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A Recurrent Emotional CMAC Neural Network
Controller for Vision-based Mobile Robots
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Abstract

Vision-based mobile robots often su er from the di culties of high nonlinear
dynamics and precise positioning requirements, which leads to the development
demand of more powerful nonlinear approximation in controlling and monitoring
of mobile robots. This paper proposes a recurrent emotional cerebellar model
articulation controller (RECMAC) neural network in meeting such demand. In
particular, the proposed network integrates a recurrent loop and an emotional
learning mechanism into a cerebellar model articulation controller (CMAC),
which is implemented as the main component of the controller module of a
vision-based mobile robot. Briey, the controller module consists of a sliding
surface, the RECMAC, and a compensator controller. The incorporation of the
recurrent structure in a slide model neural network controller ensures the retain-
ing of the previous states of the robot to improve its dynamic mapping ability.
The convergence of the proposed system is guaranteed by applying the Lyapunov
stability analysis theory. The proposed system was validated and evaluated by
both simulation and a practical moving-target tracking task. The experimenta-

tion demonstrated that the proposed system outperforms other popular neural
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network-based control systems, and thus it is superior in approximating highly
nonlinear dynamics in controlling vision-based mobile robots.

Keywords: Mobile robot, recurrent neural network, network based controller

1. Introduction

Along with the rapid development of computer vision technologies, vari-
ous vision-based mobile robots have been proposed and widely used in many
real-world service applications [1,[2,[8[4[5[16]. Note that the design and
implementation of mobile robots are challenging due to its non-linearity and
non-holonomicity, which has led to a large number of research projects in this
area [/,[8,[9,[10[11]. The traditional control methods work only when the
detailed system parameters and accurate position information of the tracking
objects are available [[I2]. This has to be achieved in an environment with
highly nonlinear dynamics and uncertain disturbances, where the input chat-
tering of the control systems caused by the disturbances seriously a ects the
performance and even stability of the control systems [[13, 14, 15]. Therefore,
it is important to develop a system with high tracking performance to support
the vision-based mobile robots, which are currently facing two main challenges
as discussed below.

The control systems of mobile robots must be equipped with su cient non-
linear learning abilities, as the rst main challenge, to deal with highly nonlinear
dynamics. Feedforward arti cial neural networks have been broadly employed
for identi cation and control of mobile robot systems, as neural networks are
able to approximate arbitrary nonlinear functions, and thus to reduce the chat-
tering phenomenon of mobile robots[[16/ 17,18, 19]. One type of neural net-
works, Cerebellar Model Articulation Controller (CMAC) network has been
widely used in the eld of robot motion control, due to its simple structure and
rapid learning convergence[[20/"21]. For instance, adaptive CMAC networks
have been applied to control nonlinear dynamic robot systems, which demon-

strated fast response in experiments [21, 22]. Also, Brain Emotional Learning
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network (BEL) is recognized for its powerful nonlinear approximation charac-
teristic [23| 24, [25,[26]. Such BEL neural network is composed of a sensory
neural network representing the orbitofrontal cortex in a human brain, and an
emotional neural network referring to the amygdala cortex. Many BEL-based
network controllers produce good performances in controlling dynamic systems
[24,[28,[29,[30]. The control performance is expected to be greatly improved
if the fast responsive ability can be integrated with the excellent nonlinear ap-
proximation ability.

The control system is also required to have the ability to handle unexpected
uncertainties, which forms the second challenge. If a feedforward neural net-
work is applied, it must include su cient hidden neurons to represent dynamic
responses, which typically leads to bigger computational costs and more serious
feedback delay. It has been reported in multiple pieces of work to integrate
the recurrent loop to the feedforward neural networks to form a new type of
neural network, recurrent neural network (RNN) in addressing this challenge
[31,32,[33]. Since the dynamic response of a system is captured without the
use of external feedback through delays, the integrated recurrent loop allows
networks to remember the past states of the system and to learn knowledge of
the system dynamics implicitly [34],[35]. Based on this, a neural network with a
recurrent loop often demonstrates good control performance in the presence of
system uncertainties, though there is still room for improvement regarding the
nonlinear approximation ability of current RNN models.

This paper proposes a new recurrent neural network which is embedded in
a network controller to improve the visual tracking performance of vision-based
mobile robots, and thus to address the above challenges. In particular, the
proposed recurrent emotional Cerebellar Model Articulation Controller (REC-
MAC) integrates a CMAC network, an additional emotional network, and a
recurrent loop structure, inspired by the FBEL network; and a typical sliding
model control structure is adopted to build the network controller. The REC-
MAC network and the robust controller jointly form the robot control system for

moving-target tracking tasks. The RECMAC network, acting as a primary con-
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troller, is designed for imitating an ideal controller, while the robust controller,
performing as am indirect controller, is served for reducing the approximation
errors between the ideal controller and the RECMAC. The Lyapunov stability
theory is used in this work to guarantee the stability of the global control system
and derive the update laws of the RECMAC. Experiments based on a numerical
simulation and a real mobile robot were used for system validation and eval-
uation. The experimental results demonstrate the feasibility of the proposed
recurrent network, which shows the e ectiveness of control using multi-neural
networks.

The reminder of this paper is organised as follows: Sectioh]2 introduces
a basic sliding mode control system for mobile robots. Sectiofi|3 describes
the proposed RECMAC network in detail. Section[4 presents the RECMAC
based network control system, proves the stability of global control system using
the Lyapunov stability theory, and derives the update laws of the RECMAC.
Section[§ reports the experimental results and discusses how emotional network
improves the nonlinear ability of CMAC. Finally, Section §]concludes the paper

and points out future work.

2. Background

A mobile robot is a highly nonlinear system. For a given vision-based target
tracking task, any small external disturbances and/or visual input instabilities
can seriously a ect the tracking performances of mobile robots. The sliding
mode control (SMC) has been considered as an e ective mobile robot control
method once the state of a robot system reaches a sliding surface, that is the
SMC can well handle external interference and system uncertainties caused by
input instability [36,] 37]. Without lose generality, a nth-order mobile robot
control system with mth-order input and output states can be expressed as
follow:

x(M (1) = £ (x(1) + G(x(D)u(t) + d(t); 1)
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h i
wherex(t) = x(M D(t) ::: x(t) x(t) 2<™ " is the system state vector,

is an unknown but bounded nonlinear function, G(x(t)) 2 <™ ™ is an unknown
but bounded gain matrix, d(t) = [dy(t);d2(t);:::;dm()]T 2 <™ is an external
disturbance.

The nominal model of (1) is de ned as:
x(M(t) = fo(x(1) + Gou(t); (2)

wherefo(x(t)) is nominal function of f (x(t)), Go = diag[gi@2:::gm]12<™ Mis
nominal function of G(x(t)), for i =1;2;:::;m, g are nominal gain constants,
by suitably arranging the control inputs and appropriately choosing the control
parameters, Gg can be positive de nite and invertible. Eq. (@ that can then

be represented as:

x(M (1) =fo(x(1) + 4 f (x(1)) + Gou(t) + 4 G(x(D)u(t) + d(t)

=fo(x(t)) + Gou(t) + "(x(1);1);

®3)

where "(x(t);t) = 4 f(x(t)) + 4 G(x(t))u(t) + d(t) denotes the external dis-
turbances and lumped uncertainties. x4(t) = [x{" DT (t);: 0 xd (1);xT (0)]T 2
<M " denotes the trajectory of target which the robot will be tracked. The

tracking error vector is thus de ned as:

h i
et)= em D) eM A) o oet) et) 2<™T

where e(t) = x4(t) x(t) denotes the tracking error.



An ideal sliding surface is de ned as:
0 1
S1

s(e(t)) =

Sm

2 R
" Yyt e P+ o+ . Tqmm
E ey’ 1’(t)+ 26y M+ o+ a2, e(t)dt

: o (4)
e “(t)+ men M+ +  am g em (bt
2 3
1 11 n1 2 3
=§ 3 3 3 24Rd0 5
. ) ) -
o e(t)dt
3 im nm
0 e(t)dt
h i

whered =[1;J]= | 4 plo2<m M= g T 2<n
( 2112 :mg) are the roots of the equation: g"+ 1" *+ + , 10+ , =

0; and g is a Laplace operator that is in the open left half-plane. Taking the

time derivative of (E}, the following yields:
2

ety = 14805 = 34°" Vs

e(t) elt)
eM(t)+ Je(t) = x{V (1) xM(t) + Je(t)
x{() fo(x()  Gou(t) "(x(t);t)+ Je(t)
where g(t) = he(n)(t) e Dy ::: qt)lT 2<mn,

For the existence and reachability of sliding surface, the control law of a

(®)

robot system should satisfy the following inequation:

2 o
éa( ) | i]Si] (6)

for {>0,i=1;2;:::;m.
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Applying (5] into (§)} the following is derived:

xn
ST (e(V)s(e() = sT(eNIXV (1) fo(x(1) Gou(t) "(x(1);t)+ Je(t)] s
i=1
7
If the lumped uncertainty "(x(t);t) and the system dynamic are known exactly,

the ideal sliding mode controller (ISMC) is designed as:
usme = Go XV (1) fo(x()) "(x(1);t)+ Je(t) + sgn (s(e())];  (8)

where sgn( ) is a sign function.

Unfortunately, it is extremely dicult to practically de ne the dynamical
function and to measure the lumped uncertainty of system. Therefore, the
ideal sliding mode controller de ned in @ is generally unobtainable. However,
if the ideal sliding mode controller can be represented by a neural network,
the dynamical function of the system can be explicitly represented, and the
robustness of SMC can be exploited [29]. This in the same time requires higher
nonlinear approximation ability of the system dynamics for the highly nonlinear

characteristics of vision-based mobile robot.

3. The Proposed RECMAC Network

This paper combines the e orts of multiple neural networks to collectively
mimic the ideal sliding surface. In order to accurately simulate the nonlinear
mobile robot, an emotional networks is integrated into a CMAC network as an
additional component, with the support of a recurrent loop structure, and the
combined network is named as recurrent emotional cerebellar model articulation
controller (RECMCA). The con guration of proposed RECMCA network is
illustrated in Fig. 8] The outputs of the systemareu; = b h;;i =1;2;:::;m,
where iy are the outputs of the Recurrent Emotional Network (REN) and h;
are the outputs of the Recurrent CMAC (RCMAC). REN includes the input
space (), recurrent association memory spacell 1), weight memory space K ),
and sub-output space 8). While RCMAC shares the input space with REN

and contains the recurrent association memory spaceM 2), receptive- eld space
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Figure 1: The con guration of the proposed RECMAC network.




(R), weight memory space W), and sub-output space ). These spaces are

speci ed as below.

1. Input Spacel : p=[p:;p2;:::;pm]" 2 <™ is an input vector that are fed
to both REN and RCMAC, simultaneously.

2. Recurrent Association Memory SpacesM 1 and M, : M; and M consist of
a group of blocks, the number of blocksn, and n; for REN and RCMAC,
respectively. n, and n; is larger than or equal to two. Every block is
represented as a Gaussian basis function, i.e. is for REN and g is for
RCMAC. This is de ned as:

(pb\j CIJ ) 2

2
\%

I; C)

i = exp[

where ¢; and v; are the means and variances of REN, respectively;
= 1;2000m, ) = 1,200, py; denotes the input of the recur-
rent structure of REN. The de nition of py,, is given in the Recurrent
Structure subsection.

The block matrix of REN is de ned as:

h iT
— 2 <My (20)

- 11 - 1ny - ml s mn y

For RCMAC, g; is de ned by:

6 = e P W) ") (11)
ij
wherey; , and z; are the means and variances of RCMAC, respectively;
i=1;2::0m, ) =1;2::0,n¢. In addition, the de nition of pg, is also
given in the Recurrent Structure subsection.

3. The Recurrent Structure: The recurrent structure is added to each unit of
the recurrent association memory space as illustrated in Fig[ |3. Therefore,
the input of each unit consists of two parts, one is the current inputp(t) at
time t; and the other one is the output of the recurrent structure at time

t  ( denotes a time unit). The output of REN is  (t), and the output
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Figure 2: The recurrent structure in RECMAC network.

of RCMAC is g(t). Therefore, the overall input of REN and RCMAC can
be expressed as:
Po, ()= pi()+ry 5t )3 (12)

Py ()= pi()+ gg(t ); (13)

where r and g are the recurrent coe cients of the REN and RCMAC,
respectively.

The recurrent structure makes the network working in a dynamic way by
remembering the past states of the network, which are especially helpful

in the tasks of moving target tracking for mobile robots.

. Receptive- eld SpaceR : Each component in the receptive- eld space is

the product of corresponding components of recurrent association memory

spaceM,, which is de ned as:

y ¥ ; i )2 xn _v 2
p= g = expl (pg,Zizy.J) (P, ¥i )"
| | U

1= expl s

i=1
wherej =1;2;:::;n¢. The block matrix of RCMAC is de ned as:
h iT
= 2 <mny. (15)

- 11 e Ing¢ e ml e mn ¢

. Weight Memory SpacesK and W : ik is the weight of the ith output,

the jth input, and the kth block of REN; and ! jx is the weight of ith

10



output, jth layer, and the kth block of RCMAC. Thus, K is de ned by:

h i
K= 1 2k -t mik
2 3
111 211 i mi1
11ny 2in, - ming
121 221 Lin m21
: : : (16)
- ) ) ) 2< mnp, m
12np 22ny Tl m2np
1m1 2m1 -t mm 1
1mn g 2mn, - mmn
W is de ned by:
h i
W= T ok it Dk
2 3
V111 Porr it Thn
I ' ... |
- 1lng - 21n¢ - mlng
V121 Poor it o
: a7
- ) ) ) 2 < mng m.
! 12n; I 22n; 0 D mang
Pim: tomr 230 Vhma
Pione 'omne 500 Doomng

6. Suboutput SpaceB and H : b and h; are the ith outputs of both REN

11
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and RCMAC, which are represented as:

X0 Xb

b = ik jk (18)
j=1 k=1
Xn X

hi = Dik (19)
j=1 k=1

In the above equations, b and h denote the output vectors, which are
represented as:
h iT
b= b, b i by, =K' (20)
h it
h= hy hy 1 hp =WT (21)

. Output SpaceU : The output of RECMAC, u;, is a equation of the outputs

of both REN and RCMAC, which is de ned as:
X0 Xo xXn o Rf
u=h h= ik jk Dik (22)
j=1 k=1 j=1 k=1

Let u denote the nal output of the entire network, which is expressed as:

u=b h=KT wTh (23)

The overall computing procedure of the proposed RECMAC network is sum-

marized in pseudo-code, as shown in Algorithn[1.

4. The Control System of Vision-based Robots

The RECMAC proposed in the last section mimics the sliding surface, which
is used as a primary controller in the overall control system; this works with
a robust controller, as a supplementary indirect controller, jointly performing
control tasks for vision-based robots. The framework of the proposed vision-
based mobile robot control system is illustrated in Fig.[3.

The stability of the global control system can be proven using the Lyapunov

stability theory; from this, a set of update laws for the RECMAC network are

12



Algorithm 1 The pseudocode of RECMAC network
1: Normalize each dimensionx; of X ;

2: Compute j and g; by using (11) and (9);

3: Update j and g by computing py, and pg; ;

4: Compute by using (14);

5. Compute and by using (1D) Jand (1B)]

6: Compute b and h; by using (18), then compute suboutputsband h by using
[®0);

7. Compute the output u of network by using );

8: update K-, W, ¢, 2, ¢, & ¢, and by using updating rules ) and ).

Target

" Mobile Robot
Recognition

e

A 4

Figure 3: The proposed RECMAC-based Control System.

13



derived to support the proposed control system. Following the discussions in

Section[3. The following yields by subtracting (8) from (5):
s(e(t)) = Goltismc U] sgn [s(e())]: (24)

Assume that there exists an optimal RECMAC, Ugecpmac -+ 1O imitate an ideal
sliding mode controller ujsmc , that  is a minimum error vector, that K
and W are optimal weight matrixes, and that and are optimal weight
matrixes of the optimal RECMAC, respectively. Then the output of the optimal
ISMC is:

Uismc = Uggcmac * =(UrRen  Urcmac ) + (25)

=(KT wW') + =K T wT  +:
The nal output of RECMAC is u and actual outputs of REN and RCMAC are
Uren and Urcmac , respectively. urc is the output of the robust controller.
K; W;"and "are estimated matrixes of K ;W ; ; , respectively. The

actual output of the entire controller is then de ned by:
U= Urecmac + Urc = KT W™ uge: (26)

Taking (P5) and into (R4), the following can be derived:

s(e(t)) = Go[K T wT oo+ RT% WT™ upc] sgn[s(e(t))]
=Go[KT + KT~ w' WT urc] sgn [s(e(t))];
(27)

AN

where = K=K K, = “andW =W  W. A partially

linear form of the receptive- eld basis function vector ~in Taylor series can be

14



described as:

10
§ %} Jc'\:(C O+ 1

@n
nd d)T

0 1

0
(%;)T (9T (28)
+% : §jv:'\/(V v)+%
(

@r
: §jr:«(r )

@nd)T (@"d)T

L SERVA 2 S a S T

where .; y and are de ned by:

8
§ @1;:::;%]ij_ 2 <Nd NbNg (29)
..... @nd

wheree=c¢c ¢wv=v ¥;F=r P and ;isahigher-ordervector. Rewriting
@8) with ~= “leads to:

=™ = M e+ v+ R+ g (30)

Also, a partially linear form of the receptive- eld basis function vector ~in

Taylor series is described as:

(@;)T
% § % §Jy=’y(y N+ 2
- @nd
@ 1\T 0 @1)\T ! 31
(@Z) (21) (31)
+% 5 %Jm(z 2)+% qu:m 2
(@nd)T (@nd)T

= yyt+t 2+ 4§+ 2]

15



where ; , and g are de ned by:

jy:’y 2 < Ng N¢Ng

@l @nd

2= @z @Z]sz:'z 2<Na Nind (32)

“"Ved U @q

wherey-=y $.z2z=z 2;,6d=0q § 2 are higher-order vectors. Rewriting
B with = " yields

Mo 2<" M1,

=" = Nyt 2+ g8t 2 (33)

Substituting (B0} and (B3) to (B7), Eq. R7]can be re-expressed as:
s(e(t)) = Go[KT (™ ce+ v+ (r+ )+ RT( e+ v+ F+ )
WT(A"' yYt+ zZ2+ &+t 2) WT( yY¥t+ Z2+ 46t 2)
+  Urc] sgn[s(e(t))]
:GO[KT( &+t v+ B WT( Yyt 22+ e
+KTY W urc]  sgn [s(e())];
(34)
where =K T 1+ W T 2+ K7( ce+ v+ D+ Wr( yy+ 2+ @)+
is a combined error of RCMAC while K = K K = [k Koo km]T 2

<M ™Mb jg an approximation error weight matrix of REN. A kind of H; tracking

performance [15] is considered for the existence ofand K as:

x 21
sf(tydt  sT(0)G,'s(0) + tr [W T (0) ,'W (0)]+€"(0) . *&0)
i=1 O

+¥7(0) , 'W0)++"(0) , "H0) + ¥"(0) , 'W0)+ 2" (0) , *(0) (35)
o L7 o 21

+49'(0) 4 '60) + 2 Adt+ RZ(t)dt;
i=1 0 i=1 O

where w; ¢ v; r; y; z and 4 are diagonal positive constant learning-rate
matrices, and ; is an attenuation constant. The initial conditions of the system
are set ass(0) = 0;W(0) = 0;¢0) =0;%¥0) =0;0) =0;%0) =0;%0) =

16
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0; &(0) = 0, then Eq. (B5) can be rewritten as:

xv 21 x o L xv 21
s2(t)dt 2 2(t)dt + RZ(t)dt: (36)
0

i=t O i=1 0 i=1
Assume that the approximation error between the proposed RECMAC and an
ideal controller are bounded, which means 2 L;[0; T;] and K 2 L5[0; T,] with
8Ty;T, 2 [0;1 ). Therefore ROT 2(t)dt  N; and ROT R?(t)dt  Np, where N

and N, are big positive constants. If ™, OT

s?(t)dt = 1 , the approximation
error is diverging and the controlled system will be unstable. Therefore, the
following must hold in order to make sure the controlled system is stable:

xo £ 1
SOt jj N1+ N2 < 1 (37)
i=1
Then, in order to guarantee the system's stability, the update laws of both
RECMAC and the robust controller must be designed by following the Lyapunov
stability theory.

Theorem: For the nonlinear vision-based mobile robot as represented by {1),
the update laws of the parameters of proposed RECMAC are described from
(40) to (B6), in which the update rules of REN is designed as in[(38) and[(39)
[24]. Note that as an external network added to CMAC, the emotional network
has its own update rules of weights, the update rules of emotional network is
analyzed in Section[5.B in details. The adaptive laws of robust controller are
derived as [47):

K= [ max(©0;d b); (38)

d= p+ URECMAC (39)

where is a learning-rate constant,d is composed of the input vectorp and the

output vector urecmac With the learning constants and . The update laws

17



of the parameters of the proposed RECMAC are described as:

W= w"sT(et) (40)
p= y yWsT(e) (41)
2=, JWsT(et) (42)
4= 4 qWs'(et) (43)
e= o {KsT(e(t) (44)
o=, JKsT(e(t) (45)
r= ¢ [RsT(e(t) (46)
Urc = (2R?%) '[(I + 2RZ+ 1]sT (e(t)); (47)
where R = diagh 1 2 i ml 2 <™ ™ is a diagonal matrix of robust

controller.

Proof: The Lyapunov function is given by:

L(s(e(t)); K, W;e;v, K ¥ 2, 6) = %[sT (e(t)) Gy *s(e(t) + tr[KT K]

T 1 T 1

+€ lervT [ lwr T

T iz g qler+ rwT W

(48)

1 T 1
S A

Taking the derivative of the Lyapunov function and using (, the following

18



yields:
L(s(e(t)); K; W; & v K v Z &)
=sT(e(t) Gy 's(e(t) + tr[KT  R]+e’ Jterv e
+eT eyttt Jlze gl e WMWY
=sT(e(1) Gy 's(e(t) tr[KT K] € e v e
Hoote oy e 2Lt Gt rwT MW
=sT(e()K"  sT(et)W ™ sT(e()K( c&+ ¥+ D)
sST(eMIW( yy+ .2+ g8 tr[KT K] (49)
¢ e v e &t oy e 2T T2 4 e
W' "W+ ST Urc)  ST(e(t) Gyt sgn [s(e(t)]
tr (W (s(e(t) ™+ W]+ esT(e)K ¢ 'Y
+vsT(e)K v ST ()R Y
yis' (e)W y+ '] AsT(e(t)W .+ , 2]
s’ (etY)W o+ 'd+sT(e()K™ sT(e(t)(  Urc):
Ifd b 0 thenk=0;andifd b>0,thenk = [d b > 0. Given that

K 2 L,[0;T2], it can be derived that tr[KT '#] 0. Substitute (40)-(47)
into (#9), the following yields:

L(s(e(t)); W;K; &¥)  sT(e(t)K ™+ sT(e(t)(  Urc)

.
=ST()K ™ ST(e) 2T (es(ern) 5o EOSEDN T Aar ) sey T
o 1. s(e(t)) 1 A 1 1
= EST (e(t))s(e(t)) E[ I? E[S(E(t))T KT+ > 22+ EK'TK'
S COECOREIE s
(50)
Integrating (@ from t=0to t = T, the following can be derived:
Ry Zy Ry Zy Ry Zy
L(T) L(0) > s2(t)dt + 5 2 2(t)dt + > R (t)dt:
i=1 0 i=1 0 Y
(51)
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Since L(T) > 0 and L(0) > 0O, from (86) and (37), it can be derived that
R
m T

i=1 o s?(t)dt < 1 ; thus the stability of the proposed system is proved.

5. Experimentation

The proposed RECMAC-based controller was applied to a mobile robot for
the task of moving target tracking for system validation and evaluation. This ex-
periment was rstly simulated, which systematically compares the performance
of the ECMAC controller without the use of the recurrent loop structure, the
CMAC controller without the presence of the emotional network, and the pro-
posed RECMAC controller. Then, the experiment was practically carried out
using a vision-based mobile robot in a real-world environment. These two ex-

periments are detailed in the following two subsections.

5.1. Numerical Simulation

The process of moving-target tracking in this experiment was simulated in
Matlab. The simulated mobile robot was required to track a virtual mobile
object, which moves along a predicted reference trajectory; thus the object
detection function was omitted in this simulation. A xed distance, d = 0:1m,
must be maintained between the mobile robot and the virtual object. Note
that the reference trajectory point had a xed velocity. In order to capture
the reference trajectory point, an ideal velocity state of the mobile robot was
obtained by applying the Blazic's work [38]. Therefore, in this experiment, the
tracking problem was converted to a control problem of the mobile robot in
achieving the ideal velocity states.

The reference trajectory included two paths. In the rst stage fromt =0
to t = 65, the trajectory was a circle, and this moved to the second path at
the time point t = 65s. The changing of the path was designed to evaluate the

robustness and response speed of the simulated robot controller. The reference
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REN RCMAC
Number of blocks n, and n; 8 8
Initialization range of mean ¢; and y; [ 2:0;2:0] [ 1.8;1:8]
Initial variances v and z; 0:01 0:5
Initial weights K and Wi [ 0:50:5] [ 0:50:5]
Learning rates of weights ; ; and \ | 0:01 0:05;0:01 | 0:001
Learning rates of mean ¢ and 0:01 0:01
Learning rates of variances y and , 0:001 0:001
Learning rates of recurrent , and 0:001 0:001

Table 1: Parameters of REN and RCMAC.

trajectory used in this experiment are:

8

2 Xr =  cos() 52
'>Yr =  sin(l); t=0 65s;

8

2 Xy =  cos(2) 53
7 yr = ¢ sin(l), t=65 150s:

The initial velocities of the reference trajectory point and the mobile robot

were ; = 0:2m=s and !, = 0:lrad=s, and their initial positions were ¢
[2 O andg=1[1 0]T. The initial orientation of the mobile robot was ! =
s = 2. The errors between the ideal velocity and the actual velocity of the mobile
robot were fed into the RECMAC network, and the outputs of the network were
the velocity of the left and right wheels of mobile robot. The parameters of the
applied REN and RCMAC are summarized in Table[].
The tracking performances of the mobile robot are shown in Fig.[]. The
1o black solid line represents the reference trajectory; and the red dotted line, the
blue dotted line, and the green dotted line indicate the tracking trajectories
of the mobile robot controlled by the RECMAC, the ECMAC and the CMAC

controllers, respectively. The tracking trajectory of the RECMAC controller was

21



Figure 4: The tracking trajectory of the mobile robot. The black solid line represents the
trajectory of the target, while the red dotted line, the blue dotted line and the green dotted
line indicate the tracking trajectories of the mobile robot controlled by the RECMAC, ECMAC

and CMAC controller, respectively.
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Figure 5: The velocity errors of left and right wheels of mobile robot. The red line, the blue
line and the green line are the velocity errors of RECMAC, ECMAC and CMAC controller,

respectively.

smoother than that of the EMAC controller, which did not have a recurrent loop
structure. The better performance was led by the inclusion of the recurrent loop
units, which retained previous states of the system; the previous states can assist
the network to handle dynamic situations. The tracking performance of the
CMAC controller was the worst within the three. Interestingly, in the second
path, the tracking trajectories of the RECMAC and the ECMAC controllers
coincide exactly. This expected results was led by the learning ability of the
networks in moving target tracking.

The velocity errors of left and right wheels of the mobile robot were shown in
Fig. Bl The performance of the proposed RECMAC controller was superior to
that of ECMAC controller in velocity control, since RECMAC has a smoother
error curve. The error curve of CMAC controller was extremely steep. This

simulation indicates that the CMAC is not able to handle the uncertainty as
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CMAC | ECMAC | RECMAC
RMSE of velocity(left) | 0:0288 | 0:0129 | 0.0051
RMSE of velocity(right) | 0:0484 | 0:0321 | 0.0237

Table 2: The accumulated RMSE values of each controller.

e cient as the RECMAC is. Also, there existed a time period of adjustment
when trajectory changes aftert = 65s, as indicated in the gure. The RMSE
velocity values of the left and right wheels are shown in Tablé P. It is clear from
the table, that the control performance and response speed of RECMAC were
better than those of the ECMAC and the CMAC.

5.2. Experiment in Real-world Environment

Experiments on a practical mobile robot were provided to evaluate the ap-
plicability of the proposed RECMAC controller in a real-world environment.
The experimental set up of the robot tracking task is shown in Fig. [6. The
task involved two robots: one as the target which moved along a reference tra-
jectory, and aother as the tracer which tracks the target robot. The tracking
trajectory was a circle (radius = 2m) following a straight line (s = 10m); A
default distance constraint, d = 2m, between the two robots was applied to the
task robot.

The task mobile robot was eqipped with a RGB camera, which has two
free wheels and two di erential driving wheels under a STM32 microprocessor
equipped with 265k FlashROM and 48k RAM. The target robot was the Pioneer
mobile robot with a blue block on it as the tracking target. The task robot used
a simple but e ective color-based detection approach to determine and locate
the target. The raw RGB images were captured by the camera, which were
fed to the color-based detection programme. The color-based programme rstly
mapped the images in the HSV color space; then, the coordinates of the target
were obtained using the histogram equalization and binarization. From this,

the errors were forwarded into the RECMAC network which were the di erence
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Figure 6: Experimental environment of the practical mobile robot, where a task mobile robot

was tracing a target robot moving along a reference trajectory with a random changing ve-

locity.
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Figure 7: Image processing procedure. (a) The bird-view of the experiment scene. (b) The
color based detection programme included in the mobile robot and shown on the control PC.
(b1) An example image captured by the camera mounted on the task camera. (b2) The
example image in the HSV color space. (b3) The converted binary image with white area
presenting the target coordinate. (b4) The color centroid coordinates of the target in the

camera frame.

between the coordinates of the target and the center of the camera frame. The
outputs of the RECMAC were the velocity values of left and right wheels of
task robot.

Fig. [7] illustrates the image processing procedure. The bird view of the
experiment scene is shown in Fig[]?-(a), whilst a screenshot of the image pro-
cessing program running on the control PC of the task robot is illustrated in
Fig. [7}(b). The image processing programme detected the target and calculated
tracking errors. Figs. [4-(b1) and[7-(b2) show the raw image amputated by the
camera and the converted image in the HSV color space, respectively. Fig.] 7-
(b3) is the binary image, where the white area present the target coordinate.
Fig. [7}(b4) shows the coordinates of the target within the camera frame.

