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Abstract 
 

 

Cystic Fibrosis (CF) is the most common autosomal recessive genetic disorder 

in the UK. A mutation in the CFTR gene, alters a Cl- transporter protein resulting in 

dehydration at epithelial surface and a thick mucus layer that provides a nutrient rich 

environment ideal for opportunistic bacteria to colonise. Bronchiectasis (BR) is similar 

symptomatically to CF, with localised dilations and inflammation events of the bronchial 

tree that can be linked to lung trauma or allergy. Pseudomonas aeruginosa (Pa) is the 

most common opportunistic pathogen in CF that correlates to lowered lung function. 

Burkholderia cepacia complex (Bcc) species have been shown to be more problematic 

to clear than Pa, due to increased antimicrobial resistance and progression to Cepacia 

syndrome that can be fatal.  

 

These opportunistic bacteria and their genome plasticity allows adaptation to the 

lung and can correlate to pathogenicity of chronic infection which is associated with poor 

clinical outcomes. As adaptation to the lung environment is such a key aspect of chronic 

bacterial infection in the lung this study focuses on the temperate phages infecting Pa 

and Bcc. Temperate phages once integrated into the bacterial chromosome have been 

shown in other bacterial backgrounds to aid bacterial adaptation through increasing rates 

of recombination. They have also been previously characterised to aid positive selection 

by carrying genes that aid bacterial survival, aiding evolution of both the bacterium and 

phage. The aim of this project was to characterise temperate bacteriophages chemically 

induced from 94 Pa (47 associated with CF and 47 with BR patients), 47 Bcc isolates 

(associated with CF patients).  

 

This study focuses on 3 key areas. The first studies how phages induced from 

Pa and Bcc infect isolates from patients at different stages of chronic infection. All the 

bacterial isolates used in this study had at least one inducible lysogenic phage, in some 

instances polylysogens.  
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Infectivity through Pa phage cross infection showed that adult CF phage were 

more infective across the Pa panel. Paediatric CF phages showed an infection profile 

similar to that of Pa phage induced from BR patients >10 years after clinical diagnosis. 

Pa phage associated with BR patients <10 years after clinical diagnosis showed the least 

infection across the Pa panel. 

 

Secondly, isolating and purifying temperate phages can be difficult and time 

consuming as phages that induce from the bacterial host in high numbers can mask 

secondary or tertiary phages. Importantly identifying individual phages can be complex, 

as a sensitive bacterial host is needed to isolate and propagate. This study uses novel 

genomic approaches to overcome this problem and separate mixed phage communities 

using k-mer abundance. Stratified phages have been annotated and compared for 

similarities that link to the clinical aetiology of the bacteria that carried that phage. 

 

Finally, this study begins to map genetic traits that may aid phage longevity in a 

microbial system. A model has been previously characterised with lytic phages where 

Ig-like domains or BAM motifs may explain how phages bind to complex carbohydrates 

in mucus. When evaluating the incidence of BAM, Ig-like domains in temperate phage 

DNA sequences isolated in this study we identify an increase in BAM motifs, that may 

correlating to the evolution of disease in both CF and BR. This aids the proposed BAM 

model and the evolution of temperate phages interacting at mucosal surfaces. 
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1. Introduction 

1.1 Cystic Fibrosis 

CF is the most common autosomal recessive inherited disease in the UK, currently 

affecting over 10,000 people of whom only half will live past the age of 41 years. Currently 

there is no cure for people with CF where therapy aims to reduce the symptoms of the 

disease  (NHS.uk, 2016). As a last resort, a CF patient may receive a lung transplant 

due to irreversible damage and lowered function. The option to transplant is 

recommended when the forced expiratory volume (FEV1) score is < 30 % of the 

predicted volume or if there is a rapid decline in lung function (Orens et al, 2006). Once 

the transplant has been successful, post-transplant care is vital for the maintenance of 

healthier lungs. Transplantation of the lungs means that the CF free lungs no longer 

produce thick mucus through limited dehydration. However, CF is still present in other 

vital organs such as the pancreas, that results in cystic fibrosis related diabetes, gastro 

intestinal tract, liver and gallbladder that causes highly acidic bile production and in males 

the testes (Cystic Fibrosis Foundation, 2014). In up to 15% of CF patients one of the first 

symptoms is blockage of the bowel due to viscous mucus preventing digestion or 

Intestinal atresia (O'Sullivan & Freedman, 2009). Other signs include greasy stool, 

abdominal bloating and poor weight gain that could also lead to malnutrition (O'Sullivan 

& Freedman, 2009). This increases the risk of the small intestines becoming infected by 

Gram negative bacteria which can also cause further malnutrition through competition 

for nutrients (Borowitz, 2005). Current research is mainly genetically oriented and 

focuses at the epithelial changes in CF patients as it is estimated that a 10% of normal 

CFTR function will cure the symptoms of CF-related disease (Ramalho et al, 2002).  

CF is genetically linked to multiple mutations in the cystic fibrosis transmembrane 

conductance regulator (CFTR) gene. CF is termed a monogenic disease, as it is 

associated to modification of a single gene. CFTR is a 1480 amino acids protein that 

structurally displays six-membrane spanning glycoprotein domains (Sheppard & Welsh, 
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1999) with a nucleotide binding domain that is complimentary to interact with adenosine 

triphosphate (ATP) (Ames et al, 1990). The protein functions as a small conductance 

ATP and cyclic GMP-dependent chloride channel in the apical membranes of epithelial 

cells (Riordan et al, 1989). This protein assists the intracellular and extracellular 

movements of chloride ions. The difference in ions changes the salt and water content 

at the epithelial surface. The CFTR gene is 189 Kb in length and found at the q31.2 

location in the long arm of chromosome 7, where expression is associated with the 

control of Cl- ion channels that transport cellular Na+ and Cl- ions (Riordan et al, 1989). 

Polymorphisms in CFTR and alteration in the Cl- ion channel subsequently affects the 

physiology of the lungs by stimulating the overproduction of thick mucus through reduced 

water content. Due to the different types of mutation in the CFTR gene, there are different 

severity and classes of mutation that correlate to the disease. These have been stratified 

into six CFTR mutation classes (MacDonald et al, 2007; Welsh & Smith, 1993). Currently 

2009 CF mutations have been identified (Cystic Fibrosis mutation database, 2016), the 

most common mutation in Caucasians is the ΔF508, a 3 base pair deletion which leads 

to the deletion of the amino acid Phenylalanine. ΔF508 accounts for 66% of global 

mutations (Consortium, 1994) followed by G542X which is responsible for 2.4% of CF 

worldwide. The majority of mutations in cftr are due to missense (39.6%), frameshift 

(15.6%), sequence variation (13.4%), splicing (11.4%) or nonsense (8.3%) (Cystic 

Fibrosis mutation database, 2016). 

Figure 1.1 illustrates the different classes of cftr mutation and how they alter the protein 

function. Class I defects result in ablation of CFTR at the atypical membrane (Welsh & 

Smith, 1993). Another example is the second most prevalent mutation G542X with a 

frequency of 2.4% (Zielenski & Tsui, 1995). Other mutations include W1282X and R553X 

and are regarded as nonsense mutations due to a premature stop codon.  

Class II defects alter the processing of the CFTR protein, caused by proteasome 

degradation of the miss-folded protein found within the endoplasmic reticulum. This also 

results in the inhibition of cftr expression and localisation at the membrane (Welsh & 
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Smith, 1993). ∆F508 is an example of this mutation, mentioned earlier as the most 

prevalent, with a frequency of 66% (Zielenski & Tsui, 1995). Mutation N1303K is another 

example of a mutation that results in this class defect. 

Class III mutations give rise to limited CFTR expression at the atypical membrane. 

This defect results in a gating defect, as CFTR cannot be activated due to missense 

mutations (Welsh & Smith, 1993). G551D is an example of a mutation with a population 

frequency of 1.6% (Zielenski & Tsui, 1995). G551S and G1349D are also examples of 

this type of mutational defect. 

Class IV mutations result in limited expression of the activated CFTR with a decline 

in conductance as it hampers Cl- ion movement (Welsh & Smith, 1993). These missense 

mutations result in the substitution of amino acids in the channel of the pore. The R334W 

mutation installs a change at codon 334 in the CFTR gene and results in a change in 

arginine to tryptophan (Gasparini et al, 1991). R117H is another mutation like R334W 

that alters the membrane spanning domain with an incidence frequency of 0.3% in the 

UK (Rosenstein et al, 1998). R117H mutation is an example of alternate splicing which 

occurs due to a poly-T tract variant at exon 9. Having 9T, 7T or 5T’s skips exon 9 and 

can increase chance of presenting with CF (Chu et al, 1993). R347P are also examples 

of class IV based mutations.  

Class V mutations result in the expression of native CFTR proteins at the atypical 

membrane however, in extremely reduced numbers compared to healthy individuals. An 

example of this type of mutation is 2789 + 5G->A (accounting for 0.1% of CF mutations 

worldwide (Dugueperoux & De Braekeleer, 2005)) and A455E. 

Class VI is a result of increased turnover of CFTR protein at the atypical membrane 

however; it is unstable and is quickly degraded. An example of this type of CFTR 

classification is rescued ∆F508 and 120∆23 (MacDonald et al, 2007). Other examples 

include N287Y, 4326∆TC and 4279insA.  

The severity of physiological symptoms associated with CF, decrease with the 

movement from class I to VI. Each class is linked to the degree of impairment assigned 

by each mutation to the CFTR protein. The class mutations have an effect on the 
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viscosity of the mucus, which in turn reflects the degree of mucus clearance. In one study 

CF patients with two class I mutations had a greater decline in lung function assessed 

by FEV1 and FCV scores, when compared to one class II mutation (Geborek & Hjelte, 

2011). The genotype can therefore affect the phenotype within CF patients (Bonadia et 

al, 2014; Ferec & Cutting, 2012). However, in a clinical prospective, genotype does not 

accurately forecast the patients’ long term outcome (Castellani et al, 2008). 

 

 

Figure 1.1 shows a schematic diagram of the epithelial cell in the lung and illustrates 

where the class I – VI mutations effect the production of viable CFTR proteins. 

Classifying the mutation in this manner reveals that the three most prevalent mutations 

G542X, ∆F508 and G551D fall within Class I, II and III respectively. The type of mutation 

has an effect on the clinical outcome. A patient with a class V CFTR defect is less likely 

to have chronic bacterial infection of the lungs and is thus likely to have a higher life 

expectancy compared to someone with class I CFTR defect (Dugueperoux & De 

Braekeleer, 2005). 

Figure 1.1 Cytic Fibrosis mutation classifications. The figure displays the location 

and effect of each class mutation. The image was taken from Quintana-Gallego et al, 

and altered (Quintana-Gallego et al., 2014). 
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The altered ionic potential and pH can offer a nutrient rich environmental niche in 

which opportunistic bacterial pathogens can colonise where complex bacterial 

communities have been identified in the sputum of CF patients (Rogers et al, 2003). 

Impaired CFTR protein results in high Cl- ions inside the epithelium and thus drives intake 

of H2O, dehydrating the mucus. Repeated bacterial infection or continuous colonisation 

within the lungs results in epithelial inflammation and downstream scarring that inhibits 

the mucocilliary action of that area of the lung (Livraghi & Randell, 2007). Epithelial 

alterations through scarring stimulate further presence of mucus through lack of 

clearance increasing the risk of microbial colonisation and bacterial proliferation, which 

in turn causes further inflammation. These continuing rounds and exacerbation of 

symptoms increase scarring and diminished lung function. This is the main cause of the 

shortened life span of CF and Chronic respiratory disease patients (Callaghan & 

McClean, 2012; Gibson et al, 2003).  

Pseudomonas aeruginosa, Burkholderia cepacia complexes, Haemophilus 

influenzae and Staphylococcus aureus are the main pathogen causing infections in lungs 

of CF patients (Mahenthiralingam et al, 2005; Valenza et al, 2008). It is difficult to 

clinically intervene and clear bacterial infections in the lung of CF patients (Hart & 

Winstanley, 2002) compared to Bronchiectasis patients, possibly due to a lifetime of re-

occurring inflammation events which leads to damaged tissue,  furthering poor drug 

delivery and pharmacokinetic profiles of prescribed antimicrobials (Athanazio et al, 2010). 

Some studies have shown that during periods of exacerbation there is a core microbiota 

in the lungs that is well conserved (Hauser et al, 2011; Rudkjobing et al, 2011). This 

therefore poses the question, as to why these patients have exacerbation periods, where 

one possibility is the involvement of viruses or the role of temperate bacteriophages that 

have the ability to alter the function of the cell. 

Antibiotics are currently used to fight bacterial infections where subspecies of 

Pseudomonas aeruginosa, H. Influenza and Burkholderia cepacia species have 

developed antibiotic resistance due to mutation, adaptation, and genetic addition, thus 
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promoting evasion of treatment strategies. Genetic addition can occur through 

transposable genetic elements including; plasmids, bacteriophage and transposons. 

This study will look at the subversion of bacteria through the genomic addition via 

integration of temperate bacteriophages in Pseudomonas aeruginosa and the 

Burkholderia cepacia complex.  

1.2 Bronchiectasis and its prevalence 

CF is associated with the development of symptoms linked to bronchiectasis (BR) 

(Pasteur et al, 2000). While BR can be defined by the localised dilations and 

inflammation events of the bronchial tree that can be linked to lung trauma, in some 

instances allergic response and subsequent bacterial infection (Athanazio, 2012). The 

incidence rate of bronchiectasis in the UK is 1 in 1000 adults and 1 in 10,000 children. 

Over 12,000 patients were admitted to hospital in England from 2013 - 2014 due to 

bronchiectasis related symptoms and the majority of these patients were over 60 years 

of age (NHS.uk, 2015). BR is a long-term condition, which ultimately leads to excess 

mucus production.  

1.2.1 Bronchiectasis and contributing factors 

The onset of BR is multifactorial. Some are usually evident while other causes remain 

unknown; hence termed idiopathic BR. BR can occur if a patient has suffered from a viral 

or bacterial infection such as measles or whooping cough, lung cancer or the inhalation 

of toxic gases (Boyton & Altmann, 2016). Defects in mucocillary action (Morillas et al, 

2007) and specifically autoimmunity diseases such as lupus erythematous (Higenbottam 

et al, 1980) can also bring about the onset of BR through the body attacking its own 

epithelia. 

1.2.2 Polymicrobial nature of Bronchiectasis 

The lungs of BR patients have been shown to be colonised with a polymicrobial 

community, illustrated by numerous metagenomics and 16S rRNA gene amplicon 
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sequencing studies (Delhaes et al, 2012; Erb-Downward et al, 2011; Fodor et al, 2012; 

Guss et al, 2011; Pragman et al, 2012; Willner et al, 2009). These infections usually 

include but are not limited to Pseudomonas aeruginosa, Haemophilus influenza and 

Streptococcus pneumoniae. Opportunistic bacteria take advantage of the environmental 

conditions in the lungs of these patients and subsequent to colonisation, can grow in a 

vegetative state. The bacteria can differentiate to grow as a biofilm making treatment 

more difficult (Ohgaki, 1994). The treatment strategies and intensity of antimicrobial 

therapy for clearing infection in BR patients depends on the severity and stage of the 

disease, but as in CF the option is to treat hard and treat early to limit chronic colonisation 

(Daniels, 2010).  

1.2.3 Bronchiectasis relationship to Cystic Fibrosis   

 CF as mentioned in section 1.2 is symptomatically related to BR. The microbial 

nature of the lung between the two has been shown to be poly-microbial in a number of 

studies while there being a dominant species present (Cox et al, 2010; Purcell et al, 

2014b; Rogers et al, 2004; Rogers et al, 2003; Sibley et al, 2006). A study comparing 

culture and sequence technique by amplification of hyper-variable region of 16s rRNA 

gene confirmed that the lung of both CF and BR are evidently more poly-microbial than 

previously assumed (Duff et al, 2013). However, it was seen that the lungs of BR 

patients had more operational taxonomic units (OTU) than CF patients (Duff et al, 

2013). 

1.3 Chronic obstructive pulmonary disease 

Chronic obstructive pulmonary diseases (COPD) are those that give rise to 

chronic bronchitis and emphysema (NIH, 2016). COPD is predominantly the result of 

long term tobacco smoking and air pollution. This primarily damages, the lung through 

rounds of inflammation producing thick mucus that is difficult to clear by cilia action alone 

making it an ideal niche for bacteria to colonise and propagate (Ramos et al, 2014; 
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Rogers et al, 2013; Thornton et al, 2008; Voynow & Rubin, 2009). The lungs of COPD 

individuals are polymicrobial as shown by a number of metagenomics 16S studies 

(Delhaes et al, 2012; Erb-Downward et al, 2011; Fodor et al, 2012; Guss et al, 2011; 

Pragman et al, 2012; Willner et al, 2009). Including but not limited to Pseudomonas 

aeruginosa, Burkholderia cepacia, Haemophilus influenza and Streptococcus 

pneumonia have been found to be present in lungs of patients with COPD. Opportunistic 

bacteria take advantage of the conditions in the lungs of COPD patients and differentiate 

as biofilms that offer increased resistance to antibiotics and increase the difficulty of 

clearance by the host immune system alone, specifically in Pseudomonas aeruginosa 

(Hoiby et al, 2010).  

1.4 Pseudomonas aeruginosa  

Pseudomonas aeruginosa (Pa) was first discovered in Paris by Carle Gessard in 

1882. He noted that it fluoresced under UV light and was later described as an 

opportunistic pathogen in humans and plants (Gessard, 1984). He also noted that 

bandages of his patients would turn to green/blue and termed the pus as “blue pus” 

(Gessard, 1984). Pa is a Gram negative, coccobacillus bacterium; it is rod shaped and 

is commonly found in soil. Pa is known for its light green pyocyanine pigment that it 

secretes (Wilson et al, 1987). When Pa is grown in a culture vial and shaken vigorously 

the culture turns from a fluorescent yellow colour to green as it produces pyocyanin. 

Pyocyanin, a redox active phenazine based compound is part of the bacteria’s quorum 

sensing (QS) (Dietrich et al, 2006).  Pyocyanin also plays a role in reducing iron from 

transferrin in low iron conditions, required for Pa growth (Cox, 1986). Pyocyanin is 

actually a blue pigment and Pyoverdine yellow and the combination of these two give 

the culture this green colour (Reyes et al, 1981).  Some species of Pa can also produce 

pyomelanin and poyorubin, pale brown and pale red in colour respectively (Meyer, 2000).  

In the chronic lung, Pa is the most common pathogen found (Bittar et al, 2008) 

and can prove to be problematic as it is difficult to clear by antibiotics (Sorde et al, 2011). 
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This is due to multi drug resistant strains of Pa and their ability to colonise and survive 

through limited metabolism as a biofilm. The genome size of Pa strain PAO1, first 

sequenced in the year 2000 was shown to be a 6.3 Mbp genome (Stover et al, 2000). 

Across strains the genome sequence of Pa varies between 5.2 - 7 Mbp (Klockgether et 

al, 2004) and this diversity in genome size is probably related to the receptiveness to 

transposable genetic elements.  

Bacteriophages infecting Pa can have structure associated with filamentous, 

polyhedral or pleomorphic morphology (Ceyssens & Lavigne, 2010). Pf1 is an example 

of a filamentous phage of PAO1; it has a 15.7 Kbp genome. PAO1 also harbours a 35 

kbp phage called MD8 and belongs to the Siphoviridae family. Phages infecting Pa 

predominantly belong to the order of Caudovirales comprising of three major families 

Myoviridae, Podoviridae and Siphoviridae. Phage phi CTX is an example of a Myoviridae 

phage. It encode a ctx gene in the Pa strain PA158 and has a 35.5 Kbp genome (Hayashi 

et al, 1990). Pa phage B3 and D3112 are examples of two Siphoviridae phages that 

infect the cell via adsorption to the IV pili (Roncero et al, 1990). These two phages are 

capable of genetic transposition and during excision package part of the host 

chromosome, aiding horizontal gene transfer (Morgan et al, 2002). F116 and H66 are 

part of the Podoviridae family, H66 has a genome size of 65.2 Kbp and F116 has genome 

size of 65.1 Kbp (Lammens & Lavigne, 2013; Maya et al, 2012). F116 is a transducing 

phage that adsorbs to the cell via the pili (Byrne & Kropinski, 2005; Pemberton, 1973).      

A Pa strain resistant to all β lactam antibiotics was identified in Liverpool and 

termed the Liverpool epidemic strain (LES). LESB58 was found to contain five prophage 

regions and hypothesised to offer LESB58 a selective advantage (James et al, 2012; 

Winstanley et al, 2009). Phage integration correlates to an increased genome size of 

LESB58 which is 6.6 Mbp when compared to PAO1 6.3 Mbp. Gene addition and 

conversion of the bacterial cell through phage integration may be one of the reasons why 

LES is so pathogenic in a CF population. The LESB58 strain’s temperate phages were 

shown to have individual biology and phenotypes for example different induction rates 
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under stimulus with norfloxacin and differential ability to induce spontaneously post 

infection (James et al, 2012). The lytic activities of the LESB58 temperate phages have 

previously been assessed in vivo over 2 years, and LESϕ2 and LESϕ4 were shown to 

have the most abundant free phage (James et al, 2015). The study also highlighted that 

the free phage densities exceeded LESB58 by 10-100 fold (James et al, 2015). This led 

the authors to infer that the lytic activity of the phages helped regulate the host density 

in the lung of CF patients (James et al, 2015). When the phages from the LESB58B were 

induced using norfloxacin and used to re-infect the susceptible host Pa (PAO1), it was 

identified that infection by LESϕ2 generated immunity against LESϕ3 and reduced 

susceptibility of LESϕ4, even though they were induced from the same strain (Winstanley 

et al, 2009). The same study also showed that the phages of LESB58 had a higher rate 

of spontaneous induction inferring their lack of stability in PAO1 when compared to 

LESB58. F. Jacob and J. Monod (1961) hypothesised early in the 1960’s that a repressor 

molecule encoded in E. coli phage λ can turn off other infecting phage early gene 

expression and block integration and proliferation. This thus conforms to the model 

suggesting repressor molecules can prevent superinfection by other phage with similar 

genomes. 

1.5 Burkholderia cepacia complex (Bcc) 

Burkholderia is currently composed of over seventy species, most of which are 

associated with plants (Angus et al, 2014). The genus of Burkholderia was previously 

part of the Pseudomonas genus up until 1992 (Yabuuchi et al, 1992) when 7 species 

were moved into the Burkholderia genus. To complicate matters further multiple strains 

were transferred from the Burkholderia genus to the Ralstonia genus (Yabuuchi et al, 

1995) illustrating the complexity and origin of this genus. Both 16S rDNA analysis (Reis 

et al, 2004) and multilocus sequence analysis on acdS (Onofre-Lemus et al, 2009) gyrB, 

(Tabacchioni et al, 2008) rpoB, (Tayeb et al, 2008) and recA (Payne et al, 2005) are a 

few examples of genes used to support the observations that the Burkholderia genus 

had two distinct groups of species. A study combining 16S rDNA and atpD, gltB, lepA 
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and recA genes to determine phylogenetic lineages on their Burkholderia species 

suggested that there might be a third main lineage (Estrada-de los Santos et al, 2013). 

This further implies that the Burkholderia genus is still evolving and is more than likely to 

be subject to future taxonomic changes.  

The first lineage comprises: soil, plant and water associated species that tend not 

to be pathogenic. Members of this lineage have been illustrated to have symbiotic 

relationships with plants (Talbi et al, 2013) and bioremediation potential in degrading 

xenobiotics (Andreolli et al, 2011). The Burkholderia spp. have been shown to be able to 

use 2, 4, 5–trichlorophenoxyacetic acid (used in pesticides and herbicides) for its 

metabolism (Hubner et al, 1998). Burkholderia species have been known to aid plant 

growth hence they have been used to help crop yield and viability. B. vietnamiensis 

species have also been used to aid rice paddy fields in Asia (O'Sullivan et al, 2007). The 

second sub-lineage comprises: opportunistic bacterial pathogens, mammalian 

pathogens, plant pathogens and environmental species (Coenye & Vandamme, 2003). 

This study focuses on specific Bcc species with the propensity to infect the lungs 

of CF patients. Bcc are Gram negative bacillus commonly found in water and soil. 

Burkholderia was first described in the 1950s as a pathogen of bacterial rot in onions by 

Burkholder (Burkholder, 1950). Bcc currently comprises of 20 sub species of which 10 

species are commonly found in the lungs of CF patients hence termed Bc complex 

(Coenye et al, 2001; Cystic Fibrosis Foundation, 2014). Table 1.1 shows the species 

with their assigned genomovars (Mahenthiralingam et al, 2008).  
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Genomovar Species 

I Burkholderia cepacia 

II Burkholderia multivorans 

III A-D Burkholderia cenocepacia 

IV Burkholderia stabilis 

V Burkholderia vietnamiensis 

VI Burkholderia dolosa 

VII Burkholderia ambifaria 

VIII Burkholderia anthina 

IX Burkholderia pyrrocinia 

X Burkholderia ubonensis 

 

Table 1.1: Burkholderia cepacia complex- genomovar grades. The table lists the 

current members of the sub-species of the Bcc.  

In CF patients 90% of the Bcc isolated from the lungs are B. cenocepacia or B. 

multivorans species (Mahenthiralingam et al, 2002). However, B. multivorans is 

becoming the most common species found of Bcc in the CF lung (LiPuma, 2010). The 

shift from B. cenocepacia to B. multivorans is possibly due to improved clinical 

management (De Boeck et al, 2004) and that the B. multivorans species isolated are 

largely unrelated suggesting environmental as opposed to patient to patient transmission 

(Turton et al, 2003). B. multivorans have been shown to undergo adaptation and 

evolution in the lungs of CF patients, such that mucoid to non-mucoid morphology 

changes have been described (Zlosnik et al, 2011; Zlosnik et al, 2008). Bcc has been 

shown to be more problematic to clear than Pseudomonas aeruginosa, due to its 

increased antimicrobial resistance. Although the lung function decline is only slightly 

greater with Bcc infections, infection with B. dolosa has been linked to increased lung 

decline and failure (Kalish et al, 2006). 
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The genome of Burkholderia species typically comprises circular chromosomes 

made up of multireplicons. Burkholderia species often contain 2-4 replicons which can 

vary in size; the largest replicon belongs to N2P5 with a size of 9.2 Mb (Viallard et al, 

1998). Burkholderia species can also contain plasmids, as B. cepacia strain ATCC 25416 

(genomovar I) has been characterised containing 3 chromosomes and a large plasmid, 

as the plasmid has four operons (Rodley et al, 1995), this also suggests high genomic 

plasticity.  

1.6 Introduction to Bacteriophages 

Bacteriophages are viruses that can infect and subvert their bacterial host. 

Identified originally by Frederick Twort in 1915 and later confirmed by Felix d’Herrelle in 

1917 (d'Herelle, 1917; Twort, 1915). They were defined as filterable transmissible agents 

that can cause bacterial lysis. However, a recent study showed that by definition phage 

were filterable and because of this definition none filterable viruses have been missed 

and requires revision of the definition which classifies viruses as a whole. Mimivirus 

(although it is not a bacteriophage) is such an example of these giant viruses that are 

not filterable through a 0.2 µm filter, as it is around 0.8 µm in size (Raoult & Forterre, 

2008). Phage sizes were first estimated using the filtration method and were estimated 

as being between 25 to 100 nm in size.  

Using phage morphology to order and categorise has been the gold standard, 

these include long, short, contractile tails, non-contractile tails and whether they have an 

icosahedral capsid have all been visual characteristics used to classify phages. The most 

common way to observe phages for their morphological characteristic is via electron 

microscopy. However, taxonomically, viruses are categorised based on their nucleic acid 

content and morphology along with bacterial host range (ICTV, 2016). Viruses infect; 

plants, invertebrates, vertebrates, bacteria, algae, fungi, yeast and protozoa that form 

every clade of the tree of life. Figure 1.2a illustrates the different morphologies of viruses 

that infect bacteria. The guidelines of taxonomically naming phages aims to standardise 
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and remove ambiguities associated with names of phages. Recently the guidelines 

published recommended to remove phi, hyphens and “like” in the nomenclature of 

phages, as they add no informational value (Krupovic et al, 2016).  

 In Pseudomonas aeruginosa isolated from CF sputum, tail phages belonging to 

the family of Myoviridae, Siphoviridae and Podoviridae have been identified, notably 

temperate phages characterised thus far have tails (Ojeniyi et al, 1991) all of these 

families belong to the order of Caudovirales. Figure 1.2b shows an electron microscopy 

image of these families.  
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Figure 1.2b electron microscopy image of bacteriophage. The Myoviridae 

image if of a T4-like bacteriophage from Damien Maura and Laurent Debarbieux, 

institute Pasteur. The Siphoviridae is a HK97 phage and Podoviridae is a P22 

phage from Laurence et al, (Lawrence et al., 2002). The black bar represents 

50nm and is to scale for all the images. The images were taken from Krupovic et 

al, 2011 (Krupovic et al., 2011).  

Figure 1.2a Viruses that infect bacteria. This diagram illustrates the type of 

viruses that can infect bacteria, image taken from Fauquet and Schrock (Fauquet 

C.M. & Schrock J.R., 2006). 

1.2b 

1.2a 
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1.6.1 The life cycle of temperate bacteriophages 

Escherichia coli infecting dsDNA phage Lambda or ʎ was the first phage to be 

characterised in detail, and has become the archetypal model for research on temperate 

phages. Tailed bacteriophages can be categorised as either temperate or lytic. 

Temperate phages can enter either of two life cycles on infection of a bacterial host. They 

can enter either a lysogenic pathway where the phage gDNA site integrates their genome 

into the chromosome of their bacterial host, mediated by integrase. Or they can also 

enter into the lytic pathway where they propagate and lyse the host cell to enter the 

environment. Upon infection the genome of the temperate phage is able to site 

specifically integrate into the bacterial chromosome. Lytic phages only infect to 

propagate and do not integrate their genomes into the host cell. The bacteriophage life 

cycle is controlled by gene expression and is discussed in chapter 1.6.5. Figure 1.3 

illustrates the lytic and lysogenic life cycle. Viruses that only exhibit the lytic life cycle are 

sometimes termed virulent viruses as the inevitable outcome of a successfully infected 

host cell results in cell death. The following sections will isolate each stage of the key 

stages of temperate phage infection and describe in more detail: adsorption and 

therefore focus on the phage tail and virus structure (chapter 1.6.3), gene expression on 

infection and life cycle decision (chapter 1.6.5) through to lysis. 
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Figure 1.3 Lytic and lysogenic life cycle. This schematic diagram illustrates the life cycle a temperate phage can exhibit. A lytic 

phage can only infect to replicate (Image taken from (Reese, 2011)).  
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1.6.3 Phage tail fibre 

Siphoviridae phages have long flexible non-contractile tails, Podoviridae phages have 

short non-contractile tails and Myoviridae phages have contractile tails (Fig 1.2b). The 

size of tail length can vary between phages 140 nm 150 nm and 160 nm in Burkholderia 

cepacia complex phages (Lynch et al, 2010). In a study looking at lytic phage of 

Pseudomonas aeruginosa the tail length varied from 110 nm – 170 nm for phage 

belonging to the Siphoviridae family (Sepulveda-Robles et al, 2012). Lytic Pseudomonas 

phage of the Myoviridae family showed to have tails ranging between 10nm - 302nm 

(Sepulveda-Robles et al, 2012). The length of the tail is determined by the tail tape 

measure protein (Xu et al, 2004). In long tailed phages, genes are highly conserved and 

have greater adsorption potentials in coliphage lambda (Schwartz, 1976). Following tail 

adsorption, the tail spikes attach for infection to proceed and inject phage DNA. The 

lambda tail is 140nm long and encoded by an operon of 11 genes Z, U, V, G, T, H, M, L, 

K, I and J (Casjens & Hendrix, 1974; Xu et al, 2004). The promoter is the second 

rightward pR’ promoter and the 11 genes are self-promoting see chapter 1.6.5.   

1.6.2 Cell adsorption and Bacteriophage infection 

The adsorption of phage to the host cell is the first step in infection. This is a protein-

protein interaction between the virus and the cell wall. This interaction is highly specific 

as the virus must be able to deliver its genome into the bacterial cell. There are multiple 

targets phage utilise to infect bacteria (Shao & Wang, 2008). Bacteriophages target a 

range of cell surface receptors including but not limited to structural proteins that 

penetrate down to the peptidoglycan layer, porins, enzymes, substrate receptors and 

transfer proteins (Rakhuba et al, 2010). Upon infection phage specifically adsorb to 

recognised cellular epitopes, λ tail protein gpJ (Berkane et al, 2006) uses LamB a 

maltose inducible outer membrane protein (Scandella & Arber, 1974). Linearised phage 

DNA is injected through the contractile tail across outer and inner membrane. The T7 

phage adsorption to the E. coli cell surfaces was described as an irreversible step 
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implying the adsorption has high efficacy to the cell surface ligand (Kemp et al, 2005). 

The adsorption of T7 phage to the lipopolysaccharides of E.coli is electrostatic (Puck et 

al, 1951).  

Alteration in phage ligands can also prevent phage from binding. OmpA is a structural 

protein that is fixed in the membrane bound to the peptidoglycan layer, found with a free 

carboxyl terminus (Vogel & Jahnig, 1986). A study showed E.coli K12 OmpA mutants 

defective of this protein based resistance to phage K3, C21 and MS2 infection (Skurray 

et al, 1974). The study showed that the E.coli K12 OmpA mutant were still sensitive to 

T1-T7, ϕI, ϕII, ϕ3, ϕW, W31,U3 and H (Skurray et al, 1974). This indicated that the phage 

capable of infecting, adsorb to the cell via another receptor-ligand interaction. A study 

showed that E.coli phage isolated from sewers TuIa, Tulb and TuII used the major outer 

membrane protein receptors Ia, Ib and II respectively (Datta et al, 1977).  

In E. coli OmpC and F are porins. E.coli phages Hy2, SS4 and T4 are have been shown 

to adsorb using OmpC (Yu & Mizushima, 1982). OmpF was shown to be a receptor for 

T2 phage (Hantke, 1978; Riede et al, 1985). 

OmpT is an aspartyl protease enzyme and is shown to act as a receptor for adsorption 

for T-like phages (Hashemolhosseini et al, 1994).  

Phages may also target the bacterial flagella and pili, phage chi is one example where it 

targets E.coli via adsorption to the flagella (Schade et al, 1967). It attaches to the flagella 

and moves down to the base where the flagella is attached to the surface of the bacteria, 

this is where it injects its DNA (Schade et al, 1967).   

Tail fibres of phage are responsible primarily for adsorption of the phage to its host’s 

ligand or epitope. The ligand is most likely to be on the cell surface but phages have 

been identified to target bacterial flagella. An example of this is bacteriophage χ where 

it attaches to the filament of a Salmonella typhi flagellum (Meynell, 1961). The phage 

targets the H antigen and the flagellum must be active for the phage infection to take 

place. Often the phages use the flagella to attach and move along the flagellum to the 
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base where the actual infection takes place (Schade et al, 1967). This particular study 

suggested that phage χ has adapted and evolved to only infect motile Salmonella typhi 

strains. Phage χ has also been shown to infect Serratia and E. coli strains (Schade et al, 

1967).  

1.6.4 Phage capsid, packaging and phage gDNA ejection 

Phages of the Caudovirales order tend to have a symmetrical icosahedral capsid, 

constructed from proteins forming a closed head unit (Figure 1.4B) (Casjens et al, 1985). 

The capsid proteins are arranged around scaffold proteins (Caspar & Klug, 1962). Figure 

1.4C shows a structural illustration of a phi29 scaffold protein. The minor capsid genes 

encode the proteins that are responsible for connecting the head to the tail (Casjens et 

al, 1985).This is termed a procapsid as it still needs to be packaged for the head to 

become mature (Lee et al, 2004). Phage DNA replication can create concatemers 

arrayed in head-tail axial and terminase resolves the issue by cleaving the DNA once 

the head is full and is not sequence specific, this is the case for P22, SPP1 and T4 

(Aksyuk & Rossmann, 2011; Black, 1989; Black & Rao, 2012).  In λ the phage capsid 

enters the maturation step by the addition of linearised dsDNA cut by terminase at the 

cos sites (sequence specific), located upstream of the capsid and terminase genes 

(Figure 1.6). Terminase is also involved in dsDNA packaging in the phage capsid, figure 

1.4C, shows small and large terminase proteins of T4 and Sf6 (Black, 1989). The phage 

DNA enters the capsid through the portal protein, as a response to DNA packaging. In 

T4, Mu, N4 and Phi29 phage, which do not have concatemeric DNA this event causes a 

conformational change in the portal protein triggering the terminase to cut the DNA 

(Black, 1989; Lander et al, 2006; Valpuesta & Carrascosa, 1994). The T4 DNA is 

packaged longitudinally whereas in T7 it is horizontally packaged (Earnshaw et al, 1978). 

Figure 1.4A, shows the models of phage DNA packed in various phage heads. The DNA 

is packaged with enough potential energy in the form of supercoiling the DNA into the 

capsid. This stored energy is later used by the phage to force the phage gDNA injection. 

The DNA is packaged with a 12° rotation per 2 base pair this coupled with a turn created 
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by the packaging motor can generate the energy needed for injection (Spakowitz & Wang, 

2005). The scaffold proteins leave the capsid during the maturation step of the head and 

are either recycled for use in creating another capsid, seen in the maturation step of P22 

(King & Casjens, 1974), or in the case of λ the scaffold proteins are proteolytically 

cleaved (Aksyuk & Rossmann, 2011; Casjens et al, 1985). Figure 1.4 A, illustrates the 

scaffolding process and depicts how phage DNA is inserted into the procapsid. A study 

showed this by increasing the osmotic pressure to inhibit lambda phage DNA injection 

and found that the pressure had to be several times greater to prevent DNA injection 

(Evilevitch et al, 2003).This implies that the lambda phage capsid with DNA has greater 

pressure than normal osmotic pressure to allow DNA injection.  
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Figure 1.4 dsDNA tailed phage assembly. A) Diagram of phage structural assembly. B) The left panel shows 

the prohead and mature head of HK97, the middle panel shows the T4 baseplate and tail. The right panel shows 

T4, P22 and phi29 as mature phages. C) Several structural proteins involved in phage assembly. (Image modified 

from (Aksyuk & Rossmann, 2011)). 
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Figure 1.5 Phage DNA packaged models. A) Longitudinal head-tail axial (Earnshaw et al, 1978) B) Spherical C) Liquid crystal D) 

bends associated with the icosahedral structure E) Both ends of the DNA are at the end of the portal protein (Ray et al, 2010). Image 

modified from (Black & Rao, 2012) . 
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1.6.5 Temperate bacteriophages control of life cycle decision through early gene 

expression on infection 

Once the genomic DNA of the temperate phage has been injected into the host 

bacterial cell there is a rapid decision of whether the lysogenic or lytic life cycle occurs. 

This is achieved through controlled early gene expression of certain genes encoded by 

the phage and subversion of the host machinery. Lambdoid phages are a good example 

of the temperate phages and their life cycle. The genetic regulation of this life cycle switch 

is discussed further as a model of temperate phage.  

The Lambda phage has six major promoters pL promoter leftward, pR promoter 

rightward, pRE promoter repressor establishment, pRM promoter repressor 

maintenance, pI promoter intergration and pR’’ second rightward promoter. Once the 

linearised phage gene is in the host cell it circularises at the two cos sites using DNA 

ligase and DNA gyrase (De Wyngaert & Hinkle, 1979), whereby the decision to enter 

either the lytic or lysogenic life cycle is then made. Temperate phages usually show a 

high propensity to lysogeny, however, the degree can vary from phage to phage (Davies 

et al, 2016). Although in either the lytic or lysogenic infection the first priority of phage 

function is to subvert the host RNA polymerase to transcribe the phage early genes. RNA 

polymerase binds to four promoters’ pL, pRE, pO and pR (Ptashne, 2004). The promoter 

transcription of pL encodes N, which is an anti-termination factor “regulator” of early 

lysogeny gene (Herskowitz & Hagen, 1980). This is the first promoter that is transcribed 

post infection and cell subversion. Transcription from pR encodes cro, this is a repressor 

regulator of the lytic cycle. It does this by binding to domains of an operator region OR, 

preventing premature synthesis of cI the regulatory protein of phage lysogeny and 

repressor maintenance (Johnson et al, 1978). The expression of phage DNA replication 

proteins O and P stimulates circular phage DNA replication at location ori in the phage 

DNA (Ptashne, 2004). This then leads to the production of Q anti-termination which is a 

regulator of late genes such as capsid and tail through modification of the host RNA 

polymerase.  
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  On injection into the cell if the phage enters the lysogenic life cycle, gene 

expression from pL and pRE regulate cII and cIII, which are necessary for producing cI 

from promoter pRE and promoter pint which transcribes for integrase. As the name 

suggests integrase is needed for the temperate phage to site specifically integrate its 

DNA in the bacterial genome at location attB. The essentiality of integrase in phage 

insertion into the bacterial chromosome is confirmed by int negative mutant (Zissler, 

1967). cIII is transcribed from the pL promoter and regulates the lysogenic pathway by 

stabilising cII (Altuvia et al, 1987; Kornitzer et al, 1989), stabilised cII activates cI gene 

expression (Kornitzer et al, 1991).  cI has two promoters pRE for establishing lysogeny 

and pRM for maintaining lysogeny (Dodd et al, 2001). The phage attP integrates at attL 

and attR left and right respectively. To complicate matters if the bacteriophage is to enter 

the lysogenic life cycle it must ensure cI suppression, as cI is also transcribed from pRM, 

hence cro expression is essential to prevent early expression of cI. In these 

circumstances cI is transcribed from the promoter pRE, which is dependent on cII and 

cIII. Thus protein expression of cII and cro are empirical for life cycle decision 

(Michalowski & Little, 2005). Table 1.2 illustrates the promoters expressed during the 

phage replication cycle and the genes their promoters express. Figure 1.6 illustrates 

these genes in a linear map for bacteriophage lambda, this map is linearised from the 

cos sites.  
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Stage Promoter Expressed Genes 

Transcripts made in 

lysogenic state 

pRM 
cI, 𝑟𝑒𝑥𝐴 𝑎𝑛𝑑 𝑟𝑒𝑥𝐵⏞          

𝑙𝑦𝑠𝑜𝑔𝑒𝑛𝑖𝑐 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

 

psieB 
𝑠𝑖𝑒𝐵 𝑎𝑛𝑑 𝑒𝑠𝑐⏞        

𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑓𝑟𝑎𝑚𝑒𝑠ℎ𝑖𝑓𝑡

 

pR bor and lom 

Immediate-early 

transcripts 

pL N gene- a regulatory gene 

pR Cro – a regulatory gene 

Early Transcripts Po Ori- origin of replication/ DNA replication 

pR 
cII, 𝑂 𝑎𝑛𝑑 𝑃⏞    

𝐷𝑁𝐴 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛

,ren + rap, 

 

𝑖𝑛𝑡 𝑎𝑛𝑑 𝑥𝑖𝑠⏞      
  𝑠𝑖𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

, 𝑒𝑥𝑜, 𝑏𝑒𝑡 𝑎𝑛𝑑 𝑔𝑎𝑚⏞            
  ℎ𝑜𝑚𝑜𝑙𝑜𝑔𝑜𝑢𝑠 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

plus 

other non-essential genes. 

Late transcripts pR’ 

𝑅, 𝑅𝑧′, 𝑎𝑛𝑑 𝑅𝑧⏞          
𝑙𝑦𝑠𝑖𝑠

  , 𝑛𝑢1 𝑎𝑛𝑑 𝐴⏞      
𝐷𝑁𝐴 𝑝𝑎𝑐𝑘𝑎𝑔𝑖𝑛𝑔/𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑠𝑒

, 

 

𝐵, 𝐶, 𝐷 𝑎𝑛𝑑 𝐸⏞          
𝑃𝑟𝑜𝑐𝑎𝑝𝑠𝑖𝑑 ℎ𝑒𝑎𝑑𝑠

, 

 

𝑍, 𝑈, 𝑉, 𝐺 𝑎𝑛𝑑 𝑇 ⏞          
𝑡𝑎𝑖𝑙 𝑠ℎ𝑎𝑓𝑡

 ,  𝐻, 𝑀, 𝐿, 𝐾, 𝐼 𝑎𝑛𝑑 𝐽⏞            
𝑡𝑎𝑖𝑙 𝑡𝑖𝑝

 

and 

𝑠𝑡𝑓 𝑎𝑛𝑑 𝑡𝑓𝑎⏞        
𝑠𝑖𝑑𝑒 𝑡𝑎𝑖𝑙 𝑓𝑖𝑏𝑟𝑒𝑠

 

Transcripts made 

in response to 

high cII levels 

paQ 221 

pRE 

Cro, cI and 𝑟𝑒𝑥𝐴 𝑎𝑛𝑑 𝑟𝑒𝑥𝐵⏞          
𝑙𝑦𝑠𝑜𝑔𝑒𝑛𝑖𝑐 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

 

pI 

𝑖𝑛𝑡 𝑎𝑛𝑑 𝑥𝑖𝑠⏞      
𝑠𝑖𝑡𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑟𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

- attP 
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Table 1.2: Lambda phage promoters, their stages of expression and the genes they 

express. This table attempts to group the promoter and the genes they express. 

Once integrated into the bacterial genome the bacteriophage retains the ability to induce 

the lytic life cycle. The phage remains in lysogenic state if the λ repressor dimer binds to 

the OR2 operator region repressing Cro gene expression. In the lysogenic state OR2 and 

OR1 are bound >90% of the time by the repressor and in <10% of the time OR3 OR2 and 

OR1 are all bound by the repressor (Nelson et al, 2012). The repressor molecules act by 

blocking RNA polymerase binding to the operator regions. If repressor is bound to OR2 

pR is not expressed and pRM is, which promotes cI gene expression. This gene 

expression is essential for the transcription of pint and expression of integrase. Once the 

phage genome is fully integrated into the bacterial chromosome it is possible to induce 

the phage to the lytic cycle. Stimulation of cell stress and activation of the RecBCD 

enzyme starts the repair process of dsDNA and results in SOS induction of phage 

through auto proteolytic cleavage of cI through stimulation of LexA (Capaldo & Barbour, 

1975; Dillingham & Kowalczykowski, 2008). Compounds or environments that have been 

reported to stimulate this bacterial response and phage induction include: UV (Barnhart 

et al, 1976; Mattern et al, 1965; Setlow et al, 1973) and antibiotics such as Norfloxacin 

(Matsushiro et al, 1999). Norfloxacin inhibits DNA gyrase and UV promotes dimerization, 

thus both initiate the same bacterial SOS response and subsequent RecA pathway 

activation. RecA activates LexA that is linked to auto proteolytic cleavage of the 

repressor molecule CI and eventually reducing repressor concentrations in the cell which 

allows expression of Cro, the cro protein bind to OR3 and eventually to OR2 and OR1 

preceding lytic growth. 
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Figure 1.6: Linear genetic map of bacteriophage lambda.  Rectangular boxes represent known genes with their names and 

their functional regions are shown above. Red rectangles denote rightward transcription and green leftward. Rectangles that are 

offset represent frameshift expression. The black diamond represents regulatory genes. Promoters and terminators are indicated 

below the genes. The horizontal arrow indicates mRNA’s production: black, lysogenic state; orange, immediate-early; green, early 

transcripts; red, late transcripts and blue mRNA transcripts made in presence of high cII levels. The asterisks represent RNA’s 

with potential regulatory activities. Image and legend taken from (Casjens & Hendrix, 2015) 
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1.6.6 Cell and community restriction of phage infection 

1.6.6.1 Abortive infection 

Bacteriophages and their host are constantly adapting and evolving in a host prey 

relationship, proposed as the red queen hypothesis (Van Valen, 1973). Therefore after 

the phage DNA is injected into the bacteria, the microbe has evolved mechanisms to 

evade or control phage infection as they are environmentally outnumbered by phages 

(Bergh et al, 1989; Chibani-Chennoufi et al, 2004). One method by which bacteria have 

evolved a strategy to abort infection is by stimulating suicide or by cessation of cellular 

metabolism (Dy et al, 2014). An example includes a study where no impairment of phage 

adsorption was seen by a lytic phage yet activity only killed 10 % of the cells indicating 

other phage mechanisms were in play. Genes that play a role in abortive infection were 

identified as AbiE and AbiF (Garvey et al, 1995). The AbiE system was shown to halt 

phage proliferation by causing bacteriostasis (Dy et al, 2014). In phage lambda the 

RexAB model causes loss of membrane potential, negatively impacting on ATP levels 

leading to cell death (Snyder, 1995). In the cheese making industry Lactococcus lactis 

is used during the fermentation process and due to focused research to prevent phage 

infection, 20 Abi systems conveniently named AbiA to AbiZ have been identified (Chopin 

et al, 2005). This is an altruistic approach by the bacteria as this trait inhibits the phage 

replicating and infecting other bacteria. 

1.6.6.2 Toxin and antitoxin mechanisms 

Other strategies that bacteria have evolved to evade bacteriophage infection are 

toxin/antitoxin systems. These gene regions encode toxins that inhibit bacterial growth 

and genes encoding antitoxin neutralise the toxins. This is sometimes referred to as the 

poison-antidote system and was first discovered in a plasmid present in E. coli (Ogura & 

Hiraga, 1983). A review by Magnuson (2007) describes and hypothesises 9 potential 

toxin/antitoxin functions; junk, stabilisation of genomic parasite, selfish alleles, gene 

regulation, growth control, persisters, programmed cell arrest and preservation of the 
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commons, programmed cell death and antiphage (Magnuson, 2007). In terms of 

bacteriophage, stabilisation of the parasite and antiphage functions are most relevant 

here. The bacteriophage may encode toxin/antitoxins to maintain their genomes across 

the host (DeShazer, 2004).  

There are three main types of toxin/antitoxin systems. Type I are complementary by base 

pairing and antitoxin complements the toxin mRNA, which is degraded via RNase III. 

Hok and sok are toxin/antitoxin systems respectively. The Sok antitoxin is the antisense 

RNA of the Hok toxin (Fozo et al, 2008). Sok is unstable and decays rapidly while hok is 

comparatively more stable, thus it was shown that hok is indirectly regulated through 

mok which aids sok gene expression (Thisted & Gerdes, 1992). An example of type II 

toxin/antitoxin system is found in the F plasmid of E. coli. This system typically codes for 

the antitoxin protein first due to the genetic architecture and acts to down regulate the 

toxin’s expression. Type II systems vary in the way they exhibit toxicity, the toxin in this 

example CcdB protein targets DNA gyrase (Bernard & Couturier, 1992). Erwinia carotova 

contains a toxin abortive infection system that can be classed as type III. This method 

helps to prevent infection by phages (Fineran et al, 2009). In this example two genes of 

the abortive infection systems the ToxN and ToxI exhibit toxin - antitoxin systems 

(Fineran et al, 2009). ToxN inhibits bacterial growth and ToxI neutralises this. 

Bacteriophage may trigger toxin/antitoxin systems during infection and 

transcription which in turn would limit phage replication and proliferation, exemplifying 

the potential of this system (Pecota & Wood, 1996). Bacteriophages have been shown 

to overcome these systems. For example T4 phages have shown to overcome the 

activities of Lon proteases in E.coli and would thus evade this system (Skorupski et al, 

1988). 
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1.6.6.3 Clustered regularly interspersed palindromic repeat (CRISPR)/CAS 

Bacteria have evolved other systems that enable immunity to phage infection 

including clustered regularly interspersed palindromic repeat (CRISPR). In 1987 Ishino 

et al. found 29 nucleotide repeats with 32 nucleotide spacer sequences but their 

functions were not known. The CRISPR locus was first characterised by Francisco 

Mojica and Ruud Jansen and termed CRISPR (Jansen et al, 2002). It was not until 2005 

that the spacer sequences were shown to be complementary to bacteriophages (Mojica 

et al, 2005). This system is an example of adaptive bacterial phage immunity; during 

subsequent infections, the small spacer fragments aid recognition of phage or plasmids 

with similar DNA sequences. The CRISPR locus has been found in 84% of archea and 

45% of bacterial species of all analysed sequences, illustrating this system is widely 

found across the bacterial kingdom to prevent phage infection (CRISPRdb, 2016). 

CRISPR systems have been identified in Burkholderia and Pseudomonas species. The 

online CRISPR database shows that one CRISPR structure was found in the 

Pseudomonas aeruginosa LESB58 strain and 3 in Pseudomonas aeruginosa M18 

(CRISPRdb, 2016). However, no observable CRISPR structures are seen in 

Pseudomonas aeruginosa PAO1 (CRISPRdb, 2016). It can be inferred that this evasion 

technique evolved due to the “arms race” allowing one strain to survive and be the most 

successful in the lung of CF patients (LESB58 and M18) and PAO1 which do not 

incorporate a CRISPR system. 

The first component of the CRISPR system is the locus where the genetic 

memory of previous pathogens is stored. The second component involves CRISPR-

associated protein or CAS and is located close to CRISPR locus. CAS is a nuclease 

protein which cleaves DNA. Three main stages are described for the CRISPR/CAS 

system (Terns & Terns, 2011). The first is the adaptation stage where CAS proteins take 

a section of the parasitic DNA and incorporate it to as a novel spacer (Cady et al, 2012). 

The second stage is termed the expression stage, where the CRISPR locus is copied as 

RNA (Cady et al, 2012). Ribonucleases cleave this RNA transcript into small CRISPR-
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RNAs (crRNA) molecule for each spacer sequence (Brouns et al, 2008). crRNA then 

forms a complex with the CAS protein and functions very similarly to an antibody 

molecule as part of the immune system (Brouns et al, 2008; Hale et al, 2009). The final 

phase is termed interference stage where the crRNA-CAS complex recognises and 

cleaves the genome of the parasite (Brouns et al, 2008; Cady et al, 2012). 

The discovery of CRISPR systems by bacteria inevitably led to the discovery of anti-

CRISPR systems in bacteriophage (Mojica et al, 2005). Bacteriophages have been able 

to counteract the CRISPR bacterial defence systems via nucleotide sequence deletions 

or mutations within the regions targeted by CRISPR locus (Deveau et al, 2008). A 

knockout gene study showed that phages infecting Pseudomonas aeruginosa with 

CRISPR systems were only able to with the presence of anti CRISPR genes (Bondy-

Denomy et al, 2013) which may be an example of bacteria and phage co-evolution. 

1.6.6.4 Restriction Modification (RM) systems 

RM systems as the name suggests restrict and modify foreign DNA entering the 

cell. RM systems are almost globally present in bacteria (Naderer et al, 2002). Chlamydia 

and Rickettsia both obligate intracellular parasites are the only known examples that do 

not have RM systems (Naderer et al, 2002; Stephens et al, 1998). RM systems provide 

a degree of protection to the host cell against phage infection, an example of this has 

been shown in lambda phage and E. coli host (Arber, 1979). This system relies upon a 

restriction endonuclease that targets the incoming dsDNA (Naderer et al, 2002). S-

adenosyl-l-methionine is a methyltransferase endonuclease which modifies the bacterial 

DNA protecting it against digestion (Naderer et al, 2002).  

Bacteriophages have evolved strategies to evade RM systems, the T7 phage 

encodes for an Orc protein which is complementary to the 24 bp active sites of the 

restriction endonuclease, thus preventing bacteriophage DNA degradation 

(Bandyopadhyay et al, 1985). Bacteriophages of Bacillus subtilis change their thymine 

bases with 5- hydroxyme-thyluracil this evades site specific recognition by the RMase 
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(Kruger & Bickle, 1983), this is also found in T4 infecting E. coli (Dam methyltransferase) 

(Kossykh et al, 1995). 

1.6.7 Bacteriophages conversion 

Phage integration (prophage) into the bacterial genome and subversion of the 

host cell metabolism can alter cellular function. Lysogeny has been shown to have an 

impact on microbial evolution as temperate phage infection can provide a selective 

advantage for the bacterial host (Sun et al, 2013). The phage can carry toxin genes like 

stx gene in E. coli (Plunkett et al, 1999), fitness factor genes like speA and speC genes 

that increase disease severity using superantigens (Proft et al, 1999) and phage 

encoded traits that can change antigen to evade host immune evidently aiding 

colonisation (Nnalue et al, 1990). In some instances, multiple temperate phages can 

enter and integrate into the host, an example of this is the Liverpool Epidemic Strain 

(LES) Pseudomonas aeruginosa.  The LESB58 strain was discovered in 1996 and was 

found to be resistant to β lactam antibiotics (Cheng et al, 1996). LESB58 was also shown 

to infect patients alongside other species of P. aeruginosa (McCallum et al, 2002) 

possibly due to the fact it was more virulent.  

When the genome of LESB58 was sequenced it identified five inducible prophage 

regions (Winstanley et al, 2009). These insertions have increased the genome size of 

the bacterial host and in this instance its pathogenicity. The addition of extra DNA can 

be detrimental to the bacterial cell due to a selective cost, although importantly the 

carriage of other genetic traits encoded by the temperate bacteriophages can aid the 

bacterial host. Temperate phage encoded traits can help the host adapt to its 

environment and rapidly evolve, with potential to develop resistance to therapy. An 

example of this is lambdoid like phages carriage of single stranded recombinases e.g. 

λRed. This is used commercially as it increases single-stranded recombination 1000 fold 

(Sharan et al, 2009).  
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1.6.7.1 Bacteriophage encoding virulence for bacteria as a lysogen 

Phages are essentially transposable genetic elements and thus they horizontally 

disseminate their DNA between their specific host ranges. With this they are able to carry 

accessory or moron genes that offer a selective advantage for the bacterial host. 

Temperate phages are able to disseminate antibiotic resistant gene cassettes to make 

them more resilient to certain antimicrobials although this is not as frequent as previously 

thought (Enault et al, 2016). Examples of phage-mediated cellular subversion have been 

well characterised in Escherichia coli (Plunkett et al, 1999). Genes such as bor of phage 

λ when expressed has been shown to aid the host bacteria by increasing cellular serum 

resistance (Barondess & Beckwith, 1995). Lom also encoded by lambda phages aids 

adherence of E.coli to human buccal cells (Pacheco et al, 1997). Potentially this phage-

mediated bacterial addition and positive selection also occurs in people with CF and this 

has been proposed to be linked to temperate bacteriophages (Rolain et al, 2009). The 

lungs of CF patients provide an ideal niche for emergence of antibiotic resistant strains 

due to the polymicrobial nature of the lungs, and the increased potential for phage-

mediated horizontal gene transfer (Rolain et al, 2009). P. aeruginosa is the most 

common bacteria found in the lungs of CF patients followed closely by H. Influenzae 

(Rogers et al, 2004).  Investigating the biology of wild-type phages from clinical isolates, 

by characterising their biology and genomes, will aid how to model their impact on a 

bacterial community.  

1.7 Current treatments in CF and BR 

CF has no cure currently and treatments at present aim to manage or ease 

symptoms, using chemical or physiotherapeutic methods. For CF and BR both the 

management of microbial lung infection and the removal of mucus is essential (Ramsey, 

1996). Clearing intestinal blockages to aid and provide nutrient absorption is also a 

necessary management method. CF patients can also suffer from pancreatic blockages, 

making them insulin dependent; furthermore mucus blockages in the hepatocytes can 

cause impairments in liver function. CF and BR management methods include thinning 
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of the mucus to aid its removal thus, mucolytics such as Pulmozyme® and acetylcysteine 

are sometimes given (Cohen-Cymberknoh et al, 2011). Mucolytics can improve 

expectoration and the quality of sputum as was seen in a study looking at the role of 

bromhexine in BR patients (Olivieri et al, 1991). COPD patients would most likely be 

given flu vaccines to prevent flu related exacerbation. Hypertonic saline can also be 

administered to draw more water in the lungs, which makes it easier to cough out the 

mucus (Cohen-Cymberknoh et al, 2011). In severe cases of BR the lower bronchi can 

be colonised where common antibiotics fail to clear the infection. In such cases the 

patients may be prescribed with macrolides, azalide and quinolone based antibiotics that 

have increased penetration abilities (ten Hacken et al, 2007). CF and BR patients will 

most often be prescribed bronchodilators such as salbutamol, albuterol and salmeterol 

(Sethi & Cote, 2011). These β2-adrenergic receptor agonists are used for bronchospasm 

as they help dilate the airways of the lungs (Sestini et al, 2002).  

In CF, oral pancreatic enzymes and CFTR potentiators like ivacaftor or kalydeco 

are prescribed to specific CF patients that have the G551D mutation (Davis et al, 2012). 

To manage lung infections antibiotics are given often by the aid of a nebuliser, some of 

the most common are tobramycin (given against Pseudomonas aeruginosa), 

Azithromycin and Ciprofloxacin (Cohen-Cymberknoh et al, 2011). Often a cocktail of 

antibiotics is used for a prolonged period of time to clear bacterial infection. Antibiotics 

are used to reduce bacterial burden, both as a therapeutic preventative for exacerbation 

and for treatment during acute exacerbations. The antibiotics used to clear the infection 

can be determined by the predominant bacterial infection. Sub-inhibitory concentrations 

of fluoroquionolones this drug may drive phage/bacterial evolution in the host as cell 

death may be linked to phage induction and release, driving horizontal gene transfer.  

In order to treat severe pulmonary hypotension in BR, Adrenaline (Adr) and 

Noradrenaline (NAdr) are given to maintain cardiac output. Preoperative nebulized 

Salbutamol (SAL) is given to prevent bronchospasms (Yim et al, 2002). Both Adr and 

NAdr are catecholamine, compared to Norfloxacin (NFLX) which initiates SOS response 
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via the RecABCD bacterial stress response pathway. NFLX is a synthetic 

fluoroquinolone and is used in this research as a primary temperate phage inducer 

(Matsushiro et al, 1999). Conversely Adr and NAdr target the QseC cascade which 

mediates the SOS response and have been shown to induce the expression of phage 

genes in E. coli (Hughes et al, 2009). NFLX has been shown to induce phage in their 

host and thus has been used to induce out the phage in CF and BR Pa backgrounds in 

vitro (Matsushiro et al, 1999; McDonald et al, 2010).  

1.8 Phages as an antimicrobial therapy 

Twort and d’Herelle independently discovered phages in the early 1900’s (see 

chapter 1.6 for further detail) and in 1928 the antibiotic penicillin was discovered by 

Fleming (Fleming, 2001). There were multiple phage based therapeutics available to 

treat infections around the time penicillin was discovered (Drulis-Kawa et al, 2015). 

However, phages were not well understood and for this reason phage treatments failed 

to have repeatable results giving them a poor impression amongst physicians (Housby 

& Mann, 2009). In 1940 Chain and Florey developed penicillin to be used as a drug agent 

and during WWII the drug was in mass production by the drug industries (Chain et al, 

2005). While the western countries abandoned phages as treatment options, eastern 

European countries continued in its use and research. Now with the emergence of drug 

resistant strains research in phage-based therapies is on the rise again (Brussow, 2005; 

Drulis-Kawa et al, 2014; Kutter et al, 2010).   

Lytic bacteriophages are phages that only replicate in a vegetative way, they do 

not contain the genetic machinery to integrate in the bacterial chromosome. They infect, 

replicate and lyse the cell, for this reason they are good choices as a highly specific 

antimicrobial. Importantly, these phages have evolved to lyse cells and thus carry 

proteins of interest that may aid therapy, which could be useful as individual therapy 

options. Lytic bacteriophages have enzymes called depolymerases, responsible for the 

degradation of the bacterial envelope during infection, and lysis cassette genes 
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associated with holin, spanins and endolysins (Drulis-Kawa et al, 2015). E.coli K1, K95 

and Pseudomonas aeruginosa bacteriophage depolymerases specifically target their 

host as the phage adsorbs to its receptors (Castillo & Bartell, 1976; Nimmich, 1994; 

Pelkonen et al, 1992). Phages like P22 can hydrolyse their host outer lipopolysaccharide 

membrane with just tail spike interactions (Andres et al, 2010). 

Topical use of lytic phage cocktails in treating diabetic wounds have widely been 

used and results have been promising for patients, one study looked at animal models 

where a diabetic foot infection with MRSA being treated with lytic bacteriophage and 

linezolid yielded as an effective treatment (Chhibber et al, 2013). A problem arises when 

trying to administer the phage internally as gastric enzymes through oral route would 

degrade as they are structurally made up of proteins (Watanabe et al, 2007). It has been 

shown that in mouse models with Burkholderia infections, the administering of phage to 

the lung via intranasal and inhalation has promising results (Carmody et al, 2010).  The 

majority of phage therapy involves looking at endolysins, as they are the proteins 

responsible for the bacterial membrane degradation during cell lysis. However, the 

majority of these involve looking at lysins for extracellular use in lysing the bacterial cell 

as opposed to their more common intracellular mode of action.  

To complicate infectivity, Gram negative bacteria have two membranes, although 

the inner wall is thinner than that of a Gram positive bacteria, the addition of an outer 

wall substantially reduces the efficiency of the phage lysin proteins (Lukacik et al, 2012). 

It is for this reason that infection by phages in a Gram negative population target porins 

or channels that would aid delivery of the phage gDNA. Pseudomonas aeruginosa, 

Burkholderia cepacia complex and Haemophilus influenzae are all Gram negative 

bacteria. Not surprising then the majority of phage encoded lysins that are being 

developed are designed for Gram positive bacteria. Endolysins can be used as 

antimicrobials and also used clinically as a supporting treatment in areas where current 

phage therapy is growing (Nelson et al, 2012). Rz and Rz1 are lysis cassettes that are 

encoded by phage to aid cell lysis (Young et al, 2000). 
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1.9 DNA sequencing technologies and genome assembly 

In the last decade with the advancement of DNA sequencing technologies, 

sequencing is more cost effective and efficient, with an exponential increase in genome 

sequences being published (Goodwin et al, 2016; Morozova & Marra, 2008; Zhang et al, 

2011). A study compared three current sequencing technologies, Ion Torrent’s PGM, 

Pacific Bioscience’ RS and Illumina MiSeq against what they called the market leader, 

Illumina HiSeq, and found all the sequencers generated usable reads (Quail et al, 2012). 

However, the accuracy, usability and cost of the platforms varied. The accuracy of the 

Illumina platforms was shown to be the best at mostly > Q30 accuracy. This means that 

there is a probability that 1 in 1000 bases is called incorrectly giving 99.9% accuracy on 

a base call. PacBio RS scored the worst with less than < Q10 (< 90%) (Quail et al, 2012). 

The required amount of DNA for an Illumina platform is as little as 50ng compared to 1 

µg for PacBio RS (Quail et al, 2012). In 1995 Sanger introduced a capillary sequencing 

machine and was responsible for completing the human genome project in 2001(Collins 

et al, 2003). The Sanger 3730xl has very high read quality (99.999%) and long read 

lengths (400 – 900 bp). The major drawbacks Sanger sequencing presents today is high 

cost and low throughput (Liu et al, 2012). The Illumina MiSeq generates data that is 

accurate for GC-rich genomes (Scott & Ely, 2015). The Illumina MiSeq has a low run 

time when compared to the other sequencers, it generates a reasonable sequence yield 

(~ 15 Gb) and using its short reads allows to build full-length de novo sequences making 

it an ideal choice for multiple bacteriophage sequencing.  

The Illumina MiSeq uses sequence by synthesis technology. The three main 

steps involved are clustering, sequencing/imaging and data analysis. During the 

clustering process each DNA fragment is isothermally (constant temperature) amplified. 

The flow cell where all the sequencing takes place is filled with two different 

oligonucleotides. The DNA fragment has an adapter added which complements the 

oligonucleotides. Polymerisation of the DNA fragment creates a complementary strand. 

This double strand fragment is denatured and washed away. The DNA strands then 
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undergo bridge amplification this is where the DNA strand bends over to the second 

oligonucleotide mentioned earlier and polymerisation of the strand generates a 

complementary strand. Then double stranded DNA bridge is then denatured, leaving a 

forward and reverse strand. This process continues until amplification of clusters for all 

the DNA fragments are generated. Post bridge amplification all reverse strands are 

cleaved and washed off, leaving forward strands. At this point the 3’ end is blocked, 

preventing any unwanted priming. 

The next step involves sequencing; here a sequence primer is attached to the DNA 

templates. Next nucleotides which are fluorescently tagged compete to be incorporated. 

The fluorescent tags are excited by a light source and the results registered. The read 

products are then washed away. Next the indexed read one primers are read associated 

with the strand and the read product washed. The same process occurs for the index 

two primers. After polymerisation of the second oligonucleotides form a double strand 

bridge which is then linearised and the 3’ end blocked. The forward strand is cleaved 

and washed off. Indexed read two primers are introduced and read until read length is 

achieved and then washed away (Figure 1.7).  

The final part involves data analysis; this is where the sequences are pooled and 

separated based on their indexes that were introduced during sample preparation. 

Reads that have similar base calls are locally clustered. The forward and reverse reads 

are paired thus giving paired end contigs in the form of read 1 and read 2 (Illumina, 2016).  
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Figure 1.7 Illumina sequencing. This diagram illustrates the workflow 

of the illumnia next generation sequencer (Slideplayer.inc, 2016). 
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1.10 Genome annotation 

Genome annotation and curating is important before comparisons between genomes 

can be made. In order to annotate genomes one must predict the open reading frames 

(ORF’s) or coding sequences (CDS’s), these ORFs can code for functional proteins 

(Kropinski et al, 2009). Assigning potential functions to genes is crucial in understanding 

the phage, and highlights any genes of particular importance. There are many methods 

to predict ORF’s and all automated methods have their advantages and disadvantages. 

Arguably the most readily used ORF predictors include Glimmer (Delcher et al, 2007), 

GenemarkHMM (Lukashin & Borodovsky, 1998) and Prodigal (Hyatt et al, 2010). These 

tools look at all six ORFs, HMM, start and stop codons and Shine-Dalgarno sequence to 

predict the ORFs. The Shine-Dalgarno consensus sequence is AGGAGG and is found 

8 bases upstream of the start codon AUG. The sequence is a ribosomal binding site for 

mRNA and thus is a powerful predictor for a possible gene. This is because a ribosome 

protein would attach to the mRNA at the ribosomal binding site and begin translation. 

Regardless of all these parameters, the fact remains that the ORFs predicted are still 

putative genes. Glimmer and GenemarkHMM do a good job at predicting ORFs. 

However, Glimmer and GenemarkHMM still have false positives and incorrect start 

codon identified for the ORFs. Glimmer is better at calling long ORFs and predicting the 

start codon when compared to GenemarkHMM.  

Prokka is a software package developed by the Victorian Bioinformatics Consortium the 

same developers of VelvetOptimiser. Prokka v1.11 utilises three main tools to rapidly 

annotate; Aragorn, Infernal and Prodigal (Seemann, 2014). Prodigal as mentioned 

before looks for ORFs, Aragorn searches for tRNAs and infernal ("INFERence of RNA 

ALignment") searches DNA sequence for RNA structure and sequence similarity. 

Infernal looks at conserved secondary structure rather than the DNA sequence 

(Nawrocki & Eddy, 2013). Using Prokka as a starting point and for rapid annotation is an 

ideal choice. Pairing this with manual curation on Artemis to search the ORFs against 

online databases, this study aims to annotate its temperate phages in this method. 
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1.11 Aims of this project 

This research aims to characterise the impact of temperate phages on their hosts 

between similar pathophysiological diseases of the lung that are described similarly by 

bacterial community analysis. The aim is to characterise phages as markers of evolution 

by looking at their genetic subversion of their bacterial hosts to begin to understand at a 

phenotypic and genetic level their evolution alongside their bacterial host. This study 

aimed to look at Pseudomonas and Burkholderia isolates and characterise the temperate 

phages from bacterial species associated with these chronic lung conditions with view 

that data may aid modelling of phage infection, bacterial colonisation and evolution of 

the bacteria in these microenvironments. As well as their impact on the pathogenicity of 

the host that will attenuate clinical intervention. This study aims to genomically 

characterise the induced temperate phages and annotate their genomes.  
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2. General Materials and Methods 

2.1 Materials and growth media constituents  

Sterilisation 

All the reagents and glassware used were autoclaved at 121 °C for 20 minutes’ cycle at 

a pressure of 15 psi.  

Media 

Media Ingredients 

Bottom LB agar plates (BA); 12.5g (2.5% w/v) of LB broth (Sigma 

Aldrich, Gillingham, UK) and 7.5g 

(1.5% w/v) (Lab M, Heywood, UK) of 

phage agar in 500ml of distilled water. 

Blood agar 20g (4% w/v) of Columbia agar (Sigma 

Aldrich, Gillingham, UK) in 500mL of 

distilled water and autoclave, allow to 

cool in 50-55°C water bath, add 5% 

sterile defibrinated blood (25mL) (TCS 

Biosciences, Buckingham, UK), 

1M CaCl2 147.02g dissolved in 800mL , make up 

to 1L 

Soft (top) agar (SA) 5g (2.5% w/v) of LB broth and 0.8g 

(0.4% w/v) of phage agar, 0.01M 

calcium chloride before having 200ml 

of distilled water added. 



44 
 

Norfloxacin (NFLX) (Sigma Aldrich, 

Gillingham, UK) 

1mg.ml stocks, in water, add a few 

drops of 1 M NaOH to alter pH so drug 

dissolves into solution 

Phage buffer/Growth media LB Broth, 

plus 0.01 M CaCl2 

12.5 g (2.5% w/v) of LB broth + 5mL of 

1M CaCl2 stock in 495mL of distilled 

water 

Table 2.1 List of Media and their constituents 

 

 

2.1.1 Pseudomonas aeruginosa bacterial growth media  

All P. aeruginosa (Pa) strains were grown at 37 ο C unless stated otherwise either in 

liquid or on solid Luria Bertani media (LB) (Sigma Aldrich, Gillingham, UK) + 0.1 M CaCl2 

(Sigma Aldrich, Gillingham, UK) and high clarity agar (Lab M, Heywood, UK) used for 

soft agar overlay (0.4%) or bottom agar (1.5%).  

 

 

2.1.2 Burkholderia cepacia complex bacterial growth media  

Burkholderia cepacia complex (Bcc) strains are slow growing, even more so from freezer 

stocks, therefore Bcc strains were grown on 5 % blood for first passage. BCC will grow 

in 30 °C for 2 days when raised from – 80 °C.  For Quality control 2 blood plates with no 

inoculum were cultured alongside plates to test for contamination.  
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2.1.3 Storage and maintenance of bacterial cells 

All containment level 2 strains (Pa and Bcc) were stored in Glycerol Skimmed Milk (GSM) 

at -80 ο C. GSM was prepared using Glycerol 20mL (ReAgents, Runcorn, UK) 180mL 

dH2O (pH 5.6) 6g TSB (Lab M, Heywood, UK) 4g SMP (Tesco, Newcastle upon Tyne, 

UK) 1g D-Glucose (Fisher Scientific, Loughborough, UK) 

 

2.2. Bacterial Strains  

 

All bacterial strains were obtained from the Freeman Hospital at Newcastle upon Tyne, 

NHS trust. The patients’ were selected, their sample taken, typed and stored by 

members of the trust. The patient numbers for Cystic Fibrosis Pseudomonas aeruginosa 

(Pa) and BR Pa are described in Table 2.2.1 and Table 2.2.2. The sample number for 

Cystic Fibrosis Burkholdria cepacia complex (Bcc) strains are described in Table 2.2.3. 

Ethical approval was granted (REC reference: 12/NE/0248).  
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CF store ref VNTR Profiles Strain type Adult-Paed Date of isolation Age at time of isolation Mucoid 

5 9,2,3,-,3,2,5,3,9 Manchester epidemic strain A 09/11/10 28 y N 

81 8+,2,3,-,3,2,5,3,9 Manchester epidemic strain A 08/12/10 49y Y 

136 9,2,3,-,3,2,5,3,8 Manchester epidemic strain A 02/03/11 24y N 

142 9,2,3,-,3,2,5,3,9 Manchester epidemic strain A 02/03/11 30y N 

6 11,6,5,3,4,3,5,2,7 LES A 09/11/10 27y N 

34 11,7,5,4,4,-,5,2,10 LES A 18/11/10 38y N 

67 11,7,5,4,4,3,5,2,7 LES A 29/11/10 24y N 

*28 11,-,5,4,4,3,5,2,7 LES A 18/11/10 28y N 

16 10,3,5,4,2,2,7,2,9 Leeds  epidemic strain A 10/11/10 25y Y 

145 10,3,5,4,2,2,7,2,9 Leeds  epidemic strain A 04/03/11 44y N 

177 by species specific pcr only Midlands-1 epidemic strain A 26/04/11 38y N 

3 11,2,5,3,-,4,12,7,- unique A 08/11/10 32y N 

30 11,2,5,3,3,4,12,7,13 same as 30 A 17/11/10 23y N 

24 11,3,1,-,2,2,8,5,11 same as 183 A 15/11/10 39y N 

183 11,3,1,-,2,2,8,5,11 same as 24 A 10/05/11 39y Y 

42 8,2,IS,3,4,IS,9,2,13 same as121 A 22/11/10 27y N 

121 8,2,-,3,4,IS,9,2,13 same as 42 A 25/02/11 19y N 

47 12,3,5,4,2,1,3,3,9 same as 70 P 24/11/10 16y N 

70 12,3,5,4,2,1,3,3,9 same as 47 P 30/11/10 17y Y 
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23 8,8,4+,2,1,1,3,2,15 same as 63 A 15/11/10 18y N 

63 8+,8,4+,2,1,1,3,1,- same as 23 A 27/11/10 29y N 

65 11,6,2,2,1,3,8,3,12 Clone C A 27/11/10 27y N 

78 11,6,2,2 1,3,7,3,9 Clone C A 06/12/10 23y Y 

140 8,3,-,5,2,3,5,2,13 same as 208 & 214 & BR 53 A 02/03/11 36y N 

208 8,3,-5,2,3,5,2,11 same as 140 & 214 & BR 53 P 08/07/11 15y Y 

214 8,3,4,5,2,3,5,2,8 same as 140 & 208 & BR 53 P 23/09/11 9y n 

165 11,7,2,2,1,3,7,2,- same as 187 P 24/03/11 1y 8 months Y 

187 11,7,2,2,1,3,7,2,- same as 165 P 20/05/11 2y Y 

118 11,5,4,4,3,1,3,1,11 Non defined cluster 2 A 25/02/11 31y N 

44 11,4,5,2,2,_,_,2,- cluster E A 24/11/10 41y N 

52 11,2,3,4,2,2,7,3,10 unique A 26/11/10 25y Y 

53 11,4,5,2,2,3,-,2,8 unique P 25/11/10 4y Y 

54 11,4,5,2,2,-,-,2,14 unique A 25/11/10 17y Y 

55 11,2,5,3,3,5,9,7,- unique A 25/11/10 25y N 

57 12,2+,5,5,2,3,8,2,12 unique A 25/11/10 28y N 

60 12,8,4,5,3,3,8,2,10 unique A 26/11/10 28y N 

69  -,8,1,4,-,1,-,4,16 unique P 30/11/10 10y N 

72 8,2,9,3,4,2,7,2,11 unique A 30/11/10 27y N 

74 12,2+,5,5,2,3,6,2,10 unique A 01/12/10 33y Y 
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77 11,4,5,2,3,2,-,4,- same as bronch 206 A 06/12/10 33y N 

79 8,2,5,3,4,2,7,2,10 unique A 06/12/10 33y N 

124 11,4,IS,54,5,1,3,2,9 unique P 22/02/11 10y N 

125 11,3,3,4,2,1,12,2,10 unique A 16/02/11 59y N 

126 12,6,4,-,4,4,3,6,13 matches another local CF A 16/02/11 29y N 

127 10,6,4,5,3,2,7,3,11 unique A 18/02/11 29y N 

211 10,3,5,5,4,1,3,7,8 matches another local CF A 23/09/11 29y Y 

213 12,2,5,3,3,3,8,5,- matches another non CF P 16/09/11 14y Y 

 

Table 2.2.1: Pa samples number and associated clinical data used in this study. Based on if the samples were classed as adult or paediatric were 

stratified them into these groups for the purpose of the study. 
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Bronchiectasis 

store ref VNTR Profiles Strain type 

Adult-

Paed 

Bronchiectasis > 10 

yrs 

Age at time of 

isolation Mucoid 

52 10,-,5,5,4,1,3,7,7 unique A Yes 56y Mucoid 

53 8,3,4,5,2,3,5,2,8 

same as CF 140, 208 

& 214 A Yes 88Y Mucoid 

58 

11,6,5,3,3,1,8,3,1

1 unique A Yes 44Y Mucoid 

59 

11,6,2,4,3,1,7,3,1

2 unique A No 83y Non mucoid 

123 

11,8,-,4,3,1,15,3,1

0 same as 143 A ? 74y Non mucoid 

133 

11,4,IS,6,4,7,4,3,1

4 unique A ? 82y Mucoid 

136 

11,4,4,5,4,2,6,7,1

5 unique A Yes 64y Mucoid 

141 10,2,-,4,6,2,9,4,12 unique A Yes 71y Mucoid 

143 

11,8,IS,4,3,1,15,3,

10 same as 123 A Yes 68y ? 

144 

11,5,9,5,2,5,9,4,1

4 unique A Yes 61y Mucoid 

146 12,3,1,2,4,3,5,2,8 unique A Yes 72y Mucoid 

150 12,6,1,3,4,4,6,3,8 unique A ? 56y Mucoid 

152 

12,2+,5,5,2,3,7,1,

12 unique A No 85y Mucoid 
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153 11,-,-,4,3,1,8,1,8 unique A Y 62y Mucoid 

161 

12,8,2,2,4,3,5,1,1

1 unique A Y 65y Mucoid 

177 

10,2,1,4,4,3,3,2,1

1 unique A Yes 61y Non mucoid 

178 11,6,2,2,1,3,8,3,8 Clone C A Yes 56y Mucoid 

181 11,3,5,2,2,6,7,3,8 unique A Yes 64y Non mucoid 

193 12,5,-,4,2,2,7,3,12 unique A ? 87y Mucoid 

195 

11,4,5,2,2,1,8,2,1

0 unique A Yes 75y Non mucoid 

197 

12,2,5,5,3,3,8,2,1

0 unique A Yes 74y Non mucoid 

199 11,3,5,5,3,-,8,4,12 unique A Yes 27y Non mucoid 

200 

11,4,3,5,4,1,3,2,1

3 

same as another non 

CF A Yes 78y Non mucoid 

201 

11,2,5,2,4,1,8,2,1

0 unique A Yes 78y Mucoid 

204 8,3,4,5,2,3,5,2,7 Cluster A A Yes 70y Non mucoid 

205 11,6,9,-,3,3,7,2,13 

same as another 

local CF A Yes 61y Non mucoid 

206 

11,4,5,2,3,2,8,4,1

1 same as CF 77 A ? 59y Mucoid 



51 
 

208 

11,3,7,5,4,2,4,2,1

1 unique A Yes 61y Non mucoid 

213 

11,3,5,4,3,1,13,2,

12 unique A Yes 64y Non mucoid 

222 

12,5,1,5,6,2,7,3,1

1 

same as another 

local CF A Yes 33y Non mucoid 

227 

11,4,7,6,4,4,3,2,1

1 unique A ? 81y Non mucoid 

228 11,2,5,4,4,4,5,3,7 unique A Y 60y Non mucoid 

233 not typed 
 

A No 87y Mucoid 

243 

11,6,2,2,1,3,6,2,1

2 Clone C A Yes 60y Non mucoid 

244 

11,6,2,2,1,3,7,2,1

4 Clone C A Yes 76y Non mucoid 

285 not typed 
 

A Yes 68y Mucoid 

293 not typed 
 

A No 72y Non mucoid 

299 not typed 
 

A No 80y Non mucoid 

298 not typed 
 

A No 87y Non mucoid 

313 not typed 
 

A Y 38y Mucoid 

319 not typed 
 

A No 60y Non mucoid 

320 not typed 
 

A No 63y Non mucoid 

322 not typed 
 

A Y 74y Non mucoid 
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326 not typed 
 

A Y 73y Mucoid 

327 not typed 
 

A No  81y Mucoid 

331 not typed 
 

A No 78y Mucoid 

332 No typed  A ? ? ? 

 

Table 2.2.2: Pa Bronchiectasis (BR) samples number and associated clinical data used in this study. Based on if the samples were classed as 

over 10 years since clinical diagnosis (> 10 years BR) or under 10 years since clinical diagnosis (< 10 years BR) were stratified them into these groups 

for the purpose of the study. 
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Sample 
number 

Burkholderia species Patient sample retrieved 
location and during 

BCC-1 Burkholderia cenocepacia genomovar 
IIIB 

Lung transplant FH 

BCC-2 Burkholderia cepacia group 6 Lung transplant FH 

BCC-3 Burkholderia multivorans Lung transplant FH 

BCC-4 Burkholderia multivorans Lung transplant FH 

BCC-5 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 

BCC-6 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 

BCC-7 Burkholderia multivorans Lung transplant FH 

BCC-8 Burkholderia vietnamiensis Lung transplant FH 

BCC-9 Burkholderia multivorans Lung transplant FH 

BCC-10 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 

BCC-11 Burkholderia multivorans Lung transplant FH 

BCC-12 Burkholderia multivorans Lung transplant FH 

BCC-13 Burkholderia multivorans Lung transplant FH 

BCC-14 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 

BCC-15 Burkholderia vietnamiensis Lung transplant FH 

BCC-16 Burkholderia vietnamiensis Lung transplant FH 

BCC-17 Burkholderia multivorans Lung transplant FH 

BCC-18 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 

BCC-19 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 
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BCC-20 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 

BCC-21 Burkholderia cenocepacia genomovar 
IIIA 

Lung transplant FH 

BCC-22 Burkholderia multivorans Lung transplant FH 

BCC-23 Burkholderia multivorans Lung transplant FH 

24 Burkholderia multivorans Lung transplant Queensland 

25 Burkholderia multivorans Lung transplant Queensland 

26 Burkholderia multivorans RVI CF 

27 Burkholderia multivorans RVI CF 

28 Burkholderia multivorans Lung transplant FH 

29 Burkholderia multivorans RVI CF 

30 Burkholderia cenocepacia IIIA RVI CF 

31 Burkholderia multivorans Lung transplant FH 

32 Burkholderia multivorans RVI CF 

33 Burkholderia multivorans Lung transplant FH 

34 Burkholderia multivorans CF Southern Ireland 

35 Burkholderia cenocepacia genomovar 
IIIB 

RVI CF 

36 Burkholderia multivorans-1 Lung transplant Queensland 

37 Burkholderia multivorans-2 Lung transplant Queensland 

38 Burkholderia multivorans Lung transplant FH 

39 Burkholderia cenocepacia genomovar 
IIIA 

RVI CF 

40 Burkholderia stabilis CF Southern Ireland 

41 Burkholderia multivorans Lung transplant FH 

42 Burkholderia seminalis CF Glasgow 
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43 Burkholderia stabilis Waiting for lung transplant 
FH 

44 Burkholderia contaminans CF Southern Ireland 

45 Burkholderia cenocepacia genomovar 
IIIA 

RVI CF 

46 Burkholderia cenocepacia genomovar 
IIIA 

RVI CF 

47 Burkholderia cenocepacia genomovar 
IIIA 

RVI CF 

 

Table 2.2.3: Bcc samples number and Bcc species used in this study. Acronym; RVI = Royal Victoria infirmary at Newcastle, FH = Freeman 

hospital at Newcastle, CF = Cystic Fibrosis. 
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2.3 Temperate Phage induction of the lytic life cycle 

 

Temperate bacteriophages were chemically induced using norfloxacin from bacterial 

isolates (Matsushiro et al., 1999). Overnight cultures (37 ° C, shaking at 200 RPM) were 

sub cultured 2 % (v/v) in 10 mL + 0.1 M CaCl2 Luria Bertani (LB) Broth (Sigma Aldrich, 

Gillingham, UK). At mid exponential growth phase (OD 600nm) the bacteria were stressed 

with norfloxacin (1 µg mL-1) (Sigma Aldrich) for 1 hour (37 ° C, 200 RPM). This culture 

was diluted in LB (1:10) to reduce the effects of norfloxacin and to begin the recovery for 

2 hours at 37 ° C. The lysates were filtered through a 0.22 µM filter (Scientific Laboratory 

Supplies, Hessle, UK) and stored at 4 ° C for < 1 week. A negative control was always 

used to validate results by negating the addition of the bacteria. 

 

2.4 Bacteriophage infection and bacterial sensitivity  

In order to assess the lysates (methods 2.3.1) contained viable temperate phage, they 

were spot assayed on a lawn of a suitable indicator strain. This was done by growing the 

Pa sample to mid-exponential growth phase 0.5-0.6 OD600 and 100 µL of this culture 

added to 5 mL 0.4 % (w/v) soft agar (high clarity agar (Lab M Limited, Heywood, UK) 

and overlaid onto LB agar plates (1.5 % w/v). 10 μl of each phage lysate was spotted 

onto a lawn of bacterial host and allowed to air dry. The plates were incubated at 37 ° C 

for 18 hours and the plaque morphologies analysed. If a zone of clearing was seen 

depicted at lysis, the lysates were diluted to define individual plaques to negate clearing 

due to pyocins. 
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2.5. Cross infection; Statistical analysis and PLS-DA modelling 

 

2.5.1 Disease aetiologies groupings for Pseudomonas aeruginosa  

Based on table 2.2.1 and 2.2.2 the Pa isolates and their associated phages whenever 

possible were grouped in the following groups. Adult CF (Adult CF, age >16 years, n = 

37), Paediatric CF (Paed CF, age < 16 years, n = 10), Adult BR with < 10 years since 

clinical diagnosis (n = 17; abbreviated to < 10 years BR) and Adult BR with > 10 years 

since clinical diagnosis (n = 30; abbreviated to > 10 years BR).  

 

2.5.2 Nestedness and connectance: Anova statistical analysis 

 

Nestedness is a degree of network order where a highly nested pattern describes a 

hierarchy from generalists (broad host range) to specialists (narrow host range) for both 

species. The binmatnest value is the deviation of the network pattern from an optimal 

nested pattern of the same dimensions; values are scaled from 0 (greatly nested) to 100 

(not the least bit nested).  

 

Bipartite infection networks of Phage and bacteria interactions both within and between 

CF and BR were assessed (BR phage vs. CF Pa, & BR phage vs. BR Pa, CF phage vs. 

CF Pa, CF phage vs. BR Pa). Nestedness was calculated using the binary matrix 

nestedness temperature computer (binmatnest) (Rodríguez‐Gironés and Santamaría, 

2006) within the 'nestedness' metric from the R package 'bipartite' - v 2.04 (Dormann et 

al., 2008, Dormann et al., 2009). The binmatnest values given were statistically 

significant when compared to the related null model analysis. Network images were 

generated using R package 'bipartite' - v 2.04. Nestedness and binmatnest definitions 
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are described in the supplementary data as are the PLS-DA plots that are used to model 

infectivity profile differences between the aetiologies. 

 

2.5.3 Partial least squares Discriminant Analysis (PLS-DA) modelling of the cross 

infection data: 

The cross infection data’s analysis was also performed using the SIMCA-P + v 13.0 

software (Umetrics, Umea, Sweden). Before analysis, the data was centre scaled and 

treated qualitatively to remove the effects of weighting against a zero value; here 

indicated no infection. The data was analysed using group classification to evaluate the 

relationships between phage infectivity and bacterial host sensitivity, in relation to patient 

age, disease aetiology, time since diagnosis and bacterial phenotype (methods 2.5.1). 

The ability to classify each specific in the correct group was assessed by multiple 

correlation coefficients R2Y. The prediction power of the model was evaluated by 

the Q2 parameter. The confidence of the data was assessed using 

Hotelling’s T2 tolerance limits (set at 0.95). Outliers that were deemed to be moderate 

and unable to shift in the model range were subjected to a DModX (Distance to model in 

the X space) calculation to weigh those outliers that did not fit the model and stray from 

the normal F-distribution (critical distance 0.05). 

 

2.6. Phage DNA isolation, genome sequence manipulation and quality control 

 

2.6.1 Pa phage lysate sequencing  

For the purpose of simplicity the sample number from Table 2.2.1 and 2.2.2 were re 

numbered to 1-94. Table 2.6.1 shows the associated samples and their new genome 

number. 
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Sample names            

 1 2 3 4 5 6 7 8 9 10 11 12 

A 3 34 57 74 125 177 59 193 213 298 331 144 

B 5 42 60 77 126 183 123 195 222 299 332 146 

C 6 44 63 78 127 208 143 197 227 313 187 150 

D 16 47 65 79 136 213 152 199 233 319 211 181 

E 23 52 67 81 140 214 153 200 243 320 58 201 

F 24 53 69 118 142 228 161 204 244 322 133 206 

G 28 54 70 121 145 52 177 205 285 326 136  

H 30 55 72 124 165 53 178 208 293 327 141  

             

Sample 

number 
            

 1 2 3 4 5 6 7 8 9 10 11 12 

A 1 9 17 25 33 41 49 57 65 73 81 89 

B 2 10 18 26 34 42 50 58 66 74 82 90 

C 3 11 19 27 35 43 51 59 67 75 83 91 

D 4 12 20 28 36 44 52 60 68 76 84 92 

E 5 13 21 29 37 45 53 61 69 77 85 93 

F 6 14 22 30 38 46 54 62 70 78 86 94 

G 7 15 23 31 39 47 55 63 71 79 87  

H 8 16 24 32 40 48 56 64 72 80 88  

             

         KEY  
Adult CF 

 

            
Peadiatric 

CF 

            
< 10 years 

BR 

            
> 10 years 

BR 

 

 Table 2.6.1 Renumbering of Pa samples to 1-94  
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The above table show the sample number and their associated re number for the 

genome section. This was done to simplify and to remove occurrence of repeat reference 

number for CF and BR pa isolate. 

 

2.6.2 Phage DNA isolation 

Following the method described in 2.3.1 and after conformation of phage presence in 

lysate via method 2.4.1, any remaining bacterial chromosomal DNA within the lysate was 

decreased using 3 rounds of 1 μL of TURBO DNAse and 1 μL of RNAse Cocktail (Life 

Technologies Limited), the lysate was incubated at 37 °C for 30 min. The DNAse and 

RNAse were inactivated using heat at 65 °C and 15 mM EDTA final concentration for 10 

min. NORGEN Phage DNA Isolation Kits (Geneflow Limited, Lichfield, UK) were used to 

filter viral DNA, the manufacturer's protocol was followed apart from the final DNA elution 

step where 50 μL of elution buffer was used and passed through the elution column twice 

to increase the total yield. The DNA samples were stored at -80 °C until being sequenced. 

The NORGEN phage DNA isolation kit was selected due to its cleaner (a decrease in 

bacterial DNA) and increased yield of phage DNA comparable to the Chelex extraction, 

QIAGEN QIAmp MinElute Viral Spin Kit, and PEG8000 isolation methods.  

 

2.6.3 Genome sequencing  

Genome sequencing of the phage samples were carried out using the Illumina Nextera 

XT (Illumina, Saffron Waldon, UK) library preparation kit. This was used to prepare and 

multiplex the isolated phage DNA (methods 2.6.2) for next generation sequencing on the 

Illumina MiSeq platform. A 2 × 250 cycle V2 kit was used for the loading and running of 

the sample. The phage DNA samples were quantified and if necessary diluted to 0.2 ng 

μL-1 (Qubit 2.0 DS HS DNA Kit, Life Technologies Limited) earlier to standardisation and 

combining. The Nextera XT was involved in amplification of DNA, addition of 
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oligonucleotides sites and addition of barcodes for dual indexing. The samples were then 

cleaned post PCR using ampure bead solution and magnetic separation solution. The 

samples were all normalised using Illumina based bead solution, this normalised the 

concentration of the samples. All samples were pooled and loaded onto the MiSeq.  The 

output data had a Q30 score of >75% for the library constructed.  

Paired end sequencing reads were provided as FASTQ files (NU-OMICS, Northumbria 

University at Newcastle, UK). 

 

2.6.4 Randomizing DNA Reads Using Velvet V1.2.10 

The Velvet de novo genome assembler package shuffleseq.pl was used to randomly 

shuffle the FASTQ sequences to limit bias. The following commands were used to do 

this. 

 $ shufflesequences_fastq.pl read1.fastq read2.fastq shufflesequence.fastq 

The shuffled sequence output file was directly pipelined into the Khmer toolkit. 

 

2.6.5 Khmer Toolkit 

The Khmer toolkit was used to remove very low-level bacterial contamination from the 

viral sequence data. The Khmer histogram clusters low abundance data and poor 

sequence data that would be linked to any residual bacterial chromosomal DNA where 

the defining python script could be to select abundant viral k-mer sequencing data 

(Crusoe et al., 2015). The following commands were used in order to achieve this.  

$ load-into-counting.py -N 4 -X 4e9 out.kh shufflesequence.fastq 

$ abundance-dist.py out.kh shufflesequence.fastq out.hist 

For each individual sequence file assessed the out.hist files graphed in excel and 

manually remove the error k-mer peak. The calc-median-distribution.py script (GitHub, 
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2015) was altered by a colleague Lauren Cowley, accordingly to select out the k-mers 

associated to the peaks. 

The script shown below was used, depending on the number of peaks and the k-mer 

range the following lines were changed. In line 34 and 34 a contained the lowest and 

highest values of the peak in this example 1-901, if the peak number was more than one 

line 13 was duplicated below and outfile1/peak1.seq changed to outfile2/peak2.seq.  34 

to 34 a ix lines were duplicated below and the highest and lowest range changed 

according to peak2. 

 

1. #! /usr/bin/env python2 
2. # 
3. # This file is part of khmer, http://github.com/ged-lab/khmer/, and is 
4. # Copyright (C) Michigan State University, 2009-2013. It is licensed under 
5. # the three-clause BSD license; see doc/LICENSE.txt. 
6. # Contact: khmer-project@idyll.org 
7. # 
8. import sys 
9. import khmer 
10. import argparse 
11. import os 
12. import screed 
13. outfile1 = open('peak1.seq', 'w') 

 

14. def main(): 
15. parser = argparse.ArgumentParser( 
16. description="Output k-mer abundance distribution.") 

 

17. parser.add_argument('hashname') 
18. parser.add_argument('seqfile') 
19. parser.add_argument('histout') 

 

20. args = parser.parse_args() 
21. hashfile = args.hashname 
22. seqfile = args.seqfile 
23. histout = args.histout 

 

24. outfp = open(histout, 'w') 
 

25. print 'hashtable from', hashfile 
26. ht = khmer.load_counting_hash(hashfile) 

 

27. hist = (Crusoe et al., 2015) 



63 
 

 

28. for n, record in enumerate(screed.open(seqfile)): 
29. if n > 0 and n % 100000 == 0: 

a. print '...', n 
 

30. seq = record.sequence.replace('N', 'A') 
31. header = record.name 
32. quality = record.accuracy 
33. med, _, _ = ht.get_median_count(seq) 
34. if med > 1: 

a. if med < 901: 
i. outfile1.write('@') 
ii. outfile1.write(header) 
iii. outfile1.write('\n') 
iv. outfile1.write(seq) 
v. outfile1.write('\n') 
vi. outfile1.write('+') 
vii. outfile1.write('\n') 
viii. outfile1.write(quality) 
ix. outfile1.write('\n') 

 

35. hist[med] = hist.get(med, 0) + 1 
 

36. maxk = max(hist.keys()) 
 

37. for i in range(maxk + 1): 
38. outfp.write('%d %d\n' % (i, hist.get(i, 0))) 
39. outfp.close() 

 

40. if __name__ == '__main__': 
41. main() 

 

 

The following command was used to instigate the above script in the directory of choice;  

$ python calc-median-distribution.py out.kh shuffleSequence.fastq peak.hist 

This would generate separate files containing the peak sequences and the peak.hist file 

was used to create the final k-mer graphs. 
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2.7 Genome Assemblers 

2.7.1 St. Petersburg genome assembler (SPAdes v3.5.0) 

SPAdes v3.5.0 was used to assemble all the phages and the following command was 

used. 

$ spades.py -k 21, 33, 55, 77, 99,127 --careful –s peak.fastq -o SPAdes3.5assembly 

 

 

2.7.2 VelvetOptimiser (v2.2.5) 

VelvetOptimiser was used to optimize the K, expected coverage and coverage cutoff 

parameters for velveth and velvetg. The command used to assemble the phages can be 

seen below. 

$ VelvetOptimiser.pl –f ‘-shortPaired –fastq shuffle.fastq’ –t 2 

 

2.7.3 Iterative De Bruijn Graph De Novo Assembler for uneven sequencing depth 

(IDBA-UD v1.1.1) 

This assembler is designed for short read and sequence data that has uneven sequence 

depth.  The ShortSequence.h file within the package was changed from 

‘KMaxShortSequence = 128’ to 250. This assembler only accepts fasta format files and 

thus has an fq2fa script. 

$ fq2fa read.fq read.fa 

In order to invoke the assembler, the following command was used. 

$ idba-ud –r reads.fa –mink 20 –maxk 100 –steps 15 –o idba.out 
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2.7.4 Paired-Read Iterative Contig Extension assembler (PriceTI v1.2)  

The script used to execute this assembler in order to iteratively extend contig associated 

with the same phage can be seen below. 

#!/usr/bin/env bash 

for X in 100 99 98 97 96 95 

do  PriceTI –fpp Read1.fastq Read2.fastq 400 90 -rqf 90 .95 -icf contigs.fasta 1 1 1 -nc 

51 -nco 1 -mol 30 -mpi $X -target 95 3 2 1 -lenf 50 1 -a 36 -o $.price.fasta 

done 

In the above script read1 and read2 corresponded to the sample and the contigs.fasta 

file contained the contigs that were being subjected to extension.  

 

2.9 Prokka (v1.11) automated annotation tool 

The phage genome were annotated using Prokka, the command used, 

$ prokka vB_Pea_CF1a.fasta --outdir vB_Pae_CF1a --prefix prokka --genus 

Pseudomonas --species phage --strain vB_Pae_1CFa --locustag orf. 

The above changed for each phage according to the assigned name. 

 

2.10 HMM/PFAM searches using GeneWise2 

We created a Pfam database of 40 amino acid HMMs’ shown in Table. GeneWise2 

algorithms 6:23 and 21:93 were used to search for putative CAD domains. The alignment 

comparisons of the domains was shown using Jalview2. 
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2.11 Basic Local Alignment Search Tool nucleotide (BLASTn) virus database 

standalone setup. 

To search for sequence similarity to the viruses database a standalone BLASTn 

environment was created. 

The standalone blast 2.2.27 package was downloaded from NCBI at 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ along with the fasta file 

containing all the fasta sequence (all.fna.tar.gz) in the NCBI viruses’ database 

ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses. The file was used to create an executable 

database for blastn searches via the command line. The makeblastdb scripts part of the 

blast package was used to create a “Viruses” nucleotide database within a db folder. 

The following default parameters were used in blastn: word_size = 7, gapopen = 5, 

gapextend = 2, reward = 2, penalty = -3,    

Blastn searches were carried out using the following command.  

$ blastn –query query_contig.fasta –num_threads 2 –db Viruses –out blastoutput.txt 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nlm.nih.gov/genomes/Viruses
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3. Characterising the interaction between temperate phages and well-

characterised Pseudomonas aeruginosa isolates originating from Cystic 

Fibrosis and Bronchiectasis patients. 

3.1 Introduction 

3.1.1 Induction and cross infection of temperate phages induced from 

Pseudomonas aeruginosa. 

Pseudomonas aeruginosa (Pa) is the one of the most common opportunistic 

bacterial species that colonises the lung in Cystic Fibrosis (CF) and Bronchiectasis 

(BR) patients (Kubesch et al, 1988; Purcell et al, 2014b; Roberts et al, 1984; Valenza 

et al, 2008). Pa becomes more prevalent in CF during second to third decade of life 

overtaking Staphylococcus aureus (Baldan et al, 2014). In one study these 

phenotypically were seen to be non-mucoid Pa isolates (Valenza et al, 2008). A key 

feature of Pa growth that aids colonisation and decreases the ability to treat effectively 

is  differentiation in growth to biofilm formation (Costerton et al, 1999). Growth as a 

biofilm is in a complex matrix of extra-polysaccharides and nucleic acids (Whitchurch et 

al, 2002). Biofilms are less metabolically active (Walters et al, 2003) and a complex 

structure all aid as a protective barrier that limits accessibility to antimicrobials. CF 

patients can become sensitive to Pa infection early in life and at some stage become 

chronically infected (Lyczak et al, 2002). If we compare this to the aetiology of infection 

in BR patients the disease is linked to an ageing population or lung trauma. 

This study focuses on temperate bacteriophages harboured in Pa isolates as 

they act as transposable genetic elements that can horizontally transfer genetic 

information as they integrate into the bacterial host genome (Thomas & Nielsen, 2005). 

When infection is coupled with high rates of infection and recombination there is the 

possibility of driving heterogeneity that aids bacterial host fitness (Williams, 2013). In 

comparison to marine viruses where it is estimated that there are 1023 phage infections 

every second (Suttle, 2007). One could predict that the confined and constrained 

environment of the CF and BR lower lung may give rise to phage infections at a higher 

rate. 
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For a bacteriophage to infect a bacterial cell it needs to have a complementary 

phenotype and genotype that can infect the bacterial cell and evasion of any evolved 

resistance mechanisms. This interplay between genome difference and host range is 

difficult to determine. Ceyssens et al. (2011) describes 4 phages LKD16, ɸKF77 and 

LUZ19 that share between 83-97% similarities at the genome level. Despite this 

genome similarity their P. aeruginosa host range showed a marked difference.  

As described in 1.5.1, host range is determined as a phage fully infecting and 

replicating inside of a bacterial cell. Initially the phage must site specifically interact with 

an epitope at the cell surface, in the case of ɸKF77 is a specific O-chain S type 

lipopolysaccharide and slime polysaccharides (Bartell et al, 1971). ɸKMV requires type 

IV pili, incidentally associated with twitching. The ponA and pilMNOPQ genes have 

been shown to be required to infect its host (Chibeu et al, 2009). Pa phages B3 and 

D3112 adsorb to the host via the pili illustrated by their inability to adsorb to pili mutants 

(Roncero et al, 1990). D3112 also prevents phage superinfection as it encodes a Tip 

protein that binds to TFT ATPase which results in loss of the pili (Chung et al, 2014).  

Once adsorbed to the cell surface the phage must be able to deliver genomic 

nucleic acids directly across the outer and inner membrane in Pa. This causes an 

increase in extracellular K+ ions occurring due to cytoplasmic leakage (Cady et al, 

2012). The phage nucleic acid is now subject to host restriction and other cell 

mechanisms evolved to eliminate incoming transposable genetic elements. These 

include CRISPR Cas, abortive infection, toxin/antitoxin and restriction modification 

systems (chapter 1.6.6). Bacteria have also adopted systems including abortive 

infection and toxin-antitoxin systems to evade detection by the host (chapter 1.6.6). 

3.1.2 Phages offering accessory genes 

Temperate bacteriophages can deliver accessory or moron genes that may aid 

bacterial host fitness, offering an advantage and protection to the residing prophage. 

Horizontal gene transfer to specific loci can help phage adapt as was shown for Mu-like 
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Pa temperate phages, which was driven by selective pressure of the host (Cazares et 

al, 2014). Phages may acquire accessory genes through recombination events which 

can that can give rise to fully functional progeny (Hendrix, 2002; Hendrix, 2003). The 

addition of these accessory genes via lysogenic phages can sometimes make a 

bacterial strain more virulent. Cholera caused by Vibrio cholerae produces a toxin that 

is encoded by the ɸCTX (Karaolis et al, 1999; Waldor & Mekalanos, 1996). 

Corynebacterium diphtheriae causes Diphtheria the exotoxin DIP0222 it produces 

which alters elongation factor 2 inhibiting protein syntheses is encoded by ɸβ (Holmes, 

2000; Leong & Murphy, 1985). In S. aureus, ɸETA encodes for an exfoliation toxin 

causing scalded skin syndrome and in babies can result in toxic shock like syndrome 

(Dajani, 1972; Reichardt et al, 1993). A S. aureus phage ɸN315 enhances immune 

evasion by Sak gene expression which codes for staphylokinase (Sako & Tsuchida, 

1983).  

Aims: The aim of this work was a combined study to characterise the difference 

in infectivity of, bacterial sensitivity to temperate phages chemically induced from 

Pseudomonas aeruginosa (Pa). All isolates used in this study are from Cystic Fibrosis 

(CF) and Bronchiectasis (BR) patients. I specifically targeted phage induced from BR 

Pa isolates where the meta data is combined and presented with the CF phage cross 

infection data by Francesca Everest (unpublished data) so that they can be modelled 

and compared alongside clinical data to contrast between diseases and longevity of 

disease. A panel of 47 CF Pa and 47 BR Pa bacterial isolates were used that are 

supported with in-depth clinical data including; the patients age (CF/BR), length of time 

since diagnosis (BR) if the Pa isolates are mucoid or non-mucoid (CF/BR) and the 

antibiotic sensitivity of the samples (CF/BR). The temperate phages where chemically 

induced from each bacterial host by targeting bacterial DNA gyrase, using the 

fluoroquinolone norfloxacin (NFLX).  This places a cellular stress on the Pa isolate and 

stimulation of the RecABCD pathway and phage induction (Matsushiro et al, 1999). 

The hypothesis to be tested in this study is that there is a continual selective pressure 
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between the bacterium and its predating phage. We hypothesise that firstly, there will 

be a difference in phage infection and bacterial sensitivity profiles between CF and BR 

patients. Secondly, the study aims to test the hypothesis that CF patients colonised 

with Pa will have undergone increased rounds of proliferation or exclusion and 

therefore these higher levels of interactions including recombination will show a 

determinable difference. This would possibly correlate to a potential increase in 

adaptation and evolution in the lung. 
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3.2 Results 

Phage lysates were induced from the 94 bacterial isolates using NFLX as described in 

methods section 2.3.1. It is highly likely based on previous research that there are 

multiple phages that are inducible within the chromosome of Pa bacterial isolates. 

Section 1.3 of the introduction discusses the level of phage infection in Pa, which could 

be termed polylysogeny and therefore it is possible that each of the lysates contain 

more than one bacteriophage. Each lysate containing a possible mixed-phage 

collection was horizontally infected against all isolates including the isolate the 

induction was performed. This study therefore looks at the range and distribution of 

infection the complement of phages can achieve. However, this study cannot infer 

which phage is responsible for the infections observed. But importantly it does show 

the potential within the phage lysate of the spectrum of isolates at least one phage 

within the lysate can infect. This may have larger ramifications in the lung, as it shows 

each bacterial isolate may harbour multiple phages, especially if there are core genes 

that each phage carries that aid a specific selective advantage that is needed in the 

lung for the bacteria to survive. 

 

3.2.1 Infection profile of inducible bacteriophage  

The 94 induced phage lysates were sequentially infected across the whole 

panel of 94 Pa isolates. Each lysate was spotted onto a lawn of growing bacteria as 

detailed in methods chapter 2.4.1. As pyocins are associated with stationary phase 

growth cells, phage induction was carried out during mid-exponential growth phase and 

if samples were dilute plaques instead of zones of clearing could be found and purified 

if necessary. In total including the CF cross infections completed by Francesca 

Everest, over 9,000 infection spots were performed. 

Three viral plaque morphologies were determined; lysis, turbid and halo. In 

appendix 1 the cross infection raw data contains this detail. To categorise each for this 
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study is as follows; lysis showed complete clearing. Halo was when there was a distinct 

zone of clearing but a background level of bacterial growth around the outer of the 

plaque, possibly representative of titre and lysogen formation rather than lytic infection. 

Turbid infection was termed when a lower level growth could be seen across the zone 

of clearing, showing either resistant mutants or most probably lysogens. Buffer was 

also spotted onto plate as a liquid mark control in order to eliminate visual bias.  

Figure 3.1 displays a heat map of the raw cross infection data detailed in 

appendix 1 directed as infection of phage lysate or no infection of phage lysate, 

respectively coloured as yellow or red. Figure 3.1 also shows the infection profiles 

grouped based on the disease aetiologies. The CF phages by eye are seen to be more 

infective across the Pa bacterial isolates represented by the depth in yellow in figure 

3.1. The BR phages in comparison show fewer infections. To further discriminate 

between the different disease sub aetiologies (chapter 2.5.1) it is seen that paediatric 

CF phage and < 10 years BR exhibited fewer infection. However, correlating the 

infection profiles to the clinical data shows that some of these strains are variable 

number tandem repeat (VNTR) typed for identification as similar to one another. The 

VNTR typing method is used for genetic based bacterial identification. Despite this 

varying phage infection profiles are seen on these strains. For example, in CF 

paediatric group the phage from CF 214 exhibits the lowest infection rate (8.5%) in this 

disease aetiology. This strain is from a 9-year-old CF patient. This strain is marked as 

similar to the bacterial isolates CF140 (adult), CF 208 (paediatric) and BR 53 (adult). 

There phage infection rates are 69%, 94% and 86% respectively. This shows that the 

clinical isolates strain typing does not reflect the phage infection profile.  The heat map 

shows phage isolated from CF 3 and CF 5 bacterial isolates exhibiting 100% infectivity 

across the Pa cohort. Both from adults CF patient of non-mucoid isolates. CF 5 is from 

a Manchester epidemic strain. Further clinical data from the CF cohort defining the date 

the patient became chronically infected with Pa may answer some of these differences.   
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Figure 3.1: Heat map of phage cross infection profile. Heat map generated using R 

to illustrate the infection profile of cross infection data (Appendix 1); Red represents no 

phage infection and yellow represents phage infection. The heat map illustrates that 

the adult CF phage are more infectious than BR phage. The map is based on disease 

aetiologies described in the methods section 2.5.1. 
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3.2.2 ANOVA nestedness and connectance plot of cross infection data. 

The cross infection data was subjected to an ANOVA, bi-partite statistical 

analysis that was carried out in collaboration with Professor Mike Brockhurst, University 

of York, York, UK. This approach and method is described in chapter 2.5.2. This 

analysis adds statistical support to the raw data in appendix 1 and the heat-map figure 

3.1. 

Figure 3.2.a shows that infection of BR and CF phages to infect the entire Pa 

cohort. A black square denotes infection. This data suggests that the adult CF phages 

have a broader infection profile across the Pa cohort based on nestedness and 

statistically significant manner. The model creates a gradient of the most infective to 

least infective within the group’s quadrant. 

Figure 3.2.b shows the data modelled against the mucoid phenotypes (clinical 

data presented in table 2.2.1 and 2.2.2). Mucoid BR Pa isolates (n = 22) were the only 

clinical parameter from which any significant difference could be drawn. The panel 

indicates that BR phages could infect mucoid BR Pa bacterial isolates at a greater rate 

when compared to non-mucoid BR Pa bacterial isolates. This could reflect the mucus 

thick physiology of the chronic lung in BR patients, where the phage would infect and 

propagate. 

Figure 3.2.c tabulates the associated statistical data relating to figure 3.2.a and 

3.2.b. The ANOVA test helps add statistical based analysis to the results alongside 

assisting description of the data and support the hypothesis proposed. 
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Figure 3.2: Nestedness and connectance plots of the cross infection data 

 a) Illustrates the binary nested network for the 94 Phage samples against 94 Pa 

isolates, ordered by nestedness within quadrants (47 CF Phage vs 47 CF Pa isolates, 

47 BR phage vs 47 CF Pa isolates, 47 CF phage vs 47 BR Pa isolates and 47 BR 

phage vs 47 BR Pa isolates). Each black square represents an infection between one 

phage lysate (x-axis) and one bacterial strain (y-axis). Grey squares signify no phage 
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infection. The CF phages were capable of infecting BR Pa isolates more readily than 

the BR phages could infect CF Pa isolates.  

b) Displays the binary nested network for the infection of mucoid BR (table 2.2.2) Pa 

isolates (n = 22) with the entire cohort of mixed temperate phage communities induced 

from BR Pa isolates (n = 47) 

c) Shows the numerical values for the results shown in 3.2a. 
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3.2.3 Modelling of cross infection data 

The cross infection data appendix 1 and figure 3.1 were subjected to further 

analysis in order to discriminate between the infection profile data as a whole. Thus 

cross infection data was extrapolated and modelled using Principle least squares 

discriminant analysis (PLS-DA) which is a semi-supervised modelling technique, 

maximising the variation in the sample that allows for trends to be seen. In this instant 

either phage infection or bacterial sensitivity to phage infection was the parameter 

variation sought.  

Simca – P was used to create PLS-DA. The PLS-DA plots in Fig 3.3 illustrate 

differences between cross infection data that has been further supported by colouring 

the points to inform on aetiology of the patient’s infection.  

Figure 3.3 shows four PLS-DA plots looking at similarities and differences 

between phages and their bacterial host. It shows variance between phage infectivity 

and bacterial susceptibility (Panel A-C). The quality of the model is represented by the 

R2Y value. > 0.5 is considered robust; the plot sees a value of 0.72. Figure 3.3 panel A 

illustrates the adult CF phages represented in blue are different from paediatric CF 

phage infection profiles shown in yellow.  

The PLS-DA plot shown in figure 3.3 panel B illustrates the difference in 

infection profile between CF and BR phages. CF phages are depicted as red and BR 

as blue. The two groups stratify from one another on the x-axis. There is some 

similarity and cross over where the CF phage infection profiles associated to the 

bacterial isolate CF214, CF165 and CF213 (table 2.2.1) are seen to be associated with 

paediatric patients. The fourth sample CF77 which is disparate belongs to a 33-year-

old adult CF patient. The R2Y value is 0.77 which indicates there is a significant 

difference. 

Figure 3.3.C illustrates a PLS-DA plot that showing differences now not in 

phage infectivity but more how sensitive the bacteria is to infection by this phage panel. 



78 
 

Specifically, here between the entirety of the CF and BR Pa bacterial panel. BR 

isolates are represented as blue and CF isolates as green. The R2Y value for this 

model is 0.83, when considering > 0.5 is significant this is a strong indication that there 

is difference seen that is supported by a strong model of the data. The two sensitivity 

profiles between the CF and BR Pa group apart but two CF Pa isolates are seen to 

group with the BR Pa isolates. These CF Pa isolates originate from adult CF bacteria. 

These two CF Pa isolates are CF136 (30-year-old) and CF177 (38-year-old) (table 

2.2.1). The clinical data also highlight that the isolates are both epidemic strains from 

Manchester and the Midlands respectively (table 2.2.1) 

Figure 3.3.D is a PLS-DA plot of the sensitivity to phage infection of the CF Pa 

isolates to phage infection. Paediatric CF Pa isolates are shown in red and adult CF Pa 

isolates are shown in blue. The phages separate but it is not as clear as 3.3A. The R2Y 

value for this model is not as robust with 0.66, although still greater than the significant 

cut-off limit of > 0.5 for the model integrity.   
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Figure 3.3: Phage infection and bacterial susceptibility PLS-DA Simca – P was 

used to generate these PLS – DA plots to show differences in phage infectivity and 

bacterial sensitivity to phage infection, based on these data shown in figure 3.1 and 

appendix 1, confidence limits are > 80% and integrity is > 0.5. A) Bacterial susceptibility 

of all the host bacteria to both adult CF phage (blue) and paediatric CF phage (yellow). 

It shows that there is a difference in bacterial susceptibility to the different phage 

groups as the stratification in this figure demonstrates (R2Y cumulatively is 77%). B) 

Shows the bacterial susceptibility of the bacterial hosts to the phage infection from the 

whole BR cohort (blue) and the whole CF cohort (red). Stratification between the 

groups is again observed and the CF samples which associate with the BR strains 

originate from paediatric CF patients (R2Y cumulatively is 72%). C) Phage infectivity 

differences between the entire CF cohort (green) and the entire BR cohort (blue). 

A B 

C D 
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There is clear stratification between phage infectivity profiles, but there is some cross 

over like in Figure 3.3.B and the relationship of the phage is between the paediatric CF 

isolates and the BR isolates with < 10 years P. aeruginosa infection (R2Y cumulatively 

is 82.5%). D) Phage infectivity differences seen between the CF phage isolates, adult 

(blue) and paediatric (red). There is stratification between the different phage lysates 

but it is not as clear as in Figure 3.3.A (R2Y cumulatively is 66%). 

Figure 3.4 models BR bacterial susceptibility to phage based on the length of 

time the bacterial host has colonised the patient’s lung. The most recently diagnosed 

with Br isolates (yellow) pull away from the chronically colonised strains > 5 years (light 

blue) > 10 years (royal blue) 

Further stratification of the data was done using the PLS-DA plots based on 

mucoid and non-mucoid plots. In figure 3.5 the PLS-DA plot shows the mucoid isolates 

as red and the non-mucoid isolates are shown as blue. The BR Phage show no 

difference between infecting mucoid and non-mucoid strains (figure 3.5 panel a). 

However, CF phage infect more non-mucoid strains showing a difference (figure 3.5 b) 

The PLS-DA presented in Figure 3.5.a focuses on phage infectivity of BR 

phages infectivity when the data is informed to show the difference in ability of the 

phages to infect a Pa isolates with a mucoid phenotype. The mucoid variants 

compared with the non-mucoid variants do not separate as clearly, but it does replicate 

the findings of the bi-partite modelling seen figure 3.2. The R2Y value is 0.67.  

Figure 3.5.b details the variation in the infectivity profiles of the CF phages 

when they are grouped according to mucoid phenotype. There are two samples in this 

PLS-DA which are outside of the confidence eclipse (95 %), both are phages induced 

from mucoid Pa bacterial isolates. Phage from CF54 Pa isolates which is from an adult 

CF patient (17 years) whilst phage from CF187 is from a paediatric CF patient 2 years 

of age. The R2Y value is 0.72. 
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Figure 3.4: Pa difference mapped against disease aetiology. Simca P has been 

used to generate this PLS DA plot to show the length of time that each BR isolate has 

been colonised with P. aeruginosa. The confidence limits are > 80% and the integrity 

is > 0.5 and the R2Y value cumulatively is 40%. It shows that with a few exceptions 

that there is stratification of the most recently colonised hosts (yellow) away from the 

chronically colonised strains. The patients that have been colonised for over 5 years 

(light blue) and over 10 years (dark blue) do stratify away from each other but not as 

discreetly as the under 5 years’ colonisation isolate. 
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Figure 3.5: Phage infection difference between mucoid and non-mucoid isolates. 

Simca P has been used to generate PLS DA plots to show the variation in phage 

infectivity when the host strain phenotypes are mucoid or not, the confidence limits 

are > 80% and the integrity is > 0.5. A) Phage from BR isolates appear to be able to 

infect both mucoid (red) and non-mucoid (blue) versions of the host at equivalent 

infection levels. The stratification is not as distinct as in some of the other PLS DA 

models but it is still apparent between the two cohorts (R2Y cumulatively is 67%). B) 

Phage from CF isolates appear to infect more non mucoid hosts (blue) than mucoid 

(red), this is concluded because the mucoid isolates are more tightly connected on this 

A 

B 
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model. There is stratification between the two groups but the separation is not as 

discrete between the two different host phenotypes (R2Y cumulatively is 72%). 

Even though the previous modelling and infection heat plots show the 

differences in infection profiles it does not show the distribution of these infectivity 

profiles e.g. the numbers of isolates within each aetiology the phages can infect. Figure 

3.6 breaks down the data in figure 3.1 and stratifies it to the disease aetiologies by 

looking at the phages infectivity induced from these bacterial isolate figure 3.6 a-d and 

also the bacterial susceptibility to the phages figure 3.6 e-h. From figure 3.6 a-d it is 

evident that the CF phages have the highest infection range as a percentage. Figure 

3.6.f shows that CF phages more readily infect their originating host when compared to 

BR phage (figure 3.6.h). The number of samples in each clinical disease groups varies 

and thus the data is not evenly distributed. However, the greatest variation of infection 

is seen in the BR isolated phages. The data in figure 3.6 a-d shows that the CF phages 

have the highest infection profiles when compared to paediatric CF and < 10 BR 

phages. This could be due to the poly microbial nature of the lung or due to the adult 

CF phages being better adapted to infecting their host. 
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Figure 3.6: Graphical representation of bacterial sensitivity to infection and 

phage infectivity based on disease aetiologies (BR is referred to as nCFBR). A 

graphical representation of the results in Figure 3.1. A) The infectivity of phage lysates 

on paediatric CF hosts. B) The effect of phage lysates on adult CF hosts. C) The effect 

of phage lysates on BR hosts (less than 10-year P. aeruginosa infection). D) The effect 

of phage lysates on BR hosts (over 10-year P. aeruginosa infection). E) The 

susceptibility of paediatric CF bacteria to phage lysates. F) The susceptibility of adult 

CF bacteria to phage lysates. G) The susceptibility of BR bacteria (under 10-year P. 

aeruginosa infection) to phage lysates. H) The susceptibility of BR bacteria (over 10-

year P. aeruginosa infection) to phage lysates. 
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3.3 Discussion 

3.3.1 Cross Infection of Pa temperate bacteriophage/phage 

This study is one of the largest cross infection profiling of temperate 

bacteriophage and their hosts reported. In this study every strain of Pa isolated from 

the lung environment was shown to harbour at least one inducible temperate phage as 

they were able to infect at least one other bacterial isolate. The approach of using 

potentially mixed phage lysates to generate a large-scale infection profile for each 

lysate and total host range across the 94 Pa clinical isolates is also a novel approach. 

Previous studies looking at phage host range tends to plaque purify the phage by at 

least 2 rounds of picking individual plaques to propagate. This is not a representation 

of what happens in the chronic lung as the stimuli for phage induction is global as built 

around the stress response of the bacterium. We hypothesise therefore that this offers 

a truer representation of what would happen in lung on induction of the bacterial SOS 

response. Temperate bacteriophages from the same bacterial host exhibiting varying 

infection profiles has been reviewed (Weitz et al, 2013). However, as these phage 

lysates reported here are not purified phages, they mimic the reservoir of viruses within 

the bacterial cell that can release and disseminate in the lung which is innovative.   

The data in the cross infection study was extrapolated and presented as a heat 

map derived in R (Figure 3.1). The heat map aids visualisation of the raw infection 

profile in appendix 1. The same data was shown using the nestedness and 

connectance plot in Figure 3.2a. Both of these figures show more conveniently that the 

CF derived phages are more readily able to infect than their BR derived counter parts 

indicated by having a greater nestedness. The data was not stratified into the disease 

aetiologies as no trend was observed. Figure 3.2 characterises the interactions 

between the phage lysates and their Pa bacterial host. It can be inferred therefore that 

the change in connectance implies that the infection difference is driving the variance. 

The increased nestedness shown by the CF phages supports our hypothesis that the 
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adult CF phages either individual or per lysate have evolved a broader host range and 

higher infection rate across the whole Pa panel. Other clinical data was modelled to 

see if there were significant differences between the phage infection profiles although 

nothing except mucoid phenotype was identified as significant using both bi-partite 

modelling and PLS-DA.  

Figure 3.2b shows that the BR mucoid (n=22) derived phages could infect more 

readily, Pa that display a non-mucoid phenotype. This suggests that the phages may 

have evolved infection strategies to infect this phenotype of Pa isolate. Phages have 

been shown to be blocked from infection by bacteria producing a mucoid phenotype. 

Examples of this have been seen in Salmonella anatum and phage restriction by 

mucoid phenotype (Mcconnell et al, 1986).  It has also been illustrated that Pa 

temperate phages have previously been identified and characterised that can infect 

mucoid isolates, e.g. Ab31 a chimeric phage that is related to other temperate Pa 

phage PAJU2 and P. putida phage AF (Latino et al, 2014). 

The clinical data available was used to compare between these phage lysates 

and sensitivity to phage infection (Tables 2.2.1 and 2.2.2) and modelled the data based 

on the clinical variables. It was determined that the data supports our cross infection 

study and further supports our theory that phage and their host evolve together in the 

lung of BR and CF patients, where infectivity of phage and susceptibility of the host can 

be used as a marker of the aetiology of disease, mainly age (CF) and time since 

incidence (BR). The Norman et al., (2016) paper shows that an increase in presence of 

Caudovirales can be a marker of gut disease (Norman et al, 2015).  

PLS-DA here has been used to elucidate the difference in phage infection 

profiles compared to the aetiology stratifications of the disease states. The data 

illustrates that phage from BR Pa isolates have a different infection profiles when 

compared to phage from CF Pa isolates (Figure 3.1, Figure 3.2 and Figure 3.3). One 

driving factor could be the site of temperate phage adsorption (Chibeu et al, 2009). Pa 

phages have been shown to adsorb to the Pa twitching pili (Pemberton, 1973). It has 
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been previously shown that in the CF lung, Pa that chronically infect the lung lose the 

ability to twitch over time as the trait is not needed (Comolli et al, 1999). It may be 

possible that adaptation to use an alternate receptor is a more efficient way of infecting 

the cell within the lung. Another factor could be due to phage resistant mechanisms 

(see chapter 1.6.6 for more detail of phage resistant systems). An example of this is 

CRISPR/CAS systems that the host Pa use to recognise and abort phage lysogenic 

infections (Villion & Moineau, 2013). Phages evolve to develop anti CRISPR/CAS 

systems to evade host detection and are able to super infect the host (Bondy-Denomy 

et al, 2013). Thus it is hypothesised that BR phage may not be as evolved when 

comparing CF and their phage evolution and hence why lower infectious rate is seen of 

BR phage re-infecting their originating hosts as have not adapted or evolved this 

mechanism. It may also be that the pathophysiology of the lung is such that there is 

difference in the adaptation and evolution in each disease. There is also a noticeable 

difference between CF phage from paediatric and adults (Figure 3.1, 3.2 and 3.3). The 

data suggest that CF paediatric phage and BR phage from less than 10 years have a 

similar profile. The different models Figures 3.3, 3.4 and 3.5 stratify BR phage from CF 

phage supporting our hypothesis that they are from different disease state and one 

prediction is that the linking factor is possibly due to prolonged evolutionary arms race 

between the host and the phage. It could also be hypothesised that the bacteria are as 

evolved based on their current disease states, phages evolving alongside their host 

may become to specialised to the host and narrow their host range. A study artificially 

looking at coevolved phage bacteriophage ᶲ2 infecting Pseudomonas fluorescens 

SBW25 showed as one of their finding that the host range become more resistant to 

genetically similar phage it co-evolved with (Gorter et al, 2015). This coevolution based 

host resistance is not indicative of the data presented in this thesis. 

Interestingly a higher number of CF Pa phages when spotted onto their 

originating hosts could re-infect compared to the BR phages (figure 3.6.e-h). This 

finding goes against the global convention of temperate phage infection; the prophage 
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repressors function is to prevent super infection (Kholodii & Mindlin, 1985). It was 

previously thought that if a phage was isogenic such that it was very similar at a 

genotypic and phenotypic level then it would not be possible to infect the same host 

again (Kaiser & Jacob, 1957). This suggests that the CF Pa phages and their hosts 

have diversified together and hypothetically, they are more evolved to re-infect their 

hosts in this environment. Possibly due to the lower lung environment being 

constrained and thus re-infection is supportive of positive selection for the phage. We 

could hypothesise that multiple isogenic infection leads to gene addition and increased 

expression of genes that increase the selective advantage. Fogg et al. (2011) 

illustrated that multiple copies of Stx-phage 24B increased the rates of lysogeny with 

each successive infection and also that gene addition of the phage could increase 

levels of the Shigatoxin (Fogg et al, 2011). These phages mediated traits may offer 

selection with exacerbation of symptoms as a result of the patient’s inflammatory 

responses causing tissue scarring coupled with poor movement of the mucus and the 

ability of Pa to readily form biofilms. In E. coli it was shown that the phage 24B could 

re-infect its host multiple times with increasing frequency on each round of infection 

(Allison et al, 2003). A bacterial host harbouring multiple phage could increase 

competitiveness (Burns et al, 2015) and in the case of Pseudomonas this is well 

described with certain phages increasing infection whilst other preventing infection, see 

chapter 1.4 for more detail (Winstanley et al, 2009).  

In Figure 3.6 panels A-D, illustrates that the adult CF phage can infect all the 

other host bacteria with nearly 100% infectivity. However, the infection rate back onto 

their host is lower. The paediatric phage also appears to have the lowest median 

percentage infectivity, this may indicate that these phages have not evolved in these 

environments and so are still recognised by bacterial defence systems, indicating 

phage naivety. This pattern of naivety is opposite in the BR phage infections, the 

phage from BR (under 10 years) have a higher median percentage infectivity 

compared to the phage from BR (over 10 years), it would appear that the phages lose 
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their infectivity over time but this could also correlate with total patient deterioration and 

poor health, as the onset of BR is indicative of an older population. Or it may be that 

there is a clonal population in the lung, previously reported in the CF lung (Haussler et 

al, 2003) that means diversity in infection profile is not needed. Panels E – H in Figure 

3.6 demonstrate the susceptibility of the host bacteria to phage infection.  

This study illustrates another level of complexity in phages from these disease 

states where despite phages and their Pa host have genome similarities and narrow 

host range, in terms of temperate phages, they still exhibit differences in their infection 

profiles and phage infection susceptibilities (Ceyssens et al, 2011). This can be 

hypothetically linked to the selective pressure the temperate phage and their hosts are 

under within the CF lung.  
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4. Isolating single Pseudomonas aeruginosa phage genomes from 

metagenomic DNA sequencing. 

4.1 Introduction  

Identification and characterisation of bacteriophages is continuing to show the 

diversity of bacterial viruses that are present in the biosphere. A wide range of methods 

have been used to characterise and classify phages. Bacteriophage morphologies have 

been widely described (figure 1.2a and figure 1.2b). When working with bacteriophages 

it is important to characterise the genome and marry genotype to phenotype and biology.  

Phage genomics can also be important to classify downstream analysis such as profiling 

for potential alteration through mutation or recombination. However, the major concern 

regarding temperate phages is their influence on bacterial evolutionary selection and 

how this correlates to the physiology of the bacteria and how this contributes 

pathogenicity (chapter 1.6.7.1). Some studies have shown that increased virulence of a 

bacterium can be as a result of bacteriophage carriage (also discussed in the introduction 

of chapter 3.1). An example is Shiga toxin encoding E.coli (STEC) 0157:7 is a strain that 

encode the Stx 1/ Stx 2 that is encoded by Stx phage (Allison, 2007; Plunkett et al, 1999).  

A filamentous phage, CTXᶲ is shown to be responsible for coding the cholera toxin in V. 

cholerae (Waldor & Mekalanos, 1996). Similarly some bacteriophages can be 

responsible for antibiotic resistance genes via transduction (Abedon, 2011), although 

identification and function of these genes have been brought into question. Enault et al. 

(2016) describes how phage encoded genes transferring true antimicrobial resistance is 

lower than what was previously thought (Enault et al, 2016).  

PAO1 has a genome of 6.3 Mbp (Stover et al, 2000) and Liverpool epidemic 

strain LESB58 has a genome size of 6.6 Mbp (Winstanley et al, 2009). One reason for 

the genome expansion is LESB58 strain carrying 5 genomic islands and 6 prophage 

regions (Winstanley et al, 2009). Further research on the inducible phages and their 

biology has been well reported and discussed in chapter 1.4.  
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When characterising the genome of temperate phages it can be important to 

identify genes associated with lysogeny. This includes but is not limited to the Cro, CI, 

CII and integrase genes. It can be important to establish using genome characterisation 

that the phage resembles, at the genome level, similarities to other known temperate 

phage genes. A study by Braid et al. (2004) compared a Pa phage B3 with D3112 and 

Mu as it shared 7.5 kb homology in the right arm of the chromosome. Importantly they 

found genetic rearrangement in the left arm of the chromosome (Braid et al, 2004). It can 

be therefore important to look at the genome architecture, which can be used to 

potentially identify recent recombination events that may be evident based on 

comparison to taxonomically similar phages. Smith et al. (2012) describes the conserved 

architecture and genome organisation of dsDNA lambdoid-like phages. This can be used 

as an important tool to identify similarities and differences between phages. Importantly 

this organisation of genes is invaluable for genome assembly, especially in metaviral 

populations. 

The predominant phages described to infect Pseudomonas aeruginosa (Pa) are 

part of the Cauldovirales, double stranded, tailed, DNA bacteriophages/phages. 

Previously phages have been categorised and characterised based on their morphology 

(chapter 1.6). Taking advantage of sequencing technologies, it can be more useful to 

compare phage genomes to identify alteration and diversification within genomes. 

Comparative genomics of phage genomes enables one to identify genetic diversity 

between phages. The genome architecture can be compared, which is mostly mosaic 

suggesting high degree of horizontal gene transfer (Hatfull, 2008). Studying phage 

genomics is an area of novel genetics as genes are of mostly small with unknown 

function at both the nucleotide and protein level (Hatfull, 2008; Smith et al, 2012). 

Stratifying metaviral DNA sequence data allowing assembly of individual viruses 

is classed as difficult due to mosaicism and genes with similar sequence or function that 

could offer chimeric phage on assembly. Genome assembly is also difficult due to lack 

of reference genomes submitted to databases. A study looking at four exhaustive 
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iterative assembly, CLC Genomics Workbench 6.0.4 assembler, Genovo version 0.4, 

and Newbler 2.5 identified that all the exhaustive iterative assemblers were capable at 

assembling contigs of viral metagenome (Smits et al, 2014). However, the study went 

on to suggest that it was best to use a combination of assemblers to complete assembly 

of genomes (Smits et al, 2014). Thus iterative assembler like PRICE, IDBA-UD, Velvet 

and SPAdes are seen to be best at assembling viral metagenomes (Smits et al, 2015). 

The aim of this chapter was to develop a protocol to isolate individual phage 

genomes from a mixed virus sample. We aimed to test the hypothesis that using the 

biology of the bacteriophage including burst size or preferential integration sites of 

lysogeny could be used to aid stratification of the DNA sequencing data that would allow 

individual assembly of phage genomes from a mixed viral community sample induced 

from a clonal bacterial population. The study would aim to add phage genomes to 

nucleotide database, which would potentially offer novel Pa phage genomes. 
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4.2. Results  

4.2.1 Genome characterisation 

In order to characterise the viral genomes, the phages were induced using the 

method described in 2.3.1. This method is a metagenomic approach to isolate all viral 

DNA that has been encapsulated as early steps removes extrachromosomal bacterial 

DNA through multiple rounds of DNase treatment. The presence of phage in the lysates 

was evaluated using the spot assay method described in 2.4.1 which is a quick way to 

assess phage infectivity on a known bacterial host. 

Once phage presence was confirmed the samples were used in the Phage DNA 

isolation step described in 2.6.2. This step facilitates DNA extraction from the lysate as 

a meta phage isolation approach. A subset of the samples were tested for 16S rRNA 

PCR amplification. A low level of bacterial chromosomal contamination was determined 

by PCR for the 16S rRNA gene (Muyzer et al., 1993). Therefore in order to stop the 

carryover of bacterial genomic DNA a wet and bioinformatics approach was utilised.  The 

first was the use a round of DNAse treatment described in methods chapter 2.6.2. The 

second was removing the error peak from the K-mer abundance. This was confirmed by 

assembling the error peak and on assembly and similarity search using local alignment 

(blastn) this error peak contains the remaining bacterial carryover. 

The Pa clinical Isolates were renumbered (table 2.6.1) for convenience and to further 

blind the study. 

We work under the broad hypothesis that phages integrate into preferential sites 

in the bacterial chromosome. They will also induce out in different burst sizes and we 

can use these two things as they link to sequencing depth to separate the k-mers based 

on abundance and count, separating the mixed phage genome sequences into their 

peaks. 
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Figure 4.1 shows an example of three samples, where 1, 3 and potentially 5 peaks were 

seen. All the k-mer graphs for the 94 Pa samples are presented in table 4.1.  

In figure 4.1 the far left peaks are the k-mers associated with error and potentially 

bacterial chromosome. Distribution of k-mers, grouping together based on k-mer 

abundance and count, form peaks seen in figure 4.1. The k-mers associated with the 

peak were extracted using the “calculate median distribution” script described in the 

methods (2.6.5).  
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Figure 4.1: K-mer abundance graph pre and post sequence extraction. This figure 

exemplifies peak separation step, concurrently reducing potential bacterial and error 

related k-mer. The figure shows three examples of 1, 3 and potentially 5 peaks 

respectively.  
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Table 4.1: Pa K-mer peaks pre and post sequence extraction. The table 

shows the pre and post k-mer graphs. The post sequence extraction graphs illustrate k-

mers after removal of low abundance k-mers. 

From the 94 samples after preparation and sequencing 107 Pa phages were 

chosen from the samples which had both good coverage > 10 and were seen to be non-

chimeric. These phages were annotated and presented in this section. Two Pa samples 

66 and 90 had no assemblies and 21 samples yielded low sequence data for the 

assembler to give good partial or complete phages. The samples that contained multiple 

phages and that were initially thought to be representative as separate peaks were 

assembled separately and if incomplete assemblies were seen then sequence data was 

merged from the peaks to help improve the assemblies. The evaluation of the mixed 

phage assemblies exhibiting non-chimeric assemblies were supported using mapping 

the raw reads back to the assembly contigs and comparison searching using blastn 

results.  
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For example, in the sequence data 20 we have 2 k-mer peaks table 4.1 the 

assembly of the 2 sequence peaks together (k-mer peak1 and peak 2) yields a larger 

contig around 61.5 kbp when compared to the individual peak 2 assembly 52.6kbp 

(appendix 2) however, when these reads are mapped back the sequence coverage 

drops in the last 9 kbp suggesting false elongation of the contig. The sequences in peak 

two also contain another phage which can be seen in the slight rise in the sequence 

count in the k-mer graph of sequence sample 20. Figure 4.2 shows an Artemis image of 

the mapped reads bam reads to node1 (61.5 kbp) and node 2 (37.6 kbp). Therefore the 

assembly read negating the sequence data from k-mer peak1 and only containing the 

sequence data in peak 2 was used and presented as the phage assemblies. This 

example shows firstly why analysing the sequence depth is essential in omitting chimeric 

assemblies. Sequence sample 20 also shows that the two phages Phi297 and D3112 

are genomically different and therefore it was possible to separate them apart from 

potentially one sequence k-mer peak.  
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Figure 4.2 Artemis bam reads mapped back to contigs. Sequence sample 20, potentially 2 phages node 1 61.5 kbp in the red rectangle and node 

2 37.6 kbp in the green rectangle. However, the sequence coverage drops for the last 9 kbp on node 1 highlighted by the blue rectangle indicating 

possible forced elongation of the phage.  
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This sequence data set also highlights the importance of removing sequence 

data and normalising the reads based on k-mer count and abundance. A table of all the 

SPAdes assemblies can be found in appendix 2 which were used to determine the best 

phage assemblies. Due to the large number of phages presented in this study it would 

be impractical to present those in the main body of the report and it would not be practical 

to discuss all the assembly evaluation in detail thus these phages with their table of 

putative functional genes and genome map can be found in appendix 3. To compare the 

phages a dot matrix graph was generated using gepard (Krumsiek et al, 2007), figures 

4.3-5 show this based on the phages grouped to the disease aetiologies adult CF, 

Paediatric CF, > 10 years BR and < 10 years BR as described in chapter 2.5.1. The 

greyer the background the more similar the sequence between the phages. A dark black 

diagonal line represents a homologous region between the phages.  The dot matrices 

show that there are phages which are highly comparable at the genome level, which we 

could expect to see given that they are all induced from the same bacterial species. 

However, we still see regions of sequence dissimilarities between the phages. We can 

also gauge that the sequence orientation changes between the assemblies.  
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Figure 4.3: Dot matrix of adult CF phage compared to cohort. A dot matrix comparing the nucleotide sequence of the 52 adult CF P. aeruginosa 

phages. The darker the background is the more similar the sequences. The phages were grouped back to the disease aetiologies used previously < 10 

years BR, < 10 years BR, Paediatric CF and Adult CF on the x axis and the adult CF on the y axis. This map was generated using Gepard v1.40 

(Krumsiek et al., 2007) using a window size of 25 and word length 10.   
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Figure 4.4: Dot matrix of paediatric CF phage compared to cohort. A dot matrix that compares the nucleotide sequence of the 10 Paediatric CF P. 

aeruginosa phages. The darker the background is the more similar the sequences. The phages were grouped back to the disease aetiologies used 

previously. < 10 years BR, < 10 years BR, Paediatric CF and Adult CF phages on the x axis and the Paediatric CF phages on the y axis. This map was 

generated using Gepard v1.40 (Krumsiek et al., 2007) using a window size of 25 and word length 10.   
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Figure 4.5: Dot matrix of > 10 BR phage compared to cohort A dot matrix that compares the nucleotide sequence of the 35 > 10 years BR P. 

aeruginosa phages. The darker the background is the more similar the sequences. The phages were grouped back to the disease aetiologies used 

previously. < 10 years BR, < 10 years BR, Paediatric CF and Adult CF phages on the x axis and the > 10 years BR phages on the y axis. This map 

was generated using Gepard v1.40 (Krumsiek et al., 2007) using a window size of 25 and word length 10.   
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Figure 4.6: Dot matrix of < 10 BR phage compared to cohort A dot matrix that compares the nucleotide sequence of the 11 < 10 years BR P. 

aeruginosa phages. The darker the background is the more similar the sequences. The phages were grouped back to the disease aetiologies used 

previously. < 10 years BR, < 10 years BR, Paediatrics CF and Adult CF phages on the x axis and the < 10 years BR phages on the y axis. This map 

was generated using Gepard v1.40 (Krumsiek et al., 2007) using a window size of 25 and word length 10.   
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Table 4.2 simplifies the blast output for the Pa phages and groups them based 

on their shared sequence homology. However, the sequence similarity is for the largest 

segment of sequence similarity and does not take into consideration the whole sequence. 

For this reason, the representative phages were aligned using Mauve. Figure 4.7-15 

show the phages selected to represent the group as per comparison purposes. Analysis 

of the phages similar to F10, showed four major variations and thus these were used in 

Figure 4.7 for sequence alignment comparison. Similarly, it was noted when looking at 

the Pa phage genomes (appendix 3) that there we two major variations of 

vB_PaeS_PMG1, D3112 and three for phages similar to Phi297 (table 4.2. One 

representative of H66, JBD24, B3, LKA5 and PhiCTX were used (table 4.2). There was 

only one type of LKA6 and PhiCTX-like phage (table 4.2). For JBD24 and B3 the 

assembly with the most repetition and an assembly with a sequence start upstream of 

an identified terminase gene (if applicable) were used. In the case of phages similar to 

H66, 11 of the 12 had the assembly length of 61772bp thus a representative of the group 

was taken. It can be seen from the mauve alignment is that the sequence shares more 

similarity than the basic blast output data. Looking at the mauve alignments blocks of 

sequence similarities can be seen represented as different colours.  

Figure 4.7 is an alignment comparison between F10 and four phages which 

showed some sequence similarity to it. F10 (accession: DQ163912.1) is a Pa phage first 

published in 2006 (Kwan et al, 2006). vB_Pae_CF31c is the least similar and the most 

similarity can be seen on the right most of the phage genome. The genome of 

vB_Pae_CF31c begins with a phage terminase. vB_Pae_CF37a and vB_Pae_CF7b 

share the most sequence homology to F10 however, vary in the genome architecture. 

vB_Pae_CF37a begins with a Nu1 and Phage terminase gene unlike vB_Pae_CF7b. 

vB_Pae_BR93a is most similar in the red block but varies along the rest of its genome 

when compare to F10.  



120 
 

Most similar phage on blast 

database  

Genome size bp Region size with similarity in 

kbp 

Number of phages similar to 

the Phage 

F10 39199 1.9, 6.2 and 9.7 32 

vB_PaeS_PMG1 54024 4.9 and 6.3 6 

D3 56425 3.3 1 

Phi297 49135 8.6 and 8.8  16 

D3112 37611 17.4 20 

H66 65270 11.7 12 

JBD24 37065 27.1 9 

B3 38439 7.1 9 

LKA5 64746 13 1 

PhiCTX 35580 9.4 1 

 

Table 4.2: Phage diversity and closest genomic member. The table shows the blast similarities output on a viruses’ database. The table shows the 

range in sequence similarities seen and the number of phages showing that similarity. The total numbers of Pa phages tally up to 107. 
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Figure 4.7: Mauve comparison of F10-like phages. A sequence alignment that compares the nucleotide sequence of 4 F10-like (named in the bottom 

left corner of the image) P. aeruginosa phages with F10. The colour backbone makes it easier to see where there are shared sequence matches. This 

alignment was generated using Mauve v2.3.1 using progressive mauve.  
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Figure 4.8 compares the alignment of two phages similar to vB_PaeS_PMG1. 

vB_PaeS_PMG1 sequence was first published in 2010 as a direct sequence submission 

with the accession HQ711985. vB_Pae_CF16a seems to have a similar genomic 

architecture between the references whereas the green block at the end of the reference 

vB_PaeS_PMG1 genome seems to be in the left of the genome architecture of the 

vB_Pae_BR85c phage. The ORF at around 22 kbp on the reference PMG1 phage is an 

O-polysaccharide acetyltransferease and O antigen related genes are not present in the 

two phages shown in this comparison. The integrase gene however at 28 kbp region is 

reasonably conserved between the phages. All other ORF are hypothetical proteins.   

Figure 4.9 looks at three phages that are similar to the Phi297 phage and all are 

comparable at a similar level however vB_Pae_CF5a seems to confer to the genome 

architecture of Phi297. Phi297 sequence was first published in 2010 as a direct 

sequence submission with the accession HQ711984. vB_Pae_BR88b has a genomic 

sequence beginning with a terminase and is relatively smaller in size to the other phages 

in this alignment. The red block codes for phage morphogenesis, phage coat proteins 

and tail genes. The gap in the reference Phi297 genome at 15 – 21 Kbp entails phage 

repressor, replicative DNA helicase, ParA protein and DNA replication protein O. 

Figure 4.10 genomically compares D3112 to two phages that were similar based 

on sequence homology to D3112 but varied in sequence length. D3112 was first 

sequenced in 2004 with the accession AY394005 and was identified as a transposable 

Pa bacteriophage (Wang et al, 2004). vB_Pae_CF25a is 4 Kbp larger on the left and 

around 2 Kbp larger on the right and shares no sequence homology to either the other 

phage or the reference D3112. The ORF in the leftward genome of vB_Pae_CF25a are 

IgA, RecT and YqaJ-like viral recombinase and on the rightward side codes for a 

hypothetical quiP gene. There are 4 clear regions in the reference D3112 genome where 

there is no sequence homology to any other induced phage. These ORFs noted are all 

hypothetical and offer no functional information. 
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Figure 4.11 compares a Podoviridae H66 phage to a phage sharing 11.7 kbp 

sequence homology based on blastn output.  Pa phage H66 was directly submitted to 

the sequence database with the accession KC262634 in 2012. The phage 

vB_Pae_BR59a is used as an example however; all have the same sequence assembly 

exactly to 61772bp length. The red block in the vB_Pae_BR59a regions has no 

sequence homology to the reference H66 genome and code for DNA methylase genes, 

the gap between the red and green block at around 15 kbp is situated by an integrase 

gene in the vB_Pae_BR59a. The large green block of sequence homology has ORF 

described as hypothetical proteins. 
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Figure 4.8: Mauve comparison PMG1-like phages. A sequence alignment that compares the nucleotide sequence of 2 vB_PaeS_PMG1-like (named 

in the bottom left corner of the image) P. aeruginosa phages with vB_PaeS_PMG1. The colour backbone makes it easier to see where there are shared 

sequence matches. This alignment was generated using Mauve v2.3.1 using progressive mauve.   
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Figure 4.9: Mauve comparison of Phi297-like phages. A sequence alignment that compares the nucleotide sequence of 2 Phi297-like (named in the 

bottom left corner of the image) P. aeruginosa phages with Phi297. The colour backbone makes it easier to see where there are shared sequence 

matches. This alignment was generated using Mauve v2.3.1 using progressive mauve.   
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Figure 4.10: Mauve comparison of D3112-like phages. A sequence alignment that compares the nucleotide sequence of 2 D3112-like (named in the 

bottom left corner of the image) P. aeruginosa phages with D3112. The colour backbone makes it easier to see where there are shared sequence 

matches. This alignment was generated using Mauve v2.3.1 using progressive mauve.   
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Figure 4.11: Mauve comparison of H66-like phages. A sequence alignment that compares the nucleotide sequence of an H66-like (named in the 

bottom left corner of the image) P. aeruginosa phage with H66. The colour backbone makes it easier to see where there are shared sequence matches. 

This alignment was generated using Mauve v2.3.1 using progressive mauve.   
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Figures 4.12 aligns JBD24 with vB_Pae_CF7a which shares sequence homology 

for 27.1kbp however, this similarity is shared between 10-30,000bp of the phage genome. 

Indicating most variations in the outer regions of the genome but predominant variation 

is seen on the left of the genome. The ORF that share no homology are hypothetical 

proteins. JBD24 was first sequenced in 2013 with the accession NC_020203 and 

identified as having 5 genes that inactivate the bacterial CRISPR/CAS system (Bondy-

Denomy et al, 2013). 

Figure 4.13 looks at B3 compared to vB_Pae_CF27a. B3 is a Mu-like 

transposable phage first sequenced in 2004 with the accession AF232233 (Braid et al, 

2004). The shared homology is 7.1 kbp which seems to be in the right hand side of the 

genome. There is shared similarity which is dispersed across the whole genome. In the 

reference genome at around the 15 kbp region a large terminase subunit gene is seen 

which is absent in vB_Pae_CF27a. The same occurs at the 26Kbp region which is a 

DNA methylase gene. Other genes that don’t share homology are hypothetical. 

Figure 4.14 shows the comparison between LKA5 and vB_Pae_CF19a. LKA5 

was directly submitted to the sequence database with the accession KC900378 in 2013. 

The sequence homology is 13 kbp however, there is scattered sequence homology 

across the genome and the sequence assembly is seen to be inverted from the centre. 

The phages are similar in their DNA methylase, DNA specific binding, NinG, portal, 

capsid and the integrase gene. However, dissimilarities are seen but all are hypothetical 

protein genes.  

Figure 4.15 compares PhiCTX with vB_Pae_BR76a sequence. PhiCTX was first 

submitted in 1989 with the accession AB008550 and was shown to encode for a 

cytotoxin gene (ctx) (Hayashi et al, 1989). The sequence is reversed in comparison to 

PhiCTX but importantly 2 regions of dissimilarities separate 3 blocks. The largest region 

of sequence homology is 9.4 kbp to PhiCTX. The first gene of potential importance is the 



129 
 

CTX gene which is conserved between the two genomes. The regions of dissimilarities 

are hypothetical proteins. 
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Figure 4.12: Mauve comparison of JBD24-like phages. A sequence alignment that compares the nucleotide sequence of an JBD24-like (named in 

the bottom left corner of the image) P. aeruginosa phage with JBD24. The colour backbone makes it easier to see where there are shared sequence 

matches. This alignment was generated using Mauve v2.3.1 using progressive mauve.   
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Figure 4.13: Mauve comparison of B3-like phages. A sequence alignment that compares the nucleotide sequence of an B3-like (named in the bottom 

left corner of the image) P. aeruginosa phage with B3. The colour backbone makes it easier to see where there are shared sequence matches. This 

alignment was generated using Mauve v2.3.1 using progressive mauve.   
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Figure 4.14: Mauve comparison of LKA5-like phages. A sequence alignment that compares the nucleotide sequence of an LKA5-like (named in the 

bottom left corner of the image) P. aeruginosa phage with LKA5. The colour backbone makes it easier to see where there are shared sequence matches. 

This alignment was generated using Mauve v2.3.1 using progressive mauve.   
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Figure 4.15: Mauve comparison of phiCTX-like phages. A sequence alignment that compares the nucleotide sequence of a PhiCTX-like (named in 

the bottom left corner of the image) P. aeruginosa phage with PhiCTX. The colour backbone makes it easier to see where there are shared sequence 

matches. This alignment was generated using Mauve v2.3.1 using progressive mauve.   
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4.3 Discussion 

For the purpose of genome sequencing samples were renumbered to 1-94 for 

simplicity. Table 2.6.2 shows the revised genome sample number corresponding to the 

Pa sample number in Table 2.2.1 and 2.2.2.  

Khmer toolkit was used to remove erroneous k-mers and those associated with 

contaminating bacterial chromosome (Crusoe et al., 2015). Figure 4.1 shows three 

examples of how the data was cleaned up of bacterial contamination and k-mers of k 

length 32 or less removed prior to extracting the sequences in order to assemble the 

phage using SPAdes de novo assembler (v3.5.0). All the k-mer graphs both pre and post 

sequence extraction can be found in the table 4.1. The “calculate median distribution” 

script was used and altered to extract the sequences associated with the peaks. These 

sequence files were assembled separately at first however, it was found that the 

assemblies were partial and when separate peak sequence files the files were 

concatenated chimeric assemblies were seen. This was the case when the samples 

lysate exhibited similar phages and thus it was decided to use different peaks to compare 

them to see which assemblies gave the highest and more importantly non-chimeric 

contigs. Figure 4.3 shows an evaluation of the sequence data in sample 20 and from 

which it was evident that in some instances keeping the peaks separate would help the 

assembly of the phage genomes. The table of all the assemblies of the Pa phage 

samples using the different peaks can be found in appendix 2. This approach to 

assemble phages direct from lysate assembly and removing bacterial chromosomal DNA 

is a novel method and not described in the literature. We here present therefore mixed 

phage infection profiles (chapter 3) and the sequence extraction and characterisation of 

the viral community. From the k-mer graphs we could predict the number of potential 

phages present in each Pa lysate. 

Phages that assembled as multiple contigs, inferring that there may be 

insufficient sequence depth to bridge the gaps between the contigs, were extended 
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usingPaired-Read Iterative Contig Extension (PriceTI) (Ruby et al., 2013). PriceTI 

assembler uses the contigs given to it and maps them back to the raw sequence file with 

the sole intention to iteratively extend the contigs given to it. The script used for this 

method can be found in methods 2.8.1. For phage genome where PriceTI recovered or 

managed to bridge the sequence gaps, were specified in appendix 3. 

The 107 Pa temperate phages presented in this study all shared similarities to 10 specific 

Pa phages that can be found on the NCBI viruses’ database. These included 

Pseudomonas phage F10, D3, Phi297, D3112, H66, JBD24, B3, LKA5, PhiCTX and 

vB_PaeS_PMG1. All these phages are from the Siphoviridae class apart from H66 which 

is a Podoviridae. Due to the constraints in time all the phage assemblies were not 

oriented or broken upstream of the terminase gene manually and were not checked if 

they circularised at the cos sites. The phage assemblies are presented as preliminary 

drafts and as linear genomes. 

The most common similarities were seen to the Pseudomonas Phage F10 (Kwan 

et al, 2006), with 32 temperate Pa phages sharing between 1.9 to 10 kb sequence 

similarities to this phage. Within the F10 like phages it could be seen that the phages 

were different. This was perceived to be due to a region in the sequence showing repeat 

regions of a putative Rha protein. An example where this was seen is Pseudomonas 

phage vB_Pae_CF6b; this gene was predicted twice in the genome. In these phages the 

pRha gene was predicted in the forward and reverse direction. In the reverse strand the 

pRha gene was found close to the late genes and in the forward strand close to the 

integrase gene. This could imply that one pRha is associated with the late genes and the 

other with phage integration. The pRha protein is a regulatory protein such that it 

prevents the infection of bacterial strains lacking integration host factor (IHF). IHF is a 

regulator of the Rha gene. vB_Pae_CF7b is an example of a phage that had three pRha 

genes identified. For the first two the same architecture was seen as described above 

for vB_Pae_CF6b, the additional pRha gene was seen down stream of an Arc like DNA 

binding domain. However, F10-like phages with no repeats of pRha were also seen and 
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had a 38.3 kb size genome and shared only 1.9 kb sequence matches to F10. Hence on 

a general rule all of the 32 F10-like phages identified in this study would fall in one of the 

three types of F10-like phages described above. Having a pRha protein could therefore 

be advantages in preventing infection if the bacterial host did not have IHF as for 

temperate bacteriophages it is also required to excise. One could assume having 

multiple copies of this protein could enhance its effect. On the other hand, the protein 

could be highly conserved and thus an area where the assembler struggles to 

differentiate between multiple phages. It must also be noted that similarities of up to a 

maximum of 10 kbp, even though this similarity is important it shows that the remainder 

of the genome does not compare to any other phage genome on a current database. 

Pseudomonas D3112-like (n = 20) (Wang et al, 2004) and Phi297-like (n = 16) 

(Kropinski et al, 2010a) phages were seen to be present together in 15 Pa sample. In 

one sample Phi 297 was seen to be present independent of D3112. In this instance the 

coverage was high and therefore one could assume this reflect the titre of this phage. 

D3112-like phages in the presence of Phi297-like phages were predominantly seen to 

have higher sequence coverage. In 3 instances where only D3112-like phages were 

present in the Pa samples, incomplete fragment similar to the Phi297 phages were seen. 

In only two samples D3112-like phages were seen independent of Phi297-like phages. 

However, in those samples the coverage and thus the sequence depth were low. From 

this it could be assumed that D3112 and Phi297-like phages complement each other as 

inducible prophage regions. It could be assumed that D3112-like phages are the 

dominant phage and Phi297-like phages are secondary.  

Twelve Pa samples had a phage 61.7 kb length that shared an 11.6 kb sequence 

similarity to Pseudomonas phage H66 (Maya et al, 2012) / or F116 (10.6 kb) (Byrne & 

Kropinski, 2005).  These H66-like phages were always seen to be at 61772bp length and 

shared the same genome homology. The only variation seen was with the orientation of 

these phages. The H66 phage is a Podoviradae and different genomically to the rest of 
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the phages. The light bands seen in the dot matrices are predominantly these phages 

and thus show their genomic diversity against the predominant F10-like phages. 

Six of the assembled phages contain a 6.3 kb homologous region to 

vB_PaeS_PMG1 (Kropinski et al, 2010b). Nine phages had the highest sequence 

similarity of 27 kb to a Pseudomonas phage JBD24 in the viruses’ database (Bondy-

Denomy et al, 2013). Nine phages shared a sequence similarity to B3 with a low 

sequence match of 2.5 kb (Braid et al, 2004). One phage had a 13 kb match to 

Pseudomonas phage LKA5 (Lammens & Lavigne, 2013). One phage shared a 9.4 kb 

match to a Pseudomonas phage PhiCTX phage (Nakayama et al, 1999). One phage 

shared sequence similarity to Pseudomonas phage D3 (Kropinski, 2000) although as 

this was a partial sequence it is most possibly like a Phi297 phage.  

Figures 4.3 - 6 showing the dot plot of the bacteriophages separately grouped 

based on their Pa disease associations (Methods 2.5.1) show a grey scale gradient 

based on sequence similarity. As described above all of the Pa phages can be inferred 

to be similar based on sequence similarity to ten Pa phages found in the viruses 

database. However, clear section of white bands can be seen which indicates that these 

phages or regions of phage are dissimilar from the overall consensus of phages shown. 

The region that have the whitest are associated with the H66-like phages this may reflect 

the fact that H66 is a Podoviradae and the other phages share more sequence homology 

with Siphoviridae. The other bands are associated with Phi297 and D3112 Pa Phage 

predominantly. It is therefore clear that the dot matrix is mainly scaled to the high number 

of F10-like phages presented in this study.  

The comparison of the sequences using Mauve shown in Figures 4.7 – 15 

displays that the phages omit region specific to certain genes most are hypothetical and 

thus raises the question on the functionality of those genes. Even though we identify 35 

F10 like phages it shows that the online database is not rich enough to compare fairly 

similar phages that still display large variation within their genomes. Based on the Mauve 

alignment comparison it could be inferred that all the phages displayed are novel phages 
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and would aid the NCBI database when uploaded once further curation of the phages 

has been carried out. The k-mer graphs as mention above allowed prediction of the 

number of phages however; due to low sequence reads possibly related to the titre of 

these phages the assemblers did not assemble complete phages for all the peaks. We 

can however gauge that the k-mer graphs do not fully represent the total number of 

phages present. Sample 36 presents in the k-mer graphs as one peak but when 

assembled we find 2 phages D3112 and Phi297 at roughly the same mean coverage 

(284 and 207 respectively).  

Based on the aims of this chapter it can be concluded that the meta-virome 

assembly of phages genomically similar, is difficult and requires further analysis of 

sequence coverage and sequence similarity to be confident in the assemblies. The k-

mer based method of removing low reads lengths and separating k-mers based on 

count and abundance helps assembly of genetically different phages but not phages 

sharing conserved regions. Through this we would add novel phages as draft genomes 

to the nucleotide database adding value to future blastn searches for Pa temperate 

phages. 
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5. Characterising the interactions of Burkholderia phage and isolating 

their genomic sequences for genome assembly.  

5.1 Introduction 

5.1.1 Burkholderia background in Cystic Fibrosis 

Burkholderia cepacia was first described by Walter Burkholder of Cornell 

University in 1949 when he determined it to be the cause of bacterial rot of onion bulbs. 

The bacterium was originally named Pseudomonas cepacia and later changed to its 

current name (discussed in detail in chapter 1.3). Burkholderia are rod-shaped, free-

living, motile Gram-negative bacteria ranging from 1.6-3.2 μm in length. 

They possess multitrichous polar flagella as well as pili used for attachment. 

Burkholderia cepacia can be found in soil, water, and infected plants, animals, and 

humans (discussed in detail in chapter 1.3) (Miller et al, 2002). 

Burkholderia cepacia complexes (Bcc) are key bacteria associated with microbial 

infection of the Cystic Fibrosis (CF) lung. The word complex has many paradigms and 

as Mahenthiralingam et al. (2002) states in their review ’B. cepacia’ are complex with 

key prominence on complex (Mahenthiralingam et al, 2002). This statement from the 

authors highlights the changing perception and understanding of this group of bacteria 

over the last 2 decades (Mahenthiralingam et al, 2002). It therefore also raises the 

question about how much do we understand about the bacteriophages that infect this 

bacterial species. Bcc do not infect non-cystic fibrosis patients readily and colonisation 

is not usually chronic. A case report of a mother of two CF individuals showed that she 

unfortunately became infected with the same epidemic strain of B cepacia acquired from 

one of her CF children (Ledson et al, 1998). This case report highlighted worrying 

developments for partners, siblings and parents of CF individuals who might be at risk 

of transmission of the pathogens carried in the lungs of CF patients (Ledson et al, 1998).  

Burkholderia species is currently comprised of 20 sub species of which 10 

species are commonly found in the lungs of CF patients (see chapter 1.5 for more detail) 
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(Coenye et al, 2001; Cystic fibrosis foundation., 2016). Bcc is more problematic to clear 

possibly due to increased antimicrobial resistance (Kuti et al, 2004). The Burkholderia 

genomovars have been linked to varying virulence, some study indicate B. cenocepacia 

being more virulent (Aris et al, 2001; De Soyza et al, 2001). Bcc genomovar III have 

been shown to replace multivorans species colonising in the lung CF patients 

(Mahenthiralingam et al, 2001). Burkholderia genomovar III has been shown to be the 

most prevalent subs species of Burkholderia isolated from CF patients, this can also vary 

geographically (Mahenthiralingam et al, 2002). 

Bcc disease or Bcc syndrome has high mortality rates this is also similar to 

patients that are chronically infected with B. multivorans (Zahariadis et al, 2003). A case 

study of a patient showed that within week of acquiring Bcc along with Pa being present 

the forced expiratory volume (FEV) dropped from 43 % to 22% despite being on multiple 

antibiotics (Shafiq et al, 2011). Another case study showed that after a boy initially 

became colonized with B. multivorans at the age of 7 and developed cepacia syndrome 

when he was 16 years old (Blackburn et al, 2004). This case study also highlights that 

cepacia syndrome is not confined to cepacia genomovars and that the syndrome 

occurred while antibiotics were being administered to this particular patient (Blackburn 

et al, 2004). Antibiotic resistance is a major contributor to Bcc virulence and failure to 

manage infection with strains being resistant to β-lactams antibiotics (Trepanier et al, 

1997). In up to 17% of clinical cases β-lactam based antibiotic fail to treat melioidosis 

caused by B. pseudomallei (Chierakul et al, 2005). 

5.1.2 Burkholderia genome and their phage 

The Burkholderia genome consists of multiple replicons (chromosomes) which 

can vary between strains. The Burkholderia cepacia type- strain ATCC 25416 

(genomovar I) is 8.1 Mb in length and is known to have four circular replicons (rrn). Its 

largest replicon contains 4 rrn operons and the other two megabase- sized replicons 

contain a single rrn operon each. From this information it can be inferred that the 
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organism has three chromosomes and one large plasmid (Rodley et al, 1995). Genome 

Sequence of Burkholderia cenocepacia H111 consists of 3 chromosomes (Carlier et al, 

2014), Burkholderia cenocepacia J2315 consists of 3 chromosomes and a plasmid 

(Holden et al, 2009) as does Burkholderia multivorans ATCC 17616 (Nishiyama et al, 

2010) and Burkholderia vietnamiensis G4 consists of 3 chromosomes and 5 plasmids 

(Maida et al, 2014). This also means that each chromosome can have its own lineage. 

One study showed that within the Burkholderia species Bcc strains showed the largest 

sequence homology 78 to 63 % of its coding sequences (Holden et al, 2009). A study 

investigating the degree of sequence homology showed it was greatest on the largest 

chromosome with the other chromosomes exhibited more divergence (Holden et al, 

2004).  

The implications of this can be that a temperate phage would integrate into a 

specific chromosome. B. pseudomallei K96243 is a 7.3 Mb which appears to have three 

prophage regions, where only one (ΦK96243) is known to be fully functional as a 

bacteriophage (Holden et al, 2009). B. pseudomallei E12 has shown to spontaneously 

produce two temperate bacteriophage ϕE12-1 and ϕE12-2 (Ronning et al, 2010). 

Therefore, it can be hypothesised that some Burkholderia harbor multiple inducible 

prophages. Bacteriophages in Burkholdria species can act as a means of transposable 

elements and carry moron genes that may aid their host (Ronning et al, 2010). 

Bacteriophage 1710b-3 has been predicted as carrying a moron gene that has abortive 

infection function (Ronning et al, 2010). Burkholderia phage 17616-4 has predicted 

moron genes that may be involved in pyocin-related function (Ronning et al, 2010).  

BcepMu is a prophage present in Burkholderia cenocepacia, which is a Mu-like 

phage (Summer et al, 2004). The BcepMu phage replication and packaging method 

results in an additional 2 kbp of the host bacterial DNA in the virion head (Summer et al, 

2004). This hypothetically increases the potential level of transduction and transfer of 

genetic material as the phage also integrates almost randomly into the host cell (Summer 
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et al, 2004). These phages could potentially transfer any region of the Burkholderia 

genome sequence to another host cell.    

Aims: In this study 47 CF samples of Burkholdria cepacia complex have been 

obtained from the Freeman hospital to induce temperate phages using norfloxacin, 

characterise and genome sequence the inducible Bcc phage. This study aims were to 

show the cross infection profiles and to characterise the genome of the Bcc temperate 

phages. The study aims to use the k-mer peak separation method and construct draft 

genome to submit to the online nucleotide database. This study shows the chemical 

induction of temperate phages from 47 Bcc clonal isolates equating to 6 of the 10 sub 

species of Bcc (Table 2.2.3) mainly consisting of genomovar III A (n=22) and multivorans 

(n=13). 
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5.2 Results 

 5.2.1 Cross Infection of phage lysate onto 47 Bcc backgrounds 

Bcc phage lysate were prepared using the same protocol as described in chapter 

2.3.1. Phage lysates from 47 CF clinical Bcc isolates were spotted onto all 47 of the 

available bacterial backgrounds including the originating complex background from 

which they were induced. Due to insufficient clinical data deeper characterisation as 

presented in chapter 3 of this study was not possible. The percentage mean infection of 

each lysate containing Bcc phages from each of the complexes were compared and no 

significant difference was seen, thus this data is not presented for each sub species. The 

Bcc samples as mentioned in the introduction (chapter 5.1.2) consist of 22 genomovar 

III A and 13 multivorans. This constitutes 35 of the 47 samples, from this we can infer 

that genomovar III A is the most prevalent sub species in the 47 CF patients presented 

in this study, reflecting current findings based on prevalence.  

The mean infection of the phages lysates induced form the genomovar III A is 

64 % and for multivorans is 65% across the 47 Bcc bacterial cohorts. The results were 

tabulated as infectivity (red, yellow and green) or no infectivity (black) in Figure 5.1. The 

key information that we can take from the cross infection table is that all the Bcc bacterial 

isolates harboured at least one inducible temperate phage. The phage induced from Bcc 

16 exhibited the highest infection rate (96%) and was a phage from a Burkholderia 

vietnamiensis bacterial isolate. It is similar to the KS9 phage and a genome alignment is 

shown in figure 5.10. The phage from sample 20 exhibited the lowest infection rate of 

38%. The sequence sample of this lysate showed 2 contigs at 27 and 26 kbp with no 

sequence similarities on the Viruses database and was not presented in this study as 

they were considered as partial phage genomes. The Bcc bacterial isolate that was most 

susceptible to infection (98%) was Bcc 17 (B. multivorans) and the highest incidence of 

clear lysis due to phage infection was seen on Bcc 34 (B. multivorans). Figure 5.1 also 

shows that 68% of the Bcc phages could re-infect their originating host. 
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Figure 5.1: Infection profile of Bcc phage. Schematic diagram showing cross infection assay of induced phage lysates onto 47 Bcc bacterial lawns. 

The table shows each induced phage lysate was spot tested onto all 47 Bcc isolates. The Yellow (turbid), Red (lysis) and Green (halo) all represent 

Phage infection and Black denote the inability of the phage to infect the bacterial background. The phages are shown based on infectivity highest to 

lowest left to right. 

↓ Lysate Host→ φ16 φ3 φ1 φ2 φ31 φ45 φ40 φ37 φ39 φ42 φ43 φ22 φ7 φ5 φ9 φ11 φ28 φ35 φ4 φ18 φ38 φ41 φ27 φ8 φ23 φ14 φ19 φ30 φ33 φ36 φ47 φ6 φ10 φ21 φ26 φ29 φ32 φ17 φ46 φ44 φ34 φ13 φ15 φ12 φ25 φ24 φ20
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5.2.2 Genome characterisation 

Phage genomic DNA was extracted from the Bcc phage lysate samples using 

the method described in 2.6.2 and sequenced as described in 2.6.3. The low level 

erroneous k-mers and bacterial contamination was removed using the khmer toolkit 

(chapter 2.6.5) and the k-mer graphs are shown in table 5.1. Using the extracted k-mers 

the genomes were assembled using SPAdes v3.5.0 (chapter 2.7). The assembled 

genomes were searched for sequence similarity using Basic Local Alignment Search 

Tool nucleotide (BLASTn) virus database standalone command line BLAST against the 

virus database (chapter 2.11.1). In this format the sequence identity could be focused 

specifically on viral genomes independent from the non-redundant database at NCBI. 

Searching locally in this manner using blastn significantly reduced the time taken to 

generate comparison output files.  

The blastn similarities were used to group and compare the phages found in the 

Bcc sequence data using a dot plot generated in gepard and mauve alignment. Figure 

5.2 shows the sequence comparison in a dot matrix using gepard comparison software. 

Each phage has been concatenated end on end and compared. Therefore, the diagonal 

line through the centre shows is solid as a direct comparison of phage versus phage and 

where there are lighter areas the lower the homology between the genome sequences. 

Table 5.2 shows the number of phages that shared a sequence similarity using blastn.  
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Table 5.1: Bcc K-mer peaks pre and post sequence extraction. The table 

shows the pre and post k-mer graphs. The post sequence extraction graphs illustrate k-

mers after removal of low abundance k-mers 

This study identified seven phages which were shown to share a degree of 

sequence homology with the phage Bcep176. The level of nucleotide homology between 

the four different phage genomes similar to Bcep176 can be seen in figure 5.3. The 

highest sequence homology is seen by vB_Bcc_11a and the least by vB_Bcc_5a. Both 

vB_Bcc_11a and vB_Bcc_5a are similar in sequence length to Bcep176. The other two 
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phages vB_Bcc_23a and vB_Bcc_35a are shorter by 4 and 6 kbp in length respectively. 

The purple block seen in vB_Bcc_11a and vB_Bcc_23a shares some sequence 

homology to the reference sequence Bcep176. At around the 31 kbp region of the 

Bcep176 phage there is a gene (identified as hypothetical gene) which is not present in 

vB_Bcc_11a (20 kbp region) and vB_Bcc_23a (14 kbp region). 

    

 

 

 

Figure 5.2: A dot plot of 26 Bcc phages. A dot matrices comparing the nucleotide 

sequences of the 26 Bcc phages. The x and y-axis consists of 26 phages that were 

concatenated together into a fasta file. This map was generated using Gepard v1.40 

(Krumsiek et al., 2007) using a window size of 25 and word length of 11
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Most similar phage on blast 
database (family) 

Genome size kbp Blastn nucleotide match  in 
kbp for the largest region of 

similarity 

Number of phages similar to 
the phage 

JG068 (Podoviridae) 41.604 0.790 1 

KS9 (Siphoviridae) 39.805 0.786, 0.788 and 11.771 3 

Bcep176 (Siphoviridae) 44.856 0.127, 10.374, 8.265 and 0.699 7 

BcepMu (Myoviridae) 36.748 36.747 4 

KS10 (Myoviridae) 37.635 37.623, 37.632 and 37.627 3 

KS5 (Myoviridae) 37.236 8.406 1 

PhiE12-2 (Myoviridae) 36.690 2.606 1 

J2315 ch2 3200  35.805 1 

DC1 (Podoviridae) 61.847 0.307 1 

PhiRSA1 (Myoviridae) 38.760 1.048 1 

Salicoliphage CGphi29/ 
Bcep781 (Myoviridae) 

40.695/48.247 0.127/0.043 1 

PhiE125 (Siphoviridae) 53.166 0.751 1 

Phi1026b (Siphoviridae) 54.845 0.770 1 

 

Table 5.2: Bcc phage similarity. The table shows the blastn similarities on the viruses’ database. The total number of Bcc phages is 26; the table 

shows the variation in blastn hits to the Bcc phages.  
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Figure 5.3 Mauve alignment of Bcep176-like phage. A sequence alignment that compares the nucleotide sequence of 4 Bcep176–like 

(vB_Bcc_5a, vB_Bcc_11a, vB_Bcc_23a and vB_Bcc_23a) Burkholderia phages with Bcep176. The coloured backbone makes it easier to see where 

there are shared sequences matches. The alignment was generated using Mauve v2.3.1 using progressive alignment.
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Figure 5.4 shows an example of one of the 4 phages that shared almost 100% 

sequence homology to the phage BcepMu. However, the genome of this phage was 

larger than the reference BcepMu phage. The sequence of the isolated phage is larger 

at the left end of the phage by around 4 Kbp. There are 3 extra genes identified on the 

left hand of the genome and one gene on the right region of the genome. The first 

putative gene is identified as a hypothetical protein, the second is identified as an 

integrase core domain protein and the third putative gene is identified as a small-

conductance mechanosensitive channel. The extra putative gene identified at the right 

end is identified as a squalene-hopene cyclase. This is indicative of BcepMu phage DNA 

packaging where fragments of the genomic DNA are incorporated into its phage capsid 

and has been previously reported (Summer et al, 2004). 

The Bcc phage vB_Bcc_43a shared very little sequence homology to any phage 

on the viruses’ database, the Salicoliphage CGphi29 shared a 127 bp similarity and only 

43 bp sequence homology shared to Bcep781. Figure 5.5 shows the mauve alignment 

of these two phages to vB_Bcc_43a. The vB_Bcc_43a phage is substantially larger in 

length and may be a novel phage. The second reference sequence is used to support 

that this is potentially a Bukholderia like phage. The Bcep781 phage shares sequence 

homology to vB_Bcc_43a across a putative Holliday junction resolvase. Resolvases are 

used by phage for DNA recombination.  
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Figure 5.4 Mauve alignment of BcepMu-like phage A sequence alignment that compares the nucleotide sequence of a BcepMu–like (vB_Bcc_6b) 

Burkholderia phage with BcepMu. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was 

generated using Mauve v2.3.1 using progressive alignment. 
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Figure 5.5 Mauve alignment of CGphi29-like phage A sequence alignment that compares the nucleotide sequence of a Burkholderia phages 

(vB_Bcc_43a) with Bcep781 and Salicola CGphi29. The coloured backbone makes it easier to see where there are shared sequences matches. The 

alignment was generated using Mauve v2.3.1 using progressive alignment.
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Figure 5.6 shows the sequence alignment of a DC-1 like phage, vB_Bcc_29a is 

a 35 kbp phage and DC-1 is over 60 kbp in length. They only share 307 bp sequence 

similarity based on the blastn search. The shared homology at the 60 kbp region on the 

reference DC-1 genome is across a putative lysozyme (99%). Lysozymes are used by 

phage to degrade the bacterial cell wall and facilitates phage infection. 

The phage vB_Bcc_17a shares a sequence 38.805 kbp homology to a region on 

chromosome 2 of the J2315 Burkholderia genome. The viruses’ database showed no 

similarities and therefore a remote alignment was carried out to show it was an inducible 

prophage. The mauve alignment is shown in figure 5.7. 

The sequence homology between JG068 and vB_Bcc_4a is shown in the mauve 

alignment in figure 5.8. The shared blastn similarity is shown to be very limited with only 

790 bp of similarity. The mauve alignment shows some homology in three distinct regions 

where the red block represents the largest region resemblance is seen. The sequence 

homology to the reference genome is seen on the 7.2 kbp region to a putative DNA 

helicase, 9.6 – 12 kbp DNA polymerase, 16 - 18.7 kbp RNA polymerase and the 19 – 26 

kbp which shares homology to hypothetical head, head to tail connector, scaffolding 

protein, capsid protein and the beginning of the tail tubular protein. This homology is only 

evident in the Mauve alignment and not seen from blastn search results. 
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Figure 5.6 Mauve alignment of DC1-like phage. A sequence alignment that compares the nucleotide sequence of a DC1–like (vB_Bcc_29a) 

Burkholderia phages with DC-1. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was 

generated using Mauve v2.3.1 using progressive alignment. 
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Figure 5.7 Mauve alignment of J2315ch2-like phage. A sequence alignment that compares the nucleotide sequence of a Burkholderia phages 

(vB_Bcc_17a) with J2315_ch2. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was 

generated using Mauve v2.3.1 using progressive alignment. 
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Figure 5.8 Mauve alignment of JG068-like phage. A sequence alignment that compares the nucleotide sequence of a Burkholderia phages 

(vB_Bcc_4a) with JG068. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was generated 

using Mauve v2.3.1 using progressive alignment. 
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The Burkholderia phage vB_Bcc_11b shares a blastn sequence homology (8.406 

kbp) to Burkholderia phage KS5. Figure 5.9 shows the mauve alignment between the 

two phages where the sequence homology is notably more apparent and widespread 

across the genome. A region where the vB_Bcc_11b omits genes is seen in the KS5 

genome at around the 26 and 29 kbp in the reference KS5 genome. The KS5 genome 

at 9 kbp shows a mobile genetic element flagged by repeat regions on either side of the 

genome which is not present in vB_Bcc_11b. The KS5 genome also has a putative 

exonuclease like gene between 23 – 25 kbp which is not present in vB_Bcc_11b. This 

inadvertently means that the vB_Bcc_11b phage is around 5 kbp shorter. The two 

regions where the vB_Bcc_11b has a putative gene not present in the KS5 genome is a 

hypothetical protein at 6.3 kbp and a tRNA anti-like protein at the 14.6 kbp region of the 

genome. 

Figure 5.10 shows the mauve alignment of 3 phages (vB_Bcc_4b, vB_Bcc_16a 

and vB_Bcc_39a) that according to the blastn similarity search showed only one of the 

3 having over 11 kbp region of sequence similarity to KS9. However, the alignment 

shows a red block of nucleotide sequence which shares the most homology between all 

the phages. vB_Bcc_4b and vB_Bcc_16a display the most sequence homology to each 

other. The conserved regions between all the phages are the tail head capsid terminase, 

tail tip fibres, endolysin and holin protein. Another region conserved in all the phages is 

the pink block and is identified in a helicase.  
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Figure 5.9 Mauve alignment of KS5-like phage. A sequence alignment that compares the nucleotide sequence of a Burkholderia phage 

(vB_Bcc_11b) with KS5. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was generated 

using Mauve v2.3.1 using progressive alignment. 
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Figure 5.10: Mauve alignment of KS9-like phage. A sequence alignment that compares the nucleotide sequence of 3 KS9–like (vB_Bcc_4b, 

vB_Bcc_16a and vB_Bcc_39a) Burkholderia phages with KS9. The coloured backbone makes it easier to see where there are shared sequences 

matches. The alignment was generated using Mauve v2.3.1 using progressive alignment.
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Three Burkholdria phages shared very high sequence similarities to the phage 

KS10 (figure 5.11). There were a few bp variations predominantly at the right end of the 

genomes. 

The phage vB_Bcc_31a displayed a 0.770 kbp match to Phi1026b. vB_Bcc_31a 

is a larger phage than Phi1026b (figure 5.12). Based on the mauve alignment the 

majority of this homology is on a single putative DNA methylase. 

The vB_Bcc_15a phage shares sequence homology to PhiE12-2 which appears 

to be scattered across the whole genome (figure 5.13). The blastn sequence similarity 

showed a 2.606 Kbp homology (77%) between the phages. Sequence homology is 

identified between a small terminase, major capsid, capsid scaffolds, terminase ATPase, 

phage portal, addiction module antidote and killer protein. All the regions in the 

vB_Bcc_15a where no homology is seen to the reference PhiE12-2 are hypothetical 

proteins.  

The phage vB_Bcc_43b shares a 0.751 kbp sequence homology to PhiE125 

(figure 5.14). This similarity is seen in the centre of the genomes predominantly, the first 

gene is a putative DNA adenine methylase and the second region is similar to a plasmid 

region. 

The Burkholderia phage vB_Bcc_32a shares a 1.048 kbp match to a Ralstonia 

phage Phi RSA1 (figure 5.15). This match is predominantly over a putative transposase 

gene at the 27 kbp region on the RSA1 phage. The genomes share homology to a 

putative terminase gene at 8 kbp region of the Phi RSA1 genome. 
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Figure 5.11 Mauve alignment of KS10-like phage. A sequence alignment that compares the nucleotide sequence of 3 KS10–like (vB_Bcc_6c, 

vB_Bcc_13a and vB_Bcc_28b) Burkholderia phages with KS10. The coloured backbone makes it easier to see where there are shared sequences 

matches. The alignment was generated using Mauve v2.3.1 using progressive alignment. 
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Figure 5.12 Mauve alignment of Phi1026b-like phage. A sequence alignment that compares the nucleotide sequence of a Burkholderia phage 

(vB_Bcc_31a) with phi1026b. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was 

generated using Mauve v2.3.1 using progressive alignment. 
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Figure 5.13 Mauve alignment of PhiE12-2-like phage.  A sequence alignment that compares the nucleotide sequence of a Burkholderia phage 

(vB_Bcc_15a) with phiE12-2. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was 

generated using Mauve v2.3.1 using progressive alignment. 
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Figure 5.14 Mauve alignment of PhiE125-like phage. A sequence alignment that compares the nucleotide sequence of a Burkholderia phage 

(vB_Bcc_43b) with phiE125. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was 

generated using Mauve v2.3.1 using progressive alignment. 
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Figure 5.15 Mauve alignment of RSA1-like phage. A sequence alignment that compares the nucleotide sequence of a Burkholderia phage 

(vB_Bcc_32a) with phiRSA1. The coloured backbone makes it easier to see where there are shared sequences matches. The alignment was 

generated using Mauve v2.3.1 using progressive alignment.
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5.3 Discussion  

5.3.1 Cross infection of the temperate phage 

The results presented this study detail induction, DNA extraction of genomic 

phage DNA, sequencing and characterisation of BCC phages. We identify that every 

strain of Bcc isolated from the CF lung environment was shown to harbour at least one 

inducible temperate phage when stressing the cell using the antibiotic norfloxacin. The 

cross infection study mirrors the approach and objectives of chapter 3, in that the 

approach looks to map the infection profile the potential mixed lysate populations of 

phage. Interestingly here we show that 68% of these phages were able to re-infect their 

originating Bcc host and therefore do not conform to the lambda temperate phage model 

of inhibition to superinfection. Superinfection in the context of bacteriophages is a re-

infection of the same host bacterial cell by an isogenic phage (Adams, 1959).  

From the data presented 15 carry only one phage, the other 5 are polylysogens. 

In this study we showed that the Bcc isolates displayed varying susceptibility to phage 

infections and the Bcc phages showed varying infection profiles. We showed similar 

findings with the Pa isolates and their phages. The limited clinical data associated with 

the Bcc samples unfortunately meant that this study could not extrapolate any other 

details from the cross infection data  

However, it can be inferred that the variation in the phage/host dynamics seen in 

the cross infection study, could be associated with the temperate phage resistant 

strategies the bacterial host evolve, in order to evade phage lysogenic infections 

(discussed in chapter 1.6.6). This study showed that the average percentage infection 

between the phages from genomovar III A and multivorans species remained 

comparable at 64% and 65% respectively. 
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5.3.2 Bcc phage genome isolation and characterisation 

Bcc phages were induced using the protocol described in chapter 2.3.1 and 

bacterial DNA and RNA was enzymatically cleaved and isolated using the method 

described in chapter 2.6.2. The khmer toolkit was used (as described in chapter 2.6.5) 

to remove any erroneous k-mers of k length < 32 and by means of extracting out k-mers 

based on abundance and count, cross over bacterial DNA was significantly depleted. 

The k-mer graphs pre and post sequence extraction for the Bcc phages can be found in 

table 5.1. What was immediately evident from the Bcc k-mer graphs compared to the Pa 

k-mer graphs fewer peaks were observed. These translated into fewer phages as per 

Bcc isolate. This had a direct effect on the assembly of these phages, where fewer issues 

with chimeric assemblies were seen and thus made it easier to validate complete phage 

assemblies. From the panel of 47 bacterial isolates 26 Bcc carried inducible phages. The 

phage genome assemblies were presented and their circular genome maps can be seen 

in appendix 4. These phages and their closest taxonomical sequence similarity are 

tabulated in table 5.2. The first limitation of this method is linked to the low sequence 

yield which could be associated to the phage titre in the lysate or number of raw reads 

per sample used for assembly. Samples that had partial assemblies were not shown in 

this study and thus only 26 Bcc phage genomes are presented.  

Of the 26 phages presented, seven showed sequence homology to Bcep176, 4 

to BcepMu, 3 to KS10 and KS9 and 1 each to Bcep781, DC1, JG068, KS5, Phi1026b, 

PhiE12-2, PhiE125, PhiRSA1 and J2315 ch2 like phages. Although only 26 complete 

Bcc phages were identified they appear to be more dissimilar as 13 different types were 

identified based on sequence similarity. All the phages are of the Caudovirales order and 

are members of the Siphoviridae, Myoviridae and Podoviridae family based on their 

sequence homology. Blastn searches offer little information about the phage genome 

architecture bar identifying sequence homology. Three KS10 like phages (figure 5.11) 

and the phage sharing homology to a Burkholderia J2315 chromosome two (figure 5.7) 

exhibits nearly 100% sequence identity matches. All the other phages in comparison 
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have varying sequence homology. Thus, the mauve alignments offer a greater depth of 

information concerning the genome architecture, identical sequence homology and 

percentage homology. Figure 5.9 displays a vB_Bcc_11b phage that shared according 

to the blastn search 8.4 kbp match to KS5. However, the mauve alignment revealed a 

greater degree of sequence conservation and homology seen between the two phages. 

Using the mauve alignment, it could be seen where the vB_Bcc_11b was absent from a 

mobile genetic element and exonucleases gene which were present in KS5 and instead 

a putative tRNA anti-like genes was present in vB_Bcc_11b genome at this position and 

absent in the KS5.   

This study shows that the phages in Bcc do exhibit genomic and potentially 

morphological diversity. Unfortunately Bcc temperate phage are not well characterised 

and therefore little is known (Langley et al, 2003; Nzula et al, 2000). Bcc strains have 

been through taxonomical revisions over the last few decades and some phage pre-date 

this revision. Examples include phage CP1 (Cihlar et al, 1978) and CP75 (Matsumoto et 

al, 1986). Both of these authors refer to the bacterial strain as Pseudomonas cepacia. 

This confusion within the taxa of the bacteria may have repelled researcher away from 

studying these bacteria and their phage.  

Bcc strains are used as bioremediation and as fungicidal in eastern countries and 

are seen as ‘good’ bacteria. However, our growing understanding of this strain being 

opportunistic and problematic in CF and chronic granulomatous disease in the western 

countries has given them a bad ‘vibe’ (Mahenthiralingam et al, 2002). A virulent Bcc 

ET12 strain has been shown to be multidrug resistant and to some of the strongest Bcc 

antibiotics, meropenem and ceftazidime (Nzula et al, 2002). The predominant research 

focuses on lytic phage based therapy as this type of research can offer direct impact on 

disease and clinical management. A study looking at 20 Bcc isolates identified that 

lysogeny is common in Bcc strains as they went on to identify 14 phages (Langley et al, 

2003). This is a common trait in most dsDNA temperate phages. This method however 

only involved screening of spontaneous phages and this is where this study is also novel 
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in that it is using a chemical inducer in the form of an antibiotic NFLX. The research 

presented here could potentially increase the available pool of Bcc temperate phage 

genomes.  

This study shows potentially eighteen novel phages that either share weak and 

or conserved sequence homology to phages. We show that four phages (figure 5.4) are 

slightly larger than the BcepMu like phage. This would conform to the hypothesis of this 

phage adding ~ 2.5 kbp of the host bacterial chromosomal DNA into its capsid due to its 

unique packing strategy (Summer et al, 2004). This also highlight that these phages still 

need to be evaluated for their genomes entirety.      

Based on the aims of this chapter it can be concluded that Bcc phages exhibit 

varied infection profiles and can harbour more than one temperate phage in their 

genomes. However, in comparison to Pa sample the Bcc samples do not have a high 

diversity of phages in their lysate, making downstream sequence analysis 

comparatively easier to analyse. The study will add sequence data associated to Bcc 

temperate phages to online databases, that would offer improve downstream 

comparative genomic analysis. 
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6. Confirming the bacteriophage adherence to mucus (BAM) model 

on temperate bacteriophage and the impact of choosing the correct de 

novo assembly algorithm for metagenome assemblies. 

6.1 Bacteriophage adherence to mucus (BAM) Model  

In the lungs mucus acts as a barrier for protection against pathogenic infection of 

the epithelia. It achieves this by forming a layer between the lumen of the airways and 

the primary epithelial cells (Barr et al, 2013a; Hansson, 2012). Mucus is composed of 

mucin, hydrophobic glycoproteins (Cone, 2009; Rose et al, 1987) and other 

macromolecules that are also known to be present depending on which organ (Kim & 

Ho, 2010). The Bacteriophage Adherence to Mucus (BAM) model proposes that lytic 

phages adhere to carbohydrate residues present within the mucus layer, and provide a 

layer of immunity to incoming bacteria as the tail fibers adsorb to the bacterial surface, 

infecting incoming bacterial cells, multiplying and therefore lysing the cells. This therefore 

offers another layer of defense and immunity against certain bacteria trying to colonise 

the mucus layer. The cell debris of the lysed bacteria and excess phages are expelled 

with the mucus (Barr et al, 2013a).  

The BAM model is facilitated by structurally displayed carbohydrate adherence 

domains, such as the immunoglobulin (Ig)–like domain present on the highly 

immunogenic outer capsid (HOC) of Myoviridae phage (Fraser et al, 2006). Structural 

proteins with associated Ig-like domains have been found in approximately 25 % of the 

sequenced dsDNA phages of the Caudovirales order, demonstrating their ubiquity and 

their potential importance in aiding phage survival (Fraser et al, 2006). Ig-like domains 

have been found on structural genes of the Siphoviridae, Myoviridae and Podoviridae 

bacteriophages (Fraser et al, 2006; Tariq et al, 2015). Fibronectin is a 440 kDa is an 

example of a glycoprotein that is complementary to an integrin. Integrin’s are 

transmembrane receptors that adhere cell to cells (Pankov & Yamada, 2002). 

Fibronectins are involved in a wide range of cellular interaction including cell-cell 

adhesion, migration and cell differentiation (Greiling & Clark, 1997; Valenick et al, 2005). 

Bacterial Ig-Like domains are found on bacterial cell surfaces and have Ig like folds which 
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interact with bacterial cell adhesion molecules (intimins) (Kelly et al, 1999). Fibronectin 

type 3 domians have been seen on tail fibres of Siphoviridae and a type 2 bacterial Ig-

like domain (Big_2 domains) on major head protein (MTP) of the same family (Fraser et 

al, 2006). Such structural domains have been seen to be conserved for phage 

propagation in laboratory settings as they mediate interactions between the phage and 

its host cell (Fraser et al, 2007; McMahon et al, 2005). Conservation of these domains 

increase infectivity, binding to degrade polysaccharides and the domains can be 

horizontally transferred (Fraser et al, 2007). Figure 6.1 shows a schematic diagram of 

this process. 

In chapter 3 of this thesis the cross infection study offered a large data set 

showing adaptation and the change in dynamic interaction between phages and their 

hosts as chronic respiratory disease progresses. As there is a difference in interaction 

based on the phage infection profiles, then it is pertinent to look at other traits that 

correspond to the environment of the chronic lung and disease progression. As there is 

thick viscous mucus, it was pertinent to hypothesise that carrying a complex 

carbohydrate binding motif would offer a selective advantage for temperate phages too. 

This affinity, holding the phage at the mucus would also enable infection of incoming 

bacteria to the environment and may aid the addition of genetic variation to the 

community that benefits both the phage and the bacterium.  
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Figure 6.1 Bacteriophage adherence to mucin (BAM) model. The diagram show the lytic phage mediated immunity. Lytic bacteriophages 

adhere to the mucus secreted and utilise the environment to infect any incoming bacteria. The result of successful lysis increases the phage 

titre, excess phages are cleared out with the mucus maintain an equilibrium in the lung environment. The image was taken from Barr et al 

(Barr et al., 2013).  
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In chapter 3 it was demonstrated that every strain of Pa isolated from the lung 

environment had inducible prophage. The study also identified that phages chemically 

induced from a CF Pa background when spotted onto BR Pa strain backgrounds 

displayed higher infection rates when compared to phage induced from BR Pa 

background. Interestingly a higher number of CF Pa phages could re-infect their 

originating hosts compared to the BR phages. This finding goes against the global 

convention of temperate phage infection, as the prophage repressors function is to 

prevent superinfection (Kholodii & Mindlin, 1985). This suggests that the CF Pa phages 

and hosts have adapted and hypothetically are more evolved with an ability to re-infect 

their originating hosts in this environment. This offers variation through gene addition 

and the impact this has. Fogg et al 2011 illustrated that subsequent infection of isogenic 

phages with Stx-phage 24B (Fogg et al, 2011), promotes superinfection (Allison et al, 

2003) but also increases toxin production through multiple copies of the gene present 

with polylysogeny (Fogg et al, 2012).  This adaptation is possibly more pronounced due 

to the lung environment being constrained, in the lower lung bronchi with pockets of 

infection alongside poor movement of the mucus and the ability of Pa to form biofilms. In 

the genome annotation of the Pa phage (appendix 3) we see genes associated with 

immunoglobulin (Ig)-like domains, these domains may be involved in protein-ligand and 

protein-protein interactions.  

This study investigates whether the temperate phages isolated from the mucus 

rich environments of CF and BR patients’ lungs support the BAM model and its clinical 

relevance. We here propose a different strategy for the BAM model for phages to 

disseminate across their host range. These observations led to the hypothesis that these 

domains may aid in both the adsorption of phages to their bacterial hosts and the mucus 

layer under certain environmental conditions (Fraser et al, 2007). This study 

hypothesizes that temperate phages may use the mucus barrier as a way of infecting 

incoming bacteria which may drive gene exchange and add another level of adaptation 

and evolution. It also may be a way of increasing genetic heterogeneity in a population 
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of bacteria in late stage chronic lung infections that are traditionally thought to be 

somewhat clonal. This report compares the inducible temperate phages of Pa found in 

the lungs of patients with CF and BR using a metagenomic approach and studies the 

complexity of functionality the phage accrues through their continual adaptation and 

evolution in the chronic lower lung. 

In order to characterise the Pa phage further we isolated their DNA and 

sequenced them on the Illumina MiSeq. In this study the mixed viral communities 

induced from each isolate were harvested, DNA extracted and sequenced were 

assembly using was attempted using three assembly algorithms; SPAdes v3.1.0, IDBA-

UD v1.1.1 and VelvetOptimiser v2.2.5. Using these 3 assemblers allowed comparison 

and whether each offered difference in incidence or type of Ig binding motif present from 

differences in algorithm. In this study de novo assembled phage genomes were searched 

for putative carbohydrate adherence domains (CAD) (Tariq et al, 2015). This was tested 

to assess the relevance of the bacteriophage adherence to mucus (BAM) model initially 

proposed by Jeremy Barr (Barr et al, 2013b) in temperate phages. For the purpose of 

this study we used 45 BR samples and 47 CF samples. 

6.1.1 Genome assemblers 

There are a number of paid and open source de novo genome assemblers 

currently available for assembling contigs from Illumina based paired end reads. The 

three assemblers used here in this study utilise the de Bruijn graph assembly algorithm. 

This algorithm helps separate repeat regions as true repeats first proposed by Idury and 

Waterman (Idury & Waterman, 1995). The assemblers also utilises the error correction 

step added later by Pevzner that removed errors in the reads generated by the 

sequencer, a major problem for Sanger reads from the first generation sequencer at the 

time, as they had high error rates (Pevzner et al, 2001). PacBio presents this problem 

today with <Q10 accuracy (Quail et al, 2012). The three assemblers explored in a chapter 
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of this study are SPAdes, VelvetOptimiser (using Velvet) and IDBA-UD, all are open 

source.  

The SPAdes assembler was first launched in 2012 by St Perterburg University. 

Since its launch it has been well maintained and is much easier to install and use 

compared to other assemblers. SPAdes is able to utilise reads from Illumina, Ion Torrent 

and can give hybrid assemblies from Oxford Nanopore, PacBio, and Sanger platforms. 

SPAdes was ranked well on the GAGE-B paper which looked at several popular 

assemblers and how they compared when assembling bacterial genomes (Magoc et al, 

2013). A study compared SPAdes to eight other assemblers and found that it was the 

best at assembling Caulobacter henricii a GC-rich genome which can be problematic 

(Scott & Ely, 2015). Bacteriophages have also been shown to have GC-rich genomes, 

implying SPAdes as a good choice to assemble bacteriophage sequence data from 

Illumina MiSeq sequencer platform. SPAdes has four main steps that help assemble 

contigs from uneven coverage and to prevent chimeric assemblies. The steps involve 

firstly creating an assembly graph, biread adjustments, construction of pure assembly 

graph and finally contiguous sequence contruction using BWA. BayesHammer tool is 

used to improve error in contigs contruction. 

Velvet also uses the de Bruijn graph to assemble de novo assemblies. 

VelvetOptimiser was developed by S. Gladman and T. Seemann and their group at 

Victorian Bioinformatics Consortium. VelvetOptimiser is a multithreaded perl script which 

helps to automate three parameters k, -exp_cov, and -cov_cutoff part of the velvet de 

novo assembler. Once you set your start and end k-mer lengths you choose the k-mer 

increments to be searched and VelvetOptimiser tries to optimise the parameters 

mentioned above. The k parameter optimises the best hash value given from the value 

ranges. The –exp_cov parameter helps assemble contigs truer to the size. If the –

exp_cov is set to low the contigs sizes will be to low and if set to high you will force 

contigs together thus it is crucial to get the right coverage (Homolog.us, 2016). The 

longer the contigs the more likely the coverage will drop and the coverage cut-off 
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parameter allows the assembler to assemble longer contigs above the coverage cut-off 

set. Velvet uses two commands to assemble contigs velveth and velvetg. Velveth 

generates hashes for the reads and constructs roadmaps to the reads. Velvetg uses the 

information generated by velveth and build the de Bruijn graph, runs the error corrections 

and builds the contigs for each k-mer value set using the parameters in the 

VelvetOptimiser command. 

IDBA-UD is a frequentative de novo assembler that uses de Bruijn graphs to 

assemble its contigs. This assembler is an extension of IDBA in that it is designed for 

assembling contigs from data of uneven sequence depth. IDBA-UD uses low to high 

threshold of coverage cut-off and small to large k values. IDBA-UD can build long contigs 

as it reduces gaps and generates fewer branches in the graph. As the name suggests it 

is good for data set with reads of differing sequence depth. This suggests that it would 

be an ideal candidate for induced temperate phage of differing titres and thus varying 

sequence depth.     

The aim of this chapter was to compare three assemblers based on the number 

of Ig-like domains identified, the number of contigs and largest contig assembled. A 

comparison of Ig-like domains identified based on the disease aetiologies would be 

compared and it is hypothesised that Ig-like domains would increase along disease 

longevity. 
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6.2 Results 

6.2.1 Assembly prior to IG-like domain search 

In order to assess the BAM model, we first assembled our phage metagenomes 

and with preliminary trials showed that the phages assembled in different orientations 

with vastly different contig sizes depending on the assembler used. In this study the first 

analysis was therefore to assemble the phage metagenomes using the different 

assemblers. The assemblers used were SPAdes v 3.1.0 (Bankevich et al, 2012), 

VelvetOptimiser v 2.2.5 and IDBA-UD v 1.1.1 (Peng et al, 2012).  

The assemblies were compared using the quality assessment tool (Quast) 

(Gurevich et al, 2013). Table 6.1 tabulate the Quast analysis of each assembler and the 

assemblies of the phage metagenomes.  This table shows the number of contigs 

assembled for each metagenome, the average size of those contigs and the largest 

assembled contig size. This allows inference on the depth of the data present. What is 

apparent is that the three-way assembler comparison revealed that SPAdes assembled 

larger contigs which correlated to a fewer number of contigs. This necessarily did not 

mean that SPAdes was the preeminent assembler. One method that this study utilises 

in order to justify choosing an assembler is to search for protein domains. Figure 6.1 and 

6.2 compare the genome assemblies of the assemblers and compare them back to the 

disease states. Figure 6.2 illustrates that despite the assemblers varying in the frequency 

of identifying Ig-like domains the trend, to a certain degree remains the same, which is 

that as the disease state progresses with time the number of Ig-like domains increase.  
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SPAdes 3.1.1 VelvetOptimiser 2.2.5 IDBA-UD 1.1.1 

Pa 

Sample 

No N50 

Number of 

contigs >=5

00bp 

Largest 

contig (bp) N50 

Number of 

contigs >=5

00bp 

largest 

contig (bp) N50 

Number of 

contigs >=5

00bp 

largest 

contig (bp) 

1 8330 14 25454 4554 15 11351 8274 15 11253 

2 2064 43 3807 792 36 1718 2308 28 3802 

3 8039 11 27661 3658 18 9286 2942 20 7053 

4 5714 30 16984 760 26 1239 5713 27 16937 

5 52800 2 52800 28349 6 37510 37577 3 40523 

6 61649 3 61649 57714 10 57714 57517 4 57417 

7 14035 14 37361 11114 18 37204 37280 18 37280 

8 1909 49 5871 3569 17 11176 11439 17 11439 

9 8363 15 24014 3560 12 9299 8274 14 11803 

10 9016 14 20434 1677 28 5159 7726 6 20386 

11 1606 8 2802 1519 8 2515 4822 3 4822 

12 3603 29 7027 3521 29 7017 3646 22 6696 

13 8330 17 20288 4878 14 15649 8307 13 20467 

14 17035 41 38360 13243 58 38356 17717 46 38360 

15 62077 6 62077 10313 17 20962 36064 8 37632 
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16 1670 46 7099 3525 18 9331 5161 17 11467 

17 52664 2 52664 28259 3 37474 52623 2 52623 

18 1366 63 4913 2021 22 4868 4698 16 8307 

19 23619 4 29993 
 

No 

contigs >500

bp  20028 6 28817 

20 61562 6 61562 25865 16 37420 34762 7 37677 

21 3055 20 11703 9300 14 11150 8274 15 9366 

22 61772 7 61772 1364 50 2323 21201 5 26599 

23 4681 21 8473 4666 21 8463 4765 11 8442 

24 4019 6 4019 794 8 1864 3822 1 3822 

25 10598 28 44244 10341 38 24798 9896 27 37577 

26 37617 17 41525 10208 21 37479 24044 12 37559 

27 39705 1 39705 39558 1 39558 39579 1 39579 

28 3772 24 7654 
 

No 

contigs >500

bp  8274 13 19484 

29 10321 50 28830 12607 54 27562 13226 53 27631 

30 11205 58 33124 5673 85 27617 7741 64 37496 

31 26208 37 80678 15245 49 67147 18705 31 70475 
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32 17035 43 32899 8268 60 31650 17558 48 30584 

33 39659 1 39659 19927 2 19927 25118 2 25118 

34 61597 7 61597 1749 38 4913 23998 7 26599 

35 17035 38 38239 11482 54 38244 17558 50 38047 

36 37242 8 37654 28201 12 37474 25055 7 37576 

37 8330 12 14034 3679 15 11087 8274 14 11163 

38 3384 32 8039 1113 49 3288 4468 18 8007 

39 2936 29 7842 3073 21 11263 5781 16 19353 

40 2214 42 7645 3523 16 8460 5815 15 12799 

41 12686 34 28104 6299 44 27593 9242 45 28071 

42 28149 32 41380 27649 44 40129 26266 46 38243 

43 3853 21 6849 3985 19 9873 2942 18 7317 

44 52658 2 52658 31041 3 37504 37577 4 37832 

45 32297 16 38297 38284 17 38284 38286 4 38386 

46 10760 17 36835 9991 17 36766 10250 7 28792 

47 15903 29 38353 15686 40 38341 15698 26 38341 

48 3385 16 5970 
 

No 

contigs >500

bp  39556 1 39556 
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49 4467 5 4467 2118 3 2118 4467 2 4467 

50 17035 30 48272 8869 41 28497 16764 24 37577 

51 26325 26 53682 14917 44 38255 15721 29 38116 

52 8363 13 14150 3566 14 9457 8274 14 11198 

53 50013 1 50013 41926 2 41926 49807 1 49807 

54 21563 37 41593 19243 49 40329 17868 46 40398 

55 14052 14 37359 4881 20 37204 8786 16 37021 

56 17035 49 38328 13241 60 38328 17868 49 38316 

57 4085 2 4085 812 1 812 3059 1 3059 

58 3032 8 3249 900 9 3375 3032 4 3249 

59 61772 1 61772 30843 4 30843 61582 1 61582 

60 9128 6 9128 2595 8 4556 10076 1 10076 

61 8089 14 25388 3729 17 11209 11167 17 11167 

62 40441 2 40441 40414 7 40414 40352 2 40352 

63 37715 1 37715 19523 5 19523 20272 2 20272 

64 61772 1 61772 12408 6 17991 61609 1 61609 

65 1193 57 5705 3760 16 9306 4071 17 11107 

66 
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67 886 6 3110 1449 2 1449 2529 1 2529 

68 8089 17 24425 3563 14 11151 8274 15 11180 

69 31654 26 90429 9645 38 31555 31625 26 37639 

70 3712 7 4114 806 9 1065 5574 2 5574 

71 594 1 594 
 

No 

contigs >500

bp  
  

  

72 25633 2 25633 32516 2 32516 37350 1 37350 

73 2257 41 6582 3702 16 15980 5815 15 19653 

74 8237 11 14045 4194 19 9496 8307 14 11163 

75 37660 11 52654 20956 21 31826 37510 9 52534 

76 19009 21 35341 18985 13 31565 18969 10 35340 

77 61772 1 61772 25201 3 26529 61570 1 61570 

78 1806 45 6512 4009 16 10929 5784 18 9892 

79 61772 1 61772 6092 10 19856 61609 1 61609 

80 8122 13 25526 3497 14 8943 8307 14 10037 

81 649 2 649 
 

No 

contigs >500

bp    
 

  

82 2757 6 4408 2671 8 2713 4798 2 4798 
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Table 6.1: Table of three-way assembly comparison between IDBA-UD, SPAdes and VelvetOptimiser. This table shows the assembly of each 

Pseudomonas aeruginosa (Pa) phage lysate genome sample. The Pa sample number refers to the genome sequence number assign to the Pa 

isolates. Three assemblers’ comparison is shown; SPAdes v3.1.1, VelvetOptimiser 2.2.5 and IDBA-UD 1.1. The table shows the N50 score of the 

83 2747 27 5652 1077 25 2160 3247 12 5624 

84 28144 4 28144 23219 7 23219 28049 4 28049 

85 12853 43 34949 10508 56 33590 14670 55 33749 

86 8363 10 27106 3979 16 11175 8307 14 11122 

87 1608 17 2327 1523 17 2287 1690 12 2287 

88 26228 32 38158 13160 40 26010 17717 42 37876 

89 8363 13 22288 1877 25 3681 4905 19 9710 

90 
      

  
 

  

91 61772 1 61772 25193 3 26515 29967 3 30772 

92 61772 1 61772 31735 3 31735 44032 2 44032 

93 10045 10 15044 5913 11 11529 7128 8 23183 

94 882 3 1348 575 2 575 1323 1 1323 

Average 20119.5 18.5 29063.5 11636.6 21.4 20462.0 18374.2 15.3 25739.4 
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assemblies, the number of contigs assembled larger than 500 bp and the largest contig (bp) present in the assembly.  The table also takes an 

average of the assemblies across the samples omitting the samples with no value.  
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Figure 6.1: The total number of Ig-like domains identified as per assembler. Illustrates the total number of Ig-like domains identified using 

GeneWise2 post SPAdes, IDBA-UD and VelvetOptimiser Assemblies. 
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6.2.2 Identification of Ig-like domains 

GeneWise2 was used to identify similarities between the assembled phages and 

the Pfams in table 6.2 (method chapter 2.10.1). Using the assembled contigs from the 

three assemblers this study identified the frequency of total Ig-like binding domains 

(Figure 6.1) and we stratified this further based on the 4 clinical disease states as 

previously mentioned (Figure 6.2).  

To reiterate, the samples were separated based on following criteria < 10 years 

clinical diagnosis BR (17), > 10 years clinical diagnosis BR (28), Paediatric CF (10) and 

Adult CF (37). Big_2 domains were identified in 28 out of the 92 samples; Figure 6.3 

shows this as a percentage (< 10 yrs clinical diagnosis BR 6%, > 10 yrs clinical diagnosis 

32%, CF Paediatric 30% and CF adult 40%). Figure 6.4a depicts the domain architecture 

of the double Big_2 and He_Pig domains. Figure 6.4b illustrates the alignments of the 

Ig-like domains identified. The Big_2 domain was seen in 4 variations all having a higher 

bit score than the recommended cut-off of 25, which is considered significant. Using 

blastn on the open reading frame (ORF), the sequence alignment of the Big_2 domain 

was identified in a putative structural major tail gene. 

We found that 42 of the phage samples had a He_Pig like domain all flanking a 

minor tail protein but in different genes. Figure 6.4b shows the He_pig alignment seen in 

over 70% of the 42 phage samples all other alignments of the He_Pig were seen to have 

a very low bit score and thus deemed to be insignificant.  

All of the Big_2 domains were identified using the 6:23 algorithm and also the 

21:93 algorithms. However, we found that only using the 21:93 GenWise2 algorithm a 

Big_3 domain was identified but was seen overlapping the first Big_2 domain by 89 

amino acid, this could be linked to a frame shift (Fraser et al, 2006). This Big_2 and Big_3 

overlap was seen in most of the samples.  
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An Fn3 domain was seen in 10 samples and was found on a putative phage tail assembly 

protein. Glyco_hydro_2 domain was identified but it was not seen linked to a potential 

structural protein. 

 

SCOP Superfamily PFAM Name Accession 
Number 

Ig V-set PF07686 

I-set PF07679 

C2-set PF05790 

C1-set PF07654 

Ig PF00047 

Ig_2 PF13895 

ICAM_N PF03921 

E-SET Alpha_amylase_N PF02903 

arrestin_N PF00339 

arrestin_C PF02752 

CelD_N PF02927 

peptidaseC25 PF03785 

TIG PF01833 

RHD PF00554 

DUF291 PF03442 

Filamin PF00630 

He_Pig PF05345 

Fibronectin type 3 FN3 PF00041 

tissue_fac PF01108 

lep_receptor_Ig PF06328 

PKD PKD PF00801 

PPC PF04151 

HYR PF02494 



 

194 
 

β-Galactosidase/β -
Glucuronidase 

Glycol_hydro_2 PF00703 

Cu, Zn Superoxide 
dismutase-like 

Sod_Cu PF00080 

PapD-like Pili_assembly_C PF02753 

pili_assembly_N PF00345 

Invasin/intimin cell-adhesion 
fragments 

Big_1 PF02369 

Big_2 PF02368 

Big_3 PF07523 

Big_4 PF07532 

Clathirin adaptor appendage 
domain 

Alpha_adaptin_C2 PF02883 

Transglutaminase N-terminal 
domain 

Transglut_N PF00868 

Cadherin-Like Cadherin domain PF00028 

Actinoxanthin-like Neocarzinostatin family PF00960 

CBD9-like Domain of unknown 
function 

PF06452 

laminA/C globular tail 
domain 

Intermediate filament tail 
domain 

PF00932 

Other Ig-like C type Lectin PF00059 

BACON PF13004 

MucBP PF06458 

 

Table 6.2: Table of selected Ig-like domains. This table shows 40 Pfam databases 

used in GeneWise2 and adapted from Fraser et al 2006. 
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Figure 6.2: Clinical stratification of Ig-like domains identified as per assembler. Stratifies the total number of Ig-like domains identified by the three 

separate assemblies into the 4 clinical disease states. 
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Figure 6.3: The total prevalence of Big_2 domain identified stratified against disease aetiologies. Concentrates on the percentage of Big_2 

domains identified, as it attained the highest alignment score using GeneWise2.  
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Figure 6.4: Domain architecture of Big_2, He_Pig and amino acid alignments. 

Panel A shows the domain architecture of the double Big_2 domain that was identified 

in a subset of the phage lysates from the clinical samples, the second image is the 

proposed domain architecture for He_Pig. The He_Pig domains however, span over 

different genes adjacent to the Phage minor tail protein. Panel B shows the sequence 
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alignments of the Ig-like domains; Big_2, Big_3, Fn3, Glyco_hydro_2, He_Pig and 

CelD_N found in phage proteins. The sequence alignment of Big_2 is represented along 

with 4 variations that were seen in this study; all the samples have a high similarity to the 

Big_2 domain represented on the top line. Big_3 and Fn3 both have a lower sequence 

identity to the known sequence but this alignment was conserved between all the phages 

that were identified to contain these domains. The Glyco_hydro_2 domain was seen in 

only one phage sample (> 10 clinical diagnosis BR isolate). The He_Pig double domain 

was seen in 42 of the phage samples, 70 % of which have the amino acid alignment 

shown above. 
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6.3 Discussion  

The lung of CF and BR patients is rich in mucus and has been referred to as 

mucoviscidosis disease when describing the gastro and respiratory tracts (Farber et al, 

1943). The mucus acts as the first line of defense in the lungs and is secreted by 

epithelial cells (Rose et al, 2001). Mucus is mainly comprised of mucin glycoproteins 

(Rose et al, 1987). The Pa bacterial isolates isolated from CF and BR patients display 

varying mucoid phenotypes (table 2.2.1 and 2.2.2). Alongside the genome annotations 

of a few Pa bacteriophage showing putative Ig-like genes made it pertinent to compare 

the BAM model. The BAM model could suggest a means by which temperate phages 

infect across their host range in the lung. The main focus of the study was to identify 

specific carbohydrate binding domains including bacteriodetes associated carbohydrate 

often N–terminal (BACON) (Mello et al, 2010) as these were presented in the BAM model 

(Dutilh et al, 2014).  

To investigate the BAM model 40 Pfam families of carbohydrate were compiled 

and assessed. The Pa phage metagenomes presented in this study no BACON domains 

in the panel of 92 mixed phage samples were identified. Conversely a Big_2 domain was 

identified in at least one of the phage metagenomes from the clinical backgrounds (3 

pediatric CF isolates, 15 adult CF isolates, 1 < 10 year clinical diagnosis BR isolates and 

9 > 10 year clinical diagnosis BR isolates). Equally a He_Pig like motif was identified at 

similar rates in both etiologies (CF and BR) however; it was observed that the incidence 

of He_Pig increased as the disease progressed over time.  

In adult CF phage metagenomes 17 He_Pig like domains and in > 10 year Pa 

colonisation BR phage 14 He_Pig like domain were identified. This may suggest a role 

in phage adaptation to the environment whereby acquiring the ability to adhere to mucus 

aids the phage’s chances to infect its host. He_Pig like domains were also identified in 

pediatric CF phage (4) and < 10 year clinical diagnosis BR phage (7). 
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This study also compared three open source genome assembly packages to 

assemble the 2 x 250bp paired end reads of each phage metagenome. We report that 

SPAdes and IBDA-UD are fairly comparable in performance (Figure 6.2 and Figure 6.3), 

while being able to identify a greater number of Big_2 domains using SPAdes assembled 

genomes. Statistically VelvetOptimiser produced the weakest assemblies based on the 

Quast analysis (Table 6.1) and the equivalent reciprocated when explicitly probing for Ig-

like domains with GeneWise2. Nonetheless a VelvetOptimiser derived assembly 

contained an Ig-domain (PF00047) that both SPAdes and IBDA-UD failed to construct 

the associated contiguous seqeunce within their assemblies. Thus this study can stress 

a prerequisite of using multiple open source assemblers when trying to identify protein 

domains in metagenomes.  

Protein similar to Ig-like domains have been identified on circa 25 % of all 

sequenced Caudovirales genomes, Big_2, I-Set and fn3 are three distinctive families 

which are only identified in Caudovirales phage (Fraser et al, 2006). Here we showed 

that using SPAdes over 60 % of our samples contained one or more Ig-like domain. This 

study confers to this as Big_2 and fn3 like domains were identified in a large subset of 

the Pa phages. In Siphoviridae and Podoviridae class phage these domains are often 

found to be associated with the major head protein (MHP), major tail and tail fiber 

proteins whilst in Myoviridae class phages they are situated on the highly immunogenic 

outer capsid (HOC), fibritin and baseplate proteins (Fraser et al, 2007).  

When the BAM model was used to assess the lytic T4 phage it was observed to 

be associating with mucus via the head HOC protein (Barr et al, 2013a). Ig–like domains 

have been identified on the tail tube protein of E. coli bacteriophage λ, the precise 

purpose for these Ig-like domains on λ is not known but when these domains are trimmed, 

the phage has been seen to become more sensitive to temperature (Katsura, 1981; Pell 

et al, 2010). The Ig-like domains may have a more accessary roles due to their universal 

presence but they could be driving phage evolution to infect based on specific 
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environment being that they become temperature stable or increase their presence in 

mucus (Barr et al, 2013a; Pell et al, 2010).  

In this study the Pa phages have a dual Big_2 domain downstream to a putative 

major tail protein (figure 6.4a). He_Pig domains were also seen in a paired motif which 

bordered a putative minor phage tail protein (figure 6.4a). He_Pig is an Ig-like domain 

found in hemagglutinin and cell surface proteins, making its involvement in the BAM 

model plausible. The core sequence variations were seen in the second Big_2 domain, 

figure 6.4a and b. All these domains had a bit score above the proposed minimum cutoff 

score of 25 and had a gap ranging from 18 bp to 6878 bp between the pair. This study 

and multiple domains posts the question does multiple motifs increase the selective 

advantage for the phage? 

The BAM model postulates that the T4 phage displays Ig-like domains on the 

capsids and proposes a means for its adherence to mucus. In this study the putative Ig-

like domains were seen to be linked with tail protein structures, as opposed to capsid 

proteins. This study hypothesis that the Ig-like domains for temperate phage with respect 

to the BAM model act as a mode of infection and phage dissemination rather than phage 

mediated immunity. The evolutionary pressure in the lung may be making the overall 

diversity of phage Ig-like domains very suggested by the increase in frequency of Ig-like 

domains identified as the disease state progresses in both CF and BR. Variation in Ig-

like domains could evade detection of these domains with GeneWise2 (Fraser et al, 

2006). However, making the use of multiple assemblers could help give a true 

representation of the incidence of protein domains. Based on the severity of the disease 

however, shows no correlation to the number of Ig-like domains found (clinical data, table 

2.2.1 and 2.2.2).   

This study can therefore infer that Pa phage induced from CF and BR patients can 

adhere to the mucus through interaction involving the Ig-like domains identified in the 

tail proteins. Arguably this is the largest study identifying Ig–like domains observed in 

the Pa clinical isolates. This study illustrates another possible evolutionary approach by 
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phage specifically to adapt in the lower lung. The Ig-like domains could help temperate 

phage infect neighboring host during spontaneous induction within the lung or aid 

attachment and infection of other cells in their direct environment outside of the lung. 

 The chapter shows that SPAdes assembler assembles temperate phages with 

the best N50 scores and helps identify Ig-like domains. The study also identified that 

Ig-like domains increased along disease longevity.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

203 
 

7: General Discussion  

7.1 Discussion 

The lower lung is a complex microbiological environment harbouring a 

polymicrobial community of bacteria, viruses and fungi (Purcell et al, 2014a; Sibley et al, 

2006). However, rounds of inflammation, scarring of the lung, microbial colonisation and 

why interactions between the poly-microbial communities driving evolution resulting in a 

predominant species chronically colonising the lung remains unknown. What is known is 

that failure to eradicate bacterial infection in the lower lung reduces lung function and 

leads to respiratory failure. The chronic lung of CF and BR patient provides a niche where 

the pressures of this environment drive adaptation and diversification of these bacterial 

pathogens (Caballero et al, 2015; Davies et al, 2016; Winstanley et al, 2016). Pa and 

Bcc both readily colonise the chronic lung and are often the key chronic pathogens due 

to their opportunism and antibiotic-resistance that lead to lung function decline (Courtney 

et al, 2004; Ren et al, 2012).  

Prophages also contribute to the complex interplay of genetic and phenotypic 

diversity seen within the chronic lung as they enhance genetic variation through 

recombination events as they can encode for DNA recombinases (Lopes et al, 2010; 

Thorpe & Smith, 1998). This has also been shown in a CF related Pa population (Darch 

et al, 2015). Serine, tyrosine site specific recombinases and homologous recombinases 

have been identified in phages (Murphy, 2012). In E. coli the lambda Gam recombinase 

commercially known as lambda red has been shown to increase the rates of ssDNA 

recombination by ~ 1000 fold (Yu et al, 2003). Analogous genes to these recombinases 

are found in lambdoid-like dsDNA phages. These recombination events alongside mis-

packaging or mis-excision of viral DNA leading to carriage of bacterial genes play a large 

role in how phages rapidly evolve after being able to infect the bacterial cell. 

Hypotheses where phage-host interactions lead to variation in bacterial 

populations have been offered. One such proposition is “kill the winner”, it proposes that 
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the superior competitor (dominant bacteria) can sustain enough phage that can 

eventually reduce their host population size (Thingstad & Lignell, 1997). This is an 

example of where the phages help maintain host diversity through reducing the 

population size of the dominant bacteria. Another theory termed the “red queen” can be 

applied to the virus and their bacterial host, co-evolving constantly where neither 

absolutely eradicates the other however, drive each another to adapt and proliferate. 

Also there is the piggy back the winner hypothesis, looking at marine ecology and algal 

blooms it seems sensible and intuitive that if a phage is dormant in the dominant host 

then it can take advantage of the microbial population in the CF and BR patients lungs 

(Silveira & Rohwer, 2016).   

Dynamic interplay between the bacteriophage and their host in the lung bacteria 

are shown to evolve in order to overcome phage infection (chapter 1.6.6). In contrast 

phage can overcome these strategies’ and simultaneously offer fitness through cell 

subversion to their hosts (chapter 1.6.7). The evolutionary dynamics are linked to 

bacterial survival in the chronic lung which leads to poor clinical outcomes for patients 

both for Pa (Hart & Winstanley, 2002) and Bcc (Ledson et al, 2002).  

This thesis aimed to begin to study the role of temperate bacteriophages in 

chronic bacterial infection in CF and BR patients. Chapter 3 illustrates how the cross 

infection profiles of chemically induced temperate phages from 94 clinical Pa isolates 

consisting of 47 CF and 47 BR patients is different, but is linked to the originating disease 

state. The first and foremost finding presented in this study was that all the Pa isolates 

harbour at least one inducible temperate phage. This is supported by studies 

characterising bacteriophages of Pa in the lung (refs). The study aimed to relate the 

infection profiles of the induced bacteriophages and compare to the biology of phage 

and clinical data of the patient. The phage and their bacterial host range were therefore 

categorised based on disease progression as described in (chapter 2.5.1). The study 

presented in chapter 3 is therefore novel as it determines the infection profile of mixed 

Pa phage samples that were induced from a single clonal bacterial isolate. We 
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hypothesise that this would best represent phage induction in the lung from a single 

bacterium. It determines the potential of total virus interaction that links to the dynamic 

interplay between the host and bacteria. Pa bacteria have been well described to harbour 

multiple prophage regions (Winstanley et al, 2009) in their genomes (described in 

chapter 1.4). The study showed how the infection profile of the phage changed as the 

disease progresses and through PLS-DA modelling these phages could be grouped 

based on their infection profiles. We proposed that this could be due to the phage 

evolving strategies to evade bacterial host detection. 

 The study showed that phages induced from adult CF and > 10 BR Pa isolates 

had a higher infection rate when compared to their naïve counterpart’s paediatric CF and 

< 10 BR Pa isolate. The study also showed that as the disease progressed, inducible 

phages could re-infect their originating bacterial host at a higher frequency (Tariq et al, 

2015). This finding does not conform to the lambda phage infection model. The lambda 

repressor molecule binds to the superinfecting phages DNA operator preventing 

transcription. This study is not the first to describe superinfection of a lysogenic phage. 

However, this study illustrates the largest number of phages to show this trait 

experimentally in one study. Superinfection of isogenic phages and multiple infection 

sites have been previously described in E. coli with STX encoding phage (Allison et al, 

2003; Fogg et al, 2007). 

The thesis also aimed to characterise the phages at the genome level. The need 

to characterise bacteriophages as complete genomes can be exemplified by comparing 

the number of phage genome sequence available in GenBank. To date there are over 

5600 viruses of which 2439 complete dsDNA bacteriophage genomes compared to in 

excess of 74000 prokaryotic genomes (NCBI, 2016). Bacteriophage genomes are a 

fraction of the size of their host genomes and at ~ 1031 phages with an estimated 1023 

infections every second that can lead to a turnover rate of the entire phage population in 

just a few days (Suttle, 2007), fewer bacteriophage genomes are found on the GenBank 

database. This therefore shows the importance of the study in chapter 4 and the novelty 
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of the method to bioinformatically remove carry over bacterial contamination. This 

approach was novel as it aimed to characterise the mixed phage lysate population as 

described in chapter 3.  

The key advantage of this metaviral method is we negate the use of plaque 

purification, phage proliferation and gradient isolation methods. Chapter 4 and 5 also 

aimed to annotate all the Pa and Bcc phages respectively, in the mixed lysate population. 

However, the study identified 2 key parameters that gave limitations to this approach. 

The first and foremost is that the sequence DNA yield which is crucial to assemble mixed 

phage populations and the second is highly conserved homology between extremely 

close phage genomes resulted in chimeric assemblies. The study showed how this was 

partially overcome by selecting the sequences based on the k-mer peaks and offered 

completion of phage genomes otherwise seen as chimeric assemblies. We were also 

able to increase contig sizes in the assemblies using the PriceTI software that is 

designed to complete or bridge gaps between sequence data by recalling paired end 

sequences with central gaps and building extra scaffolds within these assembly gaps. 

This helped resolve phage genomes once reasonable partial assemblies were 

constructed. Using this novel assembly approach in described in chapter 4, 107 Pa 

phages were presented (appendix 3), without PriceTI this would have been 80. The study 

showed that the most abundant phages present in the Pa isolates are F10-like phages. 

This study also identified that Phi297 and D3112 like phages were predominantly seen 

together in the mixed phage lysates. The class of the phages infecting Pa isolates were 

predominantly Siphoviridae class apart from H66 which was a Podoviridae. A novel 

highly conserved H66-like phage was identified 12 times in separate phage samples to 

exactly 61.772 kbp. The study hypothesised that their conservation could be linked to 

the disease as nine of the twelve were from BR Pa isolate. 

Chapter 5 aimed to shows similar dynamics of phage and host relations between 

Bcc phage and their hosts. The study showed that all the Bcc isolates harboured at least 

one chemically inducible temperate phage. The study also showed that the phages 
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despite having genotypic variation exhibited similar infection rates. This was described 

for multivoran (n = 13 and genomovar III A (n = 22) isolates as they consisted the main 

cohort of the 47 Bcc. The study showed that Bcc phages could re-infect their originating 

host in 68% of the bacterial isolates. This finding was similar to the Pa samples and does 

not conform to the lambda repressor model of phage superinfection and should be 

studied further. The study went on to characterise these phages using the same 

approach as for the Pa sample. The key difference seen immediately between Bcc and 

Pa phage sequences was that they harboured fewer phages in their genomes. The Bcc 

phages were shown to be more diverse genetically and phenotypically. In chapter 5, 26 

Bcc phages were presented which shared similarity to 13 different phages on the NCBI 

database compared to 107 Pa phages which shared some sequence homology to 10 

phages, Taking into consideration that there are 133 Pa phage genomes compared to 

31 Bcc phage genomes on GenBank database (NCBI, 2016). The study also showed 

that the Bcc phage genomes resembled six Myoviridae, four Siphoviridae, two 

Podoviridae and one unclassified type phages. Four BcepMu like phages were identified 

and shown to package a fragment of their host genomic DNA enhancing horizontal gene 

transfer. Phage DNA packaging by the BcepMu like phage increases transduction events 

and was hypothesised to drive evolution in the CF lung in chapter 5 (Summer et al, 2007). 

A study showed that the well characterised transducing Pa phages B3, F116L and G101 

could infect Bcc isolates (Nzula et al, 2000). We did not test for cross species infection 

of the phages isolated. To a degree this study has shown intraspecies cross infection of 

temperate bacteriophage in Bcc sub-species. It might therefore, not be surprising to see 

multispecies infection of these phages. 

A large study looking at 627 Mycobacterium smegmatis bacteriophage genomes, 

identified rich diversity, clustering in 28 distinct regions (Pope et al, 2015). The study 

identified these phages as having intra and inter-specific diversity with varying homology 

to different phages. The study went on to indicate that an inflow of genes from other 

sources were adding to the Mycobacterium smegmatis bacteriophage (Pope et al, 2015). 
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Similarly a study which looked at 337 phages infecting a range of Enterobacteriaceae 

(18 genera 31 species) showed their phages separate into 56 clusters primarily into 

temperate (24) and lytic (32) (Grose & Casjens, 2014). At this cluster level the phages 

were seen to exhibit > 50% sequence homology. The study went on to show that some 

clusters separated into more closely related sub-clusters of which 78 % were based on 

their host range (Grose & Casjens, 2014).  Comparable phage genomic diversity was 

shown in a study looking at 98 Bacillus phages (Grose et al, 2014). These studies show 

that phages are understudied and underrepresented in the literature, often being 

overlooked, as the main focus of studies being their hosts. This thesis adds to the finding 

of these metagenomic studies and further emphasises temperate phage diversity within 

the chronic lung that is currently understated both for Pa and Bcc. In this study we do 

not see the depth of sequence diversity as described in the above studies however, we 

do show that at host specific level there are genetically diverse range of phages sharing 

little sequence homology to one another. This can be exemplified using the twelve H66-

like phages. We showed that 11 of the 12 H66-like phage identified were similar to the 

last bp but they shared very little sequence similarity to the rest of the phages identified 

shown in the dot matrixes in chapter 4. This study will add draft genomes of these phages 

to the nucleotide database and therefore aid future comparisons of temperate Bcc and 

Pa phages.  

Chapter 6 of this thesis looked to compare and contrast the BAM model (Barr et 

al, 2013b) previously described in lytic phages. This model illustrates phages that carry 

Ig-like domains on their tails and we proposed that temperate phages utilised these 

domains in order to bind to mucus, infect and propagate their bacterial hosts within the 

CF and BR lung. It was also proposed that lytic phages with this motif offered an extra 

layer of immunity against incoming bacteria that were sensitive to infection by these 

phages. This study hypothesised and illustrates that the incidence of Ig-like domains 

increased in Pa temperate phages in correlation to CF and BR disease progression. The 

study also incorporated an assembly comparison of VelvetOptimiser, IDBA-UD and 
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SPAdes. This study identified that SPAdes was the best at assembling phages in respect 

to identifying Ig-like domains. The study showed the assembly number of contigs of the 

SPAdes assembler to be lower and larger in comparison to IDBA-UD and 

VelvetOptimiser. A study showed that it can be difficult to get true assemblies of phages 

using de novo assembler and also recommended using a combination of the assemblies 

to get complete phage assemblies (Smits et al, 2014). The study showed that for the 

purpose of identifying Ig-like domains all three open source assemblers should be used 

as VelvetOptimiser identified an Ig-like domain that was not picked up in the assemblies 

of the SPAdes and IDBA-UD contigs (Tariq et al, 2015). Through the investigation of the 

Ig-like domains this chapter proposed an alternative hypothesis for temperate phage with 

respect to the BAM model. This study also proposed a domain architecture for two Ig-

like domains; bacterial Ig-like domain group 2 (Big_2) and putative Ig domain (He_PIG).  

The studies presented in this thesis helps characterise temperate phages in both 

Pa and Bcc bacterial isolate of CF and BR patients. The study showed although not for 

the first time that temperate Pa and Bcc bacteriophages have a varied infection profile 

and are in some cases capable of isogenic superinfection conforming to recent studies 

which suggest this enhances competition (Burns et al, 2015). A comparison between Pa 

and Bcc temperate phages that can be drawn from the thesis, is that the Pa bacteria 

were shown to harbour more phages with higher diversity compared to the Bcc phages 

isolates. We can postulate this from comparing the k-mer graphs and the number of 

phage seen in each sample. The polylysogenic nature of Pa may have had an effect of 

the sequence depth of each phage. The phage burst size, latent-period can be a 

contributor in the final phage titre and may not necessarily reflect the first phage induced 

out (Abedon et al, 2001). It is hypothesised that the difficulty in assembling Pa phage 

reflected the low sequence diversity or high sequence homology presented in this thesis. 

The relative ease of assembling Bcc phage could possibly be due to the fact the Bcc 

isolates harboured fewer phage, had phenotypical resemblance to Myoviridae, 
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Siphoviridae and Podoviridae type phages based on genetic similarity and shared little 

sequence homology. 

In the CF Lung Bcc and Pa can coexist (Rogers et al, 2010) and a study showed 

that Bcc alter Pa through iron sequestration (Weaver & Kolter, 2004). The study showed 

that the siderophore, ornibactin produced by Bcc alters PA4467 gene expression. 

Ornibactin is not taken up by Pa and act by potentially limiting the iron available to Pa 

(Weaver & Kolter, 2004). Study have shown that in iron limiting environment Pa increase 

siderophore production, which correlates to the increase expression of the siderophore 

receptor on the cell surface (Cox & Adams, 1985). Siderophore production by Pa in the 

lung has been shown (Haas et al, 1991) and a link between the recent ‘Ferrojan horse’ 

hypothesis is paramount (Bonnain et al, 2016). The Ferrojan horse hypothesis postulates 

that T4 like phages harbour iron in their tails and compete for the siderophore receptors 

as a docking station and can therefore theoretically infect the cell. A study looking at 

biofilm in Pa and iron uptake showed that biofilms help accumulate and process large 

amount of iron compared to free living Pa (Lee & Beveridge, 2001). It would therefore 

not be surprising to see phages in an iron limiting lung environment take advantage of 

bacterial cells expressing siderophore receptors in order to infect. While concurrently 

phages of the Pa host range having shown potential to infect cross species into Bcc host. 

Coupled with expressing Ig-like domain in their tail fibres seen to increase with disease 

expression just exemplifies the complex dynamic of the lung driving phage and host 

evolution between two bacterial species and their phage. Figure 7.1 shows a flow 

diagram of the potential mechanisms used by Pa phage in order to adapt as survive in 

the chronic CF and BR lungs. Figure 7.1 encompasses our proposed BAM model for 

temperate phages (Tariq et al, 2015) and incorporates the piggy back the winner 

hypothesis (Silveira & Rohwer, 2016).  

This thesis has shown that temperate bacteriophages to a degree have an involvement 

in Pa and Bcc bacterial evolution and may be involved in disease progression of the 
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lungs of CF and BR patients. Phage may amount to add a layer of intricacy that can 

ultimately have an effect on clinical outcomes of CF and BR patients. 
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Figure 6.5 Possible strategies that Pa phage can evolve over time in the chronic lung. This flow diagram models the possible adaptation 

pathways in the chronic lung (Image adapted from (Tariq et al, 2015)). 
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7.2 Further Work 

In order to fully elucidate if phage infection profiles in the cross infection studies both for 

Pa and Bcc are related to the disease progression it may be essential to first carry out a 

longitudinal study where a particular CF or BR patient is followed at a timely interval. A 

longitudinal study on the phages will also help answer the question if we see Pa phages 

genomic diversity due to disease progression and can help identify potential transduction 

events.   

The phage genomes need validation to the correct orientation. The DNA in a phage virion 

is linear, but for different phages the sequence assembly may be linear or circular. The 

assembly of these phages is circular meaning the DNA molecules have terminal 

redundancy and can be difficult to establish true cos sites. Therefore the phage will be 

presented as in phage T4 and therefore it would be necessary to break it at an arbitrary 

position in order to get a linear sequence to submit to GenBank. This break is at the 

sequence just upstream from the terminase gene. However, this is only possible for 

phage with predicted terminase. Another method could be to break the sequence in the 

centre and make them the end. Mapping the reads back to the sequence would 

theoretically identify a true linear phage ends. The genome assembly still requires 

manual curation where the predicted genes are pipeline through RAST part of the 

Phantome tools. These annotations use Glimmer and GeneMark to call and predict open 

reading frames and may offer improved and accurate predictions. 

The samples that failed to generate enough sequence yields or had chimeric assemblies 

need to be revisited. Using meta assemblers designed to assemble meta assemblies 

may resolve more phages that failed to assemble.       

It would be informative to test cross species infectivity of these phages and whether they 

are able to infect Pa and Bcc isolates. Correlated back to the Pa disease aetiologies and 

to see if Pa phages with disease progression lose their broad range host infectivity. A 

cross species infection profile would test this hypothesis to a greater degree. 



 

214 
 

8. Reference 

Abedon S (2011) Phage therapy pharmacology: calculating phage dosing. Advanced 
Applied Microbiology 77: 1-40 

 
Abedon ST, Herschler TD, Stopar D (2001) Bacteriophage latent-period evolution as a 
response to resource availability. Applied and Environmental Microbiology 67: 4233-
4241 

 
Adams MH (1959) Bacteriophages,  New York,: Interscience Publishers. 

 
Aksyuk AA, Rossmann MG (2011) Bacteriophage assembly. Viruses 3: 172-203 

 
Allison HE (2007) Stx-phages: drivers and mediators of the evolution of STEC and 
STEC-like pathogens. Future Microbiology 2: 165-174 

 
Allison HE, Sergeant MJ, James CE, Saunders JR, Smith DL, Sharp RJ, Marks TS, 
McCarthy AJ (2003) Immunity profiles of wild-type and recombinant shiga-like toxin-
encoding bacteriophages and characterization of novel double lysogens. Infection and 
Immunity 71: 3409-3418 

 
Altuvia S, Locker-Giladi H, Koby S, Ben-Nun O, Oppenheim AB (1987) RNase III 
stimulates the translation of the cIII gene of bacteriophage lambda. Proceedings of the 
National Academy of Sciences of the United States of America 84: 6511-6515 

 
Ames GF, Mimura CS, Shyamala V (1990) Bacterial periplasmic permeases belong to a 
family of transport proteins operating from Escherichia coli to human: Traffic ATPases. 
FEMS Microbiology Reviews 6: 429-446 

 
Andreolli M, Lampis S, Zenaro E, Salkinoja-Salonen M, Vallini G (2011) Burkholderia 
fungorum DBT1: a promising bacterial strain for bioremediation of PAHs-contaminated 
soils. FEMS Microbiology Letters 319: 11-18 

 
Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R (2010) Tailspike Interactions 
with Lipopolysaccharide Effect DNA Ejection from Phage P22 Particles in Vitro. Journal 
of Biological Chemistry 285: 36768-36775 

 
Angus AA, Agapakis CM, Fong S, Yerrapragada S, Estrada-de los Santos P, Yang P, 
Song N, Kano S, Caballero-Mellado J, de Faria SM, Dakora FD, Weinstock G, Hirsch 
AM (2014) Plant-Associated Symbiotic Burkholderia Species Lack Hallmark Strategies 
Required in Mammalian Pathogenesis. PloS One 9 

 
Arber W (1979) Promotion and Limitation of Genetic Exchange. Science 205: 361-365 

 
Aris RM, Routh JC, LiPuma JJ, Heath DG, Gilligan PH (2001) Lung transplantation for 
cystic fibrosis patients with Burkholderia cepacia complex - Survival linked to genomovar 
type. American Journal of Respiratory and Critical Care Medicine 164: 2102-2106 



 

215 
 

 
Athanazio R (2012) Airway disease: similarities and differences between asthma, COPD 
and bronchiectasis. Clinics 67: 1335-1343 

 
Athanazio RA, Rached SZ, Rohde C, Pinto RC, Fernandes FLA, Stelmach R (2010) 
Should the bronchiectasis treatment given to cystic fibrosis patients be extrapolated to 
those with bronchiectasis from other causes? Jornal Brasileiro De Pneumologia 36: 425-
431 

 
Baldan R, Cigana C, Testa F, Bianconi I, De Simone M, Pellin D, Di Serio C, Bragonzi 
A, Cirillo DM (2014) Adaptation of Pseudomonas aeruginosa in Cystic Fibrosis Airways 
Influences Virulence of Staphylococcus aureus In Vitro and Murine Models of Co-
Infection. PloS One 9 

 
Bandyopadhyay PK, Studier FW, Hamilton DL, Yuan R (1985) Inhibition of the type I 
restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of 
bacteriophage T7. Journal of Molecular Biology 182: 567-578 

 
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, 
Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, 
Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its 
applications to single-cell sequencing. Journal of Computational Biology 19: 455-477 

 
Barnhart BJ, Cox SH, Jett JH (1976) Prophage Induction and Inactivation by UV Light. 
Journal of Virology 18: 950-955 

 
Barondess JJ, Beckwith J (1995) Bor Gene of Phage-Lambda, Involved in Serum 
Resistance, Encodes a Widely Conserved Outer-Membrane Lipoprotein. Journal of 
Bacteriology 177: 1247-1253 

 
Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, 
Cutting AS, Doran KS (2013a) Bacteriophage adhering to mucus provide a non–host-
derived immunity. Proceedings of the National Academy of Sciences 110: 10771-10776 

 
Barr JJ, Auro R, Furlan M, Whiteson KL, Erb ML, Pogliano J, Stotland A, Wolkowicz R, 
Cutting AS, Doran KS, Salamon P, Youle M, Rohwer F (2013b) Bacteriophage adhering 
to mucus provide a non-host-derived immunity. Proceedings of the National Academy of 
Sciences of the United States of America 110: 10771-10776 

 
Bartell PF, Orr TE, Reese JF, Imaeda T (1971) Interaction of Pseudomonas 
Bacteriophage-2 with Slime Polysaccharide and Lipopolysaccharide of Pseudomonas 
aeruginosa Strain Bi. Journal of Virology 8: 311-& 

 
Bergh O, Borsheim KY, Bratbak G, Heldal M (1989) High Abundance of Viruses Found 
in Aquatic Environments. Nature 340: 467-468 

 



 

216 
 

Berkane E, Orlik F, Stegmeier JF, Charbit A, Winterhalter M, Benz R (2006) Interaction 
of bacteriophage Lambda with its cell surface receptor: An in vitro study of binding of the 
viral tail protein gpJ to LamB (Maltoporin). Biochemistry 45: 2708-2720 

 
Bernard P, Couturier M (1992) Cell Killing by the F-Plasmid Ccdb Protein Involves 
Poisoning of DNA-Topoisomerase-Ii Complexes. Journal of Molecular Biology 226: 735-
745 

 
Bittar F, Richet H, Dubus JC, Reynaud-Gaubert M, Stremler N, Sarles J, Raoult D, Rolain 
JM (2008) Molecular Detection of Multiple Emerging Pathogens in Sputa from Cystic 
Fibrosis Patients. PloS One 3 

 
Black LW (1989) DNA Packaging in dsDNA Bacteriophages. Annual Review of 
Microbiology 43: 267-292 

 
Black LW, Rao VB (2012) Structure, Assembly, and DNA Packaging of the 
Bacteriophage T4 Head. Advances in Virus Research, Vol 82: Bacteriophages, Pt A 82: 
119-153 

 
Blackburn L, Brownlee K, Conway S, Denton M (2004) 'Cepacia syndrome' with 
Burkholderia multivorans, 9 years after initial colonization. Journal of Cystic Fibrosis 3: 
133-134 

 
Bonadia LC, Marson FAD, Ribeiro JD, Paschoal IA, Pereira MC, Ribeiro AF, Bertuzzo 
CS (2014) CFTR genotype and clinical outcomes of adult patients carried as cystic 
fibrosis disease. Gene 540: 183-190 

 
Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophage genes that 
inactivate the CRISPR/Cas bacterial immune system. Nature 493: 429-432 

 
Bonnain C, Breitbart M, Buck KN (2016) The Ferrojan Horse Hypothesis: Iron-Virus 
Interactions in the Ocean. Frontiers in Marine Science 3 

 
Borowitz D (2005) Update on the evaluation of pancreatic exocrine status in cystic 
fibrosis. Current Opinion in Pulmonary Medicine 11: 524-527 

 
Boyton RJ, Altmann DM (2016) Bronchiectasis: Current Concepts in Pathogenesis, 
Immunology, and Microbiology. Annual Review of Pathology: Mechanisms of Disease, 
Vol 11 11: 523-554 

 
Braid MD, Silhavy JL, Kitts CL, Cano RJ, Howe MM (2004) Complete genomic sequence 
of bacteriophage B3, a Mu-like phage of Pseudomonas aeruginosa. Journal of 
Bacteriology 186: 6560-6574 

 
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman 
MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral 
defense in prokaryotes. Science 321: 960-964 



 

217 
 

 
Brussow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151: 
2133-2140 

 
Burkholder WH (1950) Sour skin, a bacterial rot of onion bulbs. Phytopathology 40 

 
Burns N, James CE, Harrison E (2015) Polylysogeny magnifies competitiveness of a 
bacterial pathogen in vivo. Evolutionary Applications 8: 346-351 

 
Byrne M, Kropinski AM (2005) The genome of the Pseudomonas aeruginosa generalized 
transducing bacteriophage F116. Gene 346: 187-194 

 
Caballero JD, Clark ST, Coburn B, Zhang Y, Wang PW, Donaldson SL, Tullis DE, Yau 
YCW, Waters VJ, Hwang DM, Guttman DS (2015) Selective Sweeps and Parallel 
Pathoadaptation Drive Pseudomonas aeruginosa Evolution in the Cystic Fibrosis Lung. 
mBio 6 

 
Cady KC, Bondy-Denomy J, Heussler GE, Davidson AR, O'Toole GA (2012) The 
CRISPR/Cas Adaptive Immune System of Pseudomonas aeruginosa Mediates 
Resistance to Naturally Occurring and Engineered Phages. Journal of Bacteriology 194: 
5728-5738 

 
Callaghan M, McClean S (2012) Bacterial host interactions in cystic fibrosis. Current 
Opinion in Microbiology 15: 71-77 

 
Capaldo FN, Barbour SD (1975) The role of the rec genes in the viability of Escherichia 
coli K12. Basic Life Sciences 5A: 405-418 

 
Carlier A, Agnoli K, Pessi G, Suppiger A, Jenul C, Schmid N, Tummler B, Pinto-Carbo 
M, Eberl L (2014) Genome Sequence of Burkholderia cenocepacia H111, a Cystic 
Fibrosis Airway Isolate. Genome Announcements 2 

 
Carmody LA, Gill JJ, Summer EJ, Sajjan US, Gonzalez CF, Young RF, LiPuma JJ (2010) 
Efficacy of Bacteriophage Therapy in a Model of Burkholderia cenocepacia Pulmonary 
Infection. Journal of Infectious Diseases 201: 264-271 

 
Casjens S, Adams MB, Hall C, King J (1985) Assembly-Controlled Autogenous 
Modulation of Bacteriophage-P22 Scaffolding Protein Gene-Expression. Journal of 
Virology 53: 174-179 

 
Casjens S, Hendrix R (1974) Comments on the arrangement of the morphogenetic 
genes of bacteriophage lambda. Journal of Molecular Biology 90: 20-25 

 
Casjens SR, Hendrix RW (2015) Bacteriophage lambda: Early pioneer and still relevant. 
Virology 479: 310-330 

 



 

218 
 

Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. Cold 
Spring Harbor Symposia on Quantitative Biology 27: 1-24 

 
Castellani C, Cuppens H, Macek M, Cassinian JJ, Kerern E, Durie P, Tullis E, Assael 
BM, Bombieri C, Brown A, Casals T, Claustres M, Cutting GR, Dequeker E, Dodge J, 
Doull I, Farrell P, Ferec C, Girodon E, Johannesson M, Kerem B, Knowles M, Munck A, 
Pignatti PF, Radojkovic D, Rizzotti P, Schwarz M, Stuhnnann M, Tzetis M, Zielenski J, 
Elborn JS (2008) Consensus on the use and interpretation of cystic fibrosis mutation 
analysis in clinical practice. Journal of Cystic Fibrosis 7: 179-196 

 
Castillo FJ, Bartell PF (1976) Localization and functional role of the Pseudomonas 
bacteriophage 2 depolymerase. Journal of Virology 18: 701-708 

 
Cazares A, Mendoza-Hernandez G, Guarneros G (2014) Core and accessory genome 
architecture in a group of Pseudomonas aeruginosa Mu-like phages. BMC Genomics 15 

 
Ceyssens PJ, Glonti T, Kropinski NM, Lavigne R, Chanishvili N, Kulakov L, Lashkhi N, 
Tediashvili M, Merabishvili M (2011) Phenotypic and genotypic variations within a single 
bacteriophage species. Virology Journal 8 

 
Ceyssens PJ, Lavigne R (2010) Bacteriophages of Pseudomonas. Future Microbiology 
5: 1041-1055 

 
Chain E, Florey HW, Adelaide MB, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing 
J, Sanders AG, Peltier LF (2005) The Classic - Penicillin as a chemotherapeutic agent 
(Reprinted from Lancet, vol 24, pg 226-231, 1940). Clinical Orthopaedics and Related 
Research: 23-26 

 
Cheng K, Smyth RL, Govan JRW, Doherty C, Winstanley C, Denning N, Heaf DP, 
vanSaene H, Hart CA (1996) Spread of beta-lactam-resistant Pseudomonas aeruginosa 
in a cystic fibrosis clinic. Lancet 348: 639-642 

 
Chhibber S, Kaur T, Kaur S (2013) Co-Therapy Using Lytic Bacteriophage and Linezolid: 
Effective Treatment in Eliminating Methicillin Resistant Staphylococcus aureus (MRSA) 
from Diabetic Foot Infections. PloS One 8 

 
Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H (2004) Phage-host interaction: 
an ecological perspective. Journal of Bacteriology 186: 3677-3686 

 
Chibeu A, Ceyssens PJ, Hertveldt K, Volckaert G, Cornelis P, Matthijs S, Lavigne R 
(2009) The adsorption of Pseudomonas aeruginosa bacteriophage phiKMV is dependent 
on expression regulation of type IV pili genes. FEMS Microbiology Letters 296: 210-218 

 
Chierakul W, Anunnatsiri S, Short JM, Maharjan B, Mootsikapun P, Simpson AJH, 
Limmathurotsakul D, Cheng AC, Stepniewska K, Newton PN, Chaowagul W, White NJ, 
Peacock SJ, Day NP, Chetchotisakd P (2005) Two randomized controlled trials of 
ceftazidime alone versus ceftazidime in combination with trimethoprim-sulfamethoxazole 
for the treatment of severe melioidosis. Clinical Infectious Diseases 41: 1105-1113 



 

219 
 

 
Chopin MC, Chopin A, Bidnenko E (2005) Phage abortive infection in lactococci: 
variations on a theme. Current Opinion in Microbiology 8: 473-479 

 
Chu CS, Trapnell BC, Curristin S, Cutting GR, Crystal RG (1993) Genetic basis of 
variable exon 9 skipping in cystic fibrosis transmembrane conductance regulator mRNA. 
Nature Genetics 3: 151-156 

 
Chung IY, Jang HJ, Bae HW, Cho YH (2014) A phage protein that inhibits the bacterial 
ATPase required for type IV pilus assembly. Proceedings of the National Academy of 
Sciences of the United States of America 111: 11503-11508 

 
Cihlar RL, Lessie TG, Holt SC (1978) Characterization of bacteriophage CP1, an organic 
solvent sensitive phage associated with Pseudomonas cepacia. Canadian Journal of 
Microbiology 24: 1404-1412 

 
Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species 
occupying diverse ecological niches. Environmental Microbiology 5: 719-729 

 
Coenye T, Vandamme P, Govan JR, LiPuma JJ (2001) Taxonomy and identification of 
the Burkholderia cepacia complex. Journal of Clinical Microbiology 39: 3427-3436 

 
Cohen-Cymberknoh M, Shoseyov D, Kerem E (2011) Managing Cystic Fibrosis 
Strategies That Increase Life Expectancy and Improve Quality of Life. American Journal 
of Respiratory and Critical Care Medicine 183: 1463-1471 

 
Collins FS, Morgan M, Patrinos A (2003) The human genome project: Lessons from 
large-scale biology. Science 300: 286-290 

 
Comolli JC, Hauser AR, Waite L, Whitchurch CB, Mattick JS, Engel JN (1999) 
Pseudomonas aeruginosa gene products PilT and PilU are required for cytotoxicity in 
vitro and virulence in a mouse model of acute pneumonia. Infection and Immunity 67: 
3625-3630 

 
Cone RA (2009) Barrier properties of mucus. Advanced Drug Delivery Reviews 61: 75-
85 

 
Consortium TCFGA (1994) Population variation of common cystic fibrosis mutations. The 
Cystic Fibrosis Genetic Analysis Consortium. Human Mutation 4: 167-177 

 
Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of 
persistent infections. Science 284: 1318-1322 

 
Courtney JM, Dunbar KE, McDowell A, Moore JE, Warke TJ, Stevenson M, Elborn JS 
(2004) Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis 
adults. Journal of Cystic Fibrosis 3: 93-98 



 

220 
 

 
Cox CD (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infection and 
Immunity 52: 263-270 

 
Cox CD, Adams P (1985) Siderophore Activity of Pyoverdin for Pseudomonas 
aeruginosa. Infection and Immunity 48: 130-138 

 
Cox MJ, Allgaier M, Taylor B, Baek MS, Huang YJ, Daly RA, Karaoz U, Andersen GL, 
Brown R, Fujimura KE, Wu B, Tran D, Koff J, Kleinhenz ME, Nielson D, Brodie EL, Lynch 
SV (2010) Airway Microbiota and Pathogen Abundance in Age-Stratified Cystic Fibrosis 
Patients. PloS One 5 

 
CRISPRdb. (2016) CRISPRs web server. Vol. 2016. 

 
Cystic Fibrosis Foundation. (2014) Cystic Fibrosis Foundation. Vol. 2014. 

 
Cystic fibrosis foundation. (2016) Cystic Fibrosis Foundation. Vol. 2016. 

 
Cystic Fibrosis mutation database. (2016) Cystic Fibrosis mutation database. Vol. 
20156. 

 
d'Herelle F (1917) Sur un microbe invisible antagonistic des bacilles dysenterique. 
Comptes Rendus de l'Académie des Sciences Série III: Sciences de la Vie 165: 373-
375 

 
Dajani AS (1972) The scalded-skin syndrome: relation to phage-group II staphylococci. 
The Journal of Infectious Disease 125: 548-551 

 
Daniels T (2010) Physiotherapeutic management strategies for the treatment of cystic 
fibrosis in adults. The Journal of Multidisciplinary Healthcare 3: 201-212 

 
Darch SE, McNally A, Harrison F, Corander J, Barr HL, Paszkiewicz K, Holden S, Fogarty 
A, Crusz SA, Diggle SP (2015) Recombination is a key driver of genomic and phenotypic 
diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. 
Scientific Reports 5 

 
Datta DB, Arden B, Henning U (1977) Major Proteins of Escherichia coli Outer Cell-
Envelope Membrane as Bacteriophage Receptors. Journal of Bacteriology 131: 821-829 

 
Davies EV, James CE, Williams D, O'Brien S, Fothergill JL, Haldenby S, Paterson S, 
Winstanley C, Brockhurst MA (2016) Temperate phages both mediate and drive adaptive 
evolution in pathogen biofilms. Proceedings of the National Academy of Sciences of the 
United States of America 113: 8266-8271 

 
Davis PB, Yasothan U, Kirkpatrick P (2012) Ivacaftor. Nature Reviews Drug Discovery 
11: 349-350 



 

221 
 

 
De Boeck K, Malfroot A, Van Schil L, Lebecque P, Knoop C, Govan JRW, Doherty C, 
Laevens S, Vandamme P, Burkholderia BotB (2004) Epidemiology of Burkholderia 
cepacia complex colonisation in cystic fibrosis patients. European Respiratory Journal 
23: 851-856 

 
De Soyza A, McDowell A, Archer L, Dark JH, Elborn SJ, Mahenthiralingam E, Gould K, 
Corris PA (2001) Burkholderia cepacia complex genomovars and pulmonary 
transplantation outcomes in patients with cystic fibrosis. Lancet 358: 1780-1781 

 
De Wyngaert M, Hinkle DC (1979) Involvement of DNA gyrase in replication and 
transcription of bacteriophage T7 DNA. Journal of Virology 29: 529-535 

 
Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and 
endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679 

 
Delhaes L, Monchy S, Frealle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, 
Wallaert B, Dei-Cas E, Sime-Ngando T, Chabe M, Viscogliosi E (2012) The Airway 
Microbiota in Cystic Fibrosis: A Complex Fungal and Bacterial Community-Implications 
for Therapeutic Management. PloS One 7 

 
DeShazer D (2004) Genomic diversity of Burkholderia pseudomallei clinical isolates: 
Subtractive hybridization reveals a Burkholderia mallei - Specific prophage in B. 
pseudomallei 1026b. Journal of Bacteriology 186: 3938-3950 

 
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, 
Horvath P, Moineau S (2008) Phage response to CRISPR-encoded resistance in 
Streptococcus thermophilus. Journal of Bacteriology 190: 1390-1400 

 
Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The 
phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of 
Pseudomonas aeruginosa. Molecular Microbiology 61: 1308-1321 

 
Dillingham MS, Kowalczykowski SC (2008) RecBCD Enzyme and the Repair of Double-
Stranded DNA Breaks. Microbiology and Molecular Biology Reviews 72: 642-+ 

 
Dodd IB, Perkins AJ, Tsemitsidis D, Egan JB (2001) Octamerization of lambda CI 
repressor is needed for effective repression of P-RM and efficient switching from 
lysogeny. Genes and Development 15: 3013-3022 

 
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and 
Phage-Derived Proteins - Application Approaches. Current Medicinal Chemistry 22: 
1757-1773 

 
Drulis-Kawa Z, Olszak T, Danis K, Majkowska-Skrobek G, Ackermann HW (2014) A 
giant Pseudomonas phage from Poland. Archives of Virology 159: 567-572 

 



 

222 
 

Duff RM, Simmonds NJ, Davies JC, Wilson R, Alton EW, Pantelidis P, Cox MJ, Cookson 
WOCM, Bilton D, Moffatt MF (2013) A molecular comparison of microbial communities 
in bronchiectasis and cystic fibrosis. European Respiratory Journal 41: 991-993 

 
Dugueperoux I, De Braekeleer M (2005) The CFTR 3849+10kbC->T and 2789+5G->A 
alleles are associated with a mild CF phenotype. European Respiratory Journal 25: 468-
473 

 
Dutilh BE, Cassman N, McNair K, Sanchez SE, Silva GG, Boling L, Barr JJ, Speth DR, 
Seguritan V, Aziz RK (2014) A highly abundant bacteriophage discovered in the 
unknown sequences of human faecal metagenomes. Nature communications 5 

 
Dy RL, Przybilski R, Semeijn K, Salmond GPC, Fineran PC (2014) A widespread 
bacteriophage abortive infection system functions through a Type IV toxin-antitoxin 
mechanism. Nucleic Acids Research 42: 4590-4605 

 
Earnshaw WC, King J, Harrison SC, Eiserling FA (1978) Structural Organization of DNA 
Packaged within Heads of T4 Wild-Type, Isometric and Giant Bacteriophages. Cell 14: 
559-568 

 
Enault F, Briet A, Bouteille L, Roux S, Sullivan MB, Petit MA (2016) Phages rarely encode 
antibiotic resistance genes: a cautionary tale for virome analyses. The ISME Journal 

 
Erb-Downward JR, Thompson DL, Han MK, Freeman CM, McCloskey L, Schmidt LA, 
Young VB, Toews GB, Curtis JL, Sundaram B, Martinez FJ, Huffnagle GB (2011) 
Analysis of the Lung Microbiome in the "Healthy" Smoker and in COPD. PloS One 6 

 
Estrada-de los Santos P, Vinuesa P, Martinez-Aguilar L, Hirsch AM, Caballero-Mellado 
J (2013) Phylogenetic Analysis of Burkholderia Species by Multilocus Sequence 
Analysis. Current Microbiology 67: 51-60 

 
Evilevitch A, Lavelle L, Knobler CM, Raspaud E, Gelbart WM (2003) Osmotic pressure 
inhibition of DNA ejection from phage. Proceedings of the National Academy of Sciences 
of the United States of America 100: 9292-9295 

 
Farber S, Shwachman H, Maddock CL (1943) Pancreatic Function and Disease in Early 
Life. I. Pancreatic Enzyme Activity and the Celiac Syndrome. The Journal of clinical 
investigation 22: 827-838 

 
Fauquet C.M., Schrock J.R. (2006) Virus Classification. Classification of Viruses. ESU 
printing services, Emporia State Univesity, Vol. 2016. 

 
Ferec C, Cutting GR (2012) Assessing the Disease-Liability of Mutations in CFTR. Cold 
Spring Harbor Perspectives in Medicine 2 

 
Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP (2009) The 
phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. 



 

223 
 

Proceedings of the National Academy of Sciences of the United States of America 106: 
894-899 

 
Fleming A (2001) On the antibacterial action of cultures of a penicillium, with special 
reference to their use in the isolation of B. influenzae. Bulletin of the World Health 
Organization 79: 780-790 

 
Fodor AA, Klem ER, Gilpin DF, Elborn JS, Boucher RC, Tunney MM, Wolfgang MC 
(2012) The Adult Cystic Fibrosis Airway Microbiota Is Stable over Time and Infection 
Type, and Highly Resilient to Antibiotic Treatment of Exacerbations. PloS One 7 

 
Fogg PC, Saunders JR, McCarthy AJ, Allison HE (2012) Cumulative effect of prophage 
burden on Shiga toxin production in Escherichia coli. Microbiology 158: 488-497 

 
Fogg PCM, Gossage SM, Smith DL, Saunders JR, McCarthy AJ, Allison HE (2007) 
Identification of multiple integration sites for Stx-phage Phi 24(B) in the Escherichia coli 
genome, description of a novel integrase and evidence for a functional anti-repressor. 
Microbiology-Sgm 153: 4098-4110 

 
Fogg PCM, Rigden DJ, Saunders JR, McCarthy AJ, Allison HE (2011) Characterization 
of the relationship between integrase, excisionase and antirepressor activities 
associated with a superinfecting Shiga toxin encoding bacteriophage. Nucleic Acids 
Research 39: 2116-2129 

 
Fozo EM, Hemm MR, Storz G (2008) Small Toxic Proteins and the Antisense RNAs That 
Repress Them. Microbiology and Molecular Biology Reviews 72: 579-589 

 
Fraser JS, Maxwell KL, Davidson AR (2007) Immunoglobulin-like domains on 
bacteriophage: weapons of modest damage? Current Opinion in Microbiology 10: 382-
387 

 
Fraser JS, Yu Z, Maxwell KL, Davidson AR (2006) Ig-like domains on bacteriophages: a 
tale of promiscuity and deceit. J Mol Biol 359: 496-507 

 
Garvey P, Fitzgerald GF, Hill C (1995) Cloning and DNA sequence analysis of two 
abortive infection phage resistance determinants from the lactococcal plasmid pNP40. 
Applied and Environmental Microbiology 61: 4321-4328 

 
Gasparini P, Nunes V, Savoia A, Dognini M, Morral N, Gaona A, Bonizzato A, Chillon M, 
Sangiuolo F, Novelli G, et al. (1991) The search for south European cystic fibrosis 
mutations: identification of two new mutations, four variants, and intronic sequences. 
Genomics 10: 193-200 

 
Geborek A, Hjelte L (2011) Association between genotype and pulmonary phenotype in 
cystic fibrosis patients with severe mutations. Journal of Cystic Fibrosis 10: 187-192 

 



 

224 
 

Gessard C (1984) On the Blue and Green Coloration That Appears on Bandages. 
Reviews of Infectious Diseases 6: S775-S776 

 
Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of 
pulmonary infections in cystic fibrosis. American Journal of Respiratory and Critical Care 
Medicine 168: 918-951 

 
Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-
generation sequencing technologies. Nature Reviews Genetics 17: 333-351 

 
Gorter FA, Hall AR, Buckling A, Scanlan PD (2015) Parasite host range and the evolution 
of host resistance. Journal of Evolutionary Biology 28: 1119-1130 

 
Greiling D, Clark RAF (1997) Fibronectin provides a conduit for fibroblast transmigration 
from collagenous stroma into fibrin clot provisional matrix. Journal of Cell Science 110: 
861-870 

 
Grose JH, Casjens SR (2014) Understanding the enormous diversity of bacteriophages: 
The tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468: 421-
443 

 
Grose JH, Jensen GL, Burnett SH, Breakwell DP (2014) Genomic comparison of 93 
Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity (vol 15, 855, 
2014). BMC Genomics 15 

 
Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment tool for 
genome assemblies. Bioinformatics 29: 1072-1075 

 
Guss AM, Roeselers G, Newton ILG, Young CR, Klepac-Ceraj V, Lory S, Cavanaugh 
CM (2011) Phylogenetic and metabolic diversity of bacteria associated with cystic 
fibrosis. The ISME Journal 5: 20-29 

 
Haas B, Kraut J, Marks J, Zanker SC, Castignetti D (1991) Siderophore Presence in 
Sputa of Cystic-Fibrosis Patients. Infection and Immunity 59: 3997-4000 

 
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) 
RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex. Cell 139: 945-
956 

 
Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Current 
Opinion in Microbiology 15: 57-62 

 
Hantke K (1978) Major outer membrane proteins of E. coli K12 serve as receptors for 
the phages T2 (protein Ia) and 434 (protein Ib). Molecular and General Genetics 164: 
131-135 

 



 

225 
 

Hart CA, Winstanley C (2002) Persistent and aggressive bacteria in the lungs of cystic 
fibrosis children. British Medical Bulletin 61: 81-96 

 
Hashemolhosseini S, Montag D, Kramer L, Henning U (1994) Determinants of receptor 
specificity of coliphages of the T4 family. A chaperone alters the host range. Journal of 
Molecular Biology 241: 524-533 

 
Hatfull GF (2008) Bacteriophage genomics. Current Opinion in Microbiology 11: 447-453 

 
Hauser AR, Jain M, Bar-Meir M, McColley SA (2011) Clinical Significance of Microbial 
Infection and Adaptation in Cystic Fibrosis. Clinical Microbiology Reviews 24: 29-70 

 
Haussler S, Ziegler I, Lottel A, von Gotz F, Rohde M, Wehmhohner D, Saravanamuthu 
S, Tummler B, Steinmetz I (2003) Highly adherent small-colony variants of 
Pseudomonas aeruginosa in cystic fibrosis lung infection. Journal of Medical 
Microbiology 52: 295-301 

 
Hayashi T, Baba T, Matsumoto H, Terawaki Y (1990) Phage Conversion of Cytotoxin 
Production in Pseudomonas aeruginosa. Molecular Microbiology 4: 1703-1709 

 
Hayashi T, Kamio Y, Hishinuma F, Usami Y, Titani K, Terawaki Y (1989) Pseudomonas 
aeruginosa cytotoxin: the nucleotide sequence of the gene and the mechanism of 
activation of the protoxin. Molecular Microbiology 3: 861-868 

 
Hendrix RW (2002) Bacteriophages: evolution of the majority. Theoretical Population 
Biology 61: 471-480 

 
Hendrix RW (2003) Bacteriophage genomics. Current Opinion in Microbiology 6: 506-
511 

 
Herskowitz I, Hagen D (1980) The Lysis Lysogeny Decision of Phage Lambda - Explicit 
Programming and Responsiveness. Annual Review of Genetics 14: 399-445 

 
Higenbottam T, Cochrane GM, Clark TJH, Turner D, Millis R, Seymour W (1980) 
Bronchial Disease in Ulcerative-Colitis. Thorax 35: 581-585 

 
Hoiby N, Ciofu O, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic 
fibrosis. Future Microbiology 5: 1663-1674 

 
Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt 
T, Churcher C, Mungall K, Bentley SD, Sebaihia M, Thomson NR, Bason N, Beacham 
IR, Brooks K, Brown KA, Brown NF, Challis GL, Cherevach I, Chillingworth T, Cronin A, 
Crossett B, Davis P, DeShazer D, Feltwell T, Fraser A, Hance Z, Hauser H, Holroyd S, 
Jagels K, Keith KE, Maddison M, Moule S, Price C, Quail MA, Rabbinowitsch E, 
Rutherford K, Sanders M, Simmonds M, Songsivilai S, Stevens K, Tumapa S, 
Vesaratchavest M, Whitehead S, Yeats C, Barrell BG, Oyston PC, Parkhill J (2004) 
Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. 



 

226 
 

Proceedings of the National Academy of Sciences of the United States of America 101: 
14240-14245 

 
Holden MTG, Seth-Smith HMB, Crossman LC, Sebaihia M, Bentley SD, Cerdeno-
Tarraga AM, Thomson NR, Bason N, Quail MA, Sharp S, Cherevach I, Churcher C, 
Goodhead I, Hauser H, Holroyd N, Mungall K, Scott P, Walker D, White B, Rose H, 
Iversen P, Mil-Homens D, Rocha EPC, Fialho AM, Baldwin A, Dowson C, Barrell BG, 
Govan JR, Vandamme P, Hart CA, Mahenthiralingam E, Parkhill J (2009) The Genome 
of Burkholderia cenocepacia J2315, an Epidemic Pathogen of Cystic Fibrosis Patients 
(vol 191, pg 261, 2009). Journal of Bacteriology 191: 2907-2907 

 
Holmes RK (2000) Biology and molecular epidemiology of diphtheria toxin and the tox 
gene. Journal of Infectious Diseases 181: S156-S167 

 
Homolog.us. (2016) An Explanation of Velvet Parameter exp_cov. Vol. 2016. 

 
Housby JN, Mann NH (2009) Phage therapy. Drug Discovery Today 14: 536-540 

 
Hubner A, Danganan CE, Xun LY, Chakrabarty AM, Hendrickson W (1998) Genes for 
2,4,5-trichlorophenoxyacetic acid metabolism in Burkholderia cepacia AC1100: 
Characterization of the tftC and tftD genes and locations of the tft operons on multiple 
replicons. Applied and Environmental Microbiology 64: 2086-2093 

 
Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V (2009) The QseC 
Adrenergic Signaling Cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathogens 5 

 
Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: 
prokaryotic gene recognition and translation initiation site identification. BMC 
Bioinformatics 11 

 
ICTV. (2016) International Committee on Taxonomy of Viruses  

 
Idury RM, Waterman MS (1995) A new algorithm for DNA sequence assembly. Journal 
of Computational Biology 2: 291-306 

 
Illumina. (2016) paired end sequencing. Vol. 2016. 

 
James CE, Davies EV, Fothergill JL, Walshaw MJ, Beale CM, Brockhurst MA, 
Winstanley C (2015) Lytic activity by temperate phages of Pseudomonas aeruginosa in 
long-term cystic fibrosis chronic lung infections. The ISME Journal 9: 1391-1398 

 
James CE, Fothergill JL, Kalwij H, Hall AJ, Cottell J, Brockhurst MA, Winstanley C (2012) 
Differential infection properties of three inducible prophages from an epidemic strain of 
Pseudomonas aeruginosa. BMC Microbiology 12 

 



 

227 
 

Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are 
associated with DNA repeats in prokaryotes. Molecular Microbiology 43: 1565-1575 

 
Johnson A, Meyer BJ, Ptashne M (1978) Mechanism of action of the cro protein of 
bacteriophage lambda. Proceedings of the National Academy of Sciences of the United 
States of America 75: 1783-1787 

 
Kaiser AD, Jacob F (1957) Recombination between related temperate bacteriophages 
and the genetic control of immunity and prophage localization. Virology 4: 509-521 

 
Kalish LA, Waltz DA, Dovey M, Potter-Bynoe G, McAdam AJ, LiPuma JJ, Gerard C, 
Goldmann D (2006) Impact of Burkholderia dolosa on lung function and survival in cystic 
fibrosis. American Journal of Respiratory and Critical Care Medicine 173: 421-425 

 
Karaolis DKR, Somara S, Maneval DR, Johnson JA, Kaper JB (1999) A bacteriophage 
encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. 
Nature 399: 375-379 

 
Katsura I (1981) Structure and function of the major tail protein of bacteriophage lambda: 
Mutants having small major tail protein molecules in their virion. Journal of Molecular 
Biology 146: 493-512 

 
Kelly G, Prasannan S, Daniell S, Fleming K, Frankel G, Dougan G, Connerton I, 
Matthews S (1999) Structure of the cell-adhesion fragment of intimin from 
enteropathogenic Escherichia coli. Nature Structural Biology 6: 313-318 

 
Kemp P, Garcia LR, Molineux IJ (2005) Changes in bacteriophage T7 virion structure at 
the initiation of infection. Virology 340: 307-317 

 
Kholodii GY, Mindlin SZ (1985) Integration of Related Prophages Lambda,Phi-80 and 
Their Hybrid Lambda-Att80 into Wild-Type Escherichia-Coli Chromosome at Secondary 
Attachment Sites. Genetika 21: 46-53 

 
Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent 
insights and progress. Current gastroenterology reports 12: 319-330 

 
King J, Casjens S (1974) Catalytic Head Assembling Protein in Virus Morphogenesis. 
Nature 251: 112-119 

 
Klockgether J, Reva O, Larbig K, Tummler B (2004) Sequence analysis of the mobile 
genome island pKLC102 of Pseudomonas aeruginosa C. Journal of Bacteriology 186: 
518-534 

 
Kornitzer D, Altuvia S, Oppenheim AB (1991) The Activity of the Ciii Regulator of 
Lambdoid Bacteriophages Resides within a 24-Amino Acid Protein Domain. Proceedings 
of the National Academy of Sciences of the United States of America 88: 5217-5221 



 

228 
 

 
Kornitzer D, Teff D, Altuvia S, Oppenheim AB (1989) Genetic analysis of bacteriophage 
lambda cIII gene: mRNA structural requirements for translation initiation. Journal of 
Bacteriology 171: 2563-2572 

 
Kossykh VG, Schlagman SL, Hattman S (1995) Phage T4 DNA [N6-
adenine]methyltransferase. Overexpression, purification, and characterization. Journal 
of Biological Chemistry 270: 14389-14393 

 
Kropinski AM (2000) Sequence of the genome of the temperate, serotype-converting, 
Pseudomonas aeruginosa bacteriophage D3. Journal of Bacteriology 182: 6066-6074 

 
Kropinski AM, Borodovsky M, Carver TJ, Cerdeno-Tarraga AM, Darling A, Lomsadze A, 
Mahadevan P, Stothard P, Seto D, Van Domselaar G, Wishart DS (2009) In silico 
identification of genes in bacteriophage DNA. Methods in Molecular Biology 502: 57-89 

 
Kropinski AM, Krylov V, Pleteneva E, Shaburova O, Bourkaltseva M, Krylov SV, 
Miroshnikov K. (2010a) Pseudomonas Phage Phi297. State Institute for Genetics and 
Selection of Industrial Microorganisms, 1St Dorozhnii Projezd, 1, Moscow 113545, 
Russia. 

 
Kropinski AM, Krylov V, Pleteneva E, Shaburova O, Bourkaltseva M, Krylov SV, 
Miroshnikov K. (2010b) Pseudomonas phage vB_PaeS_PMG1. 

 
Kruger DH, Bickle TA (1983) Bacteriophage Survival - Multiple Mechanisms for Avoiding 
the Deoxyribonucleic-Acid Restriction Systems of Their Hosts. Microbiological Reviews 
47: 345-360 

 
Krumsiek J, Arnold R, Rattei T (2007) Gepard: a rapid and sensitive tool for creating 
dotplots on genome scale. Bioinformatics 23: 1026-1028 

 
Krupovic M, Dutilh BE, Adriaenssens EM, Wittmann J, Vogensen FK, Sullivan MB, 
Rumnieks J, Prangishvili D, Lavigne R, Kropinski AM, Klumpp J, Gillis A, Enault F, 
Edwards RA, Duffy S, Clokie MRC, Barylski J, Ackermann HW, Kuhn JH (2016) 
Taxonomy of prokaryotic viruses: update from the ICTV bacterial and archaeal viruses 
subcommittee. Archives of Virology 161: 1095-1099 

 
Kubesch P, Lingner M, Grothues D, Wehsling M, Tummler B (1988) Strategies of 
Pseudomonas aeruginosa to Colonize and to Persist in the Cystic-Fibrosis Lung. 
Scandinavian Journal of Gastroenterology 23: 77-80 

 
Kuti JL, Moss KM, Nicolau DP, Knauft RF (2004) Empiric treatment of multidrug-resistant 
Burkholderia cepacia lung exacerbation in a patient with cystic fibrosis: Application of 
pharmacodynamic concepts to meropenem therapy. Pharmacotherapy 24: 1641-1645 

 
Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) 
Phage Therapy in Clinical Practice: Treatment of Human Infections. Current 
Pharmaceutical Biotechnology 11: 69-86 



 

229 
 

 
Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2006) Comparative genomic analysis of 18 
Pseudomonas aeruginosa bacteriophages. Journal of Bacteriology 188: 1184-1187 

 
Lammens EA, Lavigne R. (2013) Complete genome sequence of F116-like 
bacteriophages. Biosystems, KU Leuven, Kasteelpark Arenberg 21 - Box 2462, Heverlee 
3001, Belgium. 

 
Lander GC, Tang L, Casjens SR, Gilcrease EB, Prevelige P, Poliakov A, Potter CS, 
Carragher B, Johnson JE (2006) The structure of an infectious P22 virion shows the 
signal for headful DNA packaging. Science 312: 1791-1795 

 
Langley R, Kenna DT, Vandamme P, Ure R, Govan JRW (2003) Lysogeny and 
bacteriophage host range within the Burkholderia cepacia complex. Journal of Medical 
Microbiology 52: 483-490 

 
Latino L, Essoh C, Blouin Y, Thien HV, Pourcel C (2014) A novel Pseudomonas 
aeruginosa Bacteriophage, Ab31, a Chimera Formed from Temperate Phage PAJU2 
and P. putida Lytic Phage AF: Characteristics and Mechanism of Bacterial Resistance. 
PloS One 9 

 
Ledson MJ, Gallagher MJ, Jackson M, Hart CA, Walshaw MJ (2002) Outcome of 
Burkholderia cepacia colonisation in an adult cystic fibrosis centre. Thorax 57: 142-145 

 
Ledson MJ, Gallagher MJ, Walshaw MJ (1998) Chronic Burkholderia cepacia 
bronchiectasis in a non-cystic fibrosis individual. Thorax 53: 430-432 

 
Lee JU, Beveridge TJ (2001) Interaction between iron and Pseudomonas aeruginosa 
biofilms attached to Sepharose surfaces. Chemical Geology 180: 67-80 

 
Lee KK, Gan L, Tsuruta H, Hendrix RW, Duda RL, Johnson JE (2004) Evidence that a 
local refolding event triggers maturation of HK97 bacteriophage capsid. Journal of 
Molecular Biology 340: 419-433 

 
Leong D, Murphy JR (1985) Characterization of the diphtheria tox transcript in 
Corynebacterium diphtheriae and Escherichia coli. Journal of Bacteriology 163: 1114-
1119 

 
LiPuma JJ (2010) The Changing Microbial Epidemiology in Cystic Fibrosis. Clinical 
Microbiology Reviews 23: 299-+ 

 
Liu L, Li YH, Li SL, Hu N, He YM, Pong R, Lin DN, Lu LH, Law M (2012) Comparison of 
Next-Generation Sequencing Systems. Journal of Biomedicine and Biotechnology 

 
Livraghi A, Randell SH (2007) Cystic fibrosis and other respiratory diseases of impaired 
mucus clearance. Toxicologic Pathology 35: 116-129 



 

230 
 

 
Lopes A, Amarir-Bouhram J, Faure G, Petit MA, Guerois R (2010) Detection of novel 
recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote 
homologs. Nucleic Acids Research 38: 3952-3962 

 
Lukacik P, Barnard TJ, Keller PW, Chaturvedi KS, Seddiki N, Fairman J, Noinaj N, Kirby 
TL, Henderson JP, Steven AC, Hinnebusch BJ, Buchanan SK (2012) Structural 
engineering of a phage lysin that targets Gram-negative pathogens. Proceedings of the 
National Academy of Sciences of the United States of America 109: 9857-9862 

 
Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. 
Nucleic Acids Research 26: 1107-1115 

 
Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. 
Clinical Microbiology Reviews 15: 194-222 

 
Lynch KH, Stothard P, Dennis JJ (2010) Genomic analysis and relatedness of P2-like 
phages of the Burkholderia cepacia complex. BMC Genomics 11 

 
MacDonald KD, McKenzie KR, Zeitlin PL (2007) Cystic fibrosis transmembrane regulator 
protein mutations: 'class' opportunity for novel drug innovation. Paediatric Drugs 9: 1-10 

 
Magnuson RD (2007) Hypothetical functions of toxin-antitoxin systems. Journal of 
Bacteriology 189: 6089-6092 

 
Magoc T, Pabinger S, Canzar S, Liu XY, Su Q, Puiu D, Tallon LJ, Salzberg SL (2013) 
GAGE-B: an evaluation of genome assemblers for bacterial organisms. Bioinformatics 
29: 1718-1725 

 
Mahenthiralingam E, Baldwin A, Dowson CG (2008) Burkholderia cepacia complex 
bacteria: opportunistic pathogens with important natural biology. Journal of Applied 
Microbiology 104: 1539-1551 

 
Mahenthiralingam E, Baldwin A, Vandamme P (2002) Burkholderia cepacia complex 
infection in patients with cystic fibrosis. Journal of Medical Microbiology 51: 533-538 

 
Mahenthiralingam E, Urban TA, Goldberg JB (2005) The multifarious, multireplicon 
Burkholderia cepacia complex. Nature Reviews Microbiology 3: 144-156 

 
Mahenthiralingam E, Vandamme P, Campbell ME, Henry DA, Gravelle AM, Wong LTK, 
Davidson AGF, Wilcox PG, Nakielna B, Speert DP (2001) Infection with Burkholderia 
cepacia complex genomovars in patients with cystic fibrosis: Virulent transmissible 
strains of genomovar III can replace Burkholderia multivorans. Clinical Infectious 
Diseases 33: 1469-1475 

 



 

231 
 

Maida I, Fondi M, Orlandini V, Emiliani G, Papaleo MC, Perrin E, Fani R (2014) Origin, 
duplication and reshuffling of plasmid genes: Insights from Burkholderia vietnamiensis 
G4 genome. Genomics 103: 229-238 

 
Matsumoto H, Itoh Y, Ohta S, Terawaki Y (1986) A generalized transducing phage of 
Pseudomonas cepacia. Journal of Genetic Microbiology 132: 2583-2586 

 
Matsushiro A, Sato K, Miyamoto H, Yamamura T, Honda T (1999) Induction of 
prophages of enterohemorrhagic Escherichia coli O157 : H7 with norfloxacin. Journal of 
Bacteriology 181: 2257-2260 

 
Mattern IE, van Winden MP, Rorsch A (1965) The range of action of genes controlling 
radiation sensitivity in Escherichia coli. Mutation Research 2: 111-131 

 
Maya O, Flores V, Guarneros G. (2012) Complete genome sequence of Pseudomonas 
aeruginosa temperate bacteriophage H66. NCBI. 

 
McCallum SJ, Gallagher MJ, Corkill JE, Hart CA, Ledson MJ, Walshaw MJ (2002) 
Spread of an epidemic Pseudomonas aeruginosa strain from a patient with cystic fibrosis 
(CF) to non-CF relatives. Thorax 57: 559-560 

 
Mcconnell MR, Foster BD, Davis DP, Kat B, Blair JG, Long RA, Steed MM (1986) A 
Spontaneously Produced Lipopolysaccharide Biosynthetic Defect Which Causes Both 
Pleiotropic Phage Resistance and Mucoid Colony Morphology in Salmonella-Anatum. 
Microbios 48: 135-158 

 
McDonald JE, Smith DL, Fogg PCM, McCarthy AJ, Allison HE (2010) High-Throughput 
Method for Rapid Induction of Prophages from Lysogens and Its Application in the Study 
of Shiga Toxin-Encoding Escherichia coli Strains. Applied and Environmental 
Microbiology 76: 2360-2365 

 
McMahon SA, Miller JL, Lawton JA, Kerkow DE, Hodes A, Marti-Renom MA, Doulatov 
S, Narayanan E, Sali A, Miller JF (2005) The C-type lectin fold as an evolutionary solution 
for massive sequence variation. Nature Structural & Molecular Biology 12: 886-892 

 
Mello LV, Chen X, Rigden DJ (2010) Mining metagenomic data for novel domains: 
BACON, a new carbohydrate-binding module. FEBS Letters 584: 2421-2426 

 
Meyer JM (2000) Pyoverdines: pigments, siderophores and potential taxonomic markers 
of fluorescent Pseudomonas species. Archives of Microbiology 174: 135-142 

 
Meynell EW (1961) A phage, phi chi, which attacks motile bacteria. Journal of Genetic 
Microbiology 25: 253-290 

 
Michalowski CB, Little JW (2005) Positive autoregulation of cI is a dispensable feature 
of the phage lambda gene regulatory circuitry. Journal of Bacteriology 187: 6430-6442 



 

232 
 

 
Miller SCM, LiPuma JJ, Parke JL (2002) Culture-based and non-growth-dependent 
detection of the Burkholderia cepacia complex in soil environments. Applied and 
Environmental Microbiology 68: 3750-3758 

 
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences 
of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of 
Molecular Evolution 60: 174-182 

 
Morgan GJ, Hatfull GF, Casjens S, Hendrix RW (2002) Bacteriophage Mu genome 
sequence: Analysis and comparison with Mu-like prophages in Haemophilus, Neisseria 
and Deinococcus. Journal of Molecular Biology 317: 337-359 

 
Morillas HN, Zariwala M, Knowles MR (2007) Genetic causes of bronchiectasis: Primary 
ciliary dyskinesia. Respiration 74: 252-263 

 
Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies 
in functional genomics. Genomics 92: 255-264 

 
Murphy KC (2012) Phage Recombinases and Their Applications. Advances in Virus 
Research, Vol 83: Bacteriophages, Pt B 83: 367-414 

 
Naderer M, Brust JR, Knowle D, Blumenthal RM (2002) Mobility of a restriction-
modification system revealed by its genetic contexts in three hosts. Journal of 
Bacteriology 184: 2411-2419 

 
Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T (1999) The complete 
nucleotide sequence of phi CTX, a cytotoxin-converting phage of Pseudomonas 
aeruginosa: implications for phage evolution and horizontal gene transfer via 
bacteriophages. Molecular Microbiology 31: 399-419 

 
Nawrocki EP, Eddy SR (2013) Infernal 1.1: 100-fold faster RNA homology searches. 
Bioinformatics 29: 2933-2935 

 
NCBI. (2016) NCBI genome. NCBI. 

 
Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong SL, 
Donovan DM (2012) Endolysins as Antimicrobials. Advances in Virus Research, Vol 83: 
Bacteriophages, Pt B 83: 299-365 

 
NHS.uk. (2015) Bronchiectasis. Vol. 2016. 

 
NHS.uk. (2016) Cystic fibrosis - Treatment. Vol. 2016. 

 
NIH. (2016) What Is COPD? , Vol. 2016. 

 



 

233 
 

Nimmich W (1994) Detection of Escherichia coli K95 Strains by Bacteriophages. Journal 
of Clinical Microbiology 32: 2843-2845 

 
Nishiyama E, Ohtsubo Y, Nagata Y, Tsuda M (2010) Identification of Burkholderia 
multivorans ATCC 17616 genes induced in soil environment by in vivo expression 
technology. Environmental Microbiology 12: 2539-2558 

 
Nnalue NA, Newton S, Stocker BAD (1990) Lysogenization of Salmonella-Choleraesuis 
by Phage-14 Increases Average Length of O-Antigen Chains, Serum Resistance and 
Intraperitoneal Mouse Virulence. Microbial Pathogenesis 8: 393-402 

 
Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco 
CL, Zhao G, Fleshner P, Stappenbeck TS, McGovern DPB, Keshavarzian A, Mutlu EA, 
Sauk J, Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW (2015) Disease-Specific 
Alterations in the Enteric Virome in Inflammatory Bowel Disease. Cell 160: 447-460 

 
Nzula S, Vandamme P, Govan JRW (2000) Sensitivity of the Burkholderia cepacia 
complex and Pseudomonas aeruginosa to transducing bacteriophages. FEMS 
Immunology and Medical Microbiology 28: 307-312 

 
Nzula S, Vandamme P, Govan JRW (2002) Influence of taxonomic status on the in vitro 
antimicrobial susceptibility of the Burkholderia cepacia complex. Journal of Antimicrobial 
Chemotherapy 50: 265-269 

 
O'Sullivan BP, Freedman SD (2009) Cystic fibrosis. Lancet 373: 1891-1904 

 
O'Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM, Mahenthiralingam 
E (2007) Identifying the genetic basis of ecologically and biotechnologically useful 
functions of the bacterium Burkholderia vietnamiensis. Environmental Microbiology 9: 
1017-1034 

 
Ogura T, Hiraga S (1983) Mini-F Plasmid Genes That Couple Host-Cell Division to 
Plasmid Proliferation. Proceedings of the National Academy of Sciences of the United 
States of America-Biological Sciences 80: 4784-4788 

 
Ohgaki N (1994) Bacterial biofilm in chronic airway infection. Kansenshogaku Zasshi 
Journal of the Japanese Association for Infectious Diseases 68: 138-151 

 
Ojeniyi B, Birchandersen A, Mansa B, Rosdahl VT, Hoiby N (1991) Morphology of 
Pseudomonas aeruginosa Phages from the Sputum of Cystic-Fibrosis Patients and from 
the Phage Typing Set - an Electron-Microscopy Study. APMIS 99: 925-930 

 
Olivieri D, Ciaccia A, Marangio E, Marsico S, Todisco T, Delvita M (1991) Role of 
Bromhexine in Exacerbations of Bronchiectasis - Double-Blind Randomized Multicenter 
Study Versus Placebo. Respiration 58: 117-121 

 



 

234 
 

Onofre-Lemus J, Hernandez-Lucas I, Girard L, Caballero-Mellado J (2009) ACC (1-
Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in 
Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants. Applied and 
Environmental Microbiology 75: 6581-6590 

 
Orens JB, Estenne M, Arcasoy S, Conte JV, Corris P, Egan JJ, Egan T, Keshavjee S, 
Knoop C, Kotloff R, Martinez FJ, Nathan S, Palmer S, Patterson A, Singer L, Snell G, 
Studer S, Vachiery JL, Glanville AR (2006) International Guidelines for the Selection of 
Lung Transplant candidates: 2006 update - A consensus report from the pulmonary 
scientific council of the International Society for Heart and Lung Transplantation. Journal 
of Heart and Lung Transplantation 25: 745-755 

 
Pacheco SV, Gonzalez OG, Contreras GLP (1997) The lom gene of bacteriophage 
lambda is involved in Escherichia coli K12 adhesion to human buccal epithelial cells. 
FEMS Microbiology Letters 156: 129-132 

 
Pankov R, Yamada KM (2002) Fibronectin at a glance. Journal of Cell Science 115: 
3861-3863 

 
Pasteur MC, Helliwell SM, Houghton S, Webb SC, Foweraker JE, Coulden RA, Flower 
CD, Bilton D, Keogan MT (2000) An investigation into causative factors in patients with 
bronchiectasis. American Journal of Respiratory and Critical Care Medicine 162: 1277-
1284 

 
Payne GW, Vandamme P, Morgan SH, LiPuma JJ, Coenye T, Weightman AJ, Jones 
TH, Mahenthiralingam E (2005) Development of a recA gene-based identification 
approach for the the entire Burkholderia genus. Applied and Environmental Microbiology 
71: 3917-3927 

 
Pecota DC, Wood TK (1996) Exclusion of T4 phage by the hok/sok killer locus from 
plasmid R1. Journal of Bacteriology 178: 2044-2050 

 
Pelkonen S, Aalto J, Finne J (1992) Differential Activities of Bacteriophage 
Depolymerase on Bacterial Polysaccharide - Binding Is Essential but Degradation Is 
Inhibitory in Phage Infection of K1-Defective Escherichia coli. Journal of Bacteriology 
174: 7757-7761 

 
Pell LG, Gasmi-Seabrook G, Morais M, Neudecker P, Kanelis V, Bona D, Donaldson 
LW, Edwards AM, Howell PL, Davidson AR (2010) The solution structure of the C-
terminal Ig-like domain of the bacteriophage λ tail tube protein. Journal of Molecular 
Biology 403: 468-479 

 
Pemberton JM (1973) F116: a DNA bacteriophage specific for the pili of Pseudomonas 
aeruginosa strain PAO. Virology 55: 558-560 

 
Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-
cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28: 
1420-1428 



 

235 
 

 
Pevzner PA, Tang HX, Waterman MS (2001) An Eulerian path approach to DNA 
fragment assembly. Proceedings of the National Academy of Sciences of the United 
States of America 98: 9748-9753 

 
Plunkett G, Rose DJ, Durfee TJ, Blattner FR (1999) Sequence of Shiga toxin 2 phage 
933W from Escherichia coli O157 : H7: Shiga toxin as a phage late-gene product. Journal 
of Bacteriology 181: 1767-1778 

 
Pope WH, Bowman CA, Russell DA, Jacobs-Sera D, Asai DJ, Cresawn SG, Jacobs WR, 
Hendrix RW, Lawrence JG, Hatfull GF, Hunters SEAP, Hunters SEAP, Course MG 
(2015) Whole genome comparison of a large collection of mycobacteriophages reveals 
a continuum of phage genetic diversity. Elife 4 

 
Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE (2012) The Lung Microbiome 
in Moderate and Severe Chronic Obstructive Pulmonary Disease. PloS One 7 

 
Proft T, Moffatt SL, Berkahn CJ, Fraser JD (1999) Identification and characterization of 
novel superantigens from Streptococcus pyogenes. Journal of Experimental Medicine 
189: 89-101 

 
Ptashne M (2004) A genetic switch : phage lambda revisited, 3rd edn. Cold Spring 
Harbor, N.Y.: Cold Spring Harbor Laboratory Press. 

 
Puck TT, Garen A, Cline J (1951) The mechanism of virus attachment to host cells. I. 
The role of ions in the primary reaction. The Journal of Experimental Medicine 93: 65-88 

 
Purcell P, Jary H, Perry A, Perry JD, Stewart CJ, Nelson A, Lanyon C, Smith DL, 
Cummings SP, De Soyza A (2014a) Polymicrobial airway bacterial communities in adult 
bronchiectasis patients. Bmc Microbiology 14 

 
Purcell P, Jary H, Perry A, Perry JD, Stewart CJ, Nelson A, Lanyon C, Smith DL, 
Cummings SP, De Soyza A (2014b) Polymicrobial airway bacterial communities in adult 
bronchiectasis patients. BMC Microbiology 14: 130 

 
Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow 
HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of 
Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13 

 
Rakhuba DV, Kolomiets EI, Dey ES, Novik GI (2010) Bacteriophage receptors, 
mechanisms of phage adsorption and penetration into host cell. Polish Journal of 
Microbiology 59: 145-155 

 
Ramalho AS, Beck S, Meyer M, Penque D, Cutting GR, Amaral MD (2002) Five percent 
of normal cystic fibrosis transmembrane conductance regulator mRNA ameliorates the 
severity of pulmonary disease in cystic fibrosis. American Journal of Respiratory Cell and 
Molecular Biology 27: 619-627 



 

236 
 

 
Ramos FL, Krahnke JS, Kim V (2014) Clinical issues of mucus accumulation in COPD. 
International Journal of Chronic Obstructive Pulmonary Disease 9: 139-150 

 
Ramsey BW (1996) Management of pulmonary disease in patients with cystic fibrosis 
New England Journal of Medicine 335: 1167-1167 

 
Raoult D, Forterre P (2008) Redefining viruses: lessons from Mimivirus. Nature Reviews 
Microbiology 6: 315-319 

 
Ray K, Ma J, Oram M, Lakowicz JR, Black LW (2010) Single-molecule and FRET 
fluorescence correlation spectroscopy analyses of phage DNA packaging: colocalization 
of packaged phage T4 DNA ends within the capsid. Journal of Molecular Biology 395: 
1102-1113 

 
Reese J, Urry, L., Cain, M., Wasserman, S., Minorsky, P., and Jackson, R. (2011) 
Campbell Biology, 9th edition edn. San Francisco, USA: Pearson Benjamin Cummings. 

 
Reichardt W, Muller-Alouf H, Kohler W (1993) Erythrogenic toxin type A (ETA): 
epidemiological analysis of gene distribution and protein formation in clinical 
Streptococcus pyogenes strains causing scarlet fever and the streptococcal toxic shock-
like syndrome (TSLS). Zentralblatt fur Bakteriologie : International Journal of Medical 
Microbiology 279: 283-293 

 
Reis VM, Estrada-de los Santos P, Tenorio-Salgado S, Vogel J, Stoffels M, Guyon S, 
Mavingui P, Baldani VLD, Schmid M, Baldani JI, Balandreau J, Hartmann A, Caballero-
Mellado J (2004) Burkholderia tropica sp nov., a novel nitrogen-fixing, plant-associated 
bacterium. International Journal of Systematic and Evolutionary Microbiology 54: 2155-
2162 

 
Ren CL, Konstan MW, Yegin A, Rasouliyan L, Trzaskoma B, Morgan WJ, Regelmann 
W, Grp SA, Study E (2012) Multiple antibiotic-resistant Pseudomonas aeruginosa and 
lung function decline in patients with cystic fibrosis. Journal of Cystic Fibrosis 11: 293-
299 

 
Reyes EAP, Bale MJ, Cannon WH, Matsen JM (1981) Identification of Pseudomonas 
aeruginosa by Pyocyanin Production on Tech Agar. Journal of Clinical Microbiology 13: 
456-458 

 
Riede I, Drexler K, Eschbach ML (1985) The nucleotide sequences of the tail fiber gene 
36 of bacteriophage T2 and of genes 36 of the T-even type Escherichia coli phages K3 
and Ox2. Nucleic Acids Research 13: 605-616 

 
Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok 
S, Plavsic N, Chou JL, et al. (1989) Identification of the cystic fibrosis gene: cloning and 
characterization of complementary DNA. Science 245: 1066-1073 

 



 

237 
 

Roberts DE, Dhillon DP, Porteous E, Cole PJ (1984) Treatment of Pseudomonas 
Infestation in Bronchiectasis with the Quinolone Ciprofloxacin. Thorax 39: 719-720 

 
Rodley PD, Romling U, Tummler B (1995) A Physical Genome Map of the Burkholderia 
cepacia Type Strain. Molecular Microbiology 17: 57-67 

 
Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Bruce KD (2004) 
Characterization of bacterial community diversity in cystic fibrosis lung infections by use 
of 16S ribosomal DNA terminal restriction fragment length polymorphism profiling. 
Journal of Clinical Microbiology 42: 5176-5183 

 
Rogers GB, Hart CA, Mason JR, Hughes M, Walshaw MJ, Bruce KD (2003) Bacterial 
diversity in cases of lung infection in cystic fibrosis patients: 16S ribosomal DNA (rDNA) 
length heterogeneity PCR and 16S rDNA terminal restriction fragment length 
polymorphism profiling. Journal of Clinical Microbiology 41: 3548-3558 

 
Rogers GB, Hoffman LR, Whiteley M, Daniels TWV, Carroll MP, Bruce KD (2010) 
Revealing the dynamics of polymicrobial infections: implications for antibiotic therapy. 
Trends in Microbiology 18: 357-364 

 
Rogers GB, van der Gast CJ, Cuthbertson L, Thomson SK, Bruce KD, Martin ML, 
Serisier DJ (2013) Clinical measures of disease in adult non-CF bronchiectasis correlate 
with airway microbiota composition. Thorax 68: 731-737 

 
Rolain JM, Francois P, Hernandez D, Bittar F, Richet H, Fournous G, Mattenberger Y, 
Bosdure E, Stremler N, Dubus JC, Sarles J, Reynaud-Gaubert M, Boniface S, Schrenzel 
J, Raoult D (2009) Genomic analysis of an emerging multiresistant Staphylococcus 
aureus strain rapidly spreading in cystic fibrosis patients revealed the presence of an 
antibiotic inducible bacteriophage. Biology Direct 4 

 
Roncero C, Darzins A, Casadaban MJ (1990) Pseudomonas aeruginosa transposable 
bacteriophages D3112 and B3 require pili and surface growth for adsorption. Journal of 
Bacteriology 172: 1899-1904 

 
Ronning CM, Losada L, Brinkac L, Inman J, Ulrich RL, Schell M, Nierman WC, DeShazer 
D (2010) Genetic and phenotypic diversity in Burkholderia: contributions by prophage 
and phage-like elements. BMC Microbiology 10 

 
Rose MC, Brown CF, Jacoby JZ, 3rd, Lynn WS, Kaufman B (1987) Biochemical 
properties of tracheobronchial mucins from cystic fibrosis and non-cystic fibrosis 
individuals. Pediatric Research 22: 545-551 

 
Rose MC, Nickola TJ, Voynow JA (2001) Airway mucus obstruction: mucin 
glycoproteins, MUC gene regulation and goblet cell hyperplasia. American Journal of 
Respiratory Cell and Molecular Biology 25: 533-537 

 
Rosenstein BJ, Cutting GR, Panel CFFC (1998) The diagnosis of cystic fibrosis: A 
consensus statement. Journal of Pediatrics 132: 589-595 



 

238 
 

 
Rudkjobing VB, Thomsen TR, Alhede M, Kragh KN, Nielsen PH, Johansen UR, Givskov 
M, Hoiby N, Bjarnsholt T (2011) True Microbiota Involved in Chronic Lung Infection of 
Cystic Fibrosis Patients Found by Culturing and 16S rRNA Gene Analysis. Journal of 
Clinical Microbiology 49: 4352-4355 

 
Sako T, Tsuchida N (1983) Nucleotide sequence of the staphylokinase gene from 
Staphylococcus aureus. Nucleic Acids Research 11: 7679-7693 

 
Scandella D, Arber W (1974) An Escherichia coli mutant which inhibits the injection of 
phage lambda DNA. Virology 58: 504-513 

 
Schade SZ, Adler J, Ris H (1967) How bacteriophage chi attacks motile bacteria. Journal 
of Virology 1: 599-609 

 
Schwartz M (1976) Adsorption of Coliphage Lambda to Its Host - Effect of Variations in 
Surface Density of Receptor and in Phage-Receptor Affinity. Journal of Molecular 
Biology 103: 521-536 

 
Scott D, Ely B (2015) Comparison of Genome Sequencing Technology and Assembly 
Methods for the Analysis of a GC-Rich Bacterial Genome. Current Microbiology 70: 338-
344 

 
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30: 
2068-2069 

 
Sepulveda-Robles O, Kameyama L, Guarneros G (2012) High Diversity and Novel 
Species of Pseudomonas aeruginosa Bacteriophages. Applied and Environmental 
Microbiology 78: 4510-4515 

 
Sestini P, Renzoni E, Robinson S, Poole P, Ram FS (2002) Short-acting beta 2 agonists 
for stable chronic obstructive pulmonary disease. Cochrane Database Syst Rev: 
CD001495 

 
Sethi S, Cote C (2011) Bronchodilator combination therapy for the treatment of chronic 
obstructive pulmonary disease. Current Clinical Pharmacology 6: 48-61 

 
Setlow JK, Boling ME, Allison DP, Beattie KL (1973) Relationship between Prophage 
Induction and Transformation in Haemophilus influenzae. Journal of Bacteriology 115: 
153-161 

 
Shafiq I, Carroll MP, Nightingale JA, Daniels TV (2011) Cepacia syndrome in a cystic 
fibrosis patient colonised with Burkholderia multivorans. BMJ Case Reports 2011 

 
Shao YP, Wang IN (2008) Bacteriophage adsorption rate and optimal lysis time. 
Genetics 180: 471-482 



 

239 
 

 
Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a 
homologous recombination-based method of genetic engineering. Nature Protocols 4: 
206-223 

 
Sheppard DN, Welsh MJ (1999) Structure and function of the CFTR chloride channel. 
Physiological Reviews 79: S23-45 

 
Sibley CD, Rabin H, Surette MG (2006) Cystic fibrosis: a polymicrobial infectious 
disease. Future Microbiology 1: 53-61 

 
Silveira CB, Rohwer FL (2016) Piggyback-the-Winner in host-associated microbial 
communities. npj Biofilms and Microbiomes 2: 16010 

 
Skorupski K, Tomaschewski J, Ruger W, Simon LD (1988) A Bacteriophage-T4 Gene 
Which Functions to Inhibit Escherichia coli Lon Protease. Journal of Bacteriology 170: 
3016-3024 

 
Skurray RA, Hancock REW, Reeves P (1974) Con-Mutants - Class of Mutants in 
Escherichia coli K-12 Lacking a Major Cell wall Protein and Defective in Conjugation and 
Adsorption of a Bacteriophage. Journal of Bacteriology 119: 726-735 

 
Slideplayer.inc. (2016) Next generation sequencing: Illuminia/Solexa sequencing. 
Slideplayer.com, Vol. 2016. 

 
Smith DL, Rooks DJ, Fogg PCM, Darby AC, Thomson NR, McCarthy AJ, Allison HE 
(2012) Comparative genomics of Shiga toxin encoding bacteriophages. BMC Genomics 
13 

 
Smits SL, Bodewes R, Ruiz-Gonzalez A, Baumgartner W, Koopmans MP, Osterhaus 
ADME, Schurch AC (2014) Assembly of viral genomes from metagenomes. Frontiers in 
Microbiology 5 

 
Smits SL, Bodewes R, Ruiz-Gonzalez A, Baumgartner W, Koopmans MP, Osterhaus 
ADME, Schurch AC (2015) Recovering full-length viral genomes from metagenomes. 
Frontiers in Microbiology 6 

 
Snyder L (1995) Phage-Exclusion Enzymes - a Bonanza of Biochemical and Cell Biology 
Reagents. Molecular Microbiology 15: 415-420 

 
Sorde R, Pahissa A, Rello J (2011) Management of refractory Pseudomonas aeruginosa 
infection in cystic fibrosis. Infection and Drug Resistance 4: 31-41 

 
Spakowitz AJ, Wang ZG (2005) DNA packaging in bacteriophage: Is twist important? 
Biophysical Journal 88: 3912-3923 

 



 

240 
 

Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, 
Tatusov RL, Zhao QX, Koonin EV, Davis RW (1998) Genome sequence of an obligate 
intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754-759 

 
Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, 
Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-
Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, 
Spencer D, Wong GKS, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock REW, Lory S, 
Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an 
opportunistic pathogen. Nature 406: 959-964 

 
Summer EJ, Gill JJ, Upton C, Gonzalez CF, Young R (2007) Role of phages in the 
pathogenesis of Burkholderia, or 'Where are the toxin genes in Burkholderia phages?'. 
Current Opinion in Microbiology 10: 410-417 

 
Summer EJ, Gonzalez CF, Carlisle T, Mebane LM, Cass AM, Savva CG, LiPuma JJ, 
Young R (2004) Burkholderia cenocepacia phage BcepMu and a family of Mu-like 
phages encoding potential pathogenesis factors. Journal of Molecular Biology 340: 49-
65 

 
Sun CL, Barrangou R, Thomas BC, Horvath P, Fremaux C, Banfield JF (2013) Phage 
mutations in response to CRISPR diversification in a bacterial population. Environmental 
Microbiology 15: 463-470 

 
Suttle CA (2007) Marine viruses - major players in the global ecosystem. Nature Reviews 
Microbiology 5: 801-812 

 
Tabacchioni S, Ferri L, Manno G, Mentasti M, Cocchi P, Campana S, Ravenni N, Taccetti 
G, Dalmastri C, Chiarini L, Bevivino A, Fani R (2008) Use of the gyrB gene to discriminate 
among species of the Burkholderia cepacia complex. FEMS Microbiology Letters 281: 
175-182 

 
Talbi C, Argandona M, Salvador M, Alche JD, Vargas C, Bedmar EJ, Delgado MJ (2013) 
Burkholderia phymatum improves salt tolerance of symbiotic nitrogen fixation in 
Phaseolus vulgaris. Plant and Soil 367: 673-685 

 
Tariq MA, Everest FLC, Cowley LA, De Soyza A, Holt GS, Bridge SH, Perry A, Perry JD, 
Bourke SJ, Cummings SP, Lanyon CV, Barr JJ, Smith DL (2015) A metagenomic 
approach to characterize temperate bacteriophage populations from Cystic Fibrosis and 
non-Cystic Fibrosis bronchiectasis patients. Frontiers in Microbiology 6 

 
Tayeb LA, Lefevre M, Passet V, Diancourt L, Brisse S, Grimont PAD (2008) Comparative 
phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related 
organisms derived from rpoB, gyrB and rrs gene sequences. Research in Microbiology 
159: 169-177 

 
ten Hacken NHT, Wijkstra PJ, Kerstjens HAM (2007) Treatment of bronchiectasis in 
adults. British Medical Journal 335: 1089-1093 



 

241 
 

 
Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Current Opinion 
in Microbiology 14: 321-327 

 
Thingstad TF, Lignell R (1997) Theoretical models for the control of bacterial growth rate, 
abundance, diversity and carbon demand. Aquatic Microbial Ecology 13: 19-27 

 
Thisted T, Gerdes K (1992) Mechanism of Post-Segregational Killing by the Hok Sok 
System of Plasmid R1 - Sok Antisense Rna Regulates Hok Gene-Expression Indirectly 
through the Overlapping Mok Gene. Journal of Molecular Biology 223: 41-54 

 
Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer 
between bacteria. Nature Reviews Microbiology 3: 711-721 

 
Thornton DJ, Rousseau K, McGuckin MA (2008) Structure and function of the polymeric 
mucins in airways mucus. Annual Review of Physiology 70: 459-486 

 
Thorpe HM, Smith MCM (1998) In vitro site-specific integration of bacteriophage DNA 
catalyzed by a recombinase of the resolvase/invertase family. Proceedings of the 
National Academy of Sciences of the United States of America 95: 5505-5510 

 
Trepanier S, Prince A, Huletsky A (1997) Characterization of the penA and penR genes 
of Burkholderia cepacia 249 which encode the chromosomal class a penicillinase and its 
LysR-type transcriptional regulator. Antimicrobial Agents and Chemotherapy 41: 2399-
2405 

 
Turton JF, Kaufmann ME, Mustafa N, Kawa S, Clode FE, Pitt TL (2003) Molecular 
comparison of isolates of Burkholderia multivorans from patients with cystic fibrosis in 
the United Kingdom. Journal of Clinical Microbiology 41: 5750-5754 

 
Twort FW (1915) An Investigation on the nature of ultra-microscopic viruses. Lancet 186: 
1241-1243 

 
Valenick LV, Hsia HC, Schwarzbauer JE (2005) Fibronectin fragmentation promotes 
alpha 4 beta 1 integrin-mediated contraction of a fibrin-fibronectin provisional matrix. 
Experimental Cell Research 309: 48-55 

 
Valenza G, Tappe D, Turnwald D, Frosch M, Konig C, Hebestreit H, Abele-Horn M (2008) 
Prevalence and antimicrobial susceptibility of microorganisms isolated from sputa of 
patients with cystic fibrosis. Journal of Cystic Fibrosis 7: 123-127 

 
Valpuesta JM, Carrascosa JL (1994) Structure of Viral Connectors and Their Function in 
Bacteriophage Assembly and DNA Packaging. Quarterly Reviews of Biophysics 27: 107-
155 

 
Van Valen L (1973) A new evolutionary law. Evolutionary Theory 1: 1-30 



 

242 
 

 
Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J 
(1998) Burkholderia graminis sp, nov., a rhizospheric Burkholderia species, and 
reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and 
[Pseudomonas] glathei as Burkholderia. International Journal of Systematic Bacteriology 
48: 549-563 

 
Villion M, Moineau S (2013) VIROLOGY Phages hijack a host's defence. Nature 494: 
433-434 

 
Vogel H, Jahnig F (1986) Models for the structure of outer-membrane proteins of 
Escherichia coli derived from raman spectroscopy and prediction methods. Journal of 
Molecular Biology 190: 191-199 

 
Voynow JA, Rubin BK (2009) Mucins, Mucus, and Sputum. Chest 135: 505-512 

 
Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage 
encoding cholera toxin. Science 272: 1910-1914 

 
Walters MC, 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of 
antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of 
Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents 
and Chemotherapy 47: 317-323 

 
Wang PW, Chu L, Guttman DS (2004) Complete sequence and evolutionary genomic 
analysis of the Pseudomonas aeruginosa transposable bacteriophage D3112. Journal 
of Bacteriology 186: 400-410 

 
Watanabe R, Matsumoto T, Sano G, Ishii Y, Tateda K, Sumiyama Y, Uchiyama J, 
Sakurai S, Matsuzaki S, Imai S, Yamaguchi K (2007) Efficacy of bacteriophage therapy 
against gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrobial 
Agents and Chemotherapy 51: 446-452 

 
Weaver VB, Kolter R (2004) Burkholderia spp. alter Pseudomonas aeruginosa 
physiology through iron sequestration. Journal of Bacteriology 186: 2376-2384 

 
Weitz JS, Poisot T, Meyer JR, Flores CO, Valverde S, Sullivan MB, Hochberg ME (2013) 
Phage-bacteria infection networks. Trends in Microbiology 21: 82-91 

 
Welsh MJ, Smith AE (1993) Molecular Mechanisms of Cftr Chloride Channel Dysfunction 
in Cystic-Fibrosis. Cell 73: 1251-1254 

 
Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA 
required for bacterial biofilm formation. Science 295: 1487 

 
Williams HT (2013) Phage-induced diversification improves host evolvability. BMC 
Evolutionary Biology 13: 17 



 

243 
 

 
Willner D, Furlan M, Haynes M, Schmieder R, Angly FE, Silva J, Tammadoni S, Nosrat 
B, Conrad D, Rohwer F (2009) Metagenomic Analysis of Respiratory Tract DNA Viral 
Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals. PloS One 4 

 
Wilson R, Pitt T, Taylor G, Watson D, MacDermot J, Sykes D, Roberts D, Cole P (1987) 
Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the 
beating of human respiratory cilia in vitro. Journal of Clinical Investigation 79: 221-229 

 
Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, 
Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, 
Seeger K, Saunders D, Harris D, Parkhill J, Hancock REW, Brinkman FSL, Levesque 
RC (2009) Newly introduced genomic prophage islands are critical determinants of in 
vivo competitiveness in the Liverpool Epidemic Strain of Pseudomonas aeruginosa. 
Genome Research 19: 12-23 

 
Winstanley C, O'Brien S, Brockhurst MA (2016) Pseudomonas aeruginosa Evolutionary 
Adaptation and Diversification in Cystic Fibrosis Chronic Lung Infections. Trends in 
Microbiology 24: 327-337 

 
Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA 
bacteriophage tail assembly genes. Molecular Cell 16: 11-21 

 
Yabuuchi E, Kosako Y, Oyaizu H, Yano I, Hotta H, Hashimoto Y, Ezaki T, Arakawa M 
(1992) Proposal of Burkholderia Gen-Nov and Transfer of 7 Species of the Genus 
Pseudomonas Homology Group-Ii to the New Genus, with the Type Species 
Burkholderia-Cepacia (Palleroni and Holmes 1981) Comb-Nov. Microbiology and 
Immunology 36: 1251-1275 

 
Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y (1995) Transfer of 2 Burkholderia 
and an Alcaligenes Species to Ralstonia Gen-Nov - Proposal of Ralstonia-Pickettii 
(Ralston, Palleroni and Doudoroff 1973) Comb-Nov, Ralstonia-Solanacearum (Smith 
1896) Comb-Nov and Ralstonia-Eutropha (Davis 1969) Comb-Nov. Microbiology and 
Immunology 39: 897-904 

 
Yim CF, Lim KS, Low TC (2002) Severe pulmonary hypertension in a patient with 
bronchiectasis complicated by cor pulmonale and a right-to-left shunt presenting for 
surgery. Anaesthesia and Intensive Care 30: 467-471 

 
Young R, Wang IN, Roof WD (2000) Phages will out: strategies of host cell lysis. Trends 
in Microbiology 8: 120-128 

 
Yu DG, Sawitzke JA, Ellis H, Court DL (2003) Recombineering with overlapping single-
stranded DNA oligonucleotides: Testing a recombination intermediate. Proceedings of 
the National Academy of Sciences of the United States of America 100: 7207-7212 

 
Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein 
OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. Journal of 
Bacteriology 151: 718-722 



 

244 
 

 
Zahariadis G, Levy MH, Burns JL (2003) Cepacia-like syndrome caused by Burkholderia 
multivorans. Canadian Journal of Infectious Diseases 14: 123-125 

 
Zhang J, Chiodini R, Badr A, Zhang GF (2011) The impact of next-generation 
sequencing on genomics. Journal of Genetics and Genomics 38: 95-109 

 
Zielenski J, Tsui LC (1995) Cystic fibrosis: Genotypic and phenotypic variations. Annual 
Review of Genetics 29: 777-807 

 
Zissler J (1967) Integration-negative (int) mutants of phage lambda. Virology 31: 189 

 
Zlosnik JEA, Costa PS, Brant R, Mori PYB, Hird TJ, Fraenkel MC, Wilcox PG, Davidson 
AGF, Speert DP (2011) Mucoid and Nonmucoid Burkholderia cepacia Complex Bacteria 
in Cystic Fibrosis Infections. American Journal of Respiratory and Critical Care Medicine 
183: 67-72 

 
Zlosnik JEA, Hird TJ, Fraenkel MC, Moreira LM, Henry DA, Speert DP (2008) Differential 
mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. 
Journal of Clinical Microbiology 46: 1470-1473 

 

 

 

 



 

245 
 

9. Appendices  

Appendix 1 Cross infection of Pseudomonas aeruginosa 
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Appendix 2 Table of Pseudomonas aeruginosa assemblies 

SPAdes 3.1.1 

Sample number 

and peaks N50 

Number of 

contigs >=50

0bp 

largest contig 

(bp) 

Total 

length >= 0 

bp 

1peak1 3759 10 6123 23458 

1peak2 20663 3 20663 40708 

1 8330 14 25454 57861 

2 2064 43 3807 61165 

3peak1 4771 7 5928 23329 

3peak1+3 6112 9 11150 44310 

3peak2 17961 9 17961 29726 

3peak2+3 40541 1 40541 41704 

3peak3 3903 10 5927 27647 

3 8039 11 27661 58313 

4 5714 30 16984 80314 

5 52800 2 52800 90569 

6peak1 13281 34 24866 106624 

6peak2 833 3 970 4945 

6 61649 3 61649 102039 

7peak1 37361 9 37361 59410 

7peak1+2 8393 23 37361 84929 

7peak1+3 11199 20 37361 85159 

7peak2 1915 19 8393 30232 

7peak2+3 24302 2 24302 40245 

7peak3 2916 15 4301 28142 

7 14035 14 37361 95674 

8peak1 3112 10 5939 22762 

8peak2 6719 10 6719 34082 

8peak3/4 11162 7 11162 18743 

8 1909 49 5871 130085 

9peak1 4493 8 8956 24858 
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9peak1+2 6292 17 8962 45691 

9peak1+3 11383 8 16531 45362 

9peak2 7574 10 8752 27450 

9peak2+3 40424 3 40424 42309 

9peak3 4391 13 6110 30119 

9 8363 15 24014 57788 

10peak1 7779 15 20434 52312 

10peak2 658 2 658 1201 

10 9016 14 20434 53448 

11 1606 8 2802 10912 

12 3603 29 7027 81465 

13peak1 4584 6 8739 20223 

13peak1+2 3737 16 8479 42625 

13peak1+3 31474 7 31474 45404 

13peak2 16374 6 16374 23905 

13peak2+3 13697 5 14958 43902 

13peak3 4904 16 11181 32459 

13 8330 17 20288 59285 

14peak1 28082 23 38360 165968 

14peak1+2 14421 52 38360 262649 

14peak1+3 12748 49 38360 223058 

14peak2 5379 37 15972 101864 

14peak2+3 15924 23 40853 131154 

14peak3 4262 22 6802 55673 

14 17035 41 38360 292551 

15peak1 2500 8 9161 29596 

15peak2 8469 17 12344 40155 

15peak3 2607 22 6244 38266 

15peak4 27956 2 27956 37501 

15 62077 6 62077 115756 

16peak1 4602 7 10220 21840 

16peak1+2 3317 16 8824 41144 
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16peak1+3 35727 8 35727 47133 

16peak2 4937 6 8835 22393 

16peak2+3 25451 4 25451 43110 

16peak3 2594 13 11219 34183 

16 1670 46 7099 138313 

17peak1 52664 15 52664 66757 

17peak2 7608 9 12623 36976 

17 52664 2 52664 90767 

18peak1 6843 7 8683 22259 

18peak1+2 3519 17 11077 41929 

18peak1+3 35225 6 35225 45998 

18peak2 5139 8 9977 24970 

18peak2+3 2446 20 5045 71323 

18peak3 2657 13 10324 32696 

18 1366 63 4913 186631 

19 23619 4 29993 68794 

20peak1 8924 9 11519 31651 

20peak2 52662 2 52662 90291 

20 61562 6 61562 116309 

21peak1 10588 3 10588 22867 

21peak1+2 2576 10 8581 46165 

21peak1+3 21485 3 21485 42613 

21peak2 16810 3 16810 28186 

21peak2+3 9753 6 18897 46206 

21peak3 5086 8 5086 28332 

21 3055 20 11703 62995 

22peak1 61772 4 61772 73514 

22peak2 566 1 566 1723 

22 61772 7 61772 73579 

23 4681 21 8473 45998 

24peak1 794 2 1977 7649 

24peak2 823 1 823 2056 
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24 4019 6 4019 8815 

25 10598 28 44244 157980 

26peak1 41525 28 41525 85813 

26peak2 7032 7 12605 35917 

26 37617 17 41525 109783 

27 39705 1 39705 39833 

28peak1 4578 7 5925 22235 

28peak1+2 2941 19 8356 45017 

28peak1+3 41155 4 41155 44910 

28peak2 5179 10 10116 30771 

28peak2+3 2848 19 4243 62997 

28peak3 7807 9 11195 30156 

28 3772 24 7654 68669 

29peak1 10321 46 27683 123963 

29peak1+2 10321 33 27683 145062 

29peak1+3 26022 52 33114 213173 

29peak2 2540 20 4372 37931 

29peak2+3 22903 21 41451 124515 

29peak3 52823 2 52823 90459 

29 10321 50 28830 233002 

30peak1 4358 59 16094 146734 

30peak1+2 5801 59 31273 213164 

30peak1+3 5570 78 18321 236568 

30peak2 4996 29 10935 73859 

30peak2+3 26254 25 52758 152514 

30peak3 10520 13 36058 88424 

30 11205 58 33124 304018 

31peak1 38379 36 55177 184505 

31peak1+2 38379 30 80768 210307 

31peak1+3 17871 45 55177 222886 

31peak1+4 15624 63 55177 234508 

31peak1+5 17871 47 55177 220162 
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31peak2 7906 7 11508 28533 

31peak2+3 8453 18 16990 66601 

31peak2+4 11508 30 20403 82173 

31peak2+5 6332 25 11508 66005 

31peak3 16823 11 16823 39951 

31peak3+4 42495 23 42495 75864 

31peak3+5 7698 27 16823 74704 

31peak4 5531 25 14160 51250 

31peak4+5 37617 4 37617 66661 

31peak5 2962 20 6767 38432 

31 26208 37 80678 291908 

32peak1 15286 26 21263 141286 

32peak1+2 17061 29 31754 208886 

32peak1+3 15286 46 43371 231819 

32peak2 13146 12 28201 77716 

32peak2+3 80221 8 80221 155960 

32peak3 50230 6 50230 89848 

32 17035 43 32899 289347 

33 39659 1 39659 39787 

34peak1 61597 7 61597 70020 

34peak2 37431 1 37431 37559 

34 61597 7 61597 104781 

35peak1 28732 19 38239 164104 

35peak1+2 17847 38 38239 286862 

35peak1+3 28732 28 38239 181665 

35peak2 14428 22 37676 128934 

35peak2+3 15859 21 37676 131725 

35peak3 2070 10 5715 19540 

35 17035 38 38239 290414 

36 37242 8 37654 89606 

37peak1 4498 7 5903 20030 

37peak2 40393 1 40393 40964 
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37 8330 12 14034 56965 

38 3384 32 8039 71621 

39peak1 4774 6 5936 21603 

39peak1+2 2129 24 7130 45526 

39peak1+3 28349 4 28349 43037 

39peak2 17122 9 17122 29175 

39peak2+3 30847 2 30847 42769 

39peak3 4902 9 11092 28111 

39 2936 29 7842 89326 

40peak1 4610 8 5904 23196 

40peak1+2 2368 21 10151 42327 

40peak1+3 28323 6 28323 44714 

40peak2 5098 10 10029 25956 

40peak2+3 24440 2 24440 40985 

40peak3 4899 8 11138 27737 

40 2214 42 7645 92676 

41peak1 9377 19 28649 73775 

41peak1+2 9377 29 28649 123195 

41peak1+3 7298 39 28098 120965 

41peak1+4 10866 21 29001 124317 

41peak2 6966 23 15723 56968 

41peak2+3 15723 18 37615 89288 

41peak2+4 4719 42 17164 109698 

41peak3 4123 25 7298 49960 

41peak3+4 52755 15 52755 89102 

41peak4 46474 4 46474 52935 

41 12686 34 28104 197493 

42peak1 37635 13 40337 141857 

42peak1+2 37635 12 40337 169657 

42peak1+3 26313 45 40337 251343 

42peak1+4 28864 21 40337 182167 

42peak2 12539 8 13287 36575 
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42peak2+3 26020 33 44107 137844 

42peak2+4 12539 16 18539 75114 

42peak3 15695 32 38416 110098 

42peak3+4 17023 27 49157 131383 

42peak4 6093 9 13133 40574 

42 28149 32 41380 290100 

43peak1 4569 9 5926 23771 

43peak1+2 2238 24 6849 49779 

43peak1+3 8345 9 14961 43971 

43peak2 17288 9 17288 29890 

43peak2+3 30377 4 30377 41948 

43peak3 3725 10 4965 25275 

43 3853 21 6849 59799 

44 52658 2 52658 90273 

45 32297 16 38297 59980 

46 10760 17 36835 78175 

47peak1 13846 22 38353 131508 

47peak1+2 13267 46 38353 185794 

47peak1+3 13334 41 38353 163751 

47peak2 5825 26 27811 65926 

47peak2+3 27811 8 31014 77734 

47peak3 1725 20 7470 32329 

47 15903 29 38353 197360 

48 3385 16 5970 60370 

49 4467 5 4467 9004 

50peak1 8869 30 22596 91228 

50peak2 6170 16 12180 50722 

50peak3 1572 13 9622 25190 

50peak4 12610 3 16744 37545 

50 17035 30 48272 169937 

51peak1 28743 41 53682 240420 

51peak2 7557 7 12657 37609 
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51 26325 26 53682 261433 

52peak1 4647 7 10804 23951 

52peak1+2 3434 20 8477 48690 

52peak1+3 24884 8 24884 45133 

52peak2 5146 10 10182 29905 

52peak2+3 24366 2 24366 40880 

52peak3 4953 9 25337 26428 

52 8363 13 14150 58189 

53 50013 1 50013 50141 

54peak1 13518 27 21563 76551 

54peak1+2 28260 24 40454 173159 

54peak1+3 7554 40 21563 125819 

54peak1+4 39613 30 42421 166594 

54peak2 8036 35 18212 116717 

54peak2+3 10790 32 18212 152946 

54peak2+4 10780 37 35792 204704 

54peak3 7296 15 15638 46534 

54peak3+4 15785 24 37650 129745 

54peak4 39613 4 42387 90353 

54 21563 37 41593 290686 

55peak1 37538 3 37538 41609 

55peak1+2 37239 7 37239 62401 

55peak1+3 37239 9 37239 46280 

55peak1+4 37239 10 37239 71533 

55peak1+5 37239 9 37239 58253 

55peak2 10336 6 10336 21856 

55peak2+3 4598 9 10336 24308 

55peak2+4 3808 16 8167 49345 

55peak2+5 6726 9 16320 37308 

55peak3 563 5 841 5377 

55peak3+4 17963 8 17963 33486 

55peak3+5 3731 10 6062 24302 
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55peak4 15960 8 15960 33376 

55peak4+5 24008 2 24008 43076 

55peak5 5116 6 5966 19674 

55 14052 14 37359 95804 

56peak1 4824 32 38328 110855 

56peak1+2 17771 53 38328 227332 

56peak1+3 6917 48 38328 197121 

56peak2 7242 40 28683 130343 

56peak2+3 15911 38 28135 194146 

56peak3 8016 19 29070 87161 

56 17035 49 38328 290240 

57 4085 2 4085 5429 

58 3032 8 3249 12027 

59 61772 1 61772 61900 

60 9128 6 9128 13645 

61peak1 4563 7 5912 20210 

61peak2 10502 6 13506 43032 

61 8089 14 25388 57594 

62peak1 40441 17 40441 57718 

62peak2 7046 5 13118 37174 

62 40441 2 40441 77821 

63 37715 1 37715 37843 

64 61772 1 61772 61900 

65peak1 4794 7 5940 23286 

65peak1+2 2370 19 8434 44735 

65peak1+3 28670 6 28670 45422 

65peak2 5107 7 11109 25898 

65peak2+3 39897 3 39897 42147 

65peak3 4433 10 11138 28552 

65 1193 57 5705 149586 

66         

67 886 6 3110 8737 
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68peak1 4634 7 5897 21680 

68peak1+2 2440 24 8823 45334 

68peak1+3 11323 8 15440 44113 

68peak2 17171 10 17171 29676 

68peak2+3 30277 3 30277 42433 

68peak3 4818 
 

5867 27243 

68 8089 17 24425 56387 

69peak1 5752 36 14508 107985 

69peak1+2 6786 29 31707 129600 

69peak1+3 6070 46 14508 143523 

69peak1+4 11709 40 37978 175623 

69peak2 9168 9 12155 31610 

69peak2+3 12155 13 16950 59817 

69peak2+4 20588 13 37636 99504 

69peak3 8547 9 10846 33016 

69peak3+4 46492 4 46492 90513 

69peak4 37617 5 37617 68206 

69 31654 26 90429 214734 

70peak1 1868 10 3712 12613 

70peak2 514 1 514 917 

70 3712 7 4114 12387 

71 594 1 594 594 

72 25633 2 25633 37385 

73peak1 4800 6 5911 22640 

73peak1+2 3831 19 8416 45177 

73peak1+3 26778 7 26778 43629 

73peak2 16442 10 16442 27598 

73peak2+3 2292 28 5696 98725 

73peak3 4943 8 11122 27622 

73 2257 41 6582 121699 

74peak1 10348 5 10348 21888 

74peak1+2 2909 19 8954 45239 
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74peak1+3 26370 7 26370 42982 

74peak2 15185 9 15185 27110 

74peak2+3 40490 1 40490 41835 

74peak3 4798 8 11054 27231 

74 8237 11 14045 58867 

75 37660 11 52654 151631 

76peak1 15215 22 33462 119172 

76peak2 611 1 611 611 

76 19009 21 35341 119177 

77 61772 1 61772 61772 

78peak1 4612 9 5938 23816 

78peak1+2 2397 20 7458 42756 

78peak1+3 22565 7 22565 44473 

78peak2 5150 10 10106 26350 

78peak2+3 1293 38 2758 114250 

78peak3 4923 8 11118 27496 

78 1806 45 6512 111589 

79 61772 1 61772 61900 

80peak1 4616 7 10278 22703 

80peak1+2 3845 17 10826 44548 

80peak1+3 11346 6 20395 43298 

80peak2 6007 9 10178 27975 

80peak2+3 24423 2 24423 41335 

80peak3 4910 11 5934 27160 

80 8122 13 25526 56700 

81 649 2 649 1249 

82 2757 6 4408 12082 

83peak1 2139 23 3881 36550 

83peak2 1411 5 2167 6419 

83peak3 535 3 750 3097 

83peak4 697 2 697 1229 

83 2747 27 5652 46287 
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84 28144 4 28144 38573 

85peak1 10388 34 28289 143744 

85peak1+2 12696 28 33837 170043 

85peak1+3 9314 54 28150 210173 

85peak1+4 11638 48 29041 219307 

85peak1+5 10388 43 28289 158635 

85peak1+6 10388 34 28289 144650 

85peak2 2194 21 5611 36445 

85peak2+3 7005 27 38471 90801 

85peak2+4 8378 34 18408 108924 

85peak2+5 2194 30 9622 55880 

85peak2+6 2194 21 5611 36870 

85peak3 8146 20 15463 65754 

85peak3+4 12642 23 18408 126423 

85peak3+5 12612 19 16849 84503 

85peak3+6 8146 21 15463 66710 

85peak4 13031 15 16480 73086 

85peak4+5 17172 8 25826 77232 

85peak4+6 13031 14 17172 73003 

85peak5 1793 9 4861 14491 

85peak5+6 1793 9 4861 14495 

85peak6   
   

85 12853 43 34949 288310 

86peak1 10314 5 10314 21027 

86peak1+2 3916 16 11233 43014 

86peak1+3 39510 3 39510 43615 

86peak2 5738 8 11200 26244 

86peak2+3 40661 1 40661 42022 

86peak3 5017 8 11123 28234 

86 8363 10 27106 58170 

87 1608 17 2327 26840 

88peak1 28218 7 38158 109767 
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88peak1+2 27799 30 38158 145979 

88peak1+3 19162 27 38158 218148 

88peak1+4 28733 13 38158 125841 

88peak2 1210 23 12624 37558 

88peak2+3 17138 21 37686 126684 

88peak2+4 6464 25 16876 53294 

88peak4 3539 7 5819 17619 

88 26228 32 38158 239319 

89peak1 11049 6 11049 23236 

89peak1+2 2790 20 8463 46822 

89peak1+3 19891 6 19988 44482 

89peak2 15346 10 15346 28030 

89peak2+3 24558 4 24558 42006 

89peak3 4109 11 6154 28429 

89 8363 13 22288 59100 

90         

91 61772 1 61772 61772 

92 61772 1 61772 61900 

93peak1 4682 6 5901 19930 

93peak2 12738 3 19454 40888 

93 10045 10 15044 58139 

94 882 3 1348 2800 

 

 

Table 3.1: This table shows the SPAdes v3.1.1 assemblies that were done using the 

individual and multiple peaks extracted from the K-mer graphs (Appendix A). The 

highlighted raw were used for as the best representation of the sample. The table 

shows the N50, number of contigs >=500bp, largest contig (bp) and the total length >= 

0 bp in each assembly. 
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Appendix 3 Pseudomonas aeruginosa phage genomes 

The temperate phage vB_Pae_CF1a genome size was 31.8 kb, the phage was 

assembled using SPAdes and extended using PriceTI as the SPAdes assemblies had 

the phage in separate contigs. The genome map is shown in Figure 1. The total number 

of genes identified was 48 of which 11 were identified with putative functions Table 1. 

