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Abstract

We develop a new method to measure the 3D kinematics of the subphotospheric motion of magnetic elements,
which is used to study the coupling between the convection-driven vortex motion and the generation of ubiquitous
coronal waves. We use the method of decomposing a line-of-sight magnetogram from MDI/ SDOinto unipolar
magnetic charges, which yields the(projected) 2D motion [x(t), y(t)] and the(half) width evolutionw(t) of an
emerging magnetic element from an initial depth ofd�� �1500 km below the photosphere. A simple model of
rotational vortex motion with magnetic� ux conservation during the emergence process of a magnetic element
predicts the width evolution, i.e.,w(t)/ w0�= �[B(t)/ B0]

� 1/ 2, and an upper limit of the depth variationd(t)�� �1.3
w(t). While previous 2D tracing of magnetic elements provided information on advection and superdiffusion, our
3D tracing during the emergence process of a magnetic element is consistent with a ballistic trajectory in the
upward direction. From the estimated Poynting� ux and lifetimes of convective cells, we conclude that the Coronal
Multi-channel Polarimeter–detected low-amplitude transverse magnetohydrodynamic waves are generated by the
convection-driven vortex motion. Our observational measurements of magnetic elements appear to contradict the
theoretical random-walk braiding scenario of Parker.

Key words:convection– magnetic� elds– magnetohydrodynamics(MHD) – Sun: corona– waves

1. Introduction

Ubiquitous magnetohydrodynamic(MHD) waves have been
discovered in the solar corona with the Coronal Multi-channel
Polarimeter(CoMP) instrument(Tomczyk et al.2007; Tomczyk
& McIntosh2009; Morton et al.2015). These MHD waves have
been detected from their line-of-sight velocity in the solar corona
above the limb using the FeXIII (10747Å) line with the CoMP
instrument. These waves exhibit upward propagation into a
coronal height range ofr�� �(1.05–1.35)Re , phase speeds of
vph�� �1000–4000 km s� 1, and oscillating loops that appear to be
coaligned with the magnetic� eld. The quasiperiodic transverse
wave motion has a(mean root square) speed ofv�� �0.3 km s� 1

and typical periods ofT�� �5 minutes, which produces relatively
small transverse displacements ofx�= �v T�� �100 km.

In comparison, kink-mode oscillations(standing waves),
which generally are triggered by� ares, coronal mass ejections,
and/ or eruptive � laments, display much larger(40 times)
transverse amplitudes ofx�= �4100�± �1300 km and transverse
speeds ofv�� �12 km s� 1 (Aschwanden et al.1999) and thus are
easier to detect.

Because of this huge discrepancy in wave amplitude between
these two cases, some physical conditions must be different in the
excitation of transverse large-amplitude kink-mode waves as
detected with the TRACE instrument and the low-amplitude
Alfvénic kink-mode waves detected with CoMP, which has a
high sensitivity to detect the Doppler shift of transverse loop
oscillations. While the large-amplitude waves are obviously
excited by Lorentz forces that occur in� aring and eruptive
conditions, we argue in this paper that the low-amplitude waves as
seen by CoMP are excited by convection-driven vortex motion at
the photospheric footpoints of coronal loops. Since photospheric
convection is self-organizing on granular scales(L�� �1000 km)
and operates throughout the solar surface, an immediate prediction
of this model is that Alfvénic waves, if they exist in the solar
corona, should be ubiquitously distributed throughout the corona,

because the driver, i.e., the convective motion, is ubiquitous in the
quiet Sun’s photosphere.

Tracking of magnetic features in the turbulent environment
of magneto-convection in the photosphere has been carried out
only recently, since automated feature recognition codes
became available(Crockett et al.2009; Keys et al.2011).
Abramenko et al.(2011) used an automated tracking code that
traced the motion of bright points in the quiet Sun, a coronal
hole, and an active region plage using a 1 nm bandpass TiO
interference� lter centered at a wavelength of 7057Å with the
Goode New Solar Telescope of Big Bear Observatory. The
bright point proper motion was found to be consistent with
superdiffusion on timescales of 10–300 s, spatial scales
of � 22 km, and diffusion coef� cients of � 12–12 km2 s� 1

(Abramenko et al.2011). Manso Sainz et al.(2011) tracked
small magnetic structures in very quiet(internetwork) regions
using the FeI 6300Å doublet lines of the Solar Optical
Telescope(SOT) on boardHinode, with a cadence of 28 s over
2–6 hr and a spatial resolution of 03. They found initial
advective motion of the tracked features with a characteristic
mean velocity of� 2 km s� 1, while the features subsequently
reach the intergranular lanes and remain there, being buffeted
by the random� ows of neighboring granules and turbulent
intergranules, with a diffusion constant of 195 km2 s� 1 on
spatial scales of� 250–1000 km (Manso Sainz et al.2011,
Figure 1 therein). Further studies tracked the diffusion of
magnetic elements up to supergranular features with similar
results, using the NaI D 5896Å line of SOT/ Hinode/ NFI
(Giannattasio et al.2013; Stangalini et al.2014; Iida 2016;
Agrawal et al.2018). Analysis of magnetic element motions in
both Hinodeobservations and MURaM simulations(Agrawal
et al. 2018) demonstrates that the observed superdiffusive
scaling at very short temporal increments is caused by center-
of-mass jitter induced by magnetic� ux element evolution
superimposed on the advective contribution of granulation.
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Moreover, for long temporal increments beyond the correlation
time of granular� ows, the motions re� ect both the random
granular contribution and the large-scale longer-lived super-
granular advection. Thus, magnetic element motions cannot be
interpreted as strictly advective or diffusive on either short or
long timescales. Superdiffusive scaling results from mixed
contributions to the element motions. Numerical simulations
using SOT/ Hinode data as boundary conditions detect
coherent(rather than incoherent random)�structures in photo-
spheric turbulent� ows (Chian et al.2014). Using Interfero-
metric Bidimensional Spectropolarimeter and SOT/ Hinode
data, it is found that the interpretation of the displacement
spectrum is ambiguous and can be reproduced by either
superdiffusion or advection(Caroli et al.2015; Del Moro et al.
2015). Attie & Innes (2015) applied the novel method of
“magnetic ball-tracking,” which is able to detect and quantify
� ux emergence, as well as� ux cancellation.

While all previous studies embark on 2D motion tracking,
here we develop a new model that allows us to measure the
kinematic motion of magnetic elements from magnetograms in
3D, probing the shallow depths of the solar subphotospheric
convection zone. The kinematic motion of magnetic elements
produces magnetic� eld � uctuations, which can be used to
de� ne the Poynting� ux in the generation of Alfvénic waves
that propagate into the corona, and this method can be used to
predict the amplitude and periods of Alfvénic fast kink-mode
waves in the solar corona and solar wind(VanKooten &
Cranmer2017). Evidence for buffeting-induced kink waves in
solar magnetic elements has already been inferred from an
empirical mