Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt

Singarayer, Joy, Valdes, Paul and Roberts, William (2017) Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt. Scientific Reports, 7 (1). ISSN 2045-2322

Text (Full text)
Singarayer et al - Ocean dominated expansion and contraction of the late Quaternary tropical rainbelt OA.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Official URL: http://dx.doi.org/10.1038/s41598-017-09816-8


The latitude of the tropical rainbelt oscillates seasonally but has also varied on millennial time-scales in response to changes in the seasonal distribution of insolation due to Earth’s orbital configuration, as well as climate change initiated at high latitudes. Interpretations of palaeoclimate proxy archives often suggest hemispherically coherent variations, some proposing meridional shifts in global rainbelt position and the ‘global monsoon’, while others propose interhemispherically symmetric expansion and contraction. Here, we use a unique set of climate model simulations of the last glacial cycle (120 kyr), that compares well against a compilation of precipitation proxy data, to demonstrate that while asymmetric extratropical forcings (icesheets, freshwater hosing) generally produce meridional shifts in the zonal mean rainbelt, orbital variations produce expansion/contractions in terms of the global zonal mean. This is primarily a dynamic response of the rainbelt over the oceans to regional interhemispheric temperature gradients, which is opposite to the largely local thermodynamic terrestrial response to insolation. The mode of rainbelt variation is regionally variable, depending on surface type (land or ocean) and surrounding continental configuration. This makes interpretation of precipitation-proxy records as large-scale rainbelt movement challenging, requiring regional or global data syntheses.

Item Type: Article
Subjects: F700 Ocean Sciences
F800 Physical and Terrestrial Geographical and Environmental Sciences
Department: Faculties > Engineering and Environment > Geography and Environmental Sciences
Depositing User: Paul Burns
Date Deposited: 10 Oct 2018 15:59
Last Modified: 01 Aug 2021 07:35
URI: http://nrl.northumbria.ac.uk/id/eprint/36232

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics