wellliefined as:

The first threeabruptsensor faults are assumed to be as follows:

sErarsOE&BPa PR va&oO

Besecola \ 4 PO v&O (5.61)
‘ sErédrse<sr&PRa PRsroO

Beicod \ 4 POsrO (5:62)
SErédrsec<erdP4a PRsw

Braecola\ 4 PO s VD (5.63)

Figure 519 shows excellent tracking performance.

i) The pitch angle fault and its&mate

90



ii) The wind turbine fault and itssémate

iii) The generator speed and itirate
Figure 519  Abrupt (step) sensor faults and itstienate

As the byproduct, the estimates of the system states are also obtained, which are depicte
by Figure 520. One can see the six states have been well estimnfdtedestimate of the

state hadeen achieved with available input and output of the WT model.
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i) The pitchanglestate and its estimates

1) The agula speed position state and itimate

i) The wind speed state and igimate
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iv) Generator speed state and greate

V) d-axis rotor curent gate and its €imate

Vi) g-axis rotor current and its estimate

Figure 520:  StatesTgjand its estimate
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B. Fault estimation for multiple Actuator faults

Itis assumed to have three actuator faults, which occur sequentially. By using Algorithm

5.2, the fitness value evolution curve is depicted by Figure 5.21. The optimal observer gain

IS given as:

i xdtzz s&ust Ftugwrs Frdassr

ITszirwu wisww Fw{fixut raxy{N
% ratxv WZtzs tWé X V X rasxt ’,%:
; r&swx  raryw Fradzuw rdrrv E‘
T utfwk F{& xv{ v{kvsv Fxrdswmw

%. L }Fxr\ﬁwvv Fxzf@uxuv usdtrw sz"zxurg: (5.64)

I'srgv{xw v&vwt Fwé¥xwt Fratsw\
% yvlByvy vravuxy Fsv&awrs réiwtsk:
; sas{r ydzvs XZaly XV rawxsg
T svav{{y wa {sw Fytdz{w FraurzN
%trz'a'vtsz {wsyv{ Fwyttty ré/{vwk:
I rgw{v ssizvt zve{yy raxr{O

The actuator optimal observer gain reached by GA is shown below:

Figure5.21:

The fitness evolution by GA algorithm

The capacity of the proposetbhal optimum observer is moael in the fault and its

estimde. This shows a great improvement in the fault diagnosis technology.
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Al) Actuator Incipient fault and its Estimate

The first three actuator faults are assumed to be as follows:

rasPErarsOEWd&P&aPRsrO

Breoaal \ 4 PO srO (5.65)
risPErédrse<er&PaPRtrO

Bexoaal \ 4 POtro (5.66)
rasPErédarse<¢erdPa PRuUuroO

Braoaal \| 4 PO UTO (5.67)

Figure5.22 hashown the three actuator faults hdpeen estimated satisfactorily.

a) Desired pitch angle and itstamate

b) Mechanical torque and its Estimate
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C). Control torque fault and itssémate
Figure 5222 Actuatorincipientfaults and itsestimate WT system

In this case, we aim twoncentrate on the real fault and its estimate for actuator faults

A2)  Abrupt actuator faultsand its Estimate

The first three actuator faults are assumed to in the following types:

SsErasOEd@sPaPRsrO
B cola \ | 4 PO srO (5.68)

SsErase<erasPaPRtroO
Bsie g ola \ 5 POtroO (5.69)

SErase<ersPaPR urO
%ﬁ'ﬂegﬂlﬁ \I'é PO urO (570)

a) Desired pitch anglactuatorfault and its stimate
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b) Mechanichtorqueactuatorfault and its stimate

c) Control torqueactuatoifault and its stimate

Figure 523.  Step actuator fawdtand its stimate WT system

Figure 5.23 has shown an excellent estimation performance for the abrupt actuator faults.
The diagnosislisplayed in Figure. 5.23 and Figure 5.22 displayed the real fault, its estimate
and demonstrated the state of WT system where the red line thick represents the real state
the system and the blue lines are its estimated path, this shows how uniguethiog is in
improving fault monitoring.

For the system with actuator faults as represented in step type of faults, it successfully show
the quick clear response to faults and its estimation with appropriate convergence quality.
This technique can seek optimal observer gain which minimizes the influences from the
disturbances and the nalominant fault components to the estimation error dynamics. There
the proposed technique has shown good performance for the reconstruction of multiple

sensor faultsrad multiple actuator faults.
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5.7 Summary

In this chapter, an overview of wind turbine technologies has been presented, particularly
with an introduction of the wind turbine global current cumulative market trends and
analysis. Moreover, the challenges fonditurbine industries have been analysed, especially
about system reliability and component fault rates. This has raised a strong motivation for
the research on fault detection and fault diagnosis.

The contribution of this chapter is emphasised as follows

o GA-Based robust fault detection algorithm for the wind turbine system is
addressed by integrating obserbaised fault detection filter technique,
eigenstructure assignment method, and -@&pfimisation approach. The
simulation study has demonstrated ttieg residual can well detect the single
fault or multiple faults as well as better disturbance attenuation achieved.

o GA-Based robust fault estimation algorithm for the wind turbine system is
addressed by integrating augmented system technique, eigamstruc
assignment method, and G¥ptimisation approach. The concerned faults and
system states can be effectively estimated. The simulation study has verified the
proposed fault estimation technique has excellent fault/state tracking
performance.

0 The propased fault detection and fault estimation methods can cover two typical
faults in engineering practices, that is, abrupt faults and incipient faults, showing

the reasonability and effectiveness of the used fault diagnosis techniques
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Chapter Sx: Fault Diagnosis for Induction Motors

3.QRZOHGJH LVQTYW OLIH FKDQJLQJ 7KH DSSOLFDWL!
Todd Stocker

6.1 Introduction

This chapter presents different simulation results in contrast to the previous chapters,
where the proposed techniques amployed to solving robustness in WT model as
discussed. The hybrid FD is also applied to the real application of Induction Machines (IMs)
examples in order to validate the execution of robust FE approach. Current sensors of IMs
would have faults or malfuntions due to the age, which may lead to wrong commands of
the controller, causing system performance degradation and even dangerous situation:
Likewise, voltage actuator faults will have indirect impacts on the measurement outputs;
consequently, it is ore challenging to diagnose actuator faults from the residual. Whose
information is vital for faultolerant operation, in order to effectively enhance the tolerance
capacity, there is the need to reconstruct thedaaticerned and distinguish the imgaoft
the current sensor and voltage actuator faults from those of uncertainties. GA optimisation
techniques are a natural solution for solving and diagnosis thedfageoblem that is
practicable in this application. As a result, there is strong matdivé&d confirm the applied
applicable of robust diagnose in voltage actuator and current sensor faults at the early stag
which is a kind of necessary actions to be taken to avoid further damage, degradation of th
IMs / serious situations besides faciiitg fault tolerant design. In this study, a robust
residual and an augmented observer are presented with various scenarios based to illustre

the performance of the proposed techniques.

6.2 Principle Element of IMs

IMs are electromechanical network machinegerated in nearly all industrial
applications for the conversion of energy from electrical to mechanical form which operates
as a motor or generator but preferably used as motors. IMs are important components whicl
are been generally employed due to theionomical low cost, robustness, have low
maintenance, moderately have high efficiency, reliability and excellent performance in most
of the industrial automation systems applications. CM and FD of engineering plant have
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improved lately due to the generae of computerisation which resulting in decreasing of
human directmachine contact to supervise the motor drive systems operation. The
industrial demand for steady reliable operation is of great importance to the plant and
machinery during the entireystem longevity. Generally, at least two current sensors are
necessarily deployed in order to obtain good performance in voltage source ibasedr
induction motor drives [188]. However, current sensors may be subjected to faults, which
may result in te deterioration of motor drive performance, poor safety, and reliability, and
even the collapse of the system [1:8B93]. Changes in the measurement of current sensors
could have unplanned influences on voltage actuatorsctvigoonents irany system are
subject to manufacturing faults, friction with the environment could cause performance
degradations thereby reducing system reliabilities. The outcome of environmental
disturbances is invariably inevitable, which motivates more concerns on how to erifeance t
robustness of FD system against disturbances which has been a key interest in FL
community. In [194] an observer based residual generation and fault detection method wa:
addressed on the basis of the mathematical model of the induction motor. Luenberge
observers are used to generating residuals for stator and rotor current sensors to determit
faulty position, as in [189], two parallel fault detection observers were applied to dedbly
induction generators. Hence the investigation into sensor fatdttibon and diagnosis is

very significant to the development of the global system performance. In applied dynamic
systems, the residual signal is significantly affected by the system modeling error, paramete
perturbation, and the unknown inputs distudesinoises. Variations in sensor/actuator are
one of the crucial elements in the fault diagnosis system of an induction motor due to the
effect of trivial deflection which could lead to a missed or the false alarm action of the fault
detection system, asel as affect the performance of IM's causing unreliable and poor
critical safety system. Some researchers proposals are to eliminate the effects of disturbance
on the residuals, this technique is practically impossible because of the strict conditions
criteria that needs to be met [76]. More concepts have been proposed on how to decoupl
uncertainties by attenuating disturbances as much as possible by some optimizatior
techniques [275] and [90].

However, as the responsibilities performed by machines deygadeveloped gradually
complex, enhancements were also requested in the field of fault diagnosis community, in
order to facilitate fault tolerate. In practical systems, the residual signal is significantly
influenced by the systems parameter perturbatimodeling error and the unknown

uncertainties, whose outcorma®ethe sophisticated false or missed alarm amount of systems
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fault. For robustness in modeased fault detection problem, it is vital to make the residual
signal robust against the disturbaacnoises, and modelling errors which could result in
improper anxiety. Therefore, there is a need to continugusiposean improvement
approach to the global performance of the system theoretically by establishing using correc
mathematical models tmitate the position and information of IMs. The fundamental focus

of this study will be to improve the fault CM of induction accordingly, it is very significant

to develop robust fault detection for IMs. In order to increase the fault diagnosis
performancein this section, the frequencies of the disturbances and modelling errors are
known by using Fast Fourier Transformation (FBaked spectrum analysis. Then an
eigenstructure assignment technique is approved which allocates the observer poles and G

optimization to optimize the performance

6.3 The 3phase (U ) IMs Fault Monitoring

The method presented in this notion is a IMs fault diagnosis monitoring technique
critical for maintenance drives based on the air gap torque profile analysis, associated witf
machine learning importance is centred on cost investment and high reliability for safety
motives. IM or asynchronous motor is a type of alternating current (AC) motor where power
is supplied to the rotor by means of electromagnetic induction. Presenthghasnous
motors are extensively used in the industries, due to their robustness design and structurt
Though, they could be affected by many types of faults as specified above, where the gener:
works are motivated on AC motor's faults. Electric motogemerator is mostly active due
to its machines speed of rotation, practical to voltage and frequency of the current source
The Capacity desires can be design to steady state or dynamic characteristics as well as spe
control, electric braking, gearingreliminary several effects can be achieved. The flow
below shows the different types of machine drives that can be extensively used in the huge

amount of domestic like motors and industrial applications.
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Diverse kinds of electric motor are illustratedHig. 6.1 below 195-[196]

Figure 6.1  Types of electric motors
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The highlighted uO Induction asynchronous squirrel cage will &aployed for the
purpose of this study application to demonstrate the established RFD teshomu®é

induction machine performance

6.3.1 Model of Three-Phase Induction Motors

A mechanical load was provided by a separately excited 2 kW DC generalectatal
parameters and variables are denoted to the stator and rotor, indicated by the ntathemati
principal symbols in the succeeding maehequations. The ABC model datr and rotor
measures are substantial nonlinear and complicated which is subjectiveaxisweference
frame  ©F Mrame)of whichare normally represented in direct anadpature (@F Nlaxis
arrangement in order to improve the high order models for certain applications and to make
modelling step easy for use0 AC motors are contained of a stator, which generate the
magnetic field, and a rotor, which is made to alterrfedtate) by the magnetic field that is
induced from the current generated by the stddathematicablynamicmodellingof a3 0
induction is usually done in the arbitrary rotating referenceframe, from which other
referenceramesarerealized of two conmonly usedreferencdramethatis the stationary
referencdrameandthe synchronouslyotatingreferenceAccording to dynamic models of
AC machines]97and198@ GHYHORSHG E\ VHYHUDO DXWKRUV |

PDJQLWXGHYV =FNIQ tReZréalibaginary complex plane coordinates is employed

to construct the model in staspace description equations is given by the next expressions.

T6R L #T.R E$ QR

J (6.1)
UP L % TP

where T: P D 82is the system stateQ P 82, and U. P, b 83 are the control input and

measurement output respectively. Definitely, one has:

TTPLE P BEBP E:P E:P? (6.2)

QPLXQ:P QP Q:P Q:P? URL%:P EK:R? (6.3)

In (6.1),xis the state vectors,is the input vectorsy is the output vectorsiiyis the rotor

angular frequencyk, and E, are UF Ucomponents of stator current§ and g are UF
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Ucomponents of rotor currents, and Q. are U ldomponents of stator voltagesd,
and Q are U ldomponents of rotor voltageBhe coefficient matrices in (6.1) are defined

by [199]:

i Fdza fig. 45. 4 Aa.a-ap
5 1Ffs.8 Fdps Fiiga.a 4a.a R
#L—,\ a*a ” & a a*a "a ~a a 64
A ] 4. 5 FRg.5 . 2 F4d;. » Fné.é.agil (6.4)
IAs. 5 -2 4o 5 As. 3.2 Fd45.,. O
a r F.s r
5 r .8 r F.iy.
$L—/3p/3va.a A . " (6.5)
r F.a r ®
%L B e (6.6)
r ror

In the induction motor systen& L r@and & L r &here rindicates the zero matrix with
approximate dimensionsetting, € L s F .§ 1. . s the leakage coefficient ofzand . 5
are correspondingly to the stator to stator and rotor to rotor of winding inductance

respectively,. 5 is the stator to rotor mutual inductance.

Application of the field oriented control (FOC) of IM drive results in the instantrcbof
a high performance drive, f8 0 squirretcage induction motor, the FOC structure requires
two phase voltage as input. So, at least two current sensors or two actuators are necessary
sense stator currents and same for actuaitbagefaults. The two voltage actuateand
current sensors are for the transform phasend phasd3, =F >model The u0 stator
voltages Q. ¢Q. ,and Q. yeference frame is changed @. and Q. andcurrentsk» &,
and By,to B and E as in three to two arrangement conversion are usually measured for

employed of control drivesseexpressed in Clarke transform.
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Figure 6.2: Reference frameA(B,C) performancedo ( , ) projection

The Clarke transform is applied froi@, Qe ,and Q. yeference frame tdQ, and Q.
and & & ,and & #p E and E illustrated as shown Hyp00] - [202].

Figure 63: voltagecurrentspace vector ofi0 IM reference frame

For, the algebraic sum 8f 0 voltage ancturrentiMs E.» & and E&,jn a balanced system
are zero, that is
%OE %—)»E %VJ— r (67)
Q—)“)E %»E Qel/J— r (68)

Considering the voltage for thg0 converted to inverse Clarke transformation of phase

A, phaseB in U Weference frame and Clarke transform frdgny E,,and E.40 E. and

& . The transformation is also basic in the distinctive event of stationary reference frame.

The Clake transform is shown as voltage in (6.9) andents (6.10).
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E’%CL r[gs_s ir:ﬂ 98 C (6.9)
6 6

S r
(éhLI-_E 61d=h (6.10)
Yal

4 >

The set of parameters description of IM is defined in Table 6.1 below, whenglth2

kW, 1-pole, wye ( )-connected, squirredage induction motor parameters are chosen for the
simulation studies have the following:

Table 6.1:  Description 6 IM physical parameters specifications

Physical Parameters of G Definitions Values and Units
Motor
44 Stator resistance tavxw LD
4 Rotor resistance ua&yzx LD
. Stator inductance rasvwy LD
.3 Rotor inductance ravszx LD
‘A Magnetizing inductance raiut{x LD
A N Electrical angular velocity tzw Ot UL Exr
JL Number of magnetic polg 1p
pairs
60 Sampling time r &seconds
B Motor supply frequency 50 Hertz
eLsF.y U, :..0.5; sigma pu

Supposed balancedsinusoidal3- 0 systemis in the referencerame (a,b,c) of which
theinductionmotorasexpresseth thetwo-phaseaeferencdrame( @F Nlaccordingo park
transformationIn mathematical motor model of synchronously roigtreference frame

with rotating speedi_ the mathematical @ Mrame) model of IM as indicated in (6.1) is
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obtained given the above mentioned load disturbance. The archite€©tued:| observer

based designorruptedwith disturbances and faulis shown in Figure @.below.

Figure 64: The architecture of robust obsermsed IM.
Robust condition monitoring and fault diagnosis are important in the health monitoring and
supervision for mechanical/electrical equipment. The purpose afbestudy is to robustly

monitorpossible faults happening on sensasswell asactuators.

6.4 Application of Robust Fault Detection Approach
6.4.1 Robust Fault Detection Algorithm

Considering the following statgpace form in a continuous corrupted system with
modding errois of known dominant disturbance frequencies (DDF) obtained by using
Fourier Transform technique (FFT) to analyze the frequency spectral under fault free
FRQGLWLRQ WKH ,01V PDWKHPDWLFDO PRGHO FDC

T6P L :#E¢#; T:PESQP E $B.P E $. @P,

JUP L :%E 9%T:P E&QP E &BP E & @P (6.11)

where T:R6824Q 82, and U 8% are respectively system state, control input and
measuremerautput; @&" ¢ $is the unknowrbounded process disturbange T:— and
¢ T:=are the modelling errorsB P 8Pis the fault vector. Whilet $, %8 8$88;8% and

&, are known constant matrices with appropriate dinwarssi
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For the system (6.11), the robust fault detection observer gndeern can be constructed
by:

P L #UPES$SQPE-:UFU:P
PUR L %R E & QR (6.12)
NP L UPFUP

UP L 9%KIP E&QP
NP L UPFUP

where N B is the residual tht is used as a fault indicatsignal which alert when there is

contradiction between the real system output and the estimated systemn outp

Let the estimation errors b& P L T: P, F TP, can proceeds this form.

PSP L #F-%APE: #F- % TR E:$« F - & @P E k& F - &O0B:P

NP L %ME %TP E & @P E &BPR (6.13)
Let,
D HF- %T
Sl faa b Taa?®Lau 4 Tawe BANAGL T (Vg .4 (6.14)
& @

Taking the Laplace transform for (6.13), one has

NOQL%OF#E-%" 8 EQBQ H %O F #E-%7kH F - &0E &I B:Q (6.15)
Denote
*:QL %OF#E-%75k$y F - &0E &] (6.16)
* QL YSOFHE-%"°$ E&? (6.17)

The residual signal in (6.15) can bewatten as
NP L *3:QBQE *,:P@&Q (6.18)

The cost function can be given as follows:

Ay ad g

where QL Fi,gEL sad® & and Q L Fa fA,pis the frequency of the dominant
uncertainty component.

Based on the above and following Chapter 3, one can givedSAd robust fault
detector design algorithias follows.

108



Algorithm 6.4: GA based optimization fault detection for Induction Motor

o Set the sizes of the population and generation.

0 Set the parameters to be optimized in form of (3.24), that is,

# L [G&® 85, Bz 5B By 4 Fog) 2 B By, 4) a5 ® Sy Ssa0® S580S541a ® Sy g0

0 Set the cost function in the form of (6.19).

(6.20)

0 Set the constraint such that the observer system miatFix %is stdle, that is, all the

real parts of the eigenvalues must be less than zero, in every iteration.

o GA runs until the stop condition is satisfied. The optifgis thus obtained, that is,

#y L [850R 84y @é® By, 4 @s4) 20 8B 8By, 4) 04
S50 ® S5y0Ssa@ ® Sya@Ssaran ® Sy A
o The optimal- gis thus calculated by
-0 L 9y 8757,
95 L CSs ® Sagq Ssam ® Sy s Ssw0 ® Sy 420D 8™
&L Ro®RyRaw® RyasRaun ® Ryw09D 8™
RoL F:ag+F # ;75% Sypa EL s& & &,

Rad_ o5 SNaAD e
Iﬂ%ﬂaLPL FAg XOBSfa'_]aJCé E sa ap alp

GaatF #  Fawaot

AgL H™, ~ ila
Gwat  GaatF#
y
xsL B2 T a
°" 5 9%

o Apply the observebased fault detection filter in the form of (6.12).
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6.4.2 Fourier Transform Analysis

Fouriertransform analysis is carried out for one of the system outputs, which is shown
by Figure 65, that displays théour dominant disturbanseeomponents, with frequecies at
BsLvzuyVa BgL uxut*y By L utdy*Vand BglL twg sV The corresponding

angular frequencies amé, L t éB gEL sa avava

Figure 65: FFT frequency spectral of the DDF

6.4.3 Sensor Fault Detection

For sensor fault detection, one choo$gsL rgygand & L +

A. Sensor fault detectio: single dominant disturbance frequency for GA optimisation

In this section, one chooses the malominant disturbance frequency for GA
optimisation. In other words, in the fitness function (6.1®). s& L Re Hv zuyL H x§é
(dominant disturbancedquency) and®) L F (fault frequency).

Setting the population size as 20, ane ¢eneration as 100, and usirigoaithm 6.1, one

can obtain the best fithess value (e.g., see Figure 6.5).
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Figure 66: The best evolution output sensor by GA algarith

rdvyx razty
Friyw{ Frawtx
Fraxrx Fra{su (6.29)
sdtxz rawtu

The generated optimal observer gaig. L sr’ Hf

Al) Fault Detection for abrupt sensor faults

The two abrupt seps faults are given as follows:

ra-Ou-e

Be L\ré'lvEré;-wer-;a_Ru. (6.30)

~ ra-Oye
q L\ravEré};owsrl\L;a_Ry. (6.31)

When the sensor fasloccur individually, the residuals are shown by Figure 6.6. One can

see the residual changes caused by faults are successfully detected respectielg gO

€) Fault detection for the first sensor fault.
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(b) Fault detection for the send sensor fault.

Figure 67: Norm of the residuals: individual abrupt sensor faults

Figure 68: Norm of the residual: multiple abrupt sensor faults

When the two sensor faults occur sequentially, the residual is shown by Fi§umeh&h has

exhibited the two abrupt sensor faults have been detected successfully at 3s and 7s, respectively.

A2) Fault Detection for Incipient sensor faults

The incipient sensor faults are given as follows.

ra—Oue
B L]Fr&—-F u Er&ecésrN;ausQ-Ove (6.32)
Fraa PR vO

ra—Qy-e

¢ LIFrau-Fy Er&ecesrN;ay-Q-Oze (6.33)
FraaPR zO
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(a) Fault detection for the first sensor fault

(b) Fault detection for the second sensor fault.

Figure 69: Norms of the residuals: individual incipient sensor faults

The residuals are depicted by Figur@. ®ne can see two individual incipient sensor faults
have been detected successfully at 3s and\Ztually, the shapes of the sensors faults are
also visible from the residual.

When the two sensor faults occur sequentially, the residual is shown by Figjorevbich has
exhibited the two incipient sensor faults have been detected successfulynat Bs, respectively.

The shapes of the two incipient sensors faults are also visible from the residual.
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Figure 610: Norm of the residual: multiple incipient sensor faults

B. Sensor fault detection: multiple dominant disturbance frequencies for GArasation

In this study, one choos@ L FéBs QL RéBg Q L ReB, andQ L R eBgwhere
BsLvzuy*V, BgLuxut*\V B; L utdy*Véaand Bg L twg s*V Applying Algorithm
6.1, one can obtain an optimal observer gaimarix as follows.

tvd{r{ Ftswviixtz
visgv{v Fvt&srv
Fvuwyrv{ ttvastx (6.34)
Fvruiuzu t{&stv

-Lf

B1) Fault Detection for abrupt sensor faults

The residuals are exhibited by Figure 16.Which has shown theafilts occurring either
individually or sequentially have been detected successfully. Compared with Figiaed 6.

6.8, the multiple dominant disturbance frequencies optimisation has generated a better faul

detection performance.

(a) Fault detectiondr the first sensor fault
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(b)  Fault detection for the second sensor fault

(©) Fault detection for the two sensor faults occurring sequentially

Figure 611.  Norms of the residuals: abrupt sensor faults

B2) Fault Detection for incipient sensor fault
The residuals are exhibited by Figure %.Which has shown the faults occurring either

individually or sequentially have been detected successfully.

(a) Fault detection for the first sensor fault
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(b)  Fault detection for the second sensor fault

(c)  Fault detection for the two sensor faults occurring sequentially
Figure 612:  Norms of the residuals: incipient sensor faults
Compared with Figures 6.8 and 6.9, the multiple dominant distaebdrequencies
optimisationproduced a better faudietection performance.

6.4.4 Actuator Fault Detection

For actuator fault detection, one choosgsL $and & L rgpe

A. Actuator fault detection: single dominant disturbance frequency for GA optimisation

In this section, one chooses one dominanudisince frequency for GA optimisation.
In other words, in the fitness function (6.19),L saQ L R é Hv zuyL Fx&é(dominant

disturbance frequencynd @ L F (fault frequency)Using Algorithm 6.1, one can obtain
the best fithess value (e.gees6.12).
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Figure 613 Evolution of the best performance index via GA

The optimal observer gain is given as follows:

Fswivst Fswgztr

ttr&sss Fsu&rsx
swiz{w sw@/{vxJ (6.35)

Ftt{&zvv susrzt
Al) Fault Deection for abrupt actuator faults
The two abrupt actuator faults are given as follows:

ra—-QOte
B L\ravEré's-(?srl\L;a—Rt- (6.36)

- ra-Ove
- L\re‘WEréi;-oer-;é_Rv. (6.37)

The residuals are depicted by Figure46.0One can see the residuals can successfully

show the changes at 2s and 4s caused by the actuator faults.

(a) Fault detection for the first actuator fault
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(b)  Faultdetection for the second actuator fault

(©) Fault detection for the two actuator faults occurring sequentially

Figure 614  Norms of the residuals: abrupt actuator faults

A2) Fault Detection for incipient actuator faults

The first and second acttor faults are given as follows:

raPOte
B L]FrauPFt; 4t0OQPOuUO (6.38)
Fraa PR uO
raPO vO
~. L JFr&PPF v;avOQ PO wO (6.39)
- Fraa PR wO

The residuals are depicted by Figurg5% One can see the residuals can successfully show
some changes happen at 2s and 4s caused by the actuator faults. However, the changes

118



not very visible. It is evident that éhabrupt actuator faults are more challenging to be

detected compared with the abrupt actuator faults.

(@) Fault detection for the first actuator fault

(b) Fault detection for the second actuator fault

(c) Fault detection for the two actuator faults occurring sequentially

Figure 615 Norms of the residuals: incipient actuator faults
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B. Actuator fault detection: multiple dominant disturbance frequencies via GA

In this caseone chooseQ L RéBs; QL RéBg Q L RéB, and Q L R eéBgwhere
BsLvzuy*V, BgLuxut*\V By L utdy*Véand Bg L twy s*\ Applying Algorithm

6.1,0ne can obtain an optimal observer gaimatrix as follows.

Fsxsurwz Fttt&vysh

T s{ydwtz Fsw i uw\

oL (6.40)

-

NI
7 swiuz({ turdvsrg

TFtrwaxrx swi{suO

B1) Fault detection for abrupt actuator faults
The residuals are shown by Figurgé@® compared with Figue 614, the curve of Figure 66

is showsa better fault detection performance.