Blastn on Viruses only database showed an 8 kb / 8.6 kb match with Pseudomonas 

phage F10 (GenBank: NC_007805.1). The phage vB_Pae_CF1a had a 62.5 % G-C 

content. No tRNA gene was identified and no integrase was found. 

 

Start End Direction Putative functional protein 

913 527 Reverse 

Bacterial regulatory proteins, luxR 

family 

2787 1996 Reverse HTH-type transcriptional regulator PrtR 

10510 10899 Forward Phage antitermination protein Q 

11438 11965 Forward 

Phage regulatory protein Rha 

(Phage_pRha) 

12050 12382 Forward Phage holin family (Lysis protein S) 

12379 12996 Forward Chitinase class I 

13232 13702 Forward Bacteriophage lysis protein 

14559 15104 Forward Phage DNA packaging protein Nu1 

15076 17040 Forward Phage terminase large subunit (GpA) 

17246 18892 Forward Phage portal protein, lambda family 

18864 20945 Forward 

ATP-dependent Clp protease 

proteolytic subunit 

 

Table 1: Functional genes identified for vB_Pae_CF1a. 
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Figure 1: Genome map of vB_Pae_CF1a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF2a genome size was 36.3 kb, the phage was 

assembled using SPAdes all the reads were used and gave a mean coverage of 5.5. 

The genome map is shown in Figure 2. The total number of genes identified was 48 of 

which 7 were identified with putative functions Table 3. Blastn on viruses only database 

showed a 9.6 kb / 10.5 kb match with Pseudomonas phage B3 (GenBank: NC_006548.1). 

The phage vB_Pae_CF2a had a 62.9 % G-C content. No tRNA gene was identified and 

no integrase was found however, Mu like prophage proteins are identified. 

Start End Direction Putative functional protein 

8117 8506 Forward Helix-turn-helix domain protein 

10378 11007 Forward 

Soluble lytic murein transglycosylase 

precursor 

13004 14677 Forward Terminase-like family protein 

16235 17473 Forward Phage Mu protein F like protein 

17475 18050 Forward Phage virion morphogenesis family protein 

18261 19370 Forward Mu-like prophage I protein 

19795 20691 Forward Mu-like prophage major head subunit gpT 

Table 2: Functional genes identified for vB_Pae_CF2a. 
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Figure 2: Genome map of vB_Pae_CF2a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF3a genome size was 54.1 kb, the phage was 

assembled using SPAdes all the reads were used and gave a mean coverage of 21. The 

genome map of the phage is shown in Figure 3. The total number of genes identified 

was 97 of which 22 were identified with putative functions Table 3. Blastn on viruses only 

database showed a 6.3 kb / 7 kb match with Pseudomonas phage vB_PaeS_PMG1 

(GenBank: NC_016765.1). The phage vB_Pae_CF3a had a 58.4 % G-C content. A tRNA 

gene was identified along with structural and lysogenic genes.  

Start End Direction Putative functional protein 

476 162 Reverse HNH endonuclease 

2320 2245 Reverse tRNA-Thr(tgt) 

4652 4053 Reverse Bacteriophage Lambda NinG protein 

5816 5130 Reverse Serine/threonine-protein phosphatase 1 

11776 11576 Reverse Cro 

11801 12664 Forward putative HTH-type transcriptional regulator 

12694 13344 Forward DNA polymerase III subunit epsilon 

22534 23286 Forward ERF superfamily protein 

23290 23916 Forward YqaJ-like viral recombinase domain protein 

26174 26689 Forward NUMOD4 motif protein 

29780 30094 Forward Helix-turn-helix domain protein 

30133 31089 Forward Tyrosine recombinase XerC 

32700 32266 Reverse Lysozyme RrrD 

33363 33031 Reverse HIRAN domain protein 

36816 35146 Reverse Pectate lyase superfamily protein 

43445 40941 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

47351 46995 Reverse Phage head-tail joining protein 

49603 48416 Reverse Phage capsid family protein 

50490 49600 Reverse ATP-dependent Clp protease proteolytic subunit 

51884 50622 Reverse Phage portal protein 

53729 52038 Reverse Phage Terminase 

54111 53731 Reverse Phage terminase, small subunit 
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Table 3: Functional genes identified for vB_Pae_CF3a. 

 

 

 

 

 

 

 

 

 



 

265 
 

 

Figure 3: Genome map of vB_Pae_CF3a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The incomplete temperate phage vB_Pae_CF4a genome size was 16.9 kb, the phage 

was assembled using SPAdes all the reads were used and gave a mean coverage of 21. 

This is possibly an incomplete phage more similar to Phi297. The genome map of this 

phage is shown in Figure 4. The total number of genes identified was 37 of which 8 were 

identified with putative functions these can be seen in Table 4. Blastn on viruses only 

database showed a 3.3 kb / 3.6 kb match with Pseudomonas phage D3 (GenBank: 

NC_002484.1). The phage vB_Pae_CF4a had a 58.1 % G-C content. No tRNA gene 

was identified however; a lysogenic gene encoding CII was identified.  

Start End Direction Putative functional protein 

872 276 Reverse T5orf172 domain protein 

1379 876 Reverse Bacteriophage CII protein 

1669 2334 Forward 

putative HTH-type transcriptional 

regulator 

7274 8026 Forward ERF superfamily protein 

8030 8656 Forward 

YqaJ-like viral recombinase domain 

protein 

8653 8988 Forward LytTr DNA-binding domain protein 

14733 15047 Forward Helix-turn-helix domain protein 

15086 16042 Forward Tyrosine recombinase XerC 

 

Table 4: Functional genes identified for vB_Pae_CF4a. 
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Figure 4: Genome map of vB_Pae_CF4a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF5a genome size was 52.8 kb, the phage was 

assembled using SPAdes and has a mean coverage of 315. The genome map of this 

phage is shown in Figure 5. The total number of genes identified was 86 of which 18 

were identified with putative functions these can be seen in Table 5. Blastn on viruses 

only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_CF5a had a 58.9 % G-C content. A tRNA 

gene, CII and Ig-like domains were all identified along with recombinase genes. 

Start End Direction Putative functional protein 

891 295 Reverse T5orf172 domain protein 

1398 895 Reverse Bacteriophage CII protein 

1688 2353 Forward putative HTH-type transcriptional regulator 

6147 7211 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

7219 7965 Forward RecT family protein 

7949 8569 Forward YqaJ-like viral recombinase domain protein 

8566 8901 Forward LytTr DNA-binding domain protein 

16663 15653 Reverse site-specific tyrosine recombinase XerC 

16824 16737 Reverse tRNA-Ser(cga) 

18328 17894 Forward Lysozyme RrrD 

18931 19830 Forward BRO family, N-terminal domain 

21971 20325 Reverse D-glucuronyl C5-epimerase C-terminus 

29426 28866 Reverse AP2 domain protein 

34507 33512 Reverse Bacterial Ig-like domain (group 2) 

41122 39392 Reverse Phage Mu protein F like protein 

43773 42655 Reverse Phage terminase large subunit 

48598 47951 Reverse Bacteriophage Lambda NinG protein 

52397 51012 Reverse Replicative DNA helicase 

 

Table 5: Functional genes identified for vB_Pae_CF5a. 
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Figure 5: Genome map of vB_Pae_CF5a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF5b genome size was 37.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 201. The genome map of this 

phage is shown in Figure 6. The total number of genes identified was 58 of which 10 

were identified with putative functions these can be seen in Table 6. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF5b had a 64.2 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

1261 548 Reverse HTH-type transcriptional regulator PrtR 

1431 1787 Forward 

DNA-binding transcriptional regulator 

Nlp 

2489 4483 Forward Mu DNA-binding domain protein 

6696 7214 Forward Bacteriophage Mu Gam like protein 

10018 10467 Forward Mor transcription activator family protein 

16936 18222 Forward Phage Mu protein F like protein 

18222 18689 Forward 

Phage virion morphogenesis family 

protein 

19708 20814 Forward Mu-like prophage I protein 

21250 22158 Forward 

Mu-like prophage major head subunit 

gpT 

25190 28750 Forward 

Prophage tail length tape measure 

protein 

 

Table 6: Functional genes identified for vB_Pae_CF5b. 
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Figure 6: Genome map of vB_Pae_CF5b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF6a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 86. The genome map of this 

phage is shown in Figure 7. The total number of genes identified was 62 of which 14 

were identified with putative functions these can be seen in Table 7. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

 (GenBank: KC262634.1). The phage vB_Pae_CF6a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

Start End Direction Putative functional protein 

4605 5102 Forward Single-stranded DNA-binding protein 

5129 6349 Forward 

Recombination-associated protein 

RdgC 

6346 6555 Forward LexA repressor 

6700 9330 Forward DNA methylase 

9327 11135 Forward C-5 cytosine-specific DNA methylase 

13664 13897 Forward 

Response regulator inhibitor for tor 

operon 

15133 13898 Reverse Putative prophage CPS-53 integrase 

18738 18199 Reverse Phage lysozyme 

47162 46290 Reverse RyR domain protein 

53961 52678 Reverse Phage terminase large subunit 

55759 55145 Reverse Bacteriophage Lambda NinG protein 

58365 58165 Reverse Cro 

58473 59270 Forward HTH-type transcriptional regulator PrtR 

60689 61060 Forward Carbon storage regulator homolog 

 

Table 7: Functional genes identified for vB_Pae_CF6a. 
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Figure 7: Genome map of vB_Pae_CF6a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF6b genome size was 40.5 kb, the phage was 

assembled using SPAdes and has a mean coverage of 881. The genome map of this 

phage is shown in Figure 8. The total number of genes identified was 61 of which 13 

were identified with putative functions these can be seen in Table 8. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF6b had a 61.5 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

1320 850 Reverse Bacteriophage lysis protein 

2173 1556 Reverse Chitinase class I 

2502 2170 Reverse Phage holin family (Lysis protein S) 

3114 2587 Reverse Phage regulatory protein Rha (Phage_pRha) 

4042 3653 Reverse Phage antitermination protein Q 

11658 11338 Reverse Cro 

11761 12549 Forward HTH-type transcriptional regulator PrtR 

14303 15070 Forward Phage regulatory protein Rha (Phage_pRha) 

17479 18531 Forward Phage integrase family protein 

36103 34022 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

37721 36075 Reverse Phage portal protein, lambda family 

39891 37927 Reverse Phage terminase large subunit (GpA) 

40447 39863 Reverse Phage DNA packaging protein Nu1 

 

Table 8: Functional genes identified for vB_Pae_CF6b. 
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Figure 8: Genome map of vB_Pae_CF6b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF7a genome size was 37.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 154. The genome map of this 

phage is shown in Figure 9. The total number of genes identified was 56 of which 8 were 

identified with putative functions these can be seen in Table 9. Blastn on viruses only 

database showed a 27.1 kb / 27.8 kb match with Pseudomonas phage JBD24 (GenBank: 

NC_020203.1). The phage vB_Pae_CF7a had a 64.1 % G-C content. No tRNA gene 

was identified however; several Mu like proteins were identified associated with 

morphogenesis and structural proteins. 

Start End Direction Putative functional protein 

889 230 Reverse 

putative HTH-type transcriptional 

regulator 

1130 1486 Forward 

DNA-binding transcriptional regulator 

Nlp 

2649 4718 Forward Mu DNA-binding domain protein 

10105 10554 Forward Mor transcription activator family protein 

17012 18298 Forward Phage Mu protein F like protein 

18298 18765 Forward 

Phage virion morphogenesis family 

protein 

19803 20900 Forward Mu-like prophage I protein 

20904 21818 Forward 

Mu-like prophage major head subunit 

gpT 

 

Table 9: Functional genes identified for vB_Pae_CF7a. 
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Figure 9: Genome map of vB_Pae_CF7a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF7b genome size was 46.4 kb, the phage was 

assembled using SPAdes and then extended using PriceTI. The genome map of this 

phage is shown in Figure 10. The total number of genes identified was 70 of which 17 

were identified with putative functions these can be seen in Table 10. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF7b had a 61.3 % G-C content. No tRNA gene 

was identified however; several proteins were identified associated with lysogenic life 

cycle including integrase and a Cro gene. 

Start End Direction Putative functional protein 

1227 997 Reverse Arc-like DNA binding domain protein 

2070 1288 Reverse Phage regulatory protein Rha (Phage_pRha) 

3475 3089 Reverse Bacterial regulatory proteins, luxR family 

5349 4558 Reverse HTH-type transcriptional regulator PrtR 

13072 13461 Forward Phage antitermination protein Q 

14000 14527 Forward Phage regulatory protein Rha (Phage_pRha) 

14612 14944 Forward Phage holin family (Lysis protein S) 

14941 15558 Forward Chitinase class I 

15794 16264 Forward Bacteriophage lysis protein 

17120 17665 Forward Phage DNA packaging protein Nu1 

17637 19601 Forward Phage terminase large subunit (GpA) 

19807 21453 Forward Phage portal protein, lambda family 

21425 23506 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

40048 38996 Reverse Phage integrase family protein 

43224 42625 Reverse Phage regulatory protein Rha (Phage_pRha) 

45766 44978 Reverse HTH-type transcriptional regulator PrtR 

45869 45997 Forward Cro 

 

Table 10: Functional genes identified for vB_Pae_CF7b. 

 



 

279 
 

 

 

Figure 10: Genome map of vB_Pae_CF7b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF9a genome size was 41.6 kb, the phage was 

assembled using SPAdes and then extended using PriceTI. The genome map of this 

phage is shown in Figure 11. The total number of genes identified was 66 of which 13 

were identified with putative functions these can be seen in Table 11. Blastn on viruses 

only database showed a 9.6 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF9a had a 61.5 % G-C content. No tRNA gene 

was identified however; several proteins were identified associated with structural 

proteins and lytic life cycle. 

Start End Direction Putative functional protein 

443 57 Reverse Bacterial regulatory proteins, luxR family 

2317 1526 Reverse HTH-type transcriptional regulator PrtR 

10040 10429 Forward Phage antitermination protein Q 

10968 11495 Forward Phage regulatory protein Rha (Phage_pRha) 

11580 11912 Forward Phage holin family (Lysis protein S) 

11909 12526 Forward Chitinase class I 

12762 13232 Forward Bacteriophage lysis protein 

14089 14634 Forward Phage DNA packaging protein Nu1 

14606 16570 Forward Phage terminase large subunit (GpA) 

16776 18422 Forward Phage portal protein, lambda family 

18394 20505 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

39430 39200 Reverse Arc-like DNA binding domain protein 

40277 39510 Reverse Phage regulatory protein Rha (Phage_pRha) 

 

Table 11: Functional genes identified for vB_Pae_CF9a. 
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Figure 11: Genome map of vB_Pae_CF9a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF13a genome size was 54.1 kb, the phage was 

assembled using SPAdes and has a mean coverage of 15. The genome map of this 

phage is shown in Figure 12. The total number of genes identified was 97 of which 22 

were identified with putative functions these can be seen in Table 12. Blastn on viruses 

only database showed a 6.3 kb / 7 kb match with Pseudomonas phage vB_PaeS_PMG1 

(GenBank: NC_016765.1). The phage vB_Pae_CF13a had a 58.4 % G-C content. A 

tRNA gene was identified along with several proteins associated with structural proteins 

and lysogenic protein. 

Start End Direction Putative functional protein 

474 160 Reverse HNH endonuclease 

2318 2243 Reverse tRNA-Thr(tgt) 

4650 4051 Reverse Bacteriophage Lambda NinG protein 

5814 5128 Reverse Serine/threonine-protein phosphatase 1 

11774 11574 Reverse Cro 

11799 12662 Forward putative HTH-type transcriptional regulator 

12692 13342 Forward DNA polymerase III subunit epsilon 

22532 23284 Forward ERF superfamily protein 

23288 23914 Forward YqaJ-like viral recombinase domain protein 

26172 26687 Forward NUMOD4 motif protein 

29778 30092 Forward Helix-turn-helix domain protein 

30131 31087 Forward Tyrosine recombinase XerC 

32698 32264 Reverse Lysozyme RrrD 

33361 33029 Reverse HIRAN domain protein 

36814 35144 Reverse Pectate lyase superfamily protein 

43443 40939 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

47349 46993 Reverse Phage head-tail joining protein 

49601 48414 Reverse Phage capsid family protein 

50488 49598 Reverse ATP-dependent Clp protease proteolytic subunit 

51882 50620 Reverse Phage portal protein 

53727 52036 Reverse Phage Terminase 
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54109 53729 Reverse Phage terminase, small subunit 

 

Table 12: Functional genes identified for vB_Pae_CF13a. 
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Figure 12: Genome map of vB_Pae_CF13a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF13b genome size was 37.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 12. The genome map of this 

phage is shown in Figure 13. The total number of genes identified was 57 of which 8 

were identified with putative functions these can be seen in Table 13. Blastn on viruses 

only database showed a 27.1 kb / 27.8 kb match with Pseudomonas phage JBD24 

(GenBank: NC_020203.1). The phage vB_Pae_CF13b had a 64.1 % G-C content. No 

tRNA gene was identified however; several genes associated with structural proteins 

were identified.  

Start End Direction Putative functional protein 

16509 15595 Reverse 

Mu-like prophage major head subunit 

gpT 

17610 16513 Reverse Mu-like prophage I protein 

19115 18648 Reverse 

Phage virion morphogenesis family 

protein 

20401 19115 Reverse Phage Mu protein F like protein 

27308 26859 Reverse Mor transcription activator family protein 

34764 32695 Reverse Mu DNA-binding domain protein 

36283 35927 Reverse DNA-binding transcriptional regulator Nlp 

36524 37183 Forward 

putative HTH-type transcriptional 

regulator 

 

Table 13: Functional genes identified for vB_Pae_CF13b. 
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Figure 13: Genome map of vB_Pae_CF13b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF14a genome size was 38.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 22. The genome map of this 

phage is shown in Figure 14. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 14. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF14a had a 61.3 % G-C content. No tRNA gene 

was identified however; several genes associated with structural and regulatory proteins 

were identified.  

Start End Direction Putative functional protein 

718 389 Reverse HNH endonuclease 

1425 913 Reverse Bacteriophage lysis protein 

2042 1425 Reverse Chitinase class I 

2371 2039 Reverse Phage holin family (Lysis protein S) 

2986 2456 Reverse Phage regulatory protein Rha (Phage_pRha) 

4150 3761 Reverse Phage antitermination protein Q 

5819 4422 Reverse Replicative DNA helicase 

6631 5816 Reverse DNA replication protein DnaC 

10892 10587 Reverse Helix-turn-helix 

11002 11661 Forward LexA repressor 

11810 12196 Forward Bacterial regulatory proteins, luxR family 

12508 13293 Forward BRO family, N-terminal domain 

13368 13598 Forward Arc-like DNA binding domain protein 

18076 19059 Forward Transposase DDE domain protein 

23329 19664 Reverse Carbohydrate binding domain protein 

23958 23386 Reverse Bacteriophage lambda tail assembly protein I 

25467 24709 Reverse NlpC/P60 family protein 

26216 25470 Reverse Phage minor tail protein L 

26551 26213 Reverse Phage minor tail protein 

29826 26551 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

32524 32198 Reverse Phage head-tail joining protein 
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32847 32524 Reverse Phage gp6-like head-tail connector protein 

34316 33102 Reverse Phage capsid family protein 

34957 34313 Reverse Caudovirus prohead protease 

36164 34941 Reverse Phage portal protein 

37846 36167 Reverse Phage Terminase 

 

Table 14: Functional genes identified for vB_Pae_CF14a. 
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Figure 14: Genome map of vB_Pae_CF14a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential incomplete temperate phage vB_Pae_CF14b genome size was 28 kb, the 

phage was assembled using SPAdes and has a mean coverage of 27. The genome map 

of this phage is shown in Figure 15. The total number of genes identified was 45 of which 

7 were identified with putative functions these can be seen in Table 15. Blastn on viruses 

only database showed a 2.5 kb / 2.6 kb match with Pseudomonas phage B3 (GenBank: 

NC_006548.1). The phage vB_Pae_CF14b had a 63.3 % G-C content. No tRNA gene 

was identified however; several genes associated with regulatory proteins were identified 

and an Integrase gene was identified.  

Start End Direction Putative functional protein 

470 111 Reverse Mor transcription activator family protein 

7989 6205 Reverse Integrase core domain protein 

10998 11387 Forward Helix-turn-helix domain protein 

13259 13888 Forward 

Soluble lytic murein transglycosylase 

precursor 

15954 17657 Forward Terminase-like family protein 

19135 20385 Forward Phage Mu protein F like protein 

20382 20954 Forward Phage virion morphogenesis family protein 

 

Table 15: Functional genes identified for vB_Pae_CF14b. 
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Figure 15: Genome map of vB_Pae_CF14b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential incomplete temperate phage vB_Pae_CF14c genome size was 26.1 kb, 

the phage was assembled using SPAdes and has a mean coverage of 151. The genome 

map of this phage is shown in Figure 16. The total number of genes identified was 45 of 

which 7 were identified with putative functions these can be seen in Table 16. Blastn on 

viruses only database showed a 17 kb / 18.2 kb match with Pseudomonas phage JBD24 

(GenBank: NC_020203.1). The phage vB_Pae_CF14c had a 64.5 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction  Putative functional protein 

5042 4134 Reverse 

Mu-like prophage major head subunit 

gpT 

6584 5478 Reverse Mu-like prophage I protein 

8070 7603 Reverse 

Phage virion morphogenesis family 

protein 

9356 8070 Reverse Phage Mu protein F like protein 

16274 15825 Reverse Mor transcription activator family protein 

19596 19078 Reverse Bacteriophage Mu Gam like protein 

23803 21809 Reverse Mu DNA-binding domain protein 

24861 24505 Reverse 

DNA-binding transcriptional regulator 

Nlp 

25031 25744 Forward HTH-type transcriptional regulator PrtR 

 

Table 16: Functional genes identified for vB_Pae_CF14c. 
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Figure 16: Genome map of vB_Pae_CF14c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential incomplete temperate phage vB_Pae_CF15a genome size was 41.1 kb, 

the phage was assembled using SPAdes and has a mean coverage of 43. The genome 

map of this phage is shown in Figure 17. The total number of genes identified was 63 of 

which 27 were identified with putative functions these can be seen in Table 17. Blastn 

on viruses only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 

(GenBank: NC_007805.1). The phage vB_Pae_CF15a had a 61.2 % G-C content. No 

tRNA gene was identified however; genes associated with structural, lysogenic and 

regulatory proteins were identified. 

Start End Direction Putative functional protein 

874 1194 Forward Cro 

5462 6277 Forward DNA replication protein DnaC 

6274 7671 Forward Replicative DNA helicase 

7943 8332 Forward Phage antitermination protein Q 

9107 9637 Forward Phage regulatory protein Rha (Phage_pRha) 

9722 10054 Forward Phage holin family (Lysis protein S) 

10051 10668 Forward Chitinase class I 

10668 11180 Forward Bacteriophage lysis protein 

11375 11704 Forward HNH endonuclease 

12613 14292 Forward Phage Terminase 

14295 15518 Forward Phage portal protein 

15502 16146 Forward Caudovirus prohead protease 

16143 17357 Forward Phage capsid family protein 

17612 17935 Forward Phage gp6-like head-tail connector protein 

17935 18261 Forward Phage head-tail joining protein 

20633 23908 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

23908 24246 Forward Phage minor tail protein 

24243 24989 Forward Phage minor tail protein L 

24992 25750 Forward NlpC/P60 family protein 

26501 27073 Forward Bacteriophage lambda tail assembly protein I 

27130 30795 Forward Carbohydrate binding domain protein 
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32383 31400 Reverse Transposase DDE domain protein 

37091 36861 Reverse Arc-like DNA binding domain protein 

37951 37166 Reverse BRO family, N-terminal domain 

38649 38263 Reverse Bacterial regulatory proteins, luxR family 

39457 38798 Reverse LexA repressor 

39567 39872 Forward Helix-turn-helix 

 

Table 17: Functional genes identified for vB_Pae_CF15a. 
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Figure 17: Genome map of vB_Pae_CF15a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF16a genome size was 54.1 kb, the phage was 

assembled using SPAdes and has a mean coverage of 39. The genome map of this 

phage is shown in Figure 18. The total number of genes identified was 97 of which 22 

were identified with putative functions these can be seen in Table 18. Blastn on viruses 

only database showed a 6.3 kb / 7 kb match with Pseudomonas phage vB_PaeS_PMG1 

(GenBank: NC_016765.1). The phage vB_Pae_CF16a had a 58.4 % G-C content. A 

tRNA gene was identified along with genes associated with structural, lysogenic and 

regulatory proteins were identified. 

Start End Direction Putative functional protein 

56 436 Forward Phage terminase, small subunit 

438 2129 Forward Phage Terminase 

2283 3545 Forward Phage portal protein 

3677 4567 Forward ATP-dependent Clp protease proteolytic subunit 

4564 5751 Forward Phage capsid family protein 

6816 7172 Forward Phage head-tail joining protein 

10722 13226 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

17351 19021 Forward Pectate lyase superfamily protein 

20804 21136 Forward HIRAN domain protein 

21467 21901 Forward Lysozyme RrrD 

24034 23078 Reverse Tyrosine recombinase XerC 

24387 24073 Reverse Helix-turn-helix domain protein 

27993 27478 Reverse NUMOD4 motif protein 

30877 30251 Reverse YqaJ-like viral recombinase domain protein 

31633 30881 Reverse ERF superfamily protein 

41473 40823 Reverse DNA polymerase III subunit epsilon 

42366 41503 Reverse putative HTH-type transcriptional regulator 

42391 42591 Forward Cro 

48351 49037 Forward Serine/threonine-protein phosphatase 1 

49515 50114 Forward Bacteriophage Lambda NinG protein 

51847 51922 Forward tRNA-Thr(tgt) 
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53691 54005 Forward HNH endonuclease 

 

Table 18: Functional genes identified for vB_Pae_CF16a. 
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Figure 18: Genome map of vB_Pae_CF16a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF16b genome size was 42.5 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 19. The total number of genes identified was 68 of which 13 

were identified with putative functions these can be seen in Table 19. Blastn on viruses 

only database showed an 8 kb / 8.6 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF16b had a 61.5 % G-C content. No tRNA gene 

was identified however; genes associated with structural, lysogenic and regulatory 

proteins were identified, including an integrase putative protein. 

Start End Direction Putative functional protein 

11583 10405 Reverse Putative prophage phiRv2 integrase 

13993 13763 Reverse Arc-like DNA binding domain protein 

14841 14062 Reverse Phage regulatory protein Rha (Phage_pRha) 

18145 17354 Reverse HTH-type transcriptional regulator PrtR 

25868 26257 Forward Phage antitermination protein Q 

26796 27323 Forward Phage regulatory protein Rha (Phage_pRha) 

27408 27740 Forward Phage holin family (Lysis protein S) 

27737 28354 Forward Chitinase class I 

28590 29060 Forward Bacteriophage lysis protein 

29917 30462 Forward Phage DNA packaging protein Nu1 

30434 32398 Forward Phage terminase large subunit (GpA) 

32604 34250 Forward Phage portal protein, lambda family 

34222 36303 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

 

Table 19: Functional genes identified for vB_Pae_CF16b. 
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Figure 19: Genome map of vB_Pae_CF16b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF17a genome size was 52.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 208. The genome map of this 

phage is shown in Figure 20. The total number of genes identified was 86 of which 18 

were identified with putative functions these can be seen in Table 20. Blastn on viruses 

only database showed an 8 kb / 8.6 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_CF17a had a 58.9 % G-C content. A 

tRNA gene was identified along with genes associated with structural, lysogenic and 

regulatory proteins were identified. 

Start End Direction Putative functional protein 

303 1688 Forward Replicative DNA helicase 

4102 4749 Forward Bacteriophage Lambda NinG protein 

8927 10045 Forward Phage terminase large subunit 

11578 13308 Forward Phage Mu protein F like protein 

18193 19188 Forward Bacterial Ig-like domain (group 2) 

23274 23834 Forward AP2 domain protein 

30729 32375 Forward D-glucuronyl C5-epimerase C-terminus 

33769 32870 Reverse BRO family, N-terminal domain 

34372 34806 Forward Lysozyme RrrD 

35876 35963 Forward tRNA-Ser(cga) 

36037 37047 Forward site-specific tyrosine recombinase XerC 

44134 43799 Reverse LytTr DNA-binding domain protein 

44751 44131 Reverse YqaJ-like viral recombinase domain protein 

45481 44735 Reverse RecT family protein 

46553 45489 Reverse 

IgA-specific serine endopeptidase autotransporter 

precursor 

51012 50347 Reverse putative HTH-type transcriptional regulator 

51302 51805 Forward Bacteriophage CII protein 

51809 52405 Forward T5orf172 domain protein 
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Table 20: Functional genes identified for vB_Pae_CF17a. 
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Figure 20: Genome map of vB_Pae_CF17a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF17b genome size was 37.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 379. The genome map of this 

phage is shown in Figure 21. The total number of genes identified was 58 of which 18 

were identified with putative functions these can be seen in Table 21. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF17b had a 64.3 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

1203 490 Reverse HTH-type transcriptional regulator PrtR 

1373 1729 Forward 

DNA-binding transcriptional regulator 

Nlp 

2431 4425 Forward Mu DNA-binding domain protein 

6638 7156 Forward Bacteriophage Mu Gam like protein 

9960 10409 Forward Mor transcription activator family protein 

16878 18164 Forward Phage Mu protein F like protein 

18164 18631 Forward 

Phage virion morphogenesis family 

protein 

19650 20756 Forward Mu-like prophage I protein 

21192 22100 Forward 

Mu-like prophage major head subunit 

gpT 

25132 28692 Forward 

Prophage tail length tape measure 

protein 

 

Table 21: Functional genes identified for vB_Pae_CF17b. 
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Figure 21: Genome map of vB_Pae_CF17b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potentially incomplete temperate phage vB_Pae_CF18a genome size was 35.2 kb, 

the phage was assembled using SPAdes and has a mean coverage of 1549. The 

genome map of this phage is shown in Figure 22. The total number of genes identified 

was 59 of which 14 were identified with putative functions these can be seen in Table 22. 

Blastn on viruses only database showed a 6.2 kb / 6.7 kb match with Pseudomonas 

phage F10 (GenBank: NC_007805.1). The phage vB_Pae_CF18a had a 61.6 % G-C 

content. No tRNA gene was identified however; genes associated with structural and 

regulatory proteins were identified. An integrase gene was also predicted. 

Start End Direction Putative functional protein 

9170 7992 Reverse Putative prophage phiRv2 integrase 

11580 11350 Reverse Arc-like DNA binding domain protein 

12427 11660 Reverse Phage regulatory protein Rha (Phage_pRha) 

13832 13446 Reverse Bacterial regulatory proteins, luxR family 

15706 14915 Reverse HTH-type transcriptional regulator PrtR 

23429 23818 Forward Phage antitermination protein Q 

24357 24884 Forward Phage regulatory protein Rha (Phage_pRha) 

24969 25301 Forward Phage holin family (Lysis protein S) 

25298 25915 Forward Chitinase class I 

26151 26621 Forward Bacteriophage lysis protein 

27478 28023 Forward Phage DNA packaging protein Nu1 

27995 29959 Forward Phage terminase large subunit (GpA) 

30165 31811 Forward Phage portal protein, lambda family 

31783 33864 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

 

Table 22: Functional genes identified for vB_Pae_CF18a. 
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Figure 22: Genome map of vB_Pae_CF18a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF19a genome size was 62.6 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 23. The total number of genes identified was 63 of which 14 

were identified with putative functions these can be seen in Table 23. Blastn on viruses 

only database showed a 13 kb / 13.2 kb match with Pseudomonas phage LKA5 

(GenBank: KC900378.1). The phage vB_Pae_CF19a had a 63.7 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. An integrase gene was also predicted. 

Start End Direction Putative functional protein 

25515 26054 Forward Phage lysozyme 

29120 30355 Forward Putative prophage CPS-53 integrase 

30589 30356 Reverse 

Response regulator inhibitor for tor 

operon 

34926 33118 Reverse C-5 cytosine-specific DNA methylase 

37553 34923 Reverse DNA methylase 

37907 37698 Reverse LexA repressor 

39124 37904 Reverse Recombination-associated protein RdgC 

39648 39214 Reverse Single-stranded DNA-binding protein 

42016 40379 Reverse 

YqaJ-like viral recombinase domain 

protein 

42711 42013 Reverse ERF superfamily protein 

44808 44437 Reverse Carbon storage regulator homolog 

49438 50052 Forward Bacteriophage Lambda NinG protein 

51568 52851 Forward Phage terminase large subunit 

58364 59236 Forward RyR domain protein 

 

Table 23: Functional genes identified for vB_Pae_CF19a. 
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Figure 23: Genome map of vB_Pae_CF19a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF20a genome size was 52.6 kb, the phage was 

assembled using SPAdes with a mean coverage of 195. The genome map of this phage 

is shown in Figure 24. The total number of genes identified was 86 of which 18 were 

identified with putative functions these can be seen in Table 24. Blastn on viruses only 

database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 (GenBank: 

NC_016762.1). The phage vB_Pae_CF20a had a 58.9 % G-C content. A tRNA gene 

was identified along with genes associated with structural, lysogenic and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

867 271 Reverse T5orf172 domain protein 

1374 871 Reverse Bacteriophage CII protein 

1664 2329 Forward putative HTH-type transcriptional regulator 

6123 7187 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

7195 7941 Forward RecT family protein 

7925 8545 Forward YqaJ-like viral recombinase domain protein 

8542 8877 Forward LytTr DNA-binding domain protein 

16639 15629 Reverse site-specific tyrosine recombinase XerC 

16800 16713 Reverse tRNA-Ser(cga) 

18304 17870 Reverse Lysozyme RrrD 

18907 19806 Forward BRO family, N-terminal domain 

21947 20301 Reverse D-glucuronyl C5-epimerase C-terminus 

29402 28842 Reverse AP2 domain protein 

34483 33488 Reverse Bacterial Ig-like domain (group 2) 

41098 39368 Reverse Phage Mu protein F like protein 

43749 42631 Reverse Phage terminase large subunit 

48574 47927 Reverse Bacteriophage Lambda NinG protein 

52373 50988 Reverse Replicative DNA helicase 
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Table 24: Functional genes identified for vB_Pae_CF20a. 
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Figure 24: Genome map of vB_Pae_CF20a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF20b genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 144. The genome map of this 

phage is shown in Figure 25. The total number of genes identified was 58 of which 18 

were identified with putative functions these can be seen in Table 25. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF20b had a 64.3 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

1137 424 Reverse HTH-type transcriptional regulator PrtR 

1307 1663 Forward 

DNA-binding transcriptional regulator 

Nlp 

2365 4359 Forward Mu DNA-binding domain protein 

6572 7090 Forward Bacteriophage Mu Gam like protein 

9894 10343 Forward Mor transcription activator family protein 

16812 18098 Forward Phage Mu protein F like protein 

18098 18565 Forward 

Phage virion morphogenesis family 

protein 

19584 20690 Forward Mu-like prophage I protein 

21126 22034 Forward 

Mu-like prophage major head subunit 

gpT 

25066 28626 Forward 

Prophage tail length tape measure 

protein 

 

Table 25: Functional genes identified for vB_Pae_CF20b. 
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Figure 25: Genome map of vB_Pae_CF20b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potentially incomplete temperate phage vB_Pae_CF21a genome size was 35.4 kb, 

the phage was assembled using SPAdes and extended using PriceTI. The genome map 

of this phage is shown in Figure 26. The total number of genes identified was 56 of which 

14 were identified with putative functions these can be seen in Table 26. Blastn on 

viruses only database showed a 9.6 kb / 10.1 kb match with Pseudomonas phage F10 

(GenBank: NC_007805.1). The phage vB_Pae_CF21a had a 61.3 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. An integrase gene was also predicted.  

Start End Direction Putative functional protein 

5885 6676 Forward HTH-type transcriptional regulator PrtR 

7759 8145 Forward Bacterial regulatory proteins, luxR family 

9164 9931 Forward Phage regulatory protein Rha (Phage_pRha) 

10011 10241 Forward Arc-like DNA binding domain protein 

12421 13599 Forward Putative prophage phiRv2 integrase 

31000 28919 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

32618 30972 Reverse Phage portal protein, lambda family 

34788 32824 Reverse Phage terminase large subunit (GpA) 

35392 34760 Reverse Phage DNA packaging protein Nu1 

 

Table 26: Functional genes identified for vB_Pae_CF21a. 
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Figure 26: Genome map of vB_Pae_CF21a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF22a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 16. The genome map of this 

phage is shown in Figure 27. The total number of genes identified was 62 of which 14 

were identified with putative functions these can be seen in Table 27. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_CF22a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

 

Start End Direction Putative functional protein 

4605 5102 Forward Single-stranded DNA-binding protein 

5129 6349 Forward 

Recombination-associated protein 

RdgC 

6346 6555 Forward LexA repressor 

6700 9330 Forward DNA methylase 

9327 11135 Forward C-5 cytosine-specific DNA methylase 

13664 13897 Forward 

Response regulator inhibitor for tor 

operon 

15133 13898 Reverse Putative prophage CPS-53 integrase 

18738 18199 Reverse Phage lysozyme 

47162 46290 Reverse RyR domain protein 

53961 52678 Reverse Phage terminase large subunit 

55759 55145 Reverse Bacteriophage Lambda NinG protein 

58365 58165 Reverse Cro 

58473 59270 Forward HTH-type transcriptional regulator PrtR 

60689 61060 Forward Carbon storage regulator homolog 

 

Table 27: Functional genes identified for vB_Pae_CF22a. 
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Figure 27: Genome map of vB_Pae_CF22a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF25a genome size was 44.2 kb, the phage was 

assembled using SPAdes and has a mean coverage of 103. The genome map of this 

phage is shown in Figure 28. The total number of genes identified was 67 of which 14 

were identified with putative functions these can be seen in Table 28. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF25a had a 64.1 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

1757 2821 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

2829 3575 Forward RecT family protein 

3559 4080 Forward YqaJ-like viral recombinase domain protein 

16529 12969 Reverse Prophage tail length tape measure protein 

20469 19561 Reverse Mu-like prophage major head subunit gpT 

22011 20905 Reverse Mu-like prophage I protein 

23497 23030 Reverse Phage virion morphogenesis family protein 

24783 23497 Reverse Phage Mu protein F like protein 

31701 31252 Reverse Mor transcription activator family protein 

35023 34505 Reverse Bacteriophage Mu Gam like protein 

39230 37236 Reverse Mu DNA-binding domain protein 

40288 39932 Reverse DNA-binding transcriptional regulator Nlp 

40458 41171 Forward HTH-type transcriptional regulator PrtR 

44082 41491 Reverse Acyl-homoserine lactone acylase QuiP precursor 

 

Table 28: Functional genes identified for vB_Pae_CF25a. 
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Figure 28: Genome map of vB_Pae_CF25a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential partial temperate phage vB_Pae_CF25b genome size was 34.6 kb, the 

phage was assembled using SPAdes and extended using PriceTI. The genome map of 

this phage is shown in Figure 29. The total number of genes identified was 46 of which 

8 were identified with putative functions these can be seen in Table 29. Blastn on viruses 

only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_CF25b had a 59.1 % G-C content. No 

tRNA gene was identified however; an Ig-like domain was identified. 

Start End Direction Putative functional protein 

405 1790 Forward Replicative DNA helicase 

4204 4851 Forward Bacteriophage Lambda NinG protein 

9029 10147 Forward Phage terminase large subunit 

11680 13410 Forward Phage Mu protein F like protein 

18295 19290 Forward Bacterial Ig-like domain (group 2) 

23376 23936 Forward AP2 domain protein 

30831 32477 Forward 

D-glucuronyl C5-epimerase C-

terminus 

33832 32972 Reverse BRO family, N-terminal domain 

 

Table 29: Functional genes identified for vB_Pae_CF25b. 
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Figure 29: Genome map of vB_Pae_CF25b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF26a genome size was 41.5 kb, the phage was 

assembled using SPAdes all the reads were used and gave a mean coverage of 52. The 

genome map of the phage is shown in Figure 30. The total number of genes identified 

was 68 of which 20 were identified with putative functions shown in Table 30. Blastn on 

viruses only database showed a 4.9 kb / 5.1 kb match with Pseudomonas phage 

vB_PaeS_PMG1 (GenBank: NC_016765.1). The phage vB_Pae_CF26a had a 58.3 % 

G-C content. No tRNA gene was identified however; structural and lysogenic genes were 

identified.  

Start End Direction Putative functional protein 

369 2060 Forward Phage Terminase 

2214 3476 Forward Phage portal protein 

3608 4498 Forward ATP-dependent Clp protease proteolytic subunit 

4495 5682 Forward Phage capsid family protein 

6747 7103 Forward Phage head-tail joining protein 

7308 8030 Forward P63C domain protein 

11622 14126 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

21327 21046 Reverse Antitoxin igA-2 

21772 21320 Reverse Toxin HigB-2 

22577 21717 Reverse BRO family, N-terminal domain 

23273 23605 Forward HIRAN domain protein 

23936 24370 Forward Lysozyme RrrD 

26446 25490 Reverse Tyrosine recombinase XerC 

26799 26485 Reverse Helix-turn-helix domain protein 

32879 32544 Reverse LytTr DNA-binding domain protein 

33502 32876 Reverse YqaJ-like viral recombinase domain protein 

34258 33506 Reverse ERF superfamily protein 

39863 39198 Reverse putative HTH-type transcriptional regulator 

40153 40656 Forward Bacteriophage CII protein 

40660 41256 Forward T5orf172 domain protein 
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Table 30: Functional genes identified for vB_Pae_CF26a. 
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Figure 30: Genome map of vB_Pae_CF26a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF26b genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 105. The genome map of this 

phage is shown in Figure 31. The total number of genes identified was 58 of which 10 

were identified with putative functions these can be seen in Table 31. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF26b had a 64.4 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

1124 411 Reverse HTH-type transcriptional regulator PrtR 

1294 1650 Forward 

DNA-binding transcriptional regulator 

Nlp 

2352 4346 Forward Mu DNA-binding domain protein 

6559 7077 Forward Bacteriophage Mu Gam like protein 

9881 10330 Forward Mor transcription activator family protein 

16799 18085 Forward Phage Mu protein F like protein 

18085 18552 Forward 

Phage virion morphogenesis family 

protein 

19571 20677 Forward Mu-like prophage I protein 

21113 22021 Forward 

Mu-like prophage major head subunit 

gpT 

25053 28613 Forward 

Prophage tail length tape measure 

protein 

 

Table 31: Functional genes identified for vB_Pae_CF26b. 
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Figure 31: Genome map of vB_Pae_CF26b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF27a genome size was 39.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 146. The genome map of this 

phage is shown in Figure 32. The total number of genes identified was 56 of which 8 

were identified with putative functions these can be seen in Table 32. Blastn on viruses 

only database showed a 7.1 kb / 7.6 kb match with Pseudomonas phage B3 (GenBank: 

NC_006548.1). The phage vB_Pae_CF27a had a 63.3 % G-C content. No tRNA gene 

was identified however; several genes associated with regulatory proteins were identified 

and an Integrase gene was identified.  

Start End Direction Putative functional protein 

524 165 Reverse Mor transcription activator family protein 

8043 6259 Reverse Integrase core domain protein 

11052 11441 Forward Helix-turn-helix domain protein 

13313 13942 Forward 

Soluble lytic murein transglycosylase 

precursor 

16008 17711 Forward Terminase-like family protein 

19189 20439 Forward Phage Mu protein F like protein 

20436 21008 Forward Phage virion morphogenesis family protein 

27025 30792 Forward Prophage tail length tape measure protein 

 

Table 32: Functional genes identified for vB_Pae_CF27a. 
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Figure 32: Genome map of vB_Pae_CF27a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF28a genome size was 41.1 kb, the phage was 

assembled using SPAdes and has a mean coverage of 1455. The genome map of this 

phage is shown in Figure 33. The total number of genes identified was 68 of which 14 

were identified with putative functions these can be seen in Table 33. Blastn on viruses 

only database showed a 9.6 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF28a had a 61.6 % G-C content. No tRNA gene 

was identified however; genes associated with structural, lysogenic and regulatory 

proteins were identified, including an integrase putative protein. 

Start End Direction Putative functional protein 

3307 2129 Reverse Putative prophage phiRv2 integrase 

5717 5487 Reverse Arc-like DNA binding domain protein 

6564 5797 Reverse Phage regulatory protein Rha (Phage_pRha) 

7969 7583 Reverse Bacterial regulatory proteins, luxR family 

9843 9052 Reverse HTH-type transcriptional regulator PrtR 

17566 17955 Forward Phage antitermination protein Q 

18494 19021 Forward Phage regulatory protein Rha (Phage_pRha) 

19106 19438 Forward Phage holin family (Lysis protein S) 

19435 20052 Forward Chitinase class I 

20288 20758 Forward Bacteriophage lysis protein 

21618 22163 Forward Phage DNA packaging protein Nu1 

22135 24099 Forward Phage terminase large subunit (GpA) 

24305 25951 Forward Phage portal protein, lambda family 

25923 28004 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

 

Table 33: Functional genes identified for vB_Pae_CF28a. 
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Figure 33: Genome map of vB_Pae_CF28a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential partial temperate phage vB_Pae_CF29a genome size was 52.8 kb, the 

phage was assembled using SPAdes with a mean coverage of 183. The genome map 

of this phage is shown in Figure 34. The total number of genes identified was 86 of which 

18 were identified with putative functions these can be seen in Table 34. Blastn on 

viruses only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_CF29a had a 59.1 % G-C content. A 

tRNA gene along with structural, lysogenic and regulatory proteins was identified.  An Ig-

like domain was also identified. 

 

Start End Direction Putative functional protein 

923 327 Reverse T5orf172 domain protein 

1430 927 Reverse Bacteriophage CII protein 

1720 2385 Forward putative HTH-type transcriptional regulator 

6179 7243 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

7251 7997 Forward RecT family protein 

7981 8601 Forward YqaJ-like viral recombinase domain protein 

8598 8933 Forward LytTr DNA-binding domain protein 

16695 15685 Reverse site-specific tyrosine recombinase XerC 

16856 16769 Reverse tRNA-Ser(cga) 

18360 17926 Reverse Lysozyme RrrD 

18963 19862 Forward BRO family, N-terminal domain 

22003 20357 Reverse D-glucuronyl C5-epimerase C-terminus 

29458 28898 Reverse AP2 domain protein 

34539 33544 Reverse Bacterial Ig-like domain (group 2) 

41154 39424 Reverse Phage Mu protein F like protein 

43805 42687 Reverse Phage terminase large subunit 

48630 47983 Reverse Bacteriophage Lambda NinG protein 

52429 51044 Reverse Replicative DNA helicase 
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Table 34: Functional genes identified for vB_Pae_CF29a. 
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Figure 34: Genome map of vB_Pae_CF29a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF29b genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 162. The genome map of this 

phage is shown in Figure 35. The total number of genes identified was 59 of which 10 

were identified with putative functions these can be seen in Table 35. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF29b had a 64.3 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

1127 414 Reverse HTH-type transcriptional regulator PrtR 

1297 1653 Forward 

DNA-binding transcriptional regulator 

Nlp 

2355 4349 Forward Mu DNA-binding domain protein 

6562 7080 Forward Bacteriophage Mu Gam like protein 

9884 10333 Forward Mor transcription activator family protein 

16802 18088 Forward Phage Mu protein F like protein 

18088 18555 Forward 

Phage virion morphogenesis family 

protein 

19574 20680 Forward Mu-like prophage I protein 

21116 22024 Forward 

Mu-like prophage major head subunit 

gpT 

25056 28616 Forward 

Prophage tail length tape measure 

protein 

 

Table 35: Functional genes identified for vB_Pae_CF29b. 
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Figure 35: Genome map of vB_Pae_CF29b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential partial temperate phage vB_Pae_CF30a genome size was 52.7 kb, the 

phage was assembled using SPAdes with a mean coverage of 28. The genome map of 

this phage is shown in Figure 36. The total number of genes identified was 86 of which 

18 were identified with putative functions these can be seen in Table 36. Blastn on 

viruses only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_CF30a had a 58.9 % G-C content. A 

tRNA gene along with structural, lysogenic and regulatory proteins was identified.  An Ig-

like domain was also identified. 

Start End Direction Putative functional protein 

874 278 Reverse T5orf172 domain protein 

1381 878 Reverse Bacteriophage CII protein 

1671 2336 Forward putative HTH-type transcriptional regulator 

6130 7194 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

7202 7948 Forward RecT family protein 

7932 8552 Forward YqaJ-like viral recombinase domain protein 

8549 8884 Forward LytTr DNA-binding domain protein 

16646 15636 Reverse site-specific tyrosine recombinase XerC 

16807 16720 Reverse tRNA-Ser(cga) 

18311 17877 Reverse Lysozyme RrrD 

18914 19813 Forward BRO family, N-terminal domain 

21954 20308 Reverse D-glucuronyl C5-epimerase C-terminus 

29409 28849 Reverse AP2 domain protein 

34490 33495 Reverse Bacterial Ig-like domain (group 2) 

41105 39375 Reverse Phage Mu protein F like protein 

43756 42638 Reverse Phage terminase large subunit 

48581 47934 Reverse Bacteriophage Lambda NinG protein 

52380 50995 Reverse Replicative DNA helicase 
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Table 36: Functional genes identified for vB_Pae_CF30a. 
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Figure 36: Genome map of vB_Pae_CF30a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF30b genome size was 37.7 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 37. The total number of genes identified was 59 of which 11 were 

identified with putative functions these can be seen in Table 37. Blastn on viruses only 

database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 (GenBank: 

NC_005178.1). The phage vB_Pae_CF30b had a 64.4 % G-C content. No tRNA gene 

was identified however; Mu-like phage structural and regulatory genes were identified. 

Start End Direction Putative functional protein 

1153 440 Reverse HTH-type transcriptional regulator PrtR 

1323 1679 Forward 

DNA-binding transcriptional regulator 

Nlp 

2381 4375 Forward Mu DNA-binding domain protein 

6588 7106 Forward Bacteriophage Mu Gam like protein 

9910 10359 Forward Mor transcription activator family protein 

16828 18114 Forward Phage Mu protein F like protein 

18114 18581 Forward 

Phage virion morphogenesis family 

protein 

19600 20706 Forward Mu-like prophage I protein 

21142 22050 Forward 

Mu-like prophage major head subunit 

gpT 

25082 28642 Forward 

Prophage tail length tape measure 

protein 

37731 37561 Reverse LysR substrate binding domain protein 

 

Table 37: Functional genes identified for vB_Pae_CF30b. 
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Figure 37: Genome map of vB_Pae_CF30b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF30c genome size was 32.1 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 38. The total number of genes identified was 48 of which 8 

were identified with putative functions these can be seen in Table 38. Blastn on viruses 

only database showed a 2.5 kb / 2.6 kb match with Pseudomonas phage B3 (GenBank: 

NC_006548.1). The phage vB_Pae_CF30c had a 63.4 % G-C content. No tRNA gene 

was identified however; several genes associated with regulatory proteins were identified 

and an Integrase gene was identified.  

Start End Direction Putative functional protein 

466 107 Reverse Mor transcription activator family protein 

7985 6201 Reverse Integrase core domain protein 

10994 11383 Reverse Helix-turn-helix domain protein 

13254 13883 Forward 

Soluble lytic murein transglycosylase 

precursor 

15949 17652 Forward Terminase-like family protein 

19130 20380 Forward Phage Mu protein F like protein 

20377 20949 Forward Phage virion morphogenesis family protein 

26966 30733 Forward Prophage tail length tape measure protein 

 

Table 38: Functional genes identified for vB_Pae_CF30c. 
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Figure 38: Genome map of vB_Pae_CF30c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF31a genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 329. The genome map of this 

phage is shown in Figure 39. The total number of genes identified was 58 of which 10 

were identified with putative functions these can be seen in Table 39. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF31a had a 64.4 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

1126 413 Reverse HTH-type transcriptional regulator PrtR 

1296 1652 Forward 

DNA-binding transcriptional regulator 

Nlp 

2354 4348 Forward Mu DNA-binding domain protein 

6561 7079 Forward Bacteriophage Mu Gam like protein 

9883 10332 Forward Mor transcription activator family protein 

16801 18087 Forward Phage Mu protein F like protein 

18087 18554 Forward 

Phage virion morphogenesis family 

protein 

19573 20679 Forward Mu-like prophage I protein 

21115 22023 Forward 

Mu-like prophage major head subunit 

gpT 

25055 28615 Forward 

Prophage tail length tape measure 

protein 

 

Table 39: Functional genes identified for vB_Pae_CF31a. 
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Figure 39: Genome map of vB_Pae_CF31a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF31b genome size was 42.4 kb, the phage was 

assembled using SPAdes with a mean coverage of 195. The genome map of this phage 

is shown in Figure 40. The total number of genes identified was 66 of which 8 were 

identified with putative functions these can be seen in Table 40. Blastn on viruses only 

database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 (GenBank: 

NC_016762.1). The phage vB_Pae_CF31b had a 58.9 % G-C content. A tRNA gene 

was identified along with structural, regulatory and lysogenic proteins. An Ig-like domain 

was also identified. 

Start End Direction Putative functional protein 

843 247 Reverse T5orf172 domain protein 

1350 847 Reverse Bacteriophage CII protein 

1640 2305 Forward putative HTH-type transcriptional regulator 

6099 7163 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

7171 7917 Forward RecT family protein 

7901 8521 Forward YqaJ-like viral recombinase domain protein 

8518 8853 Forward LytTr DNA-binding domain protein 

16615 15605 Reverse site-specific tyrosine recombinase XerC 

16776 16689 Reverse tRNA-Ser(cga) 

18280 17846 Reverse Lysozyme RrrD 

18883 19782 Forward BRO family, N-terminal domain 

21923 20277 Reverse D-glucuronyl C5-epimerase C-terminus 

29378 28818 Reverse AP2 domain protein 

34459 33464 Reverse Bacterial Ig-like domain (group 2) 

41074 39344 Reverse Phage Mu protein F like protein 

 

Table 40: Functional genes identified for vB_Pae_CF31b. 
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Figure 40: Genome map of vB_Pae_CF31b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF31c genome size was 38.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 35. The genome map of this 

phage is shown in Figure 41. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 41. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF31c had a 61.3 % G-C content. No tRNA gene 

was identified however; structural and regulatory proteins were identified. 

Start End Direction Putative functional protein 

503 2182 Forward Phage Terminase 

2185 3408 Forward Phage portal protein 

3392 4036 Forward Caudovirus prohead protease 

4033 5247 Forward Phage capsid family protein 

5502 5825 Forward Phage gp6-like head-tail connector protein 

5825 6151 Forward Phage head-tail joining protein 

8523 11798 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

11798 12136 Forward Phage minor tail protein 

12133 12879 Forward Phage minor tail protein L 

12882 13640 Forward NlpC/P60 family protein 

14391 14963 Forward Bacteriophage lambda tail assembly protein I 

15020 18685 Forward Carbohydrate binding domain protein 

20273 19290 Reverse Transposase DDE domain protein 

24981 24751 Reverse Arc-like DNA binding domain protein 

25841 25056 Reverse BRO family, N-terminal domain 

26539 26153 Reverse Bacterial regulatory proteins, luxR family 

27347 26688 Reverse LexA repressor 

27457 27762 Forward Helix-turn-helix 

31718 32533 Forward DNA replication protein DnaC 

32530 33927 Forward Replicative DNA helicase 

34199 34588 Forward Phage antitermination protein Q 

35363 35893 Forward Phage regulatory protein Rha (Phage_pRha) 
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35978 36310 Forward Phage holin family (Lysis protein S) 

36307 36924 Forward Chitinase class I 

36924 37436 Forward Bacteriophage lysis protein 

37631 37960 Forward HNH endonuclease 

 

Table 41: Functional genes identified for vB_Pae_CF31c. 
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Figure 41: Genome map of vB_Pae_CF31c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF32a genome size was 50.2 kb, the phage was 

assembled using SPAdes and has a mean coverage of 180. The genome map of this 

phage is shown in Figure 42. The total number of genes identified was 80 of which 14 

were identified with putative functions these can be seen in Table 42. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF32a had a 63.2 % G-C content. No 

tRNA gene was identified however; genes associated with structural, lysogenic and 

regulatory proteins were identified. 

Start End Direction Putative functional protein 

12564 9004 Reverse 

Prophage tail length tape measure 

protein 

16504 15596 Reverse 

Mu-like prophage major head subunit 

gpT 

18046 16940 Reverse Mu-like prophage I protein 

19532 19065 Reverse 

Phage virion morphogenesis family 

protein 

20818 19532 Reverse Phage Mu protein F like protein 

27736 27287 Reverse Mor transcription activator family protein 

31058 30540 Reverse Bacteriophage Mu Gam like protein 

35265 33271 Reverse Mu DNA-binding domain protein 

36323 35967 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36493 37206 Forward HTH-type transcriptional regulator PrtR 

38741 37542 Reverse Phage Mu protein F like protein 

41392 40274 Reverse Phage terminase large subunit 

46217 45570 Reverse Bacteriophage Lambda NinG protein 

50016 48631 Reverse Replicative DNA helicase 

 

Table 41: Functional genes identified for vB_Pae_CF32a. 

 

 



 

353 
 

 

Figure 42: Genome map of vB_Pae_CF32a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential partial temperate phage vB_Pae_CF32b genome size was 29.1 kb, the 

phage was assembled using SPAdes with a mean coverage of 180. The genome map 

of this phage is shown in Figure 43. The total number of genes identified was 42 of which 

7 were identified with putative functions these can be seen in Table 43. Blastn on viruses 

only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_CF32b had a 58.8 % G-C content. A 

tRNA gene along with recombinase and regulatory proteins was identified.  An Ig-like 

domain was also identified. 

Start End Direction Putative functional protein 

5686 4676 Reverse 

site-specific tyrosine recombinase 

XerC 

5847 5760 Reverse tRNA-Ser(cga) 

7351 6917 Reverse Lysozyme RrrD 

7954 8853 Forward BRO family, N-terminal domain 

10994 9348 Reverse 

D-glucuronyl C5-epimerase C-

terminus 

18449 17889 Reverse AP2 domain protein 

23530 22535 Reverse Bacterial Ig-like domain (group 2) 

 

Table 43: Functional genes identified for vB_Pae_CF32b. 
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Figure 43: Genome map of vB_Pae_CF32b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF33a genome size was 39.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 720. The genome map of this 

phage is shown in Figure 44. The total number of genes identified was 56 of which 8 

were identified with putative functions these can be seen in Table 44. Blastn on viruses 

only database showed a 7.1 kb / 7.6 kb match with Pseudomonas phage B3 (GenBank: 

NC_006548.1). The phage vB_Pae_CF33a had a 63.5 % G-C content. No tRNA gene 

was identified however; several genes associated with regulatory proteins and an 

Integrase protein was identified.  