The ECMAC controller and the proposed RECMAC controller were applied
in controlling the vision-based mobile robot in this experiment to demonstrate
the role of the recurrent loop structure in moving-target tracking. Figs.
and [g show the tracking errors of the target robot with a static or a random-

changing velocity, respectively. The tracking errors were represented as two
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Figure 8: The position errors of X-axis and Y-axis of mobile robot in the case of target robot
with a xed velocity. The red line and the blue line are the errors of RECMAC and ECMAC

controller, respectively.
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Figure 9: The position errors of X-axis and Y-axis of mobile robot in the case of target robot
with a random changing velocity. The red line and the blue line are the errors of RECMAC

and ECMAC controller, respectively.
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Figure 10: The velocity of left and right wheels of mobile robot. The red line and the blue
line are the velocity of RECMAC and ECMAC controller, respectively.

values indicating the coordinate errors of the mobile robot. The velocity values
of the left and right wheels of the mobile robot in chasing the random-changing
velocity target is shown in Fig. [10. In these three gures, the red and the blue
lines denote the RECMAC controller and the ECMAC controller, respectively.
In both Figs. Bland[9, fromt = 0s to about 25s, the performances in X-axis
and Y-axis of the two controllers are close; this is because the target robot moves
along a straight line, the tracking di culty was low. In contrast, from about t =
25sto t = 50s, the robot moved along a circular trajectory; due to the recurrent
loop structure of RECMAC, the error change range of RECMAC is much smaller
than that of ECMAC. Therefore, the RECMAC network exhibited advantages
in controlling a dynamic mobile robot. In particular, Fig. 9 demonstrates that
advantages became more signi cant when the target robot had the random-

changing velocity.
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The velocity changing curves of the right and left wheels of the robot is
shown in Fig. [I0. The implication of Fig. [IJ was similar to that in Figs.
and[3: the velocity curves of the RECMAC controller is much smoother than
those of the RCMAC. Note that, from time t = 25s to t = 50s, the RECMAC
network rarely led to any drastic velocity changes, but this is not the case for
the compared counterparts. This proves that the presence of the recurrent loop
in the network generally improves the performance of the controller in dynamic

environments.

5.3. Discussions

Based the experimental results, the proposed RECMAC controller shown
better nonlinear approximation ability and faster response speed than those of
the ECMAC and CMAC, whilst the ECMAC controller generally outperformed
the CMAC controller. This is consistent with the biological model which in-
cludes a biological-plausible mechanism. As the motor control center, the cere-
bellum in human brain controls all of the low level movements of a human
body, whilst the human emotions usually play an important role in retaining or
enhancing human motions. The CMAC component of the RECMAC network
performs similar function which simulates the function of human cerebellum.
The amygdala component works as an emotional controller to adjust emotion
in executing mation control.

The proposed RECMAC neural network in this paper is composed of two
self-complete sub-networks, compared with the work reported in[29]. The input,
in this work, will be delivered to the two networks, and the outputs from the two
are merged together in the output layer. The two sub-networks produce similar
functions with those of the amygdala and the cerebellum, respectively. For
instance, when a human is making decision, emotional stimulus usually a ects
the decision results. Correspondingly, in the RECMAC network, the output of
the RCMAC network can be a ected by the output of the emotional network
output as expressed in Eq. ).

The relationship between the two sub networks are de ned by the emotional
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updating rules, i.e., Eqs. [38) and [39), which are di erent with the two sets of
rules owned by the two sub networks. The updated values of the emotional net-
work takes the output of the RCMAC network into account. Dynamic changes

in a given target tracking talk usually bring larger tracking errors, as to increase
the outputs of the RECMAC network. Such changes can be well handled by
the proposed RMCAC as expressed i9) which increases the weight adjusting
values in response to the dynamic changes. All these mechanism ensures the

faster response speed of the RECMAC network.

6. Conclusion

This paper proposes a new recurrent neural network, RECMAC, which is
used to build the network controller for vision-based robots. By integrating the
emotional network and recurrent loop into CMAC, the nonlinear approximation
ability and dynamic characteristics of the system were improved. The proposed
network was validated by a simulation and applied to the controller of a practical
vision-based mobile robot. The controller performed satisfactorily in the mobile
object tracking task, which demonstrates the power of the proposed neural
network.

Despite of the good performance, there is still room for improvement. It
is expected that the application of a self-organization mechanism in RECMAC
would make the network more exible in a dynamic environment, which will
be investigated in the future. In addition, the proposed network is currently
applied to the task of target tracking only; it will be worthwhile to further
explore the application domain such that the proposed system can contribute

to the led more broadly.
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