(@) Fault detection for the first actuator fault

(b) Fault detection for the second actuator fault
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(c) Fault detection for the two actuator faults occugranccessively
Figure 6.16: Norms of the residualsnultiple abrupt actuator faults

The curve of igure 617 achieves betterimproved robustault detection performande
figure 6.15.

Figure 6.17: Norms of the residuatsultiple incipient actuatordults

6.4.5 Actuator and Sensor Fault Detection

Assume two actuator faults and two sensor faults occur sequentially. Ther&fpte,

$Bargue7and & L >rgyeéd 4 ?By using Algorithm 6.1, the optimal observer gain is given
as follows:

I,Fyy}isur Fszylvwg)
T sr{&ut Fs{sx {{rN
g Srivutt st (6.41)
i yta¥yuy s{vtzx g
IFss@zyw szawy®
A) Abrupt faults
The four abrupt faults are defined as follows:
. ra-0se
=P L DaE rasecsrna—Rse (6.42)
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. ra-Ote
R L Dr&vEr&sw:-sré—;é—Rb (6.43)

. ra—-QOve
=P L DaEras.asrna-Rve (6.44)
SR L ra-ow: (6.45)

ravE rdise<ssre=a—-R we

Figure 617 has shown two actuator asehsor faults have been detected successfully.

Figure 618: Actuator and sensor fault detection: abrupt faults

B) Incipient faults

The four incipienfaults are defined as follows:

raPOse
B.;P L] FrauPFs; 4sOQPOt O (6.46)
Fraa PR sO

raPOu-
B :PL] FrauPFu, auOQPOVO (6.47)
Fraa PR uO

raPO we
B,gP L ] FrauPF w 4woQ POxO (6.48)
Fraa PR wO

raPOye

BygP L ] FrauPFy; ayOQPOzO (6.49)
Fraa PR yO
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Figure 619  Actuator and sensor fault detection: incipient faults

Figure 618 has showrthe successfullydetectability oftwo actuator faults and twsensor
faults. Howe\er, the detection performance of the incipient faults is not as good as that of

the abrupt faultbut is visible

6.5 Robust Fault Estimation for Induction Motors

6.5.1 Fault Estimation Algorithm for Induction Motors

Figure 620: The scheme of fault detectidor induction motors

Let
TP Lcr:p B5:P B :Pg D83 (6.50)
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The induction motor model can be described by the augmented form as @08is

‘rﬁp L#T:PESQPES$,@P E/ :¢#TP; EOB/

(6.51)
UP L %P E&QPE& @P
where
_ # r ~ _ $ o
#Le r ribgda ‘g eipgaha (6.52)
r + r r
_ N _ S« N
%L M r &?D8EE  §, L eri bgat (6.53)
r
/[ Leib8a" 0L ed P8P (6.54)
r r
JLJIELG (6.55)
An augmented observer is needed to be designed in the following form:
"@GPL#‘@P ESQP E-KUP FBPRO (6.56)

'@P L R P E & OP

where® P D 82is the estimation of the augmented state vedtdt, and - D 83H4js the

observer gain to beedigned.

Let AP LT:P F®P. The estimation error dynamics is governed by the following

equation:

76P L kit F- Y9A P EKS$« F- & 0@P E7 ¢# TP EOB/P (6.57)

Taking the Laplace trafm, (6.57) becomes
AQLKOF#E- %) k$x F - & 0@Q

EKOFRE- % /¢#TEkOF#E T 00BQ (6.58)

Define

* QL KOFH#E- %) k$xF &0
0 QL KkOF#E - 0/(D /

*:QL KOFH#E - %) O
(6.58) can be rewritten as in a compact form:
AQL*.:Q@QE*,.:Q#TE*;:QFBQ (6.59)
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The cost funtion is given as follows:
, L sEE, (6.60)

where
5 L1 00! gy .
Aoe L iQlagy (6.61)
7 L '*U:Q'a@? .
fi«is the frequency of the disturbandg,. is thefrequency of the dominant mddwe error,

and fiyis the frequency of B/R &

Based on the above and following Chapter 4, the fault detection algorithm can be

summarized as follows.

Algorithm 6.5: GA-based fault estimator design for induction motors

o Check condition of observer:Check whether (5.55) and (5.56) are satisfied. If yes, go
to the next step; otherwise, stop the procedure.
o Set the parameters to be admized: The total number of the parameters to be

optimized is $E $H L, and the set of the parameters is defined as (4.32).

o] Fitness Evaluation: The fitness function is defined as (6.60).
0 Constrains: The eigenvalues of thet#F Y®/8are enswrd to be stable.
o] GA running: Run GA until one of stop condition is met.

6.5.2 Sensor Fault Estimation for Induction Motors
A) Abrupt faults

In case of abrupt sensor faults, the faults are expressed as follows:

ra—Ote

B P L\ Er&ecssrNaA-R e (6.62)
_ r4PO VO
B P L\sEr50Egre PAPR VO (6.63)

In this case, there are two pulse disturban@snd @, adding on the two gtent seners,

respectively, as follows:

Ij'élPO xQAPP x&0

@ L L 4x00 PQ x50 (6.64)
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aPO zGPP z&0
@ LD, QPQz&0 (6.65)
The constrains of the eigenvalueg 6fF Y0fare defined as
FwrQé&;QFsréEL sdaa® &
\FWreaQ (6.66)

FwrQ &g gQ FsaL s

The disturbance frequency $, L r @nd the frequency of the dominant modelling error is
sdected as@ L R éBswhere Bs L vz y* Va

In addition, $y L rguesand & L 4&tilizing Algorithm 64, the optimal observer gain is
calculatedoy gatool optimization solver in Matlab [204].

I,Fuy'—:'uyuu Ft{yz’ixut{_j

Tt{z&rru Ftzé&xzs

-

NI
T tz&xyr urviz uwg

-

Furx@ryy s{&sty '1'.

-

(6.67)

el

Fsraiwwy Fysvuu
NI

-

TXSXVZX F{&ussK
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i Fravvyw Fzastypg

I vauzr FraizsxO
Figure 620exhibits the state estimates & b @& K@ f * Tk @he solid line represents
the real state, and the dash line denotes the estimate. One can see the estimation performat

is excellent.

(a) The estimate of the first state
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(b) The estimate of the second state

(c) The estimate of the third state

(d) The estimate dhe fourth state

Figure 621:  Estimatestate of the induction motor

Figure 622 exhibits the estimates of the two abrupt sensor faults, which have shown

excellent tracking performance.
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@ Estimate of the first sensor fault

(b) Estimate oftie second sensor fault

Figure 622: Abrupt sensor faults and their estimates

B) Incipient faults

The two incipient faults are defined as follows:

raPoOtoO
B.:P L]FraPFt;at0OQ PO uO
Fraa PR uO

raPOvO

B. :P L JFravPF v;a&0Q PO wO
Fr&é PR wO
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@) Estimate of the first sensor fault

(b) Estimate of the second sensor fault
Figure 623 Incipient sensor faults and theitiesates

Figure 623, of the incipient sensor fault estimation performance is excellent.