Start End Direction Putative functional protein 

523 164 Reverse Mor transcription activator family protein 

8042 6258 Reverse Integrase core domain protein 

11051 11440 Forward Helix-turn-helix domain protein 

13312 13941 Forward 

Soluble lytic murein transglycosylase 

precursor 

16007 17710 Forward Terminase-like family protein 

19188 20438 Forward Phage Mu protein F like protein 

20435 21007 Forward Phage virion morphogenesis family protein 

27024 30791 Forward Prophage tail length tape measure protein 

 

Table 44: Functional genes identified for vB_Pae_CF33a. 
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Figure 44: Genome map of vB_Pae_CF33a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF34a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 15. The genome map of this 

phage is shown in Figure 45. The total number of genes identified was 62 of which 14 

were identified with putative functions these can be seen in Table 45. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_CF34a had a 63.7 % G-C content. No 

tRNA gene was identified however; regulatory and lysogenic proteins were identified. A 

CPS-53 integrase like gene and Cro gene were identified. 

Start End Direction Putative functional protein 

1112 741 Reverse Carbon storage regulator homolog 

3328 2531 Reverse HTH-type transcriptional regulator PrtR 

3436 3636 Forward Cro 

6042 6656 Forward Bacteriophage Lambda NinG protein 

7840 9123 Forward Phage terminase large subunit 

14639 15511 Forward RyR domain protein 

43063 43602 Forward Phage lysozyme 

46668 47903 Forward Putative prophage CPS-53 integrase 

48137 47904 Reverse 

Response regulator inhibitor for tor 

operon 

52474 50666 Reverse C-5 cytosine-specific DNA methylase 

55101 52471 Reverse DNA methylase 

55455 55246 Reverse LexA repressor 

56672 55452 Reverse 

Recombination-associated protein 

RdgC 

57196 56699 Reverse Single-stranded DNA-binding protein 

 

Table 45: Functional genes identified for vB_Pae_CF34a. 
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Figure 45: Genome map of vB_Pae_CF34a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF34b genome size was 37.4 kb, the phage was 

assembled using SPAdes and has a mean coverage of 259. The genome map of this 

phage is shown in Figure 46. The total number of genes identified was 56 of which 8 

were identified with putative functions these can be seen in Table 46. Blastn on viruses 

only database showed a 27.1 kb / 27.8 kb match with Pseudomonas phage JBD24 

(GenBank: NC_020203.1). The phage vB_Pae_CF34b had a 64.1 % G-C content. No 

tRNA gene was identified however; several Mu like proteins were identified associated 

with morphogenesis and structural proteins. 

Start End Direction Putative functional protein 

16605 15691 Reverse 

Mu-like prophage major head subunit 

gpT 

17706 16609 Reverse Mu-like prophage I protein 

19211 18744 Reverse 

Phage virion morphogenesis family 

protein 

20497 19211 Reverse Phage Mu protein F like protein 

27404 26955 Reverse Mor transcription activator family protein 

34860 32791 Reverse Mu DNA-binding domain protein 

36379 36023 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36620 37279 Forward 

putative HTH-type transcriptional 

regulator 

 

Table 46: Functional genes identified for vB_Pae_CF34b. 
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Figure 46: Genome map of vB_Pae_CF34b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF35a genome size was 38.2 kb, the phage was 

assembled using SPAdes and has a mean coverage of 44. The genome map of this 

phage is shown in Figure 47. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 47. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF35a had a 61.4 % G-C content. No tRNA gene 

was identified however; structural and regulatory proteins were identified. 

Start End Direction Putative functional protein 

453 2132 Forward Phage Terminase 

2135 3358 Forward Phage portal protein 

3342 3986 Forward Caudovirus prohead protease 

3983 5197 Forward Phage capsid family protein 

5452 5775 Forward Phage gp6-like head-tail connector protein 

5775 6101 Forward Phage head-tail joining protein 

8473 11748 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

11748 12086 Forward Phage minor tail protein 

12083 12829 Forward Phage minor tail protein L 

12832 13590 Forward NlpC/P60 family protein 

14341 14913 Forward Bacteriophage lambda tail assembly protein I 

14970 18635 Forward Carbohydrate binding domain protein 

20223 19240 Reverse Transposase DDE domain protein 

24931 24701 Reverse Arc-like DNA binding domain protein 

25791 25006 Reverse BRO family, N-terminal domain 

26489 26103 Reverse Bacterial regulatory proteins, luxR family 

27297 26638 Reverse LexA repressor 

27407 27712 Forward Helix-turn-helix 

31668 32483 Forward DNA replication protein DnaC 

32480 33877 Forward Replicative DNA helicase 

34149 34538 Forward Phage antitermination protein Q 

35313 35843 Forward Phage regulatory protein Rha (Phage_pRha) 
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35928 36260 Forward Phage holin family (Lysis protein S) 

36257 36874 Forward Chitinase class I 

36874 37386 Forward Bacteriophage lysis protein 

37581 37910 Forward HNH endonuclease 

 

Table 47: Functional genes identified for vB_Pae_CF35a. 

 

 

 

 



 

364 
 

 

Figure 47: Genome map of vB_Pae_CF35a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential incomplete temperate phage vB_Pae_CF35b genome size was 28.2 kb, 

the phage was assembled using SPAdes and has a mean coverage of 51. The genome 

map of this phage is shown in Figure 48. The total number of genes identified was 45 of 

which 7 were identified with putative functions these can be seen in Table 48. Blastn on 

viruses only database showed a 2.5 kb / 2.6 kb match with Pseudomonas phage B3 

(GenBank: NC_006548.1). The phage vB_Pae_CF35b had a 63.4 % G-C content. No 

tRNA gene was identified however; several genes associated with regulatory proteins 

were identified and an Integrase gene was identified.  

Start End Direction Putative functional protein 

528 169 Reverse Mor transcription activator family protein 

8047 6263 Reverse Integrase core domain protein 

11056 11445 Forward Helix-turn-helix domain protein 

13317 13946 Forward 

Soluble lytic murein transglycosylase 

precursor 

16012 17715 Forward Terminase-like family protein 

19193 20443 Forward Phage Mu protein F like protein 

20440 21012 Forward Phage virion morphogenesis family protein 

 

Table 48: Functional genes identified for vB_Pae_CF35b. 
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Figure 48: Genome map of vB_Pae_CF35b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF36a genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 284. The genome map of this 

phage is shown in Figure 49. The total number of genes identified was 58 of which 10 

were identified with putative functions these can be seen in Table 49. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF36a had a 64.3 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

12555 8995 Reverse 

Prophage tail length tape measure 

protein 

16495 15587 Reverse 

Mu-like prophage major head subunit 

gpT 

18037 16931 Reverse Mu-like prophage I protein 

19523 19056 Reverse 

Phage virion morphogenesis family 

protein 

20809 19523 Reverse Phage Mu protein F like protein 

27727 27278 Reverse Mor transcription activator family protein 

31049 30531 Reverse Bacteriophage Mu Gam like protein 

35256 33262 Reverse Mu DNA-binding domain protein 

36314 35958 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36484 37197 Forward HTH-type transcriptional regulator PrtR 

 

Table 49: Functional genes identified for vB_Pae_CF36a. 
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Figure 49: Genome map of vB_Pae_CF36a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF36b genome size was 37.2 kb, the phage was 

assembled using SPAdes with a mean coverage of 207. The genome map of this phage 

is shown in Figure 50. The total number of genes identified was 52 of which 11 were 

identified with putative functions these can be seen in Table 50. Blastn on viruses only 

database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 (GenBank: 

NC_016762.1). The phage vB_Pae_CF36b had a 59.2 % G-C content. A tRNA gene 

and an Ig-like domain were identified. 

Start End Direction Putative functional protein 

259 1644 Forward Replicative DNA helicase 

4058 4705 Forward Bacteriophage Lambda NinG protein 

8883 10001 Forward Phage terminase large subunit 

11534 13264 Forward Phage Mu protein F like protein 

18149 19144 Forward Bacterial Ig-like domain (group 2) 

23230 23790 Forward AP2 domain protein 

30685 32331 Forward 

D-glucuronyl C5-epimerase C-

terminus 

33725 32826 Reverse BRO family, N-terminal domain 

34328 34762 Forward Lysozyme RrrD 

35832 35919 Forward tRNA-Ser(cga) 

35993 37003 Forward 

site-specific tyrosine recombinase 

XerC 

 

Table 50: Functional genes identified for vB_Pae_CF36b. 
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Figure 50: Genome map of vB_Pae_CF36b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF37a genome size was 40.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 473. The genome map of this 

phage is shown in Figure 51. The total number of genes identified was 61 of which 13 

were identified with putative functions these can be seen in Table 51. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF37a had a 61.6 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

32 577 Forward Phage DNA packaging protein Nu1 

549 2513 Forward Phage terminase large subunit (GpA) 

2719 4365 Forward Phage portal protein, lambda family 

4337 6418 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

22961 21909 Reverse Phage integrase family protein 

26137 25370 Reverse Phage regulatory protein Rha (Phage_pRha) 

28679 27891 Reverse HTH-type transcriptional regulator PrtR 

28782 29102 Forward Cro 

36398 36787 Forward Phage antitermination protein Q 

37326 37853 Forward Phage regulatory protein Rha (Phage_pRha) 

37938 38270 Forward Phage holin family (Lysis protein S) 

38267 38884 Forward Chitinase class I 

39120 39590 Forward Bacteriophage lysis protein 

 

Table 51: Functional genes identified for vB_Pae_CF37a. 
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Figure 51: Genome map of vB_Pae_CF37a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF39a genome size was 40.7 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 52. The total number of genes identified was 61 of which 13 were 

identified with putative functions these can be seen in Table 52. Blastn on viruses only 

database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF39a had a 61.6 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

1276 806 Reverse Bacteriophage lysis protein 

2129 1512 Reverse Chitinase class I 

2458 2126 Reverse Phage holin family (Lysis protein S) 

3070 2543 Reverse Phage regulatory protein Rha (Phage_pRha) 

3998 3609 Reverse Phage antitermination protein Q 

11614 11294 Reverse Cro 

11717 12505 Forward HTH-type transcriptional regulator PrtR 

14259 15026 Forward Phage regulatory protein Rha (Phage_pRha) 

17435 18487 Forward Phage integrase family protein 

36059 33978 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

37677 36031 Reverse Phage portal protein, lambda family 

39847 37883 Reverse Phage terminase large subunit (GpA) 

40364 39819 Reverse Phage DNA packaging protein Nu1 

 

Table 52: Functional genes identified for vB_Pae_CF39a. 
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Figure 52: Genome map of vB_Pae_CF39a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF40a genome size was 40.9 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 53. The total number of genes identified was 62 of which 13 were 

identified with putative functions these can be seen in Table 53. Blastn on viruses only 

database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF40a had a 61.5 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

1549 1079 Reverse Bacteriophage lysis protein 

2402 1785 Reverse Chitinase class I 

2731 2399 Reverse Phage holin family (Lysis protein S) 

3343 2816 Reverse Phage regulatory protein Rha (Phage_pRha) 

4271 3882 Reverse Phage antitermination protein Q 

11887 11567 Reverse Cro 

11990 12778 Forward HTH-type transcriptional regulator PrtR 

14532 15299 Forward Phage regulatory protein Rha (Phage_pRha) 

17708 18760 Forward Phage integrase family protein 

36332 34251 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

37950 36304 Reverse Phage portal protein, lambda family 

40120 38156 Reverse Phage terminase large subunit (GpA) 

40490 40092 Reverse Phage DNA packaging protein Nu1 

 

Table 53: Functional genes identified for vB_Pae_CF40a. 
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Figure 53: Genome map of vB_Pae_CF40a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential partial temperate phage vB_Pae_CF41a genome size was 37.3 kb, the 

phage was assembled using SPAdes and has a mean coverage of 55. The genome map 

of this phage is shown in Figure 54. The total number of genes identified was 54 of which 

8 were identified with putative functions these can be seen in Table 54. Blastn on viruses 

only database showed a 7 kb / 7.5 kb match with Pseudomonas phage B3 (GenBank: 

NC_006548.1). The phage vB_Pae_CF41a had a 63.6 % G-C content. No tRNA gene 

was identified however; several genes associated with regulatory proteins were identified 

and an Integrase gene was identified.  

Start End Direction Putative functional protein 

8314 7742 Reverse Phage virion morphogenesis family protein 

9561 8311 Reverse Phage Mu protein F like protein 

12742 11039 Reverse Terminase-like family protein 

15437 14808 Reverse Soluble lytic murein transglycosylase precursor 

17698 17309 Reverse Helix-turn-helix domain protein 

20707 22491 Forward Integrase core domain protein 

28226 28585 Forward Mor transcription activator family protein 

28775 30106 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

 

Table 54: Functional genes identified for vB_Pae_CF41a. 
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Figure 54: Genome map of vB_Pae_CF41a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF41b genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 187. The genome map of this 

phage is shown in Figure 55. The total number of genes identified was 58 of which 10 

were identified with putative functions these can be seen in Table 55. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF41b had a 64.3 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

1123 410 Reverse HTH-type transcriptional regulator PrtR 

1293 1649 Forward 

DNA-binding transcriptional regulator 

Nlp 

2351 4345 Forward Mu DNA-binding domain protein 

6558 7076 Forward Bacteriophage Mu Gam like protein 

9880 10329 Forward Mor transcription activator family protein 

16798 18084 Forward Phage Mu protein F like protein 

18084 18551 Forward 

Phage virion morphogenesis family 

protein 

19570 20676 Forward Mu-like prophage I protein 

21112 22020 Forward 

Mu-like prophage major head subunit 

gpT 

25052 28612 Forward 

Prophage tail length tape measure 

protein 

 

Table 55: Functional genes identified for vB_Pae_CF41b. 
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Figure 55: Genome map of vB_Pae_CF41b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF41c genome size was 52.7 kb, the phage was 

assembled using SPAdes with a mean coverage of 379. The genome map of this phage 

is shown in Figure 56. The total number of genes identified was 86 of which 18 were 

identified with putative functions these can be seen in Table 56. Blastn on viruses only 

database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 (GenBank: 

NC_016762.1). The phage vB_Pae_CF41c had a 58.9 % G-C content. A tRNA gene 

was identified along with genes associated with structural, lysogenic and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

886 290 Reverse T5orf172 domain protein 

1393 890 Reverse Bacteriophage CII protein 

1683 2348 Forward putative HTH-type transcriptional regulator 

6142 7206 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

7214 7960 Forward RecT family protein 

7944 8564 Forward YqaJ-like viral recombinase domain protein 

8561 8896 Forward LytTr DNA-binding domain protein 

16658 15648 Reverse site-specific tyrosine recombinase XerC 

16819 16732 Reverse tRNA-Ser(cga) 

18323 17889 Reverse Lysozyme RrrD 

18926 19825 Forward BRO family, N-terminal domain 

21966 20320 Reverse D-glucuronyl C5-epimerase C-terminus 

29421 28861 Reverse AP2 domain protein 

34502 33507 Reverse Bacterial Ig-like domain (group 2) 

41117 39387 Reverse Phage Mu protein F like protein 

43768 42650 Reverse Phage terminase large subunit 

48593 47946 Reverse Bacteriophage Lambda NinG protein 

52392 51007 Reverse Replicative DNA helicase 
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Table 56: Functional genes identified for vB_Pae_CF41c. 
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Figure 56: Genome map of vB_Pae_CF41c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF42a genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 51. The genome map of this 

phage is shown in Figure 57. The total number of genes identified was 57 of which 26 

were identified with putative functions these can be seen in Table 57. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF42a had a 61.4 % G-C content. No tRNA gene 

was identified however; several genes associated with structural and regulatory proteins 

were identified.  

Start End Direction Putative functional protein 

101 1483 Forward Phage Terminase 

1486 2709 Forward Phage portal protein 

2693 3337 Forward Caudovirus prohead protease 

3334 4548 Forward Phage capsid family protein 

4803 5126 Forward Phage gp6-like head-tail connector protein 

5126 5452 Forward Phage head-tail joining protein 

7824 11099 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

11099 11437 Forward Phage minor tail protein 

11434 12180 Forward Phage minor tail protein L 

12183 12941 Forward NlpC/P60 family protein 

13692 14264 Forward Bacteriophage lambda tail assembly protein I 

14321 17986 Forward Carbohydrate binding domain protein 

19574 18591 Reverse Transposase DDE domain protein 

24282 24052 Reverse Arc-like DNA binding domain protein 

25142 24357 Reverse BRO family, N-terminal domain 

25840 25454 Reverse Bacterial regulatory proteins, luxR family 

26648 25989 Reverse LexA repressor 

26758 27063 Forward Helix-turn-helix 

31019 31834 Forward DNA replication protein DnaC 

31831 33228 Forward Replicative DNA helicase 

33500 33889 Forward Phage antitermination protein Q 
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34664 35194 Forward Phage regulatory protein Rha (Phage_pRha) 

35279 35611 Forward Phage holin family (Lysis protein S) 

35608 36225 Forward Chitinase class I 

36225 36737 Forward Bacteriophage lysis protein 

36932 37261 Forward HNH endonuclease 

 

Table 57: Functional genes identified for vB_Pae_CF42a. 
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Figure 57: Genome map of vB_Pae_CF42a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF42b genome size was 38.4 kb, the phage was 

assembled using SPAdes and has a mean coverage of 258. The genome map of this 

phage is shown in Figure 58. The total number of genes identified was 59 of which 10 

were identified with putative functions these can be seen in Table 58. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF42b had a 64.2 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

12580 9020 Reverse 

Prophage tail length tape measure 

protein 

16520 15612 Reverse 

Mu-like prophage major head subunit 

gpT 

18062 16956 Reverse Mu-like prophage I protein 

19548 19081 Reverse 

Phage virion morphogenesis family 

protein 

20834 19548 Reverse Phage Mu protein F like protein 

27752 27303 Reverse Mor transcription activator family protein 

31074 30556 Reverse Bacteriophage Mu Gam like protein 

35281 33287 Reverse Mu DNA-binding domain protein 

36339 35983 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36509 37222 Forward HTH-type transcriptional regulator PrtR 

 

Table 58: Functional genes identified for vB_Pae_CF42b. 

 

 

 

 



 

388 
 

 

Figure 58: Genome map of vB_Pae_CF42b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF43a genome size was 40.5 kb, the phage was 

assembled using SPAdes and extended with PriceTI. The genome map of this phage is 

shown in Figure 59. The total number of genes identified was 63 of which 12 were 

identified with putative functions these can be seen in Table 59. Blastn on viruses only 

database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_CF43a had a 61.5 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

678 2642 Forward Phage terminase large subunit (GpA) 

2848 4494 Forward Phage portal protein, lambda family 

4466 6547 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

23090 22038 Reverse Phage integrase family protein 

26266 25499 Reverse Phage regulatory protein Rha (Phage_pRha) 

28808 28020 Reverse HTH-type transcriptional regulator PrtR 

28911 29231 Forward Cro 

36528 36917 Forward Phage antitermination protein Q 

37456 37983 Forward Phage regulatory protein Rha (Phage_pRha) 

38068 38400 Forward Phage holin family (Lysis protein S) 

38397 39014 Forward Chitinase class I 

39250 39720 Forward Bacteriophage lysis protein 

 

Table 59: Functional genes identified for vB_Pae_CF43a. 
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Figure 59: Genome map of vB_Pae_CF43a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF44a genome size was 52.6 kb, the phage was 

assembled using SPAdes with a mean coverage of 204. The genome map of this phage 

is shown in Figure 60. The total number of genes identified was 86 of which 18 were 

identified with putative functions these can be seen in Table 60. Blastn on viruses only 

database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 (GenBank: 

NC_016762.1). The phage vB_Pae_CF44a had a 58.9 % G-C content. A tRNA gene 

was identified along with genes associated with structural, lysogenic and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

849 253 Reverse T5orf172 domain protein 

1356 853 Reverse Bacteriophage CII protein 

1646 2311 Forward putative HTH-type transcriptional regulator 

6105 7169 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

7177 7923 Forward RecT family protein 

7907 8527 Forward YqaJ-like viral recombinase domain protein 

8524 8859 Forward LytTr DNA-binding domain protein 

16621 15611 Reverse site-specific tyrosine recombinase XerC 

16782 16695 Reverse tRNA-Ser(cga) 

18286 17852 Reverse Lysozyme RrrD 

18889 19788 Forward BRO family, N-terminal domain 

21929 20283 Reverse D-glucuronyl C5-epimerase C-terminus 

29384 28824 Reverse AP2 domain protein 

34465 33470 Reverse Bacterial Ig-like domain (group 2) 

41080 39350 Reverse Phage Mu protein F like protein 

43731 42613 Reverse Phage terminase large subunit 

48556 47909 Reverse Bacteriophage Lambda NinG protein 

52355 50970 Reverse Replicative DNA helicase 
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Table 60: Functional genes identified for vB_Pae_CF44a. 
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Figure 60: Genome map of vB_Pae_CF44a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_CF44b genome size was 37.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 252. The genome map of this 

phage is shown in Figure 61. The total number of genes identified was 58 of which 10 

were identified with putative functions these can be seen in Table 61. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_CF44b had a 64.3 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

1124 411 Reverse HTH-type transcriptional regulator PrtR 

1294 1650 Forward 

DNA-binding transcriptional regulator 

Nlp 

2352 4346 Forward Mu DNA-binding domain protein 

6559 7077 Forward Bacteriophage Mu Gam like protein 

9881 10330 Forward Mor transcription activator family protein 

16799 18085 Forward Phage Mu protein F like protein 

18085 18552 Forward 

Phage virion morphogenesis family 

protein 

19571 20677 Forward Mu-like prophage I protein 

21113 22021 Forward 

Mu-like prophage major head subunit 

gpT 

25053 28613 Forward 

Prophage tail length tape measure 

protein 

 

Table 61: Functional genes identified for vB_Pae_CF44b. 
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Figure 61: Genome map of vB_Pae_CF44b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential partial temperate phage vB_Pae_BR46a genome size was 61.6 kb, the 

phage was assembled using SPAdes and extended using PriceTI. The genome map of 

this phage is shown in Figure 62. The total number of genes identified was 63 of which 

13 were identified with putative functions these can be seen in Table 62. Blastn on 

viruses only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR46a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene, Cro gene was 

identified. 

Start End  Direction Putative functional protein 

654 1151 Forward Single-stranded DNA-binding protein 

1178 2398 Forward Recombination-associated protein RdgC 

2395 2604 Forward LexA repressor 

2749 5379 Forward DNA methylase 

5376 7184 Forward C-5 cytosine-specific DNA methylase 

9713 9946 Forward Response regulator inhibitor for tor operon 

11182 9947 Reverse Putative prophage CPS-53 integrase 

14787 14248 Reverse Phage lysozyme 

50010 48727 Reverse Phage terminase large subunit 

51808 51194 Reverse Bacteriophage Lambda NinG protein 

54414 54214 Reverse Cro 

54522 55319 Forward HTH-type transcriptional regulator PrtR 

56738 57109 Forward Carbon storage regulator homolog 

 

Table 62: Functional genes identified for vB_Pae_BR46a. 
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Figure 62: Genome map of vB_Pae_BR46a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR47a genome size was 38.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 64. The genome map of this 

phage is shown in Figure 63. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 63. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR47a had a 61.4 % G-C content. No tRNA gene 

was identified however; several genes associated with structural and regulatory proteins 

were identified.  

Start End Direction Putative functional protein 

688 359 Reverse HNH endonuclease 

1395 883 Reverse Bacteriophage lysis protein 

2012 1395 Reverse Chitinase class I 

2341 2009 Reverse Phage holin family (Lysis protein S) 

2956 2426 Reverse Phage regulatory protein Rha (Phage_pRha) 

4120 3731 Reverse Phage antitermination protein Q 

5789 4392 Reverse Replicative DNA helicase 

6601 5786 Reverse DNA replication protein DnaC 

10862 10557 Reverse Helix-turn-helix 

10972 11631 Forward LexA repressor 

11780 12166 Forward Bacterial regulatory proteins, luxR family 

12478 13263 Forward BRO family, N-terminal domain 

13338 13568 Forward Arc-like DNA binding domain protein 

18046 19029 Forward Transposase DDE domain protein 

23299 19634 Reverse Carbohydrate binding domain protein 

23928 23356 Reverse Bacteriophage lambda tail assembly protein I 

25437 24679 Reverse NlpC/P60 family protein 

26186 25440 Reverse Phage minor tail protein L 

26521 26183 Reverse Phage minor tail protein 

29796 26521 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

32494 32168 Reverse Phage head-tail joining protein 
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32817 32494 Reverse Phage gp6-like head-tail connector protein 

34286 33072 Reverse Phage capsid family protein 

34927 34283 Reverse Caudovirus prohead protease 

36134 34911 Reverse Phage portal protein 

37816 36137 Reverse Phage Terminase 

 

Table 63: Functional genes identified for vB_Pae_BR47a. 
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Figure 63: Genome map of vB_Pae_BR47a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR47b genome size was 31 kb, the phage was 

assembled using SPAdes and has a mean coverage of 218. The genome map of this 

phage is shown in Figure 64. The total number of genes identified was 48 of which 7 

were identified with putative functions these can be seen in Table 64. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_BR47b had a 64.5 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

79 471 Forward Bacteriophage Mu Gam like protein 

3275 3724 Forward Mor transcription activator family protein 

10193 11479 Forward Phage Mu protein F like protein 

11479 11946 Forward 

Phage virion morphogenesis family 

protein 

12965 14071 Forward Mu-like prophage I protein 

14507 15415 Forward 

Mu-like prophage major head subunit 

gpT 

18447 22007 Forward 

Prophage tail length tape measure 

protein 

 

Table 64: Functional genes identified for vB_Pae_BR47b. 
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Figure 64: Genome map of vB_Pae_BR47b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR50a genome size was 38.3 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 65. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 65. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR50a had a 61.3 % G-C content. No tRNA gene 

was identified however; several genes associated with structural and regulatory proteins 

were identified.  

Start End Direction Putative functional protein 

688 359 Reverse HNH endonuclease 

1395 883 Reverse Bacteriophage lysis protein 

2012 1395 Reverse Chitinase class I 

2341 2009 Reverse Phage holin family (Lysis protein S) 

2956 2426 Reverse Phage regulatory protein Rha (Phage_pRha) 

4120 3731 Reverse Phage antitermination protein Q 

5789 4392 Reverse Replicative DNA helicase 

6601 5786 Reverse DNA replication protein DnaC 

10862 10557 Reverse Helix-turn-helix 

10972 11631 Forward LexA repressor 

11780 12166 Forward Bacterial regulatory proteins, luxR family 

12478 13263 Forward BRO family, N-terminal domain 

13338 13568 Forward Arc-like DNA binding domain protein 

18046 19029 Forward Transposase DDE domain protein 

23299 19634 Reverse Carbohydrate binding domain protein 

23928 23356 Reverse Bacteriophage lambda tail assembly protein I 

25437 24679 Reverse NlpC/P60 family protein 

26186 25440 Reverse Phage minor tail protein L 

26521 26183 Reverse Phage minor tail protein 

29796 26521 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

32494 32168 Reverse Phage head-tail joining protein 
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32817 32494 Reverse Phage gp6-like head-tail connector protein 

34286 33072 Reverse Phage capsid family protein 

34927 34283 Reverse Caudovirus prohead protease 

36134 34911 Reverse Phage portal protein 

37816 36137 Reverse Phage Terminase 

 

Table 65: Functional genes identified for vB_Pae_BR50a. 
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Figure 65: Genome map of vB_Pae_BR50a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR50b genome size was 48.2 kb, the phage was 

assembled using SPAdes and has a mean coverage of 123. The genome map of this 

phage is shown in Figure 66. The total number of genes identified was 81 of which 16 

were identified with putative functions these can be seen in Table 66. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_BR50b had a 62.8 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

2620 2285 Reverse LytTr DNA-binding domain protein 

3243 2617 Reverse 

YqaJ-like viral recombinase domain 

protein 

3999 3247 Reverse ERF superfamily protein 

9604 8939 Reverse 

putative HTH-type transcriptional 

regulator 

9894 10397 Forward Bacteriophage CII protein 

10401 10805 Forward T5orf172 domain protein 

23219 19659 Reverse 

Prophage tail length tape measure 

protein 

27159 26251 Reverse 

Mu-like prophage major head subunit 

gpT 

28701 27595 Reverse Mu-like prophage I protein 

30187 29720 Reverse 

Phage virion morphogenesis family 

protein 

31473 30187 Reverse Phage Mu protein F like protein 

38391 37942 Reverse Mor transcription activator family protein 

41713 41195 Reverse Bacteriophage Mu Gam like protein 

45920 43926 Reverse Mu DNA-binding domain protein 

46978 46622 Reverse DNA-binding transcriptional regulator Nlp 

47148 47861 Forward HTH-type transcriptional regulator PrtR 
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Table 66: Functional genes identified for vB_Pae_BR50b. 
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Figure 66: Genome map of vB_Pae_BR50b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR51a genome size was 38.3 kb, the phage was 

assembled using SPAdes and had a mean coverage of 46. The genome map of this 

phage is shown in Figure 67. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 67. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR51a had a 61.4 % G-C content. No tRNA gene 

was identified however; several genes associated with structural and regulatory proteins 

were identified.  

Start End Direction Putative functional protein 

550 2229 Forward Phage Terminase 

2232 3455 Forward Phage portal protein 

3439 4083 Forward Caudovirus prohead protease 

4080 5294 Forward Phage capsid family protein 

5549 5872 Forward Phage gp6-like head-tail connector protein 

5872 6198 Forward Phage head-tail joining protein 

8570 11845 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

11845 12183 Forward Phage minor tail protein 

12180 12926 Forward Phage minor tail protein L 

12929 13687 Forward NlpC/P60 family protein 

14438 15010 Forward Bacteriophage lambda tail assembly protein I 

15067 18732 Forward Carbohydrate binding domain protein 

20320 19337 Reverse Transposase DDE domain protein 

25028 24798 Reverse Arc-like DNA binding domain protein 

25888 25103 Reverse BRO family, N-terminal domain 

26586 26200 Reverse Bacterial regulatory proteins, luxR family 

27394 26735 Reverse LexA repressor 

27504 27809 Forward Helix-turn-helix 

31765 32580 Forward DNA replication protein DnaC 

32577 33974 Forward Replicative DNA helicase 

34246 34635 Forward Phage antitermination protein Q 
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35410 35940 Forward Phage regulatory protein Rha (Phage_pRha) 

36025 36357 Forward Phage holin family (Lysis protein S) 

36354 36971 Forward Chitinase class I 

36971 37483 Forward Bacteriophage lysis protein 

37678 38007 Forward HNH endonuclease 

 

Table 67: Functional genes identified for vB_Pae_BR51a. 
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Figure 67: Genome map of vB_Pae_BR51a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR53a genome size was 50 kb, the phage was 

assembled using SPAdes and has a mean coverage of 506. The genome map of this 

phage is shown in Figure 67. The total number of genes identified was 72 of which 15 

were identified with putative functions these can be seen in Table 67. Blastn on viruses 

only database showed an 8.6 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_BR53a had a 61.8 % G-C content. No 

tRNA gene was identified however; CII and Ig-like domains were identified along with 

recombinase genes. 

Start End Direction Putative functional protein 

2857 3171 Forward Helix-turn-helix domain protein 

3210 4166 Forward Tyrosine recombinase XerC 

5981 5352 Reverse Chitinase class I 

18224 17229 Reverse Bacterial Ig-like domain (group 2) 

24052 23129 Reverse Phage Mu protein F like protein 

26838 25585 Reverse Phage terminase large subunit 

27364 26822 Reverse Terminase small subunit 

29312 28869 Reverse Endodeoxyribonuclease RusA 

31159 30848 Reverse Bacteriophage CII protein 

31449 32114 Reverse 

putative HTH-type transcriptional 

regulator 

34835 35206 Forward Carbon storage regulator homolog 

36950 37858 Forward 

YqaJ-like viral recombinase domain 

protein 

37871 38761 Forward recombination and repair protein RecT 

39749 41491 Forward chromosome segregation protein 

42101 43891 Forward C-5 cytosine-specific DNA methylase 

 

Table 68: Functional genes identified for vB_Pae_BR53a. 
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Figure 68: Genome map of vB_Pae_BR53a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR54a genome size was 42.4 kb, the phage was 

assembled using SPAdes and has a mean coverage of 226. The genome map of this 

phage is shown in Figure 69. The total number of genes identified was 65 of which 11 

were identified with putative functions these can be seen in Table 69. Blastn on viruses 

only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_BR54a had a 59.2 % G-C content. A 

tRNA gene was identified; CII and Ig-like domains were identified along with 

recombinase genes. 

Start End Direction Putative functional protein 

6284 5274 Reverse 

site-specific tyrosine recombinase 

XerC 

6445 6358 Reverse tRNA-Ser(cga) 

7949 7515 Reverse Lysozyme RrrD 

8552 9451 Forward BRO family, N-terminal domain 

11592 9946 Reverse 

D-glucuronyl C5-epimerase C-

terminus 

19047 18487 Reverse AP2 domain protein 

24128 23133 Reverse Bacterial Ig-like domain (group 2) 

30743 29013 Reverse Phage Mu protein F like protein 

33394 32276 Reverse Phage terminase large subunit 

38219 37572 Reverse Bacteriophage Lambda NinG protein 

42018 40633 Reverse Replicative DNA helicase 

 

Table 69: Functional genes identified for vB_Pae_BR54a. 
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Figure 69: Genome map of vB_Pae_BR54a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR54b genome size was 39.6 kb, the phage was 

assembled using SPAdes and has a mean coverage of 227. The genome map of this 

phage is shown in Figure 70. The total number of genes identified was 65 of which 11 

were identified with putative functions these can be seen in Table 70. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_BR54b had a 64.1 % G-C content. No 

tRNA gene was identified however; genes associated with structural and regulatory 

proteins were identified. 

Start End Direction Putative functional protein 

12692 9132 Reverse 

Prophage tail length tape measure 

protein 

16632 15724 Reverse 

Mu-like prophage major head subunit 

gpT 

18174 17068 Reverse Mu-like prophage I protein 

19660 19193 Reverse 

Phage virion morphogenesis family 

protein 

20946 19660 Reverse Phage Mu protein F like protein 

27864 27415 Reverse Mor transcription activator family protein 

31186 30668 Reverse Bacteriophage Mu Gam like protein 

35393 33399 Reverse Mu DNA-binding domain protein 

36451 36095 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36621 37334 Forward HTH-type transcriptional regulator PrtR 

37784 38119 Forward LytTr DNA-binding domain protein 

 

Table 70: Functional genes identified for vB_Pae_BR54b. 
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Figure 70: Genome map of vB_Pae_BR54b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR54c genome size was 38.2 kb, the phage was 

assembled using SPAdes and had a mean coverage of 35. The genome map of this 

phage is shown in Figure 71. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 71. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR54c had a 61.4 % G-C content. No tRNA gene 

was identified however; several genes associated with structural and regulatory proteins 

were identified.  

Start End Direction Putative functional protein 

471 2150 Forward Phage Terminase 

2153 3376 Forward Phage portal protein 

3360 4004 Forward Caudovirus prohead protease 

4001 5215 Forward Phage capsid family protein 

5470 5793 Forward Phage gp6-like head-tail connector protein 

5793 6119 Forward Phage head-tail joining protein 

8491 11766 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

11766 12104 Forward Phage minor tail protein 

12101 12847 Forward Phage minor tail protein L 

12850 13608 Forward NlpC/P60 family protein 

14359 14931 Forward Bacteriophage lambda tail assembly protein I 

14988 18653 Forward Carbohydrate binding domain protein 

20241 19258 Reverse Transposase DDE domain protein 

24949 24719 Reverse Arc-like DNA binding domain protein 

25809 25024 Reverse BRO family, N-terminal domain 

26507 26121 Reverse Bacterial regulatory proteins, luxR family 

27315 26656 Reverse LexA repressor 

27425 27730 Forward Helix-turn-helix 

31686 32501 Forward DNA replication protein DnaC 

32498 33895 Forward Replicative DNA helicase 

34167 34556 Forward Phage antitermination protein Q 
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35331 35861 Forward Phage regulatory protein Rha (Phage_pRha) 

35946 36278 Forward Phage holin family (Lysis protein S) 

36275 36892 Forward Chitinase class I 

36892 37404 Forward Bacteriophage lysis protein 

37599 37928 Forward HNH endonuclease 

 

Table 71: Functional genes identified for vB_Pae_BR54c. 
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Figure 71: Genome map of vB_Pae_BR54c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR55a genome size was 37.5 kb, the phage was 

assembled using SPAdes and has a mean coverage of 88. The genome map of this 

phage is shown in Figure 72. The total number of genes identified was 57 of which 9 

were identified with putative functions these can be seen in Table 72. Blastn on viruses 

only database showed a 27.1 kb / 27.8 kb match with Pseudomonas phage JBD24 

(GenBank: NC_020203.1). The phage vB_Pae_BR55a had a 64.2 % G-C content. No 

tRNA gene was identified however; several genes associated with structural proteins 

were identified.  

Start End Direction Putative functional protein 

16669 15755 Reverse 

Mu-like prophage major head subunit 

gpT 

17770 16673 Reverse Mu-like prophage I protein 

19275 18808 Reverse 

Phage virion morphogenesis family 

protein 

20561 19275 Reverse Phage Mu protein F like protein 

27468 27019 Reverse Mor transcription activator family protein 

34924 32855 Reverse Mu DNA-binding domain protein 

36443 36087 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36684 37343 Forward 

putative HTH-type transcriptional 

regulator 

37815 37450 Reverse 4-hydroxybenzoate transporter PcaK 

 

Table 72: Functional genes identified for vB_Pae_BR55a. 
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Figure 72: Genome map of vB_Pae_BR55a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR55b genome size was 38.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 4.7. The genome map of this 

phage is shown in Figure 73. The total number of genes identified was 64 of which 15 

were identified with putative functions these can be seen in Table 73. Blastn on viruses 

only database showed a 6.3 kb / 7 kb match with Pseudomonas phage vB_PaeS_PMG1 

(GenBank: NC_016765.1). The phage vB_Pae_BR55b had a 58.4 % G-C content. No 

tRNA gene was identified however; genes associated with structural, lysogenic and 

regulatory proteins were identified. 

Start End Direction Putative functional protein 

17 397 Forward Phage terminase, small subunit 

399 2090 Forward Phage Terminase 

2244 3506 Forward Phage portal protein 

3638 4528 Forward ATP-dependent Clp protease proteolytic subunit 

4525 5712 Forward Phage capsid family protein 

6777 7133 Forward Phage head-tail joining protein 

10683 13187 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

17312 18982 Forward Pectate lyase superfamily protein 

20765 21097 Forward HIRAN domain protein 

21428 21862 Forward Lysozyme RrrD 

23995 23039 Reverse Tyrosine recombinase XerC 

24348 24034 Reverse Helix-turn-helix domain protein 

27954 27439 Reverse NUMOD4 motif protein 

30838 30212 Reverse YqaJ-like viral recombinase domain protein 

31594 30842 Reverse ERF superfamily protein 

 

Table 73: Functional genes identified for vB_Pae_BR55b. 
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Figure 73: Genome map of vB_Pae_BR55b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR56a genome size was 38.4 kb, the phage was 

assembled using SPAdes and had a mean coverage of 26. The genome map of this 

phage is shown in Figure 74. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 74. Blastn on viruses 

only database showed a 1.9 kb / 1.9 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR56a had a 61.3 % G-C content. No tRNA gene 

was identified however; several genes associated with structural and regulatory proteins 

were identified.  

Start End Direction Putative functional protein 

688 359 Reverse HNH endonuclease 

1395 883 Reverse Bacteriophage lysis protein 

2012 1395 Reverse Chitinase class I 

2341 2009 Reverse Phage holin family (Lysis protein S) 

2956 2426 Reverse Phage regulatory protein Rha (Phage_pRha) 

4120 3731 Reverse Phage antitermination protein Q 

5789 4392 Reverse Replicative DNA helicase 

6601 5786 Reverse DNA replication protein DnaC 

10862 10557 Reverse Helix-turn-helix 

10972 11631 Forward LexA repressor 

11780 12166 Forward Bacterial regulatory proteins, luxR family 

12478 13263 Forward BRO family, N-terminal domain 

13338 13568 Forward Arc-like DNA binding domain protein 

18046 19029 Forward Transposase DDE domain protein 

23299 19634 Reverse Carbohydrate binding domain protein 

23928 23356 Reverse Bacteriophage lambda tail assembly protein I 

25437 24679 Reverse NlpC/P60 family protein 

26186 25440 Reverse Phage minor tail protein L 

26521 26183 Reverse Phage minor tail protein 

29796 26521 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

32494 32168 Reverse Phage head-tail joining protein 
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32817 32494 Reverse Phage gp6-like head-tail connector protein 

34286 33072 Reverse Phage capsid family protein 

34927 34283 Reverse Caudovirus prohead protease 

36134 34911 Reverse Phage portal protein 

37816 36137 Reverse Phage Terminase 

 

Table 74: Functional genes identified for vB_Pae_BR56a. 

 

 

 

 



 

427 
 

 

 

Figure 74: Genome map of vB_Pae_BR56a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR59a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 457. The genome map of this 

phage is shown in Figure 74. The total number of genes identified was 62 of which 14 

were identified with putative functions these can be seen in Table 74. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR59a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

 

Start End Direction Putative functional protein 

4605 5102 Forward Single-stranded DNA-binding protein 

5129 6349 Forward 

Recombination-associated protein 

RdgC 

6346 6555 Forward LexA repressor 

6700 9330 Forward DNA methylase 

9327 11135 Forward C-5 cytosine-specific DNA methylase 

13664 13897 Forward 

Response regulator inhibitor for tor 

operon 

15133 13898 Reverse Putative prophage CPS-53 integrase 

18738 18199 Reverse Phage lysozyme 

47162 46290 Reverse RyR domain protein 

53961 52678 Reverse Phage terminase large subunit 

55759 55145 Reverse Bacteriophage Lambda NinG protein 

58365 58165 Reverse Cro 

58473 59270 Forward HTH-type transcriptional regulator PrtR 

60689 61060 Forward Carbon storage regulator homolog 

 

Table 75: Functional genes identified for vB_Pae_BR59a. 
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Figure 75: Genome map of vB_Pae_BR59a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  

 

 

 

 

 

 

vB_Pae_BR59a
61772 bp

0.00kb

10.33kb

20.67kb

31.00kb

41.33kb

51.67kb

h
y
p

o
th

e
t i
c
a

l 
p

ro
te

in
h

y
p

o
th

e
ti
c
a

l  
p

ro
te

in
h

y
p
o

th
e
ti
c
a

l 
p
ro

te
in

h
y
p

o
th

e
ti
c
a
l 
p

ro
te

in
h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
y
p
o
th

e
tic

a
l 
p
ro

te
in

h
yp

o
th

e
tic

a
l p

ro
te

in

ss
b

rd
g
C

Le
xA

 r
ep

re
ss

or

D
N
A m

et
hy

la
se

C5 cytosinespecific
 D

NA m
ethylase

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

torI

intS

hypothetical proteinhypothetical protein
hypothetical protein

hypothetical proteinhypothetical protein
Phage lysozyme

hypothetical protein

hypothetical protein

h
y
p

o
th

e
t i
c
a
l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
yp

o
th

e
tic

a
l p

ro
te

in

hy
po

th
et

ic
al

 p
ro

te
in

hy
po

th
et

ic
al

 p
ro

te
in

hyp
oth

etic
al p

ro
te

in
hypothetical protein

hypothetical proteinhypothetical proteinhypothetical proteinhypothetical proteinhypothetical protein
hypothetical protein

RyR domain protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

Phage term
inase large subunit

hypothetical protein

hypothetical protein

hypothetical protein

B
acteriophage Lam

bda N
inG

 protein

h
yp

oth
etica

l p
ro

te
in

h
yp

o
th

e
tica

l p
ro

te
in

h
yp

o
th

e
tica

l p
ro

te
in

C
ro

p
rtR

h
y
p
o
th

e
tic

a
l p

ro
te

in

h
y
p

o
th

e
tic

a
l p

ro
te

in
h
y
p
o

th
e
tic

a
l p

ro
te

in
h

y
p
o

th
e

tic
a
l p

ro
te

in
h
y
p
o

th
e

tic
a

l p
ro

te
in

http://wolfe.gen.tcd.ie/GenomeVx


 

430 
 

The temperate phage vB_Pae_BR61a genome size was 38.1 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 76. The total number of genes identified was 60 of which 13 

were identified with putative functions these can be seen in Table 76. Blastn on viruses 

only database showed an 8 kb / 8.6 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR61a had a 61.3 % G-C content. No tRNA gene 

was identified however; genes associated with structural, lysogenic and regulatory 

proteins were identified, including an integrase putative protein. 

Start End Direction Putative functional protein 

7623 6571 Reverse Phage integrase family protein 

10911 10129 Reverse Phage regulatory protein Rha (Phage_pRha) 

12316 11930 Reverse Bacterial regulatory proteins, luxR family 

14190 13399 Reverse HTH-type transcriptional regulator PrtR 

21913 22302 Forward Phage antitermination protein Q 

22841 23368 Forward Phage regulatory protein Rha (Phage_pRha) 

23453 23785 Forward Phage holin family (Lysis protein S) 

23782 24399 Forward Chitinase class I 

24635 25105 Forward Bacteriophage lysis protein 

25962 26507 Forward Phage DNA packaging protein Nu1 

26479 28443 Forward Phage terminase large subunit (GpA) 

28649 30295 Forward Phage portal protein, lambda family 

30267 32348 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

 

Table 76: Functional genes identified for vB_Pae_BR61a. 
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Figure 76: Genome map of vB_Pae_BR61a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR62a genome size was 40.4 kb, the phage was 

assembled using SPAdes and has a mean coverage of 227. The genome map of this 

phage is shown in Figure 77. The total number of genes identified was 61 of which 13 

were identified with putative functions these can be seen in Table 77. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR62a had a 61.6 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein  

1291 821 Reverse Bacteriophage lysis protein 

2144 1527 Reverse Chitinase class I 

2473 2141 Reverse Phage holin family (Lysis protein S) 

3085 2558 Reverse Phage regulatory protein Rha (Phage_pRha) 

4013 3624 Reverse Phage antitermination protein Q 

11629 11309 Reverse Cro 

11732 12520 Forward HTH-type transcriptional regulator PrtR 

14274 15041 Forward Phage regulatory protein Rha (Phage_pRha) 

17450 18502 Forward Phage integrase family protein 

36074 33993 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

37692 36046 Reverse Phage portal protein, lambda family 

39862 37898 Reverse Phage terminase large subunit (GpA) 

40418 39834 Reverse Phage DNA packaging protein Nu1 

 

Table 77: Functional genes identified for vB_Pae_BR62a. 
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Figure 77: Genome map of vB_Pae_BR62a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR62b genome size was 37.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 350. The genome map of this 

phage is shown in Figure 78. The total number of genes identified was 56 of which 8 

were identified with putative functions these can be seen in Table 78. Blastn on viruses 

only database showed a 27.1 kb / 27.8 kb match with Pseudomonas phage JBD24 

(GenBank: NC_020203.1). The phage vB_Pae_BR62b had a 64.1 % G-C content. No 

tRNA gene was identified however; several genes associated with structural proteins 

were identified.  

Start End Direction Putative functional protein 

16473 15559 Reverse 

Mu-like prophage major head subunit 

gpT 

17574 16477 Reverse Mu-like prophage I protein 

19079 18612 Reverse 

Phage virion morphogenesis family 

protein 

20365 19079 Reverse Phage Mu protein F like protein 

27272 26823 Reverse Mor transcription activator family protein 

34728 32659 Reverse Mu DNA-binding domain protein 

36247 35891 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36488 37147 Forward 

putative HTH-type transcriptional 

regulator 

 

Table 78: Functional genes identified for vB_Pae_BR62b. 
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Figure 78: Genome map of vB_Pae_BR62b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR63a genome size was 37.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 823. The genome map of this 

phage is shown in Figure 79. The total number of genes identified was 59 of which 10 

were identified with putative functions these can be seen in Table 79. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_BR63a had a 64.3 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

1223 510 Reverse HTH-type transcriptional regulator PrtR 

1393 1749 Forward 

DNA-binding transcriptional regulator 

Nlp 

2451 4445 Forward Mu DNA-binding domain protein 

6658 7176 Forward Bacteriophage Mu Gam like protein 

9980 10429 Forward Mor transcription activator family protein 

16898 18184 Forward Phage Mu protein F like protein 

18184 18651 Forward 

Phage virion morphogenesis family 

protein 

19670 20776 Forward Mu-like prophage I protein 

21212 22120 Forward 

Mu-like prophage major head subunit 

gpT 

25152 28712 Forward 

Prophage tail length tape measure 

protein 

 

Table 78: Functional genes identified for vB_Pae_BR63a. 
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Figure 79: Genome map of vB_Pae_BR63a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR64a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 407. The genome map of this 

phage is shown in Figure 80. The total number of genes identified was 64 of which 14 

were identified with putative functions these can be seen in Table 80. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR64a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

Start End Direction Putative functional protein 

16458 16997 Forward Phage lysozyme 

20063 21298 Forward Putative prophage CPS-53 integrase 

21532 21299 Reverse 

Response regulator inhibitor for tor 

operon 

25869 24061 Reverse C-5 cytosine-specific DNA methylase 

28496 25866 Reverse DNA methylase 

28850 28641 Reverse LexA repressor 

30067 28847 Reverse 

Recombination-associated protein 

RdgC 

30591 30094 Reverse Single-stranded DNA-binding protein 

36152 35781 Reverse Carbon storage regulator homolog 

38368 37571 Reverse HTH-type transcriptional regulator PrtR 

38476 38676 Forward Cro 

41082 41696 Forward Bacteriophage Lambda NinG protein 

42880 44163 Forward Phage terminase large subunit 

49679 50551 Forward RyR domain protein 

 

Table 80: Functional genes identified for vB_Pae_BR64a. 
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Figure 80: Genome map of vB_Pae_BR64a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR65a genome size was 40.4 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 81. The total number of genes identified was 61 of which 13 were 

identified with putative functions these can be seen in Table 81. Blastn on viruses only 

database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR65a had a 61.5 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

1346 876 Reverse Bacteriophage lysis protein 

2199 1582 Reverse Chitinase class I 

2528 2196 Reverse Phage holin family (Lysis protein S) 

3140 2613 Reverse Phage regulatory protein Rha (Phage_pRha) 

4068 3679 Reverse Phage antitermination protein Q 

11684 11364 Reverse Cro 

11787 12575 Forward HTH-type transcriptional regulator PrtR 

14329 15096 Forward Phage regulatory protein Rha (Phage_pRha) 

17505 18557 Forward Phage integrase family protein 

36129 34048 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

37747 36101 Reverse Phage portal protein, lambda family 

39917 37953 Reverse Phage terminase large subunit (GpA) 

40230 39889 Reverse Phage DNA packaging protein Nu1 

 

Table 81: Functional genes identified for vB_Pae_BR65a. 
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Figure 81: Genome map of vB_Pae_BR65a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR68a genome size was 40.4 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 82. The total number of genes identified was 60 of which 13 were 

identified with putative functions these can be seen in Table 82. Blastn on viruses only 

database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR68a had a 61.5 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

1274 804 Reverse Bacteriophage lysis protein 

2127 1510 Reverse Chitinase class I 

2456 2124 Reverse Phage holin family (Lysis protein S) 

3068 2541 Reverse Phage regulatory protein Rha (Phage_pRha) 

3996 3607 Reverse Phage antitermination protein Q 

11614 11294 Reverse Cro 

11717 12505 Forward HTH-type transcriptional regulator PrtR 

14259 15026 Forward Phage regulatory protein Rha (Phage_pRha) 

17435 18487 Forward Phage integrase family protein 

36058 33977 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

37676 36030 Reverse Phage portal protein, lambda family 

39846 37882 Reverse Phage terminase large subunit (GpA) 

40402 39818 Reverse Phage DNA packaging protein Nu1 

 

Table 82: Functional genes identified for vB_Pae_BR68a. 
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Figure 82: Genome map of vB_Pae_BR68a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR69a genome size was 46.4 kb, the phage was 

assembled using SPAdes and has a mean coverage of 236. The genome map of this 

phage is shown in Figure 83. The total number of genes identified was 72 of which 15 

were identified with putative functions these can be seen in Table 83. Blastn on viruses 

only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_BR69a had a 59.3 % G-C content. A 

tRNA gene was identified; CII and Ig-like domains were identified along with 

recombinase genes. 

Start End Direction Putative functional protein 

43 1107 Forward 

IgA-specific serine endopeptidase autotransporter 

precursor 

1115 1861 Forward RecT family protein 

1845 2465 Forward YqaJ-like viral recombinase domain protein 

2462 2797 Forward LytTr DNA-binding domain protein 

10559 9549 Forward site-specific tyrosine recombinase XerC 

10720 10633 Reverse tRNA-Ser(cga) 

12224 11790 Reverse Lysozyme RrrD 

12827 13726 Forward BRO family, N-terminal domain 

15867 14221 Reverse D-glucuronyl C5-epimerase C-terminus 

23322 22762 Reverse AP2 domain protein 

28403 27408 Reverse Bacterial Ig-like domain (group 2) 

35018 33288 Reverse Phage Mu protein F like protein 

37669 36551 Reverse Phage terminase large subunit 

42494 41847 Reverse Bacteriophage Lambda NinG protein 

46293 44908 Reverse Replicative DNA helicase 

 

Table 83: Functional genes identified for vB_Pae_BR69a. 
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Figure 83: Genome map of vB_Pae_BR69a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR69b genome size was 38.2 kb, the phage was 

assembled using SPAdes and has a mean coverage of 345. The genome map of this 

phage is shown in Figure 84. The total number of genes identified was 60 of which 10 

were identified with putative functions these can be seen in Table 84. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_BR63b had a 64.2 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

13129 9569 Reverse 

Prophage tail length tape measure 

protein 

17069 16161 Reverse 

Mu-like prophage major head subunit 

gpT 

18611 17505 Reverse Mu-like prophage I protein 

20097 19630 Reverse 

Phage virion morphogenesis family 

protein 

21383 20097 Reverse Phage Mu protein F like protein 

28301 27852 Reverse Mor transcription activator family protein 

31623 31105 Reverse Bacteriophage Mu Gam like protein 

35830 33836 Reverse Mu DNA-binding domain protein 

36888 36532 Reverse 

DNA-binding transcriptional regulator 

Nlp 

37058 37771 Forward HTH-type transcriptional regulator PrtR 

 

Table 84: Functional genes identified for vB_Pae_BR69b. 
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Figure 84: Genome map of vB_Pae_BR69b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR72a genome size was 37.4 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 85. The total number of genes identified was 56 of which 8 

were identified with putative functions these can be seen in Table 85. Blastn on viruses 

only database showed a 27.1 kb / 27.8 kb match with Pseudomonas phage JBD24 

(GenBank: NC_020203.1). The phage vB_Pae_BR72a had a 64.1 % G-C content. No 

tRNA gene was identified however; several genes associated with structural proteins 

were identified.  

Start End Direction Putative functional proteins 

16546 15632 Reverse 

Mu-like prophage major head subunit 

gpT 

17647 16550 Reverse Mu-like prophage I protein 

19152 18685 Reverse 

Phage virion morphogenesis family 

protein 

20438 19152 Reverse Phage Mu protein F like protein 

27345 26896 Reverse Mor transcription activator family protein 

34801 32732 Reverse Mu DNA-binding domain protein 

36320 35964 Reverse 

DNA-binding transcriptional regulator 

Nlp 

36561 37220 Forward 

putative HTH-type transcriptional 

regulator 

 

Table 85: Functional genes identified for vB_Pae_BR72a. 
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Figure 85: Genome map of vB_Pae_BR72a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR74a genome size was 40.4 kb, the phage was 

assembled using SPAdes and had a mean coverage of 793. The genome map of this 

phage is shown in Figure 86. The total number of genes identified was 65 of which 14 

were identified with putative functions these can be seen in Table 86. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR74a had a 61.4 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

1255 44 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

2873 1227 Reverse Phage portal protein, lambda family 

5043 3079 Reverse Phage terminase large subunit (GpA) 

5560 5015 Reverse Phage DNA packaging protein Nu1 

6887 6417 Reverse Bacteriophage lysis protein 

7740 7123 Reverse Chitinase class I 

8069 7737 Reverse Phage holin family (Lysis protein S) 

8681 8154 Reverse Phage regulatory protein Rha (Phage_pRha) 

9609 9220 Reverse Phage antitermination protein Q 

17332 18123 Reverse HTH-type transcriptional regulator PrtR 

19206 19592 Forward Bacterial regulatory proteins, luxR family 

20611 21378 Forward Phage regulatory protein Rha (Phage_pRha) 

21509 21688 Forward Arc-like DNA binding domain protein 

23868 25046 Forward Putative prophage phiRv2 integrase 

 

Table 86: Functional genes identified for vB_Pae_BR74a. 

 

 

 

 



 

451 
 

 

 

Figure 86: Genome map of vB_Pae_BR74a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR75a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 33. The genome map of this 

phage is shown in Figure 87. The total number of genes identified was 66 of which 13 

were identified with putative functions these can be seen in Table 87. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR75a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

 

Start End Direction Putative functional protein 

9147 10382 Forward Putative prophage CPS-53 integrase 

10616 10383 Reverse 

Response regulator inhibitor for tor 

operon 

14953 13145 Reverse C-5 cytosine-specific DNA methylase 

17580 14950 Reverse DNA methylase 

17934 17725 Forward LexA repressor 

19151 17931 Reverse 

Recombination-associated protein 

RdgC 

19675 19178 Reverse Single-stranded DNA-binding protein 

25236 24865 Reverse Carbon storage regulator homolog 

27452 26655 Reverse HTH-type transcriptional regulator PrtR 

27560 27760 Forward Cro 

30166 30780 Forward Bacteriophage Lambda NinG protein 

31964 33247 Forward Phage terminase large subunit 

38763 39635 Forward RyR domain protein 

 

Table 87: Functional genes identified for vB_Pae_BR75a. 
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Figure 87: Genome map of vB_Pae_BR75a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR75b genome size was 37.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 59. The genome map of this 

phage is shown in Figure 88. The total number of genes identified was 58 of which 10 

were identified with putative functions these can be seen in Table 88. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_BR75b had a 64.3 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

1169 456 Reverse HTH-type transcriptional regulator PrtR 

1339 1695 Forward 

DNA-binding transcriptional regulator 

Nlp 

2397 4391 Forward Mu DNA-binding domain protein 

6604 7122 Forward Bacteriophage Mu Gam like protein 

9926 10375 Forward Mor transcription activator family protein 

16844 18130 Forward Phage Mu protein F like protein 

18130 18597 Forward 

Phage virion morphogenesis family 

protein 

19616 20722 Forward Mu-like prophage I protein 

21158 22066 Forward 

Mu-like prophage major head subunit 

gpT 

25098 28658 Forward 

Prophage tail length tape measure 

protein 

 

Table 88: Functional genes identified for vB_Pae_BR75b. 
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Figure 88: Genome map of vB_Pae_BR75b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR75c genome size was 33.1 kb, the phage was 

assembled using SPAdes and has a mean coverage of 46. The genome map of this 

phage is shown in Figure 89. The total number of genes identified was 44 of which 7 

were identified with putative functions these can be seen in Table 89. Blastn on viruses 

only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_BR75c had a 59 % G-C content. No 

tRNA gene was identified however; Ig-like domain was identified along with recombinase 

genes. 

Start End Direction Putative functional protein 

403 1788 Forward Replicative DNA helicase 

4202 4849 Forward Bacteriophage Lambda NinG protein 

9027 10145 Forward Phage terminase large subunit 

11678 13408 Forward Phage Mu protein F like protein 

18293 19288 Forward Bacterial Ig-like domain (group 2) 

23374 23934 Forward AP2 domain protein 

30829 32475 Forward 

D-glucuronyl C5-epimerase C-

terminus 

 

Table 89: Functional genes identified for vB_Pae_BR75c. 
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Figure 89: Genome map of vB_Pae_BR75c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR76a genome size was 35.3 kb, the phage was 

assembled using SPAdes and has a mean coverage of 22. The genome map of this 

phage is shown in Figure 90. The total number of genes identified was 43 of which 26 

were identified with putative functions these can be seen in Table 90. Blastn on viruses 

only database showed a 9.4 kb / 9.8 kb match with Pseudomonas phage phiCTX 

(GenBank: NC_003278.1). The phage vB_Pae_BR76a had a 62.4 % G-C content. No 

tRNA gene was identified however; Ig-like domain, recombinase genes, lysogenic, 

structural and a CTX gene were identified. 

Start End Direction Putative functional protein 

1954 785 Reverse site-specific tyrosine recombinase XerD 

3953 2175 Reverse C-5 cytosine-specific DNA methylase 

8535 8242 Reverse Ogr/Delta-like zinc finger 

9351 9767 Forward 

Bacteriophage CI repressor helix-turn-helix 

domain protein 

12977 11703 Reverse Phage late control gene D protein (GPD) 

13414 12974 Reverse Phage P2 GpU 

16179 13420 Reverse Phage-related minor tail protein 

16288 16169 Reverse Phage P2 GpE 

16635 16297 Reverse Phage tail protein E 

17204 16689 Reverse Phage tail tube protein FII 

18436 17261 Reverse Phage tail sheath protein 

21808 21272 Reverse Phage tail protein (Tail_P2_I) 

22722 21808 Reverse Baseplate J-like protein 

23063 22719 Reverse Gene 25-like lysozyme 

23641 23060 Reverse Phage-related baseplate assembly protein 

25091 24633 Reverse Phage virion morphogenesis family protein 

25620 25084 Reverse P2 phage tail completion protein R (GpR) 

26962 26156 Reverse Zinc D-Ala-D-Ala carboxypeptidase precursor 

27823 27611 Reverse Phage Tail Protein X 

28284 27823 Reverse Phage head completion protein (GPL) 

29089 28388 Reverse Phage small terminase subunit 



 

459 
 

30111 29095 Reverse Phage major capsid protein, P2 family 

30968 30147 Reverse 

Phage capsid scaffolding protein (GPO) serine 

peptidase 

31103 32887 Reverse Terminase-like family protein 

32884 33936 Forward Phage portal protein 

34991 34131 Reverse Cytotoxin precursor 

 

Table 90: Functional genes identified for vB_Pae_BR76a. 
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Figure 90: Genome map of vB_Pae_BR76a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR76b genome size was 61.8 kb, the phage was 

assembled using SPAdes and has a mean coverage of 15. The genome map of this 

phage is shown in Figure 91. The total number of genes identified was 62 of which 13 

were identified with putative functions these can be seen in Table 91. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR76b had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene, lysogenic and 

regulatory genes were identified. 

Start End Direction Putative functional protein  

1061 690 Reverse Carbon storage regulator homolog 

3277 2480 Reverse HTH-type transcriptional regulator PrtR 

3385 3585 Forward Cro 

5991 6605 Forward Bacteriophage Lambda NinG protein 

7789 9072 Forward Phage terminase large subunit 

14588 15460 Forward RyR domain protein 

43012 43551 Forward Phage lysozyme 

46617 47852 Forward Putative prophage CPS-53 integrase 

48086 47853 Reverse 

Response regulator inhibitor for tor 

operon 

52423 50615 Reverse C-5 cytosine-specific DNA methylase 

55050 52420 Reverse DNA methylase 

55404 55195 Reverse LexA repressor 

56621 55401 Reverse 

Recombination-associated protein 

RdgC 

57145 56648 Reverse Single-stranded DNA-binding protein 

 

Table 91: Functional genes identified for vB_Pae_BR76b. 
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Figure 91: Genome map of vB_Pae_BR76b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR77a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 413. The genome map of this 

phage is shown in Figure 92. The total number of genes identified was 62 of which 14 

were identified with putative functions these can be seen in Table 92. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR77a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

Start End Direction Putative functional protein 

4533 5030 Forward Single-stranded DNA-binding protein 

5057 6277 Forward 

Recombination-associated protein 

RdgC 

6274 6483 Forward LexA repressor 

6628 9258 Forward DNA methylase 

9255 11063 Forward C-5 cytosine-specific DNA methylase 

13592 13825 Forward 

Response regulator inhibitor for tor 

operon 

15061 13826 Reverse Putative prophage CPS-53 integrase 

18666 18127 Reverse Phage lysozyme 

47090 46218 Reverse RyR domain protein 

53889 52606 Reverse Phage terminase large subunit 

55687 55073 Reverse Bacteriophage Lambda NinG protein 

58293 58093 Reverse Cro 

58401 59198 Forward HTH-type transcriptional regulator PrtR 

60617 60988 Forward Carbon storage regulator homolog 

 

Table 92: Functional genes identified for vB_Pae_BR77a. 
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Figure 92: Genome map of vB_Pae_BR77a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR78a genome size was 43.1 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 93. The total number of genes identified was 67 of which 15 were 

identified with putative functions these can be seen in Table 93. Blastn on viruses only 

database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR78a had a 61.3 % G-C content. No tRNA gene 

was identified however; a Cro gene and phage integrase like gene was identified. 

Start End Direction Putative functional protein 

367 1083 Forward HTH-type transcriptional regulator PrtR 

6433 6822 Forward Phage antitermination protein Q 

7361 7888 Forward Phage regulatory protein Rha (Phage_pRha) 

7973 8305 Forward Phage holin family (Lysis protein S) 

8302 8919 Forward Chitinase class I 

9155 9625 Forward Bacteriophage lysis protein 

10482 11027 Forward Phage DNA packaging protein Nu1 

10999 12963 Forward Phage terminase large subunit (GpA) 

13169 14815 Forward Phage portal protein, lambda family 

14787 16868 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

33362 32184 Reverse Putative prophage phiRv2 integrase 

35721 35542 Reverse Arc-like DNA binding domain protein 

36619 35852 Reverse Phage regulatory protein Rha (Phage_pRha) 

38024 37638 Reverse Bacterial regulatory proteins, luxR family 

39898 39107 Reverse HTH-type transcriptional regulator PrtR 

 

Table 93: Functional genes identified for vB_Pae_BR78a. 
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Figure 93: Genome map of vB_Pae_BR78a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR79a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 494. The genome map of this 

phage is shown in Figure 94. The total number of genes identified was 64 of which 14 

were identified with putative functions these can be seen in Table 94. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR79a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

Start End Direction Putative functional protein 

16458 16997 Forward Phage lysozyme 

20063 21298 Forward Putative prophage CPS-53 integrase 

21532 21299 Reverse 

Response regulator inhibitor for tor 

operon 

25869 24061 Reverse C-5 cytosine-specific DNA methylase 

28496 25866 Reverse DNA methylase 

28850 28641 Reverse LexA repressor 

30067 28847 Reverse 

Recombination-associated protein 

RdgC 

30591 30094 Reverse Single-stranded DNA-binding protein 

36152 35781 Reverse Carbon storage regulator homolog 

38368 37571 Reverse HTH-type transcriptional regulator PrtR 

38476 38676 Reverse Cro 

41082 41696 Reverse Bacteriophage Lambda NinG protein 

42880 44163 Forward Phage terminase large subunit 

49679 50551 Forward RyR domain protein 

 

Table 94: Functional genes identified for vB_Pae_BR79a. 
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Figure 94: Genome map of vB_Pae_BR79a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR80a genome size was 37.5 kb, the phage was 

assembled using SPAdes and had a mean coverage of 26. The genome map of this 

phage is shown in Figure 95. The total number of genes identified was 56 of which 8 

were identified with putative functions these can be seen in Table 95. Blastn on viruses 

only database showed a 27.1 kb / 27.8 kb match with Pseudomonas phage JBD24 

(GenBank: NC_020203.1). The phage vB_Pae_BR80a had a 63.9 % G-C content. No 

tRNA gene was identified however; several genes associated with structural proteins 

were identified.  