6.5.3 Actuator Fault Estimation for Induction Motors

It is noted that$; L $&and &; L rgyesl he optimal observer gain is given as follows:

I,Fsr\k'ivtwy Fsuz‘irurn
Turravrxz Fsuzrurl
NI
7 {z&uvu urrdr{xg

el

-

. .. Ki
Fur{&Zzur Sudvszg
T t{avsxx Fyy'cig{uylg:

Tsvfusrx Fsvwzwt
N <

1
—
el

(6.70)

el
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—_—

svtsz rdrsx 0]
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A) Abrupt faults

The first two actuator faults are defined as follows:

raPoOsO

B P L\ 4ErasoEgre PAPR sO

(6.71)

raPowo

B P L\ 4E rasoEgre PAPR WO

(6.72)

(a) Estimate of the first actuator fault

(b) Estimateof the second actuator fault

Figure 624:  Abrupt actuator faults and their estimates

From 624, one can see satisfactory fault tracking performance.

B) Incipient faults

The first two actuator faults are defined as follows:

raPOse
PL] FrauPFs;80QPOtO (6.73)
FravErasOEdrePa PRtO

By
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raPoOwo
B :PL] FrauPFwawQ PO xO (6.74)
FraPErasOEdre PA PR xO

(@) Estimate of thdirst actuator fault

(b) Estimate of the second actuator fault

Figure 625: Incipient actuator faults and their estimates
From 625, one can see satisfactory estimation performance of the actuator faults.

6.5.4 Fault Estimation for Both Actuator and Sersor Faults ofInduction Motors

A) Faults in Q. :Rand & :PR,
$uL $s (6.75)

& L E{s C (6.76)

where $sis the first column of$ &

By using Algorithm &4, one can obtained the optimal observer gain as follows:
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I watv{ vitxx O
@) Fault estimation of the first actuator fault
(b) Fault estimation of the second sensor fault

Figure 626.  Estimates of the actuator and sensor fa@lts: B & E : P abrupt faults
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@) Fault estimation of the first actuator fault

(b) Fault estimation of the second sensor fault
Figure 627: Estimates of the actuator and sensor fa@s: P & E :P; incipient faults

In terms of Figures 86 and 627, the estimtes of the first actuator fault and the second

sensor fault show the satisfactory performance for either abrupt types of faults or incipient

types of faults.

B) Faults in Q. :Pand K :P,
$uL $ (6.78)

&L EC (6.79)
where $gis the second column dé &8y using Algorithm 64, the optimal observer gain is

given by:

133



SF{x&wwr Fus@({r{n

Tusdwzv FzusustN
NI

el

T oz{&{r{ utuwvu{rg
T K
sFuttzuvt ViV z Xt~
S0 y N (6.80)
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@) Fault estimation of the second actuator fault
(b) Fault estimation of the first sensor fault

Figure 628: Estimates of the actuator and sensor fa@js: P and & : P: abrupt faults
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(@) Fault estimation of the second actuator fault

(b) Fault estimation of the first sensor fault

Figure 629 Estimates bthe actuator and sensor faulfg, : P and E : P incipient faults

According to Figures @8 and 629, the estimates of the second actuator fault and the first
sensor fault show the satisfactory performance for either abrupt types efdauitipient

types of faults.

135



6.6 Summary

The contribution of this session is summarized as follows:

o

Robust fault detection design algorithm is applied to fault detection for induction motor
with individual sensor faults and actuator faults.

Robust fault detection design algorithm is applied to fault detection for induction motors
with multiple faults including actuator faults and sensor faults.

By using multiple frequencies of the dominant uncertainty components favaSéd
optimal observergain design, fault detection performance has been improved
significantly, which is an interesting contribution and novelty of this session.

Robust fault estimation algorithm is addressed for the application of the fault estimation
for induction motors wit sensor faults.

Robust fault estimation algorithm is addressed for the application of the fault estimation
for induction motors with actuator faults.

Robust fault estimation algorithm is addressed for the application of the fault estimation
for induction motors with both actuator and sensor faults.

The realdata from the experiment are used to validate the algorithms.
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Chapter Seven Conclusion and Future work

*Finally, in conclusion, let me say just this.

Peter Sellers

19251980

7.1 Conclusion

Fault diagnosis is an important research topigictv is motivated to improve system
reliability and safety, and reduce the cost caused by unexpected faults. As a matter of fact
uncertainties arising from modelling errors, process, and measurement disturbances ar
unavoidable in practical engineeringveonments. These uncertainties have brought
challenges for an effective fault diagnosis, which could cause false alarms or the failure to
catch the signal changes when faults occur at an early stage. In this studgs@Rrobust
fault detection and fatlestimation algorithms are addressed and applied to the two case

studies, one involving a: wind turbine systems and other-fiirase induction motors.
The contributions of this research are sumsearias follows:

0 The addressed fault diagnosis methods etiectively handle two typical faults in
industrial systems: abrupt faults and incipient faults.

o TheGA-based optimisation and eiga#ructure assignment are integratediédermine
an optimal observepased fault detection filter so that the residuaessitive to the
fault, but robust against uncertainties.

o The frequency of th dominant disturbance is utiéid tocarry outoptimisation, which
is straightforward and would reduce ttencernfor seeking an optimal observer gain.

o The frequencies of the donant uncertainties components are used for observer gain
optimisation, which produces a better fault detection perform#rae oneusing a
single dominant disturbance frequency.

0 By integratinganaugmented system approach #melGA-optimisation methody novel
fault estimation approach developedwhich can effectively simultanedysestimate
system states and the faults concerns.

0o The frequencies of the dominant uncertainties can be obtained by using a signal

processing techniqusuch asFourier Trasform Analysis. Combining with the moedel
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based fault diagnosis method and the signal processing techniqieyéhepednethod
isin essencaform of hybrid fault diagnosis.

o Wind turbine energy conversion systerhave dominatedthe renewable energy
industry. The safety and reliability of wind turbine systems have received much
attention during the recent years. The application of theb@#ed fault detection and
GA-based fault estimation to a 5MW wind turbine is investigated and addressed with
details

0 Anexperimentis carried ousinga KXW threephase induction motor, and the recorded
realdatais used for the verification of the GBased fault detection and fault estimation
algorithms.

o Simulation studiesusing Matlab/Simulink environment have denstrated the
effectiveness of the addressed -Bésed fault detection and G#ased fault estimation

algorithms.

7.2 Future Work

All the objectives stated in chapter onevéaeen achieved. The devised algorithm is
integrated with a variety of techniques, whe$fectiveness haseen demonstrated both in
theoryand in practice via thisvo case studies investigated. Due to the complexity of modern
industrial systems, the addressed methods/algorithms would not cover all the scenarios it
complex industrial processedn the future, the following research topics would be
encouraged.

o Application to various engineering systems:The addressed methods have been
applied to two case studies: wind turbine systems and induction motors. It would be of
interest to apply the adessed algorithms to other industrial systems such as
photovoltaic systems and robotic systems etc.

o Extension to nonlinear systemsNonlineaity generally exigin engineering systems.

It would be of interest, but challenging to extend-Ga#sed fault diagosis method to a

nonlinear system.

0 Robust fault tolerant control: Another important topic is fautblerant control. It is of
interest to apply GA optimisation technique to fault tolerant control so that the system
would work in tolerant performance dededion even when a fault occurs.

o Reakttime implementation: It is intendedto apply the proposed GBased fault
diagnosis technique ®@reattime implementatiompplied toa real industrial system.
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Appendices

Appendix A: Working Operation of Optimization Toolbox

The toolbox namedjatool solver optimization toolbox is employed via Matlab for
operating or to run the operation of GA problems. The idea of GA is to move a series of
population of chromosome from initial random scores to a global value after some
representation, selection, mutation and reproduction operations method. The evoligionary
iterated until a global solution is reached or until no better optimal observer value can be
found. For the parameters from (6.203, 8% 9 D83 wheres L z L L t. The sum

number of parameters is 24, and the nonlinear constraint function depends on the data.

Figure AL: The Robust fault detectidar IM Matlab/Simulinklineartime Model with actuator fts
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Appendix B: Uphase Induction Motor Test Rig

The three phase IMs condition performance gives a comprehensive information of real
time data collected from experimental setup. The objective of this testrig is used to measure
the 3 phase voltage and current performanceamfirrel cagdMs, the data collected is

employed to simulate thveal data of the designed fault diagnosis.

Thedrive of this experimentaivork is to measurehethree phase3f 0) AC squirrel cage
IM 64-501 perfemanceandcapturefrom the PCcomputer(which controlthetorque/speed
andrecordmeasurediai) voltageandcurrentgeneratehe real datacharacteristicsluring
the operationmeasureBesideggiving the graphicalviewsto theuser, MATLAB alsogive
good analytical capabilitiesabout the behavioralperformancemeasurementsn the IM
experimentsThe 3- 0 A.C IM squirrelcagedual voltagewasconnectedo a dynamometer
motor, the Armature currentDynamometesystemconsistingof a shuntDC machine63-
110 with afitted 68-500 virtual instrumentatiorsystem.The mandatoryconnectionswith
universalpower supply of 60-105 to the motor control unit 68-411 which aretorqueand
speeccontrol panelconnectedo dynamometetestbed 68-500 multi-channellnput/outpu
panelconnectedo the AC motorinthe f ¢ T¢ connectedonfigurationof statorwindings
determineand comparevarious steadystate/rotationalspeed (rpm) referenceof Xg’ L

tv{au”f ts at frequencyof 50Hz Constantload torque pL sy & of the motor
characteristiceperationunderdifferentloadingconditionswith 68-911 softwarefor virtual
instrumentationThedatacollectionsystemis realfor voltageandcurrentsvia datarecorder
with a samplingfrequencyof 0.1 kHz of the personatompuer (PC)with 68-911 software
for virtual Instrumentationconnectedto the 68411 Torque/Speedcontrol panel. A
mechanicaloadwasprovidedby a separatelyrivenexcited2 kw DC generator.

The uQ 2 kW, wye ( ) connectedsquirretcageinduction motor parametersire chosen

for thesimulationstudies
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FigureB2: A photograph of Experimental setup

The procedure begins with to switch on thel®3 circuit breakers, confirm that
dynamometer is connected to the torque socket gently, set up as showoanfitperation
above. Gradually increase the variable supply control until thediiee voltage is about
415V for connection and 240V fog,connection of stator windings. This unit has voltage
sensors, current sensors, an accelerometer, and areentadrd for the signal acquisition
of six simultaneous analogical inputs is integrated in a PC of widateaacquisition system
is important component of a dynamometer as for measurements atute the generated
voltageandcurrent, in 3 phase AGés. The load torque is set to be zero and also turn slowly
the variable supply control back to 0% to stop the machines. Switch off the universal power
supply60105 at the circuit breaker. The parameters measured sgaigeeinduction motor
performancecomparison under robust fault diagnosis conditions. The proposed approach

allows continuous real time identifying monitoring of faults health.
Operation/ procedure of using the IMs
This text givegyuidelinesfor the safe operation of theQ3M performanceest rig under.

Safety

o Ensure that the @ power supply to your bench is switched on.

o Connect the motors to the power supply with caliesuespeed control panel 68
411 andMulti-Channel Input / output panel (&®0)equipment.

o Confirm that the dynamonter is connected to the torque socket.
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o Switch on the required feedback modules. Power it on by pressing the square switch
in the centre of the control unit, the red LED will light up.

o Switch ON the PC computer and start the discovery software by National
Instruments

o From the start windows, click on thgectrical power and machine® open up
machines virtual instrumentation software $BL.

0 Then powelON the set up

o Double click and setup each virtual instrument asupethe virtual instruments by
double dicking on the each instrumentation to select the squared box as required.

o Ensure that the @ power supply to your bench is switch@FF after the data

collection.

SAFETY NOTE
Do not leave the 6811 powered up with the test motdOT rotating with a load

demand. This will cause the dynamometer motor to overheat which may lead to perpetua

accident.
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Appendix C: Fault Estimation Simulink Of Wind Tur bine Model

Figure C  TheRobust fault Estimation Windurbine Matlab/Simulink Model
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Appendix D: IM real -time Fault Estimation Matlab / Simulink Model

Figure B2: The IM MotorRobust fault EstimatioMatlab / Simulink Model
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Appendix E. Coding in M-File
A. Fault Detection

global A
global B
global C
global D
global Bf
global Bd
global Bdbar
global Ddba
global Df
global Dd
global M
global W
global K
global P
global k

%%%%%6%%% %% % %% %% %% %% %% %% %
np=1;

J=0.0131;%
Dfraction=0;%

Rs=3.478;

Rr=2.564;

Lm=0.3329;

Ls=0.3454;

Lr=0.3452;
Sigma=tLm*Lm/(Ls*Lr);
Ts=0.0001;%sample time
wr=2850*2*pi/60;%0!