Start End Direction Putative functional protein 

1066 407 Reverse 

putative HTH-type transcriptional 

regulator 

1307 1663 Forward 

DNA-binding transcriptional regulator 

Nlp 

2826 4895 Forward Mu DNA-binding domain protein 

10282 10731 Forward Mor transcription activator family protein 

17189 18475 Forward Phage Mu protein F like protein 

18475 18942 Forward 

Phage virion morphogenesis family 

protein 

19980 21077 Forward Mu-like prophage I protein 

21081 21995 Forward 

Mu-like prophage major head subunit 

gpT 

 

Table 95: Functional genes identified for vB_Pae_BR80a. 
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Figure 95: Genome map of vB_Pae_BR80a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potential incomplete temperate phage vB_Pae_BR85a genome size was 29 kb, the 

phage was assembled using SPAdes and has a mean coverage of 22. The genome map 

of this phage is shown in Figure 96. The total number of genes identified was 46 of which 

7 were identified with putative functions these can be seen in Table 96. Blastn on viruses 

only database showed a 2.5 kb / 2.6 kb match with Pseudomonas phage B3 (GenBank: 

NC_006548.1). The phage vB_Pae_BR85a had a 63.3 % G-C content. No tRNA gene 

was identified however; several genes associated with regulatory proteins were identified 

and an Integrase gene was identified.  

Start End Direction Putative functional protein 

477 118 Reverse Mor transcription activator family protein 

7996 6212 Reverse Integrase core domain protein 

11005 11394 Forward Helix-turn-helix domain protein 

13266 13895 Forward 

Soluble lytic murein transglycosylase 

precursor 

15961 17664 Forward Terminase-like family protein 

19142 20392 Forward Phage Mu protein F like protein 

20389 20961 Forward Phage virion morphogenesis family protein 

 

Table 96: Functional genes identified for vB_Pae_BR85a. 
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Figure 96: Genome map of vB_Pae_BR85a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR85b genome size was 38.4 kb, the phage was 

assembled using SPAdes and has a mean coverage of 75. The genome map of this 

phage is shown in Figure 97. The total number of genes identified was 59 of which 11 

were identified with putative functions these can be seen in Table 97. Blastn on viruses 

only database showed a 17.4 kb / 18.2 kb match with Pseudomonas phage D3112 

(GenBank: NC_005178.1). The phage vB_Pae_BR85b had a 64.4 % G-C content. No 

tRNA gene was identified however; Mu-like phage structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

1124 411 Reverse HTH-type transcriptional regulator PrtR 

1294 1650 Forward DNA-binding transcriptional regulator Nlp 

2352 4346 Forward Mu DNA-binding domain protein 

6559 7077 Forward Bacteriophage Mu Gam like protein 

9881 10330 Forward Mor transcription activator family protein 

16799 18085 Forward Phage Mu protein F like protein 

18085 18552 Forward Phage virion morphogenesis family protein 

19571 20677 Forward Mu-like prophage I protein 

21113 22021 Forward Mu-like prophage major head subunit gpT 

25053 28613 Forward Prophage tail length tape measure protein 

37470 38102 Forward 

Succinate-semialdehyde dehydrogenase 

[NADP(+)] 

 

Table 97: Functional genes identified for vB_Pae_BR85b. 
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Figure 97: Genome map of vB_Pae_BR85b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR85c genome size was 52.7 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 98. The total number of genes identified was 90 of which 21 were 

identified with putative functions these can be seen in Table 98. Blastn on viruses only 

database showed a 4.9 kb / 5.1 kb match with Pseudomonas phage vB_PaeS_PMG1 

(GenBank: NC_016765.1). The phage vB_Pae_BR85c had a 58.2 % G-C content. No 

tRNA gene was identified however; genes associated with structural, lysogenic and 

regulatory proteins were identified. 

Start End Direction Putative functional protein 

404 1789 Forward Replicative DNA helicase 

4203 4850 Forward Bacteriophage Lambda NinG protein 

8932 9243 Forward HNH endonuclease 

9841 11532 Forward Phage Terminase 

11686 12948 Forward Phage portal protein 

13080 13970 Forward ATP-dependent Clp protease proteolytic subunit 

13967 15154 Forward Phage capsid family protein 

16219 16575 Forward Phage head-tail joining protein 

16780 17502 Forward P63C domain protein 

21094 23598 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

31515 33161 Forward D-glucuronyl C5-epimerase C-terminus 

34555 33656 Reverse BRO family, N-terminal domain 

35158 35592 Forward Lysozyme RrrD 

37668 36712 Reverse Tyrosine recombinase XerC 

38021 37707 Reverse Helix-turn-helix domain protein 

44101 43766 Reverse LytTr DNA-binding domain protein 

44724 44098 Reverse YqaJ-like viral recombinase domain protein 

45480 44728 Reverse ERF superfamily protein 

51085 50420 Reverse putative HTH-type transcriptional regulator 

51375 51878 Forward Bacteriophage CII protein 

51882 52478 Forward T5orf172 domain protein 
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Table 98: Functional genes identified for vB_Pae_BR85c. 
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Figure 98: Genome map of vB_Pae_BR85c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR86a genome size was 39.8 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 99. The total number of genes identified was 62 of which 13 

were identified with putative functions these can be seen in Table 99. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR86a had a 61.4 % G-C content. No tRNA gene 

was identified however; a phage integrase like, structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

5996 4944 Reverse Phage integrase family protein 

9172 8660 Reverse Phage regulatory protein Rha (Phage_pRha) 

10577 10191 Reverse Bacterial regulatory proteins, luxR family 

12451 11660 Reverse HTH-type transcriptional regulator PrtR 

20174 20563 Forward Phage antitermination protein Q 

21102 21629 Forward Phage regulatory protein Rha (Phage_pRha) 

21714 22046 Forward Phage holin family (Lysis protein S) 

22043 22660 Forward Chitinase class I 

22896 23366 Forward Bacteriophage lysis protein 

24226 24771 Forward Phage DNA packaging protein Nu1 

24743 26707 Forward Phage terminase large subunit (GpA) 

26913 28559 Forward Phage portal protein, lambda family 

28531 30612 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

 

Table 99: Functional genes identified for vB_Pae_BR86a. 

 

 

 

 



 

479 
 

 

 

 

Figure 99: Genome map of vB_Pae_BR86a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR88a genome size was 39.8 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 100. The total number of genes identified was 58 of which 26 

were identified with putative functions these can be seen in Table 100. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR88a had a 61.4 % G-C content. No tRNA gene 

was identified however; a phage integrase like, structural and regulatory genes were 

identified. 

Start End Direction Putative functional protein 

666 337 Reverse HNH endonuclease 

1373 861 Reverse Bacteriophage lysis protein 

1990 1373 Reverse Chitinase class I 

2319 1987 Reverse Phage holin family (Lysis protein S) 

2934 2404 Reverse Phage regulatory protein Rha (Phage_pRha) 

4098 3709 Reverse Phage antitermination protein Q 

5767 4370 Reverse Replicative DNA helicase 

6579 5764 Reverse DNA replication protein DnaC 

10840 10535 Reverse Helix-turn-helix 

10950 11609 Forward LexA repressor 

11758 12144 Forward Bacterial regulatory proteins, luxR family 

12456 13241 Forward BRO family, N-terminal domain 

13316 13546 Forward Arc-like DNA binding domain protein 

18024 19007 Forward Transposase DDE domain protein 

23277 19612 Reverse Carbohydrate binding domain protein 

23906 23334 Reverse Bacteriophage lambda tail assembly protein I 

25415 24657 Reverse NlpC/P60 family protein 

26164 25418 Reverse Phage minor tail protein L 

26499 26161 Reverse Phage minor tail protein 

29774 26499 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

32472 32146 Reverse Phage head-tail joining protein 
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32795 32472 Reverse Phage gp6-like head-tail connector protein 

34264 33050 Reverse Phage capsid family protein 

34905 34261 Reverse Caudovirus prohead protease 

36112 34889 Reverse Phage portal protein 

37794 36115 Reverse Phage Terminase 

 

Table 100: Functional genes identified for vB_Pae_BR88a. 
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Figure 100: Genome map of vB_Pae_BR88a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR88b genome size was 45.4 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 101. The total number of genes identified was 69 of which 15 

were identified with putative functions these can be seen in Table 101. Blastn on viruses 

only database showed an 8.8 kb / 9 kb match with Pseudomonas phage phi297 

(GenBank: NC_016762.1). The phage vB_Pae_BR88b had a 58.9 % G-C content. No 

tRNA gene was identified however; CII, Ig-like domains and recombinase genes were 

identified. 

Start End Direction Putative functional protein 

2122 3240 Forward Phage terminase large subunit 

4773 6503 Forward Phage Mu protein F like protein 

11388 12383 Forward Bacterial Ig-like domain (group 2) 

16469 17029 Forward AP2 domain protein 

23924 25570 Forward D-glucuronyl C5-epimerase C-terminus 

26910 26065 Reverse BRO family, N-terminal domain 

27568 28002 Forward Lysozyme RrrD 

30078 29122 Reverse Tyrosine recombinase XerC 

30431 30117 Reverse Helix-turn-helix domain protein 

36511 36176 Reverse LytTr DNA-binding domain protein 

37134 36508 Reverse 

YqaJ-like viral recombinase domain 

protein 

37890 37138 Reverse ERF superfamily protein 

43495 42830 Reverse 

putative HTH-type transcriptional 

regulator 

43785 44288 Forward Bacteriophage CII protein 

44292 44888 Forward T5orf172 domain protein 

 

Table 101: Functional genes identified for vB_Pae_BR88b. 
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Figure 101: Genome map of vB_Pae_BR88b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR88c genome size was 39.7 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 102. The total number of genes identified was 57 of which 9 

were identified with putative functions these can be seen in Table 102. Blastn on viruses 

only database showed a 7.1 kb / 7.6 kb match with Pseudomonas phage B3 (GenBank: 

NC_006548.1). The phage vB_Pae_BR88c had a 63.5 % G-C content. No tRNA gene 

was identified however; several genes associated with regulatory proteins and an 

Integrase protein was identified.  

Start End Direction Putative functional protein 

10263 8932 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

12698 10362 Reverse Prophage tail length tape measure protein 

19287 18715 Reverse Phage virion morphogenesis family protein 

20534 19284 Reverse Phage Mu protein F like protein 

23715 22012 Reverse Terminase-like family protein 

26410 25781 Reverse 

Soluble lytic murein transglycosylase 

precursor 

28671 28282 Reverse Helix-turn-helix domain protein 

31680 33464 Forward Integrase core domain protein 

39199 39558 Forward Mor transcription activator family protein 

 

Table 102: Functional genes identified for vB_Pae_BR88c. 
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Figure 102: Genome map of vB_Pae_BR88c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  

 

 

 

 

vB_Pae_BR88c
39730 bp

0kb

6kb

13kb

19kb

26kb

32kb

h
y
p
o

th
e

ti
c
a

l 
p

r o
te

in
h

y
p

o
th

e
ti
c
a
l 
p

ro
te

in
h
y
p
o

th
e
ti
c
a

l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
yp

o
th

e
tic

a
l p

ro
te

in
hy

po
th

et
ic

al
 p

ro
te

in

hy
po

th
et

ic
al

 p
ro

te
in

hy
po

th
et

ic
al
 p

ro
te

in

hypothetic
al p

ro
te

in

hypothetical protein

hypothetical protein

Lambda phage tail tapemeasure protein Tape_meas_la

Prophage tail length tape measure protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

h
yp

o
th

e
tica

l p
ro

te
in

h
yp

o
th

e
tica

l p
ro

te
in

h
y
p
o
th

e
tic

a
l p

ro
te

in

P
h

a
g
e

 v
irio

n
 m

o
rp

h
o

g
e
n

e
s
is

 fa
m

ily
 p

ro
te

in

P
h

a
g

e
 M

u
 p

ro
te

in
 F

 l
ik

e
 p

r o
te

in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

T
e
rm

in
a
se

lik
e
 f
a
m

ily
 p

ro
te

in

hy
po

th
et

ic
al

 p
ro

te
in

hy
po

th
et

ic
al

 p
ro

te
in

hy
po

th
et

ic
al
 p

ro
te

in

hyp
oth

etic
al p

ro
te

in

hyp
oth

etic
al p

ro
te

in

slt

hypothetic
al p

rotein

hypothetic
al p

rotein

hypothetical protein

Helixturnhelix domain protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

Integrase core domain protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

h
yp

o
th

e
tica

l p
ro

te
in

h
yp

o
th

e
tica

l p
ro

te
in

h
yp

o
th

e
tica

l p
ro

te
in

h
y
p
o
th

e
tic

a
l p

ro
te

in
h
y
p
o
th

e
tic

a
l p

ro
te

in
h
y
p
o
th

e
tic

a
l p

ro
te

in

h
y
p
o

th
e
tic

a
l p

ro
te

in

M
o
r tra

n
s
c
rip

tio
n

 a
c
tiv

a
to

r  fa
m

ily
 p

ro
te

in

http://wolfe.gen.tcd.ie/GenomeVx


 

487 
 

The potentially incomplete temperate phage vB_Pae_BR88d genome size was 27.5 kb, 

the phage was assembled using SPAdes and was extended using PriceTI. The genome 

map of this phage is shown in Figure 103. The total number of genes identified was 49 

of which 10 were identified with putative functions these can be seen in Table 103. Blastn 

on viruses only database showed a 17.1 kb / 27.8 kb match with Pseudomonas phage 

JBD24 (GenBank: NC_020203.1). The phage vB_Pae_BR88d had a 64.4 % G-C content. 

No tRNA gene was identified however; several genes associated with structural proteins 

were identified.  

Start End Direction Putative functional protein 

2435 1002 Reverse 

Prophage tail length tape measure 

protein 

6375 5467 Reverse 

Mu-like prophage major head subunit 

gpT 

7917 6811 Reverse Mu-like prophage I protein 

9403 8936 Reverse 

Phage virion morphogenesis family 

protein 

10689 9403 Reverse Phage Mu protein F like protein 

17607 17158 Reverse Mor transcription activator family protein 

20929 20411 Reverse Bacteriophage Mu Gam like protein 

25136 23142 Reverse Mu DNA-binding domain protein 

26194 25838 Reverse 

DNA-binding transcriptional regulator 

Nlp 

26364 27077 Forward HTH-type transcriptional regulator PrtR 

 

Table 103: Functional genes identified for vB_Pae_BR88d. 
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Figure 103: Genome map of vB_Pae_BR88d produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR89a genome size was 41.8 kb, the phage was 

assembled using SPAdes and was extended using PriceTI. The genome map of this 

phage is shown in Figure 104. The total number of genes identified was 66 of which 12 

were identified with putative functions these can be seen in Table 104. Blastn on viruses 

only database showed a 9.7 kb / 10.1 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR89a had a 61.6 % G-C content. No tRNA gene 

was identified however; an integrase, structural and regulatory genes were identified. 

Start End Direction Putative functional protein 

4350 5528 Forward Putative prophage phiRv2 integrase 

22932 20851 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

24550 22904 Reverse Phage portal protein, lambda family 

26720 24756 Reverse Phage terminase large subunit (GpA) 

27237 26692 Reverse Phage DNA packaging protein Nu1 

28564 28094 Reverse Bacteriophage lysis protein 

29417 28800 Reverse Chitinase class I 

29746 29414 Reverse Phage holin family (Lysis protein S) 

30358 29831 Reverse Phage regulatory protein Rha (Phage_pRha) 

31286 30897 Reverse Phage antitermination protein Q 

39008 39799 Forward HTH-type transcriptional regulator PrtR 

40882 41133 Forward Bacterial regulatory proteins, luxR family 

 

Table 104: Functional genes identified for vB_Pae_BR89a. 
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Figure 104: Genome map of vB_Pae_BR89a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR91a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 469. The genome map of this 

phage is shown in Figure 105. The total number of genes identified was 62 of which 14 

were identified with putative functions these can be seen in Table 105. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR91a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

Start End Direction Putative functional protein 

4533 5030 Forward Single-stranded DNA-binding protein 

5057 6277 Forward 

Recombination-associated protein 

RdgC 

6274 6483 Forward LexA repressor 

6628 9258 Forward DNA methylase 

9255 11063 Forward C-5 cytosine-specific DNA methylase 

13592 13825 Forward 

Response regulator inhibitor for tor 

operon 

15061 13826 Reverse Putative prophage CPS-53 integrase 

18666 18127 Reverse Phage lysozyme 

47090 46218 Reverse RyR domain protein 

53889 52606 Reverse Phage terminase large subunit 

55687 55073 Reverse Bacteriophage Lambda NinG protein 

58293 58093 Reverse Cro 

58401 59198 Forward HTH-type transcriptional regulator PrtR 

60617 60988 Forward Carbon storage regulator homolog 

 

Table 105: Functional genes identified for vB_Pae_BR91a. 
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Figure 105: Genome map of vB_Pae_BR91a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR92a genome size was 61.7 kb, the phage was 

assembled using SPAdes and has a mean coverage of 621. The genome map of this 

phage is shown in Figure 106. The total number of genes identified was 62 of which 14 

were identified with putative functions these can be seen in Table 106. Blastn on viruses 

only database showed an 11.7 kb / 12.1 kb match with Pseudomonas phage H66 

(GenBank: KC262634.1). The phage vB_Pae_BR92a had a 63.7 % G-C content. No 

tRNA gene was identified however; a CPS-53 integrase like gene was identified. 

Start End Direction Putative functional protein 

4605 5102 Forward Single-stranded DNA-binding protein 

5129 6349 Forward 

Recombination-associated protein 

RdgC 

6346 6555 Forward LexA repressor 

6700 9330 Forward DNA methylase 

9327 11135 Forward C-5 cytosine-specific DNA methylase 

13664 13897 Forward 

Response regulator inhibitor for tor 

operon 

15133 13898 Reverse Putative prophage CPS-53 integrase 

18738 18199 Reverse Phage lysozyme 

47162 46290 Reverse RyR domain protein 

53961 52678 Reverse Phage terminase large subunit 

55759 55145 Reverse Bacteriophage Lambda NinG protein 

58365 58165 Reverse Cro 

58473 59270 Forward HTH-type transcriptional regulator PrtR 

60689 61060 Forward Carbon storage regulator homolog 

 

Table 106: Functional genes identified for vB_Pae_BR92a. 
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Figure 106: Genome map of vB_Pae_BR92a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Pae_BR93a genome size was 38.3 kb, the phage was 

assembled using SPAdes and extended using PriceTI. The genome map of this phage 

is shown in Figure 107. The total number of genes identified was 67 of which 14 were 

identified with putative functions these can be seen in Table 107. Blastn on viruses only 

database showed a 6.2 kb / 6.7 kb match with Pseudomonas phage F10 (GenBank: 

NC_007805.1). The phage vB_Pae_BR93a had a 60.8 % G-C content. No tRNA gene 

was identified however; genes associated with structural and regulatory proteins were 

identified. An integrase gene was also predicted. 

Start End Direction Putative functional protein 

3360 2182 Reverse Putative prophage phiRv2 integrase 

5770 5540 Reverse Arc-like DNA binding domain protein 

6617 5850 Reverse 

Phage regulatory protein Rha 

(Phage_pRha) 

8022 7636 Reverse Bacterial regulatory proteins, luxR family 

9896 9105 Reverse HTH-type transcriptional regulator PrtR 

17619 18008 Forward Phage antitermination protein Q 

18547 19074 Forward 

Phage regulatory protein Rha 

(Phage_pRha) 

19159 19491 Forward Phage holin family (Lysis protein S) 

19488 20105 Forward Chitinase class I 

20341 20811 Forward Bacteriophage lysis protein 

31982 30930 Reverse Phage integrase family protein 

35158 34391 Reverse 

Phage regulatory protein Rha 

(Phage_pRha) 

37700 36912 Reverse HTH-type transcriptional regulator PrtR 

37803 38123 Forward Cro 

 

Table 107: Functional genes identified for vB_Pae_BR93a. 
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Figure 107: Genome map of vB_Pae_BR93a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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Appendix 4 Burkholderia cepacia complexes phage genomes 

The temperate phage vB_Bcc_4a genome size was 42.9 kb, the phage was assembled 

using SPAdes and has a mean coverage of 7. The genome map of this phage is shown 

in Figure 1. The total number of genes identified was 49 of which 12 were identified with 

putative functions these can be seen in Table 1. Blastn on viruses only database showed 

a 790 bp / 1077 bp match with Burkholderia phage JG068 (GenBank: NC_022916.1). 

The phage vB_Bcc_4a had a 62.8 % G-C content. No tRNA gene was identified however; 

several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

10357 8789 Reverse Bacteriophage head to tail connecting protein 

14489 12105 Reverse DNA-dependent RNA polymerase 

15530 14562 Reverse DNA ligase 

16492 16250 Reverse 

MazG nucleotide pyrophosphohydrolase domain 

protein 

18351 17974 Reverse Recombination endonuclease VII 

19276 18329 Reverse DNA polymerase I 

22766 20292 Reverse DNA polymerase I, thermostable 

24188 22950 Reverse DnaB-like helicase C terminal domain 

24997 24191 Reverse DNA primase 

31310 32347 Forward site-specific tyrosine recombinase XerC 

33410 32943 Reverse Lysozyme RrrD 

38037 36331 Reverse Phage T7 tail fibre protein 

 

Table 1: Functional genes identified for vB_Bcc_4a. 
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Figure 1: Genome map of vB_Bcc_4a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_4b genome size was 42.2 kb, the phage was assembled 

using SPAdes and has a mean coverage of 36. The genome map of this phage is shown 

in Figure 2. The total number of genes identified was 60 of which 24 were identified with 

putative functions these can be seen in Table 2. Blastn on viruses only database showed 

a 788 bp / 941 bp match with Burkholderia phage KS9 (GenBank: NC_013055.1). The 

phage vB_Bcc_4b had a 61.7 % G-C content. No tRNA gene was identified however; 

several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

570 2558 Forward Phage terminase large subunit (GpA) 

2771 4261 Forward Phage portal protein, lambda family 

4258 5313 Forward ATP-dependent Clp protease proteolytic subunit 

7052 7579 Forward Prophage minor tail protein Z (GPZ) 

8096 8776 Forward Phage-related baseplate assembly protein 

9044 9388 Forward Gene 25-like lysozyme 

9385 10278 Forward Baseplate J-like protein 

10271 10837 Forward Phage tail protein (Tail_P2_I) 

12463 13632 Forward Phage tail sheath protein 

13643 14146 Forward Phage tail tube protein FII 

14625 17042 Forward Phage-related minor tail protein 

17052 17933 Forward Phage P2 GpU 

17908 18114 Forward Phage Tail Protein X 

18125 19177 Forward Phage late control gene D protein (GPD) 

19252 19536 Forward Phage holin family 2 

19539 20033 Forward Phage lysozyme 

20697 21488 Forward Modification methylase DpnIIA 

23137 22766 Reverse 

Alkaline phosphatase synthesis transcriptional 

regulatory protein PhoP 

26084 26983 Forward Protease HtpX 

28615 27098 Reverse RecF/RecN/SMC N terminal domain 

29023 30297 Forward Phage integrase family protein 
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30529 30275 Reverse Prophage CP4-57 regulatory protein (AlpA) 

37450 39957 Forward DNA primase TraC 

 

Table 2: Functional genes identified for vB_Bcc_4b. 
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Figure 2: Genome map of vB_Bcc_4b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_5a genome size was 44.9 kb, the phage was assembled 

using SPAdes and has a mean coverage of 71. The genome map of this phage is shown 

in Figure 3. The total number of genes identified was 73 of which 11 were identified with 

putative functions these can be seen in Table 3. Blastn on viruses only database showed 

a 127 bp / 154 bp match with Burkholderia phage Bcep176 (GenBank: NC_007497.1). 

The phage vB_Bcc_5a had a 63.3 % G-C content. No tRNA gene was identified however; 

several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

1142 153 Reverse site-specific tyrosine recombinase XerC 

3834 3592 Reverse Helix-turn-helix domain protein 

7456 6776 Reverse 

YqaJ-like viral recombinase domain 

protein 

12748 12365 Reverse Fic/DOC family protein 

16432 16902 Forward Endodeoxyribonuclease RusA 

18466 20013 Forward Terminase-like family protein 

21532 22173 Forward Phage Mu protein F like protein 

30304 32091 Forward Peptidoglycan hydrolase FlgJ 

39786 40292 Forward Pectate lyase superfamily protein 

42190 42756 Forward Chitinase class I 

44145 44741 Forward Lipase (class 3) 

 

Table 3: Functional genes identified for vB_Bcc_5a. 
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Figure 3: Genome map of vB_Bcc_5a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_6a genome size was 45 kb, the phage was assembled 

using SPAdes and has a mean coverage of 12. The genome map of this phage is shown 

in Figure 4. The total number of genes identified was 72 of which 11 were identified with 

putative functions these can be seen in Table 4. Blastn on viruses only database showed 

a 127 bp / 154 bp match with Burkholderia phage Bcep176 (GenBank: NC_007497.1). 

The phage vB_Bcc_6a had a 63.3 % G-C content. No tRNA gene was identified however; 

several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

991 1461 Forward Endodeoxyribonuclease RusA 

3025 4572 Forward Terminase-like family protein 

6091 6732 Forward Phage Mu protein F like protein 

14863 16650 Forward Peptidoglycan hydrolase FlgJ 

24351 25907 Forward Pectate lyase superfamily protein 

26754 27320 Forward Chitinase class I 

28709 29305 Forward Lipase (class 3) 

30592 29603 Reverse site-specific tyrosine recombinase XerC 

33284 33042 Reverse Helix-turn-helix domain protein 

36908 36228 Reverse 

YqaJ-like viral recombinase domain 

protein 

42200 41817 Reverse Fic/DOC family protein 

 

Table 4: Functional genes identified for vB_Bcc_6a. 
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Figure 4: Genome map of vB_Bcc_6a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  

 

 

 

 

 

 

vB_Bcc_6a
45020 bp

0kb

7kb

15kb

22kb

30kb

37kb

h
y
p
o

th
e

t i
c
a
l  
p
ro

te
in

h
y
p
o

th
e

ti
c
a

l 
p

ro
te

in

E
n
d
o
d
e
o
x
y
ri
b

o
n
u
c
le

a
s
e
 R

u
s
A

h
y
p
o

th
e
ti
c
a
l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

h
yp

o
th

e
ti
ca

l p
ro

te
in

T
e
rm

in
a
se

lik
e
 f
a
m

ily
 p

ro
te

in
hy

po
th

et
ic
al

 p
ro

te
in

Phage M
u p

ro
te

in
 F

 lik
e p

ro
te

in

hypothetic
al p

rotein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein
hypothetical protein

hypothetical proteinflgJ

hypothetical protein

hypothetical protein

hypothetical protein

h
yp

o
th

e
tica

l p
ro

te
in

h
y
p
o
th

e
tic

a
l p

ro
te

in

h
y
p
o
th

e
tic

a
l p

ro
te

in

h
y
p
o

th
e
tic

a
l p

ro
te

in

h
y
p

o
th

e
t ic

a
l  p

ro
t e

inh
y
p

o
th

e
ti
c
a

l 
p
ro

te
in

h
y
p
o
th

e
ti
c
a
l 
p
ro

te
in

P
e
c
ta

te
 ly

a
s
e
 s

u
p
e
rf

a
m

ily
 p

ro
te

in

h
yp

o
th

e
tic

a
l p

ro
te

in

h
yp

o
th

e
tic

a
l p

ro
te

in

C
hi

tin
as

e 
cl

as
s 

I

hy
po

th
et

ic
al

 p
ro

te
in

hy
po

th
et

ic
al

 p
ro

te
in

hy
pot

het
ic
al p

ro
te

in

Lip
ase

 c
la

ss
 3

site
specific

 ty
rosine re

combinase XerC

hypothetical protein

hypothetical protein
hypothetical proteinhypothetical proteinhypothetical proteinhypothetical proteinHelixturnhelix domain proteinhypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

YqaJlike viral recombinase domain protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hypothetical protein

hyp
othe

tical p
rote

in

h
yp

o
th

e
tica

l p
ro

te
in

F
ic/D

O
C

 fa
m

ily p
ro

te
in

h
yp

o
th

e
tic

a
l p

ro
te

in

h
y
p
o
th

e
tic

a
l p

ro
te

in

h
y
p
o
th

e
tic

a
l p

ro
te

in
h
y
p
o
th

e
tic

a
l p

ro
te

in

h
y
p
o
th

e
tic

a
l p

ro
te

in
h
y
p

o
th

e
t ic

a
l p

ro
te

in

http://wolfe.gen.tcd.ie/GenomeVx


 

506 
 

The temperate phage vB_Bcc_6b genome size was 40.9 kb, the phage was assembled 

using SPAdes and has a mean coverage of 1117. The genome map of this phage is 

shown in Figure 5. The total number of genes identified was 54 of which 24 were 

identified with putative functions these can be seen in Table 5. Blastn on viruses only 

database showed a 36.7 kb / 36.7 kb match with Burkholderia phage BcepMu (GenBank: 

NC_005882.1). The phage vB_Bcc_6b had a 63 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

899 1735 Forward Integrase core domain protein 

2612 1800 Reverse 

Small-conductance mechanosensitive 

channel 

2892 4025 Forward O-acetyltransferase OatA 

7164 6583 Reverse Phage tail protein (Tail_P2_I) 

8308 7157 Reverse Baseplate J-like protein 

8658 8305 Reverse Gene 25-like lysozyme 

9314 8712 Reverse Phage-related baseplate assembly protein 

10516 9311 Reverse Phage late control gene D protein (GPD) 

10713 10504 Reverse Phage Tail Protein X 

11603 10713 Reverse Phage P2 GpU 

14145 11605 Reverse Phage-related minor tail protein 

15525 15001 Reverse Phage tail tube protein FII 

16961 15528 Reverse Phage tail sheath protein 

17671 17207 Reverse Gp37 protein 

21361 20834 Reverse Phage virion morphogenesis family protein 

22194 21358 Reverse Phage Mu protein F like protein 

25161 23659 Reverse Terminase-like family protein 

27576 26965 Reverse membrane-bound lytic transglycosylase F 

30255 29839 Reverse Helix-turn-helix domain protein 

31507 31809 Forward IclR helix-turn-helix domain protein 

33014 34813 Forward Integrase core domain protein 
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37617 37889 Forward DNA-binding protein HU 

38745 39116 Forward Mor transcription activator family protein 

40932 39481 Reverse Squalene--hopene cyclase 

 

Table 5: Functional genes identified for vB_Bcc_6b. 
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Figure 5: Genome map of vB_Bcc_6b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_6c genome size was 37.8 kb, the phage was assembled 

using SPAdes and has a mean coverage of 21. The genome map of this phage is shown 

in Figure 6. The total number of genes identified was 54 of which 14 were identified with 

putative functions these can be seen in Table 6. Blastn on viruses only database showed 

a 37.6 kb / 37.6 kb match with Burkholderia phage KS10 (GenBank: NC_011216.1). The 

phage vB_Bcc_6c had a 62.8% G-C content. No tRNA gene was identified however; 

several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

1458 226 Reverse Phage Mu protein F like protein 

7158 6487 Reverse 

membrane-bound lytic transglycosylase 

F 

9330 8860 Reverse Helix-turn-helix domain protein 

10692 12317 Forward Integrase core domain protein 

15480 15752 Forward DNA-binding protein HU-beta 

21703 22134 Forward 

Phage virion morphogenesis family 

protein 

23042 24520 Forward Phage tail sheath protein 

25020 25574 Forward Mu-like prophage FluMu protein gp41 

25623 28058 Forward Phage-related minor tail protein 

28058 29428 Forward DNA circulation protein N-terminus 

29434 30591 Forward Phage late control gene D protein (GPD) 

30591 31112 Forward Bacteriophage Mu Gp45 protein 

31197 31778 Forward Phage protein GP46 

31775 32896 Forward Baseplate J-like protein 

 

Table 6: Functional genes identified for vB_Bcc_6c. 
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Figure 6: Genome map of vB_Bcc_6c produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_7a genome size was 37 kb, the phage was assembled 

using SPAdes and has a mean coverage of 1117. The genome map of this phage is 

shown in Figure 7. The total number of genes identified was 50 of which 21 were 

identified with putative functions these can be seen in Table 7. Blastn on viruses only 

database showed a 36.7 kb / 36.7 kb match with Burkholderia phage BcepMu (GenBank: 

NC_005882.1). The phage vB_Bcc_7a had a 62.9 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

335 1468 Forward O-acetyltransferase OatA 

4607 4026 Reverse Phage tail protein (Tail_P2_I) 

5751 4600 Reverse Baseplate J-like protein 

6101 5748 Reverse Gene 25-like lysozyme 

6757 6155 Reverse 

Phage-related baseplate assembly 

protein 

7959 6754 Reverse Phage late control gene D protein (GPD) 

8156 7947 Reverse Phage Tail Protein X 

9046 8156 Reverse Phage P2 GpU 

11588 9048 Reverse Phage-related minor tail protein 

12968 12444 Reverse Phage tail tube protein FII 

14404 12971 Reverse Phage tail sheath protein 

15114 14650 Reverse Gp37 protein 

18804 18277 Reverse 

Phage virion morphogenesis family 

protein 

19637 18801 Reverse Phage Mu protein F like protein 

22604 21102 Reverse Terminase-like family protein 

25019 24408 Reverse 

membrane-bound lytic transglycosylase 

F 

27698 27282 Reverse Helix-turn-helix domain protein 

28950 29252 Forward IclR helix-turn-helix domain protein 

30457 32256 Forward Integrase core domain protein 

35060 35332 Forward DNA-binding protein HU 
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36188 36559 Forward Mor transcription activator family protein 

 

Table 7: Functional genes identified for vB_Bcc_7a. 
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Figure 7: Genome map of vB_Bcc_7a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_11a genome size was 44.9 kb, the phage was assembled 

using SPAdes and has a mean coverage of 337. The genome map of this phage is shown 

in Figure 8. The total number of genes identified was 73 of which 18 were identified with 

putative functions these can be seen in Table 8. Blastn on viruses only database showed 

a 10.3 kb / 11.1 kb match with Burkholderia phage Bcep176 (GenBank: NC_007497.1). 

The phage vB_Bcc_11a had a 61.9 % G-C content. No tRNA gene was identified 

however; several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

2697 3800 Forward Modification methylase DpnIIB 

7866 9047 Forward Tyrosine recombinase XerD 

12832 12335 Reverse Lysozyme RrrD 

17964 17401 Reverse Bacteriophage lambda tail assembly protein I 

18713 17961 Reverse NlpC/P60 family protein 

19442 18762 Reverse Phage minor tail protein L 

20922 20584 Reverse Phage minor tail protein 

25064 20922 Reverse Chromosome partition protein Smc 

25816 25352 Reverse Phage tail assembly chaperone 

27452 27123 Reverse Phage head-tail joining protein 

27796 27455 Reverse Phage gp6-like head-tail connector protein 

29315 28038 Reverse Phage capsid family protein 

30135 29320 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

31408 30113 Reverse Phage portal protein 

33128 31416 Reverse Phage Terminase 

33607 33128 Reverse Terminase small subunit 

40106 39261 Reverse Chromosome-partitioning protein Spo0J 

41810 42154 Forward transcriptional repressor DicA 

 

Table 8: Functional genes identified for vB_Bcc_11a. 
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Figure 8: Genome map of vB_Bcc_11a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_11b genome size was 31.8 kb, the phage was assembled 

using SPAdes and has a mean coverage of 29. The genome map of this phage is shown 

in Figure 9. The total number of genes identified was 39 of which 25 were identified with 

putative functions these can be seen in Table 9. Blastn on viruses only database showed 

an 8.4 kb / 8.5 kb match with Burkholderia phage KS5 (GenBank: NC_015265.1). The 

phage vB_Bcc_11b had a 63.8 % G-C content. A tRNA gene was identified along with 

several genes associated with structural and regulatory proteins.  

 

Start End Direction Putative functional protein 

308 718 Forward P2 phage tail completion protein R (GpR) 

718 1167 Forward Phage virion morphogenesis family protein 

1267 1899 Forward Phage-related baseplate assembly protein 

1896 2273 Forward Gene 25-like lysozyme 

2270 3175 Forward Baseplate J-like protein 

3168 3722 Forward Phage tail protein (Tail_P2_I) 

3725 5335 Forward Phage Tail Collar Domain protein 

5793 6179 Forward Caudovirales tail fibre assembly protein 

6940 7689 Forward Modification methylase DpnIIB 

7801 8973 Forward Phage tail sheath protein 

9003 9512 Forward Phage tail tube protein FII 

9545 9856 Forward Phage tail protein E 

9856 9975 Forward Phage P2 GpE 

12748 13176 Forward Phage P2 GpU 

13173 14318 Forward Phage late control gene D protein (GPD) 

14856 14404 Reverse tRNA_anti-like protein 

16784 17032 Forward DNA-binding transcriptional regulator 

22113 23219 Forward Tyrosine recombinase XerC 

24120 24443 Forward Transcriptional regulator ClgR 
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24400 25419 Forward 

Reverse transcriptase (RNA-dependent DNA 

polymerase) 

26941 25889 Reverse Phage portal protein 

28611 26941 Reverse Terminase-like family protein 

28855 29676 Forward 

Phage capsid scaffolding protein (GPO) serine 

peptidase 

29713 31422 Forward Phage major capsid protein, P2 family 

31526 31855 Forward Phage head completion protein (GPL) 

 

Table 9: Functional genes identified for vB_Bcc_11b. 
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Figure 9: Genome map of vB_Bcc_11b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_13a genome size was 37.8 kb, the phage was assembled 

using SPAdes and has a mean coverage of 48. The genome map of this phage is shown 

in Figure 10. The total number of genes identified was 49 of which 14 were identified with 

putative functions these can be seen in Table 10. Blastn on viruses only database 

showed a 37.6 kb / 37.6 kb match with Burkholderia phage KS10 (GenBank: 

NC_011216.1). The phage vB_Bcc_13a had a 62.9 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified including an integrase gene.  

Start End Direction Putative functional protein 

6007 4886 Reverse Baseplate J-like protein 

6585 6004 Reverse Phage protein GP46 

7191 6670 Reverse Bacteriophage Mu Gp45 protein 

8348 7191 Reverse Phage late control gene D protein (GPD) 

9724 8354 Reverse DNA circulation protein N-terminus 

12159 9724 Reverse Phage-related minor tail protein 

12762 12208 Reverse Mu-like prophage FluMu protein gp41 

14740 13262 Reverse Phage tail sheath protein 

16079 15648 Reverse 

Phage virion morphogenesis family 

protein 

22302 22030 Reverse DNA-binding protein HU-beta 

27090 25465 Reverse Integrase core domain protein 

28452 28922 Forward Helix-turn-helix domain protein 

30624 31295 Forward 

membrane-bound lytic transglycosylase 

F 

36324 37556 Forward Phage Mu protein F like protein 

 

 

Table 10: Functional genes identified for vB_Bcc_13a. 
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Figure 10: Genome map of vB_Bcc_13a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The potentially incomplete temperate phage vB_Bcc_15a genome size was 29.6 kb, the 

phage was assembled using SPAdes and has a mean coverage of 122. The genome 

map of this phage is shown in Figure 11. The total number of genes identified was 45 of 

which 25 were identified with putative functions these can be seen in Table 11. Blastn 

on viruses only database showed a 2.6 kb / 3.3 kb match with Burkholderia phage 

phiE12-2 (GenBank: NC_009236.1). The phage vB_Bcc_15a had a 62.7 % G-C content. 

No tRNA gene was identified however; several genes associated with structural and 

regulatory proteins were identified including an integrase gene.  

Start End Direction Putative functional protein 

1218 562 Reverse Chromosome-partitioning ATPase Soj 

1511 1305 Reverse Ogr/Delta-like zinc finger 

1774 1508 Reverse Ogr/Delta-like zinc finger 

3589 1787 Reverse Bacteriophage replication gene A protein (GPA) 

6048 6377 Forward Helix-turn-helix 

9024 7960 Reverse Phage late control gene D protein (GPD) 

9731 9021 Reverse Phage P2 GpU 

12525 12412 Reverse Phage P2 GpE 

12914 12534 Reverse Phage tail protein E 

13495 12986 Reverse Phage tail tube protein FII 

14708 13533 Reverse Phage tail sheath protein 

16808 16245 Reverse Phage tail protein (Tail_P2_I) 

17712 16801 Reverse Baseplate J-like protein 

18080 17709 Reverse Gene 25-like lysozyme 

18766 18077 Reverse Phage-related baseplate assembly protein 

19315 18845 Reverse Phage virion morphogenesis family protein 

19749 19300 Reverse P2 phage tail completion protein R (GpR) 

21118 20312 Reverse Putative peptidoglycan binding domain protein 

21963 21757 Reverse Phage Tail Protein X 

22795 22313 Reverse Phage head completion protein (GPL) 

23617 22898 Reverse Phage small terminase subunit 

24639 23620 Reverse Phage major capsid protein, P2 family 
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25741 24695 Reverse 

Phage capsid scaffolding protein (GPO) serine 

peptidase 

25783 27666 Forward Terminase-like family protein 

27663 28715 Forward Phage portal protein 

 

Table 11: Functional genes identified for vB_Bcc_15a. 
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Figure 11: Genome map of vB_Bcc_15a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_16a genome size was 37.2 kb, the phage was assembled 

using SPAdes and has a mean coverage of 36. The genome map of this phage is shown 

in Figure 12. The total number of genes identified was 45 of which 22 were identified with 

putative functions these can be seen in Table 12. Blastn on viruses only database 

showed a 786 bp / 949 bp match with Burkholderia phage KS9 (GenBank: NC_013055.1). 

The phage vB_Bcc_16a had a 62.4 % G-C content. No tRNA gene was identified 

however; several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

3471 976 Reverse DNA primase TraC 

9866 10120 Forward Prophage CP4-57 regulatory protein (AlpA) 

13413 12109 Reverse Phage integrase family protein 

16039 15251 Reverse Modification methylase DpnIIA 

17194 16700 Reverse Phage lysozyme 

17481 17197 Reverse Phage holin family 2 

18608 17556 Reverse Phage late control gene D protein (GPD) 

18825 18619 Reverse Phage Tail Protein X 

19681 18800 Reverse Phage P2 GpU 

22109 19692 Reverse Phage-related minor tail protein 

23080 22577 Reverse Phage tail tube protein FII 

24260 23091 Reverse Phage tail sheath protein 

25067 24357 Reverse Caudovirales tail fibre assembly protein 

26384 25080 Reverse Phage Tail Collar Domain protein 

26950 26381 Reverse Phage tail protein (Tail_P2_I) 

27833 26940 Reverse Baseplate J-like protein 

28174 27830 Reverse Gene 25-like lysozyme 

29121 28441 Reverse Phage-related baseplate assembly protein 

30165 29638 Reverse Prophage minor tail protein Z (GPZ) 

32959 31904 Reverse 

ATP-dependent Clp protease proteolytic 

subunit 

34446 32956 Reverse Phage portal protein, lambda family 

36647 34659 Reverse Phage terminase large subunit (GpA) 
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Table 12: Functional genes identified for vB_Bcc_16a. 
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Figure 12: Genome map of vB_Bcc_16a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_17a genome size was 35.8 kb, the phage was assembled 

using SPAdes and has a mean coverage of 37. The genome map of this phage is shown 

in Figure 13. The total number of genes identified was 45 of which 12 were identified with 

putative functions these can be seen in Table 13. Blastn on viruses only database 

showed no matches. Thus a Blastn search on the remote database showed a 35.8 kb / 

35.8 kb match to Burkholderia cenocepacia J2315 chromosome 2 (GenBank: 

AM747721.1). The phage vB_Bcc_17a had a 64.8 % G-C content. No tRNA gene was 

identified however; several genes associated regulatory proteins were identified.  

Start End Direction Putative functional protein 

2835 1294 Reverse Glycerol kinase 

3116 2832 Reverse Major Facilitator Superfamily protein 

4295 3171 Reverse 

putative metabolite transport protein 

CsbC 

5255 4536 Reverse C-factor 

5388 6365 Forward 

HTH-type transcriptional regulator SyrM 

1 

6480 7868 Forward Xanthine permease XanP 

8000 8425 Forward RNA pyrophosphohydrolase 

9715 9119 Reverse Lipase (class 3) 

11676 11104 Reverse Chitinase class I 

14073 12517 Reverse Pectate lyase superfamily protein 

23561 21774 Reverse Peptidoglycan hydrolase FlgJ 

35399 33852 Reverse Terminase-like family protein 

 

Table 13: Functional genes identified for vB_Bcc_17a. 
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Figure 13: Genome map of vB_Bcc_17a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_18a genome size was 39.4 kb, the phage was assembled 

using SPAdes and has a mean coverage of 855. The genome map of this phage is shown 

in Figure 14. The total number of genes identified was 52 of which 22 were identified with 

putative functions these can be seen in Table 14. Blastn on viruses only database 

showed a 36.7 kb / 36.7 kb match with Burkholderia phage BcepMu (GenBank: 

NC_005882.1). The phage vB_Bcc_18a had a 63.2 % G-C content. No tRNA gene was 

identified however; several genes associated with structural, lysogenic and regulatory 

proteins were identified.  

Start End Direction Putative functional protein 

2084 1713 Reverse Mor transcription activator family protein 

3212 2940 Reverse DNA-binding protein HU 

7815 6016 Reverse Integrase core domain protein 

9322 9020 Reverse IclR helix-turn-helix domain protein 

10574 10990 Forward Helix-turn-helix domain protein 

13253 13864 Forward 

membrane-bound lytic transglycosylase 

F 

15668 17170 Forward Terminase-like family protein 

18635 19471 Forward Phage Mu protein F like protein 

19468 19995 Forward 

Phage virion morphogenesis family 

protein 

23158 23622 Forward Gp37 protein 

23868 25301 Forward Phage tail sheath protein 

25304 25828 Forward Phage tail tube protein FII 

26684 29224 Forward Phage-related minor tail protein 

29226 30116 Forward Phage P2 GpU 

30116 30325 Forward Phage Tail Protein X 

30313 31518 Forward Phage late control gene D protein (GPD) 

31515 32117 Forward 

Phage-related baseplate assembly 

protein 

32171 32524 Forward Gene 25-like lysozyme 

32521 33672 Forward Baseplate J-like protein 

33665 34246 Forward Phage tail protein (Tail_P2_I) 
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37937 36804 Reverse O-acetyltransferase OatA 

38115 39125 Forward High-affinity nickel transport protein 

 

Table 14: Functional genes identified for vB_Bcc_18a. 
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Figure 14: Genome map of vB_Bcc_18a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_19a genome size was 36.9 kb, the phage was assembled 

using SPAdes and has a mean coverage of 806. The genome map of this phage is shown 

in Figure 15. The total number of genes identified was 52 of which 22 were identified with 

putative functions these can be seen in Table 15. Blastn on viruses only database 

showed a 36.7 kb / 36.7 kb match with Burkholderia phage BcepMu (GenBank: 

NC_005882.1). The phage vB_Bcc_19a had a 62.9 % G-C content. No tRNA gene was 

identified however; several genes associated with structural, lysogenic and regulatory 

proteins were identified.  

Start End Direction Putative functional protein 

829 458 Reverse Mor transcription activator family protein 

1957 1685 Reverse DNA-binding protein HU 

6560 4761 Reverse Integrase core domain protein 

8067 7765 Reverse IclR helix-turn-helix domain protein 

9319 9735 Forward Helix-turn-helix domain protein 

11998 12609 Forward 

membrane-bound lytic transglycosylase 

F 

14413 15915 Forward Terminase-like family protein 

17380 18216 Forward Phage Mu protein F like protein 

18213 18740 Forward 

Phage virion morphogenesis family 

protein 

21903 22367 Forward Gp37 protein 

22613 24046 Forward Phage tail sheath protein 

24049 24573 Forward Phage tail tube protein FII 

25429 27969 Forward Phage-related minor tail protein 

27971 28861 Forward Phage P2 GpU 

28861 29070 Forward Phage Tail Protein X 

29058 30263 Forward Phage late control gene D protein (GPD) 

30260 30862 Forward 

Phage-related baseplate assembly 

protein 

30916 31269 Forward Gene 25-like lysozyme 

31266 32417 Forward Baseplate J-like protein 

32410 32991 Forward Phage tail protein (Tail_P2_I) 
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36682 35549 Reverse O-acetyltransferase OatA 

 

Table 15: Functional genes identified for vB_Bcc_19a. 
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Figure 15: Genome map of vB_Bcc_19a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_23a genome size was 40.7 kb, the phage was assembled 

using SPAdes and has a mean coverage of 57. The genome map of this phage is shown 

in Figure 16. The total number of genes identified was 54 of which 20 were identified with 

putative functions these can be seen in Table 16. Blastn on viruses only database 

showed an 8.2 kb / 8.4 kb match with Burkholderia phage Bcep176 (GenBank: 

NC_007497.1). The phage vB_Bcc_23a had a 60.8 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

632 2341 Forward Phage Terminase 

2338 3627 Forward Phage portal protein 

3593 4390 Forward ATP-dependent Clp protease proteolytic subunit 

4458 5720 Forward Phage capsid family protein 

5770 6354 Forward Phage gp6-like head-tail connector protein 

6365 6691 Forward Phage head-tail joining protein 

7997 8461 Forward Phage tail assembly chaperone 

8749 12891 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

12891 13229 Forward Phage minor tail protein 

14137 14820 Forward Phage minor tail protein L 

14869 15621 Forward NlpC/P60 family protein 

15618 16181 Forward Bacteriophage lambda tail assembly protein I 

20750 21247 Forward Lysozyme RrrD 

27030 28304 Forward integrase 

28530 28249 Reverse Prophage CP4-57 regulatory protein (AlpA) 

29378 28527 Reverse Chromosome-partitioning protein Spo0J 

30166 29387 Reverse thiamine biosynthesis protein ThiF 

35929 35465 Reverse Helix-turn-helix 

37044 38414 Forward Replicative DNA helicase 

40357 40695 Forward HNH endonuclease 
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Table 16: Functional genes identified for vB_Bcc_23a. 
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Figure 16: Genome map of vB_Bcc_23a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_28a genome size was 44.7 kb, the phage was assembled 

using SPAdes and has a mean coverage of 16. The genome map of this phage is shown 

in Figure 17. The total number of genes identified was 73 of which 11 were identified with 

putative functions these can be seen in Table 17. Blastn on viruses only database 

showed a 127 bp / 154 bp match with Burkholderia phage Bcep176 (GenBank: 

NC_007497.1). The phage vB_Bcc_28a had a 63.2 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

3872 3489 Reverse Fic/DOC family protein 

7556 8026 Forward Endodeoxyribonuclease RusA 

9590 11137 Forward Terminase-like family protein 

12656 13297 Forward Phage Mu protein F like protein 

21428 23215 Forward Peptidoglycan hydrolase FlgJ 

30916 32475 Forward Pectate lyase superfamily protein 

33320 33886 Forward Chitinase class I 

35275 35871 Forward Lipase (class 3) 

37158 36169 Reverse site-specific tyrosine recombinase XerC 

39850 39608 Reverse Helix-turn-helix domain protein 

43472 42792 Reverse 

YqaJ-like viral recombinase domain 

protein 

 

Table 17: Functional genes identified for vB_Bcc_28a. 
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Figure 17: Genome map of vB_Bcc_28a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_28b genome size was 37.7 kb, the phage was assembled 

using SPAdes and has a mean coverage of 92. The genome map of this phage is shown 

in Figure 18. The total number of genes identified was 50 of which 14 were identified with 

putative functions these can be seen in Table 18. Blastn on viruses only database 

showed a 37.6 kb / 37.6 kb match with Burkholderia phage KS10 (GenBank: 

NC_011216.1). The phage vB_Bcc_28b had a 62.9% G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified, including an integrase gene. 

  

Start End Direction Putative functional protein 

1459 227 Reverse Phage Mu protein F like protein 

7159 6488 Reverse 

membrane-bound lytic transglycosylase 

F 

9331 8861 Reverse Helix-turn-helix domain protein 

10693 12318 Forward Integrase core domain protein 

15481 15753 Forward DNA-binding protein HU-beta 

21704 22135 Forward 

Phage virion morphogenesis family 

protein 

23043 24521 Forward Phage tail sheath protein 

25021 25575 Forward Mu-like prophage FluMu protein gp41 

25624 28059 Forward Phage-related minor tail protein 

28059 29429 Forward DNA circulation protein N-terminus 

29435 30592 Forward Phage late control gene D protein (GPD) 

30592 31113 Forward Bacteriophage Mu Gp45 protein 

31198 31779 Forward Phage protein GP46 

31776 32897 Forward Baseplate J-like protein 

 

Table 18: Functional genes identified for vB_Bcc_28b. 
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Figure 18: Genome map of vB_Bcc_28b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_29a genome size was 37.7 kb, the phage was assembled 

using SPAdes and has a mean coverage of 2321. The genome map of this phage is 

shown in Figure 19. The total number of genes identified was 53 of which 13 were 

identified with putative functions these can be seen in Table 19. Blastn on viruses only 

database showed a 307 bp / 346 bp match with Burkholderia phage DC1 (GenBank: 

NC_018452.1). The phage vB_Bcc_29a had a 62.2% G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified. 

Start End Direction Putative functional protein 

2794 2375 Reverse Phage lysozyme 

3078 2791 Reverse Phage holin family 2 

6080 3078 Reverse 

flagella rod assembly protein/muramidase 

FlgJ 

19262 17955 Reverse Phage terminase large subunit 

20067 20459 Forward Fic/DOC family protein 

21025 20456 Reverse Terminase small subunit 

25025 23478 Reverse type I restriction enzyme EcoKI subunit R 

25914 25018 Reverse Chromosome partition protein Smc 

26237 26989 Forward HTH-type transcriptional regulator PrtR 

27787 28308 Forward transcriptional repressor DicA 

30472 31014 Forward SpoU rRNA Methylase family protein 

32526 31516 Reverse site-specific tyrosine recombinase XerD 

32814 33161 Forward Helix-turn-helix domain protein 

 

Table 19: Functional genes identified for vB_Bcc_29a. 
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Figure 19: Genome map of vB_Bcc_29a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_31a genome size was 41 kb, the phage was assembled 

using SPAdes and has a mean coverage of 378. The genome map of this phage is shown 

in Figure 20. The total number of genes identified was 57 of which 22 were identified with 

putative functions these can be seen in Table 20. Blastn on viruses only database 

showed a 770 bp / 913 bp match with Burkholderia phage phi1026b (GenBank: 

NC_005284.1). The phage vB_Bcc_31a had a 61.8% G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified. 

Start End Direction Putative functional protein 

1918 2172 Forward Prophage CP4-57 regulatory protein (AlpA) 

4614 3340 Reverse Phage integrase family protein 

5978 5088 Reverse HTH-type transcriptional regulator DmlR 

6276 6647 Forward 

Alkaline phosphatase synthesis transcriptional 

regulatory protein PhoP 

10967 10743 Reverse Modification methylase DpnIIA 

12121 11627 Reverse Phage lysozyme 

12408 12124 Reverse Phage holin family 2 

13536 12484 Reverse Phage late control gene D protein (GPD) 

13753 13547 Reverse Phage Tail Protein X 

14609 13728 Reverse Phage P2 GpU 

17036 14619 Reverse Phage-related minor tail protein 

18018 17515 Reverse Phage tail tube protein FII 

19198 18029 Reverse Phage tail sheath protein 

21361 20795 Reverse Phage tail protein (Tail_P2_I) 

22247 21354 Reverse Baseplate J-like protein 

22588 22244 Reverse Gene 25-like lysozyme 

23536 22856 Reverse Phage-related baseplate assembly protein 

24580 24053 Reverse Prophage minor tail protein Z (GPZ) 

27374 26319 Reverse ATP-dependent Clp protease proteolytic subunit 

28861 27371 Reverse Phage portal protein, lambda family 

31062 29074 Reverse Phage terminase large subunit (GpA) 
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36502 34007 Reverse DNA primase TraC 

 

Table 20: Functional genes identified for vB_Bcc_31a. 
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Figure 20: Genome map of vB_Bcc_31a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_32a genome size was 43.6 kb, the phage was assembled 

using SPAdes and has a mean coverage of 56. The genome map of this phage is shown 

in Figure 21. The total number of genes identified was 61 of which 24 were identified with 

putative functions these can be seen in Table 21. Blastn on viruses only database 

showed a 1048 bp / 1229 bp match with Ralstonia phage phiRSA1 (GenBank: 

NC_009382.1). The phage vB_Bcc_32a had a 61.5% G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified, including an integrase gene. 

Start End Direction Putative functional protein 

570 2558 Forward Phage terminase large subunit (GpA) 

2771 4261 Forward Phage portal protein, lambda family 

4258 5331 Forward ATP-dependent Clp protease proteolytic subunit 

7067 7594 Forward Prophage minor tail protein Z (GPZ) 

8111 8791 Forward Phage-related baseplate assembly protein 

9058 9402 Forward Gene 25-like lysozyme 

9399 10292 Forward Baseplate J-like protein 

10285 10851 Forward Phage tail protein (Tail_P2_I) 

12477 13646 Forward Phage tail sheath protein 

13657 14160 Forward Phage tail tube protein FII 

14628 17045 Forward Phage-related minor tail protein 

17056 17937 Forward Phage P2 GpU 

17912 18118 Forward Phage Tail Protein X 

18129 19181 Forward Phage late control gene D protein (GPD) 

19321 20541 Forward Transposase 

20569 20853 Forward Phage holin family 2 

20856 21350 Forward Phage lysozyme 

22011 22799 Forward Modification methylase DpnIIA 

25676 26575 Forward Protease HtpX 

27983 29257 Forward Phage integrase family protein 

30001 30333 Forward DNA-binding transcriptional repressor PuuR 
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30284 31285 Forward 

Reverse transcriptase (RNA-dependent DNA 

polymerase) 

31782 31528 Reverse Prophage CP4-57 regulatory protein (AlpA) 

38809 41304 Forward DNA primase TraC 

 

Table 21: Functional genes identified for vB_Bcc_32a. 
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Figure 21: Genome map of vB_Bcc_32a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_35a genome size was 38.7 kb, the phage was assembled 

using SPAdes and has a mean coverage of 35. The genome map of this phage is shown 

in Figure 22. The total number of genes identified was 60 of which 10 were identified with 

putative functions these can be seen in Table 22. Blastn on viruses only database 

showed a 699 bp / 756 bp match with Burkholderia phage Bcep176 (GenBank: 

NC_007497.1). The phage vB_Bcc_35a had a 62.8 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

3021 1936 Reverse site-specific tyrosine recombinase XerD 

3661 3242 Reverse HNH endonuclease 

7429 6362 Reverse Modification methylase DpnIIB 

10247 9777 Reverse HTH-type transcriptional regulator PrtR 

11542 12387 Forward Chromosome-partitioning protein Spo0J 

16813 17373 Forward Terminase small subunit 

17899 19206 Forward Phage terminase large subunit 

30815 33817 Forward 

flagellar rod assembly protein/muramidase 

FlgJ 

33817 34104 Forward Phage holin family 2 

34101 34520 Forward Phage lysozyme 

 

Table 22: Functional genes identified for vB_Bcc_35a. 
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Figure 22: Genome map of vB_Bcc_35a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_36a genome size was 45 kb, the phage was assembled 

using SPAdes and has a mean coverage of 1027. The genome map of this phage is 

shown in Figure 23. The total number of genes identified was 73 of which 11 were 

identified with putative functions these can be seen in Table 23. Blastn on viruses only 

database showed a 127 bp / 154 bp match with Burkholderia phage Bcep176 (GenBank: 

NC_007497.1). The phage vB_Bcc_36a had a 63.3 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

1582 3129 Forward Terminase-like family protein 

4648 5289 Forward Phage Mu protein F like protein 

13420 15207 Forward Peptidoglycan hydrolase FlgJ 

22908 24464 Forward Pectate lyase superfamily protein 

25311 25877 Forward Chitinase class I 

27266 27862 Forward Lipase (class 3) 

29149 28160 Reverse site-specific tyrosine recombinase XerC 

31841 31599 Reverse Helix-turn-helix domain protein 

35463 34783 Reverse 

YqaJ-like viral recombinase domain 

protein 

40753 40370 Reverse Fic/DOC family protein 

44437 44907 Forward Endodeoxyribonuclease RusA 

 

Table 23: Functional genes identified for vB_Bcc_36a. 
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Figure 23: Genome map of vB_Bcc_36a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_39a genome size was 42.7 kb, the phage was assembled 

using SPAdes and has a mean coverage of 180. The genome map of this phage is shown 

in Figure 24. The total number of genes identified was 57 of which 20 were identified with 

putative functions these can be seen in Table 24. Blastn on viruses only database 

showed an 11.7 kb / 13.2 kb match with Burkholderia phage KS9 (GenBank: 

NC_013055.1). The phage vB_Bcc_39a had a 61.7 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

660 2324 Forward Phage Terminase 

2321 3610 Forward Phage portal protein 

3576 4379 Forward ATP-dependent Clp protease proteolytic subunit 1 

4448 5713 Forward Phage capsid family protein 

6359 6685 Forward Phage head-tail joining protein 

7994 8461 Forward Phage tail assembly chaperone 

8750 12850 Forward 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

12850 13188 Forward Phage minor tail protein 

14696 15379 Forward Phage minor tail protein L 

15429 16181 Forward NlpC/P60 family protein 

16178 16741 Forward Bacteriophage lambda tail assembly protein I 

21822 22106 Forward Phage holin family 2 

22109 22558 Forward Peptidase M15 

27365 26577 Reverse Region found in RelA / SpoT proteins 

28196 29209 Reverse site-specific tyrosine recombinase XerD 

30656 30348 Reverse Helix-turn-helix domain protein 

32541 31786 Reverse thiamine biosynthesis protein ThiF 

38300 37836 Reverse Helix-turn-helix 

39415 40782 Forward Replicative DNA helicase 

42339 42707 Forward HNH endonuclease 
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Table 24: Functional genes identified for vB_Bcc_39a. 
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Figure 24: Genome map of vB_Bcc_39a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_43a genome size was 57.3 kb, the phage was assembled 

using SPAdes and has a mean coverage of 154. The genome map of this phage is shown 

in Figure 25. The total number of genes identified was 86 of which 16 were identified with 

putative functions these can be seen in Table 25. Blastn on viruses only database 

showed a 127 bp / 158 bp match with Salicola phage CGphi29 (GenBank: NC_020844.1). 

The phage vB_Bcc_43a had a 60.5 % G-C content. No tRNA gene was identified 

however; several genes associated with structural and regulatory proteins were identified.  

Start End Direction Putative functional protein 

3199 4311 Forward O-acetyltransferase OatA 

5118 4300 Reverse NTE family protein RssA 

6807 6157 Reverse Chitinase class I 

12448 12044 Reverse putative endopeptidase precursor 

17373 14404 Reverse 

Lambda phage tail tape-measure protein 

(Tape_meas_lam_C) 

19197 18559 Reverse Phage tail protein 

20008 19643 Reverse Phage head-tail joining protein 

20636 20031 Reverse Phage gp6-like head-tail connector protein 

22623 21217 Reverse Phage capsid family protein 

23688 22780 Reverse Putative signal peptide peptidase SppA 

25163 23685 Reverse Phage portal protein 

27048 25363 Reverse Phage Terminase 

28044 27727 Reverse HNH endonuclease 

42559 41447 Reverse Modification methylase DpnIIB 

46507 47589 Forward DNA polymerase III subunit beta 

56596 55547 Reverse Phage integrase family protein 

 

Table 25: Functional genes identified for vB_Bcc_43a. 
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Figure 25: Genome map of vB_Bcc_43a produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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The temperate phage vB_Bcc_43b genome size was 42.9 kb, the phage was assembled 

using SPAdes and has a mean coverage of 25. The genome map of this phage is shown 

in Figure 26. The total number of genes identified was 55 of which 22 were identified with 

putative functions these can be seen in Table 26. Blastn on viruses only database 

showed a 751 bp / 936 bp match with Burkholderia phage phiE125 (GenBank: 

NC_003309.1). The phage vB_Bcc_43b had a 62.1 % G-C content. No tRNA gene was 

identified however; several genes associated with structural and regulatory proteins were 

identified.  

Start End Direction Putative functional protein 

633 2552 Forward Phage terminase large subunit (GpA) 

2769 4262 Forward Phage portal protein, lambda family 

4259 5326 Forward 

ATP-dependent Clp protease proteolytic 

subunit 

7062 7592 Forward Prophage minor tail protein Z (GPZ) 

8146 8790 Forward Phage-related baseplate assembly protein 

9050 9385 Forward Gene 25-like lysozyme 

9382 10278 Forward Baseplate J-like protein 

10268 10846 Forward Phage tail protein (Tail_P2_I) 

12868 13647 Forward Caudovirales tail fibre assembly protein 

13732 14901 Forward Phage tail sheath protein 

14912 15415 Forward Phage tail tube protein FII 

15896 18337 Forward Phage-related minor tail protein 

18348 19226 Forward Phage P2 GpU 

19201 19407 Forward Phage Tail Protein X 

19417 20466 Forward Phage late control gene D protein (GPD) 

20989 21555 Forward putative Peptidoglycan domain protein 

22477 23262 Forward Modification methylase DpnIIA 

29070 30227 Forward Tyrosine recombinase XerC 

30322 31461 Forward ParB-like nuclease domain protein 

33460 32507 Reverse Modification methylase BspRI 

38949 41456 Forward DNA primase TraC 
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41677 42450 Forward Chaperone protein DnaJ 

 

Table 26: Functional genes identified for vB_Bcc_43b. 
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Figure 26: Genome map of vB_Bcc_43b produced using GenomeVx 

(http://wolfe.gen.tcd.ie/GenomeVx (Conant and Wolfe 2008)). Genes encoded on 

forward strand are shown outward and genes encoded on the reverse strand are shown 

inward.  
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