A=(1/(Sigma&Ls*Lr)*[ -Rs*Lr wr*Lm*Lm Rr*Lm wr*Lm*Lr; -wr*Lm*Lm -Rs*Lr -wr*Lm*Lr
Rr*Lm;Rs*Lm -wr*Lm*Ls -Rr*Ls -wr*Lr*Ls;wr*Lm*Ls Rs*Lm wr*Lr*Ls -Rr*Ls];
B=(1/(Sigma*Ls*Lr))*[Lr 0;0 Lr;-Lm 0;0-Lm];

C=[1000;0100];

D=zeros(2,2);

Bf=B;

Bd=eye(4,2);

Bdbar=[eye(4) zers(4,2) eye(4) zeros(4,2)];

Ddbar=[zeros(2,4) eye(2) zeros(2,4) eye(2)];

Df=zeros(2,2);

Dd=eye(2,2);

EyeMaxtrix=eye(2,2);

M=ones(2,1);
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B. Fault Estimation

% Initialization %

global A
global B
global C
global D
global Bf
global Bfl
global Bf2
global Bd
global Df
global Df1
global Df2
global Dd
global Abar
global Bbar
global Char
global Bdbar
global Nbar
global Mbar
global Kbar
global Kx
global Kf

np=1;

J=0.0131;%

Dfraction=0;%

Rs=3.478;

Rr=2.564;

Lm=0.3329;

Ls=0.3454;

Lr=0.3452;

Sigma=%Lm*Lm/(Ls*Lr);%A©
Ts=0.0001;%sample time
wr=2850*2*pi/60;%
A=(1/(Sigma*Ls*Lr))*[-Rs*Lr wr*Lm*Lm Rr*Lm wr*Lm*Lr; -wr*Lm*Lm -Rs*Lr -wr*Lm*Lr
Rr*Lm;Rs*Lm -wr*Lm*Ls -Rr*Ls -wr*Lr*Ls;wr*Lm*Ls Rs*Lm wr*Lr*Ls -Rr*Ls];
B=(1/(Sigma*Ls*Lr))*[Lr 0;0 Lr;-Lm 0;0 -Lml];
C=[1000;0100];

D=zeros(2,2);

Bf=B;

Bf1=[B(:,1) zeros(4,1)];

Bf2=[B(:,2) zeros(4,1)];

Bd=eye(4,2);

Df=eye(2,2);

Dfl=[zeros(2,1) Df(:,1)];

Df2=[zeros(2,1) Df(:,2)];

Dd=eye(2,2);

ZeroMaxtrixl=zeros(4,2);
ZeroMaxtrix2=zeros(2,4);
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ZeroMaxtrix3=2ros(2,2);

ZeroMaxtrix4=zeros(2,2);

ZeroMaxtrix5=zeros(2,4);

ZeroMaxtrix6=zeros(2,2);

EyeMaxtrix=eye(2,2);

Abar=[A ZeroMaxtrix1 Bf2;ZeroMaxtrix2 ZeroMaxtrix3 ZeroMaxtrix4;ZeroMaxtrix5 EyeMaxtrix
ZeroMaxtrix6];

ZeroMaxtrix7=zeros(2,2);
Bbar=[B;ZeroMaxtrk7;ZeroMaxtrix7];
ZeroMaxtrix8=zeros(2,2);
Bdbar=[B;ZeroMaxtrix8;ZeroMaxtrix8];

EyeMaxtrix=eye(4,4);
ZeroMaxtrix=zeros(2,4);
Mbar=[EyeMaxtrix;ZeroMaxtrix;ZeroMaxtrix];

ZeroMaxtrixl=zeros(4,2);
EyeMaxtrix=eye(2,2);
ZeroMaxtrix=zeros(2,2);
Nbar=[ZeroMaxtix1;EyeMaxtrix;ZeroMaxtrix];
ZeroMaxtrix=zeros(2,2);

Cbar=[C ZeroMaxtrix Df2];

EyeMaxtrixl=eye(4,4);
EyeMaxtrix2=eye(2,2);
ZeroMaxtrixl=zeros(4,2);
ZeroMaxtrix2=zeros(2,4);
ZeroMaxtrix3=zeros(2,2);

Kx=[EyeMaxtrixl ZeroMaxtrix1 ZeroMaxtrix1];
Kf=[ZeroMaxtrix2 ZeroMaxtrix3 EyeMaxtrix2];

P=[-0.1-0.2-0.3-0.04-0.5-0.6-0.7-08];
kbar=place(Abar',Cbar',P)';

Fitness Evaluation

function fithess=fitnessfunc(x)
global A
global B
global C
global D
global Bf
global Bd
global Df
global Dd
global Abar
global Bbar
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global Cbar
global Bdbar
global Nbar
global Mbar
global Kbar
global Kx
global Kf

%x=(1:24);

eigenl=x(:,1);%
eigen2=x(:,2);
eigen3=x(:,3);
eigen4d=x(:,4);
eigen5=x(:,5);
eigen6=x(:,6);%
eigenlre=x(:,7);%
eigenlim=x(:,8);%

w1=x(:,9:10)";%
w2=x(:,11:12)";
w3=x(:,13:14)";
w4=x(:,15:16)";
wbh=x(:,17:18)";
w6=x(:,19:20)";%
wilre=x(:,21:22)",%
wlim=x(:,23:24)",%

AbarT=Abar";
CbarT=Cbar";
E=eye(8);%

vl=-inv(eigenl*EAbarT)*CbarT*wl;%
v2=-inv(eigen2*EAbarT)*CbarT*w2;
v3=-inv(eigen3*EAbarT)*Cbaf*w3;
v4=-inv(eigen4*EAbarT)*CbarT*w4;
v5=-inv(eigen5*EAbarT)*CbarT*w5;
v6=-inv(eigen6*EAbarT)*CbarT*w6;%

ZeroMaxtrix=zeros(8,2);
Cc=[CbarT ZeroMaxtrix;ZeroMaxtrix CbarT];

E=eye(8);
Al=[(eigenlre*EAbarT)-eigenlim*E;eigenlim*E (eigenlre*BbarT)];

vlreim=inv(Al)*Cc*[wlre;wlim];%

vlre=vlreim(1:8,);
vlim=vireim(9:16,);

W=[wl w2 w3 w4 w5 w6 wilre wlimj;
V=[v1l v2 v3 v4 v5 v6 vlre v1lim];
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Kbar=(W*inv(V))"

E=eye(8);

s1=j*0;%for disturbane
s2=j*pi*2*48.37;%for deltaAx
3=j*0.5;%for fault

% OTHER DDF FROM FFT

S4=j*pi*2*36.32;

s5=j*2*pi*32.27,;

sS6=j*2*pi*25.71;
J1=norm(inv(s1l*EAbar+Kbar*Cbar)*(BdbaiKbar*Dd));%for disturbance
J2=norm(inv(s2*EAbar+Kbar*Cbar)*Mbar);%for deltaAx
J3=norm(inv6é3*E-Abar+Kbar*Cbar)*Nbar*s3"2);%for fault
J=(J1+J2+J3);

fithess=J;

Constraint Function
function [c,ceq]=constraintfunc(x)

eigenl=x(:,1);%
eigen2=x(:,2);
eigen3=x(:,3);
eigend=x(:,4);
eigen5=x(:,5);
eigen6=x(:,6);%

eigenlre=x(:,7);%
eigenlim=x(;,$;%

c(1)=eigenl;%
c(2)=eigen2;
c(3)=eigen3;
c(4)=eigen4;
c(5)=eigen5;
c(6)=eigen6;
c(7)=eigenlre;

c(8)=eigen1+30;%c(1)<=0,eigenl<g=1
c(9)=eigen2+30;

¢(10)=eigen3+30;

c(11)=eigen4+30;

c(12)=eigen5+30;

c(13)=eigen6+30;
c(14)=eigenlre+20;

ceq=[J;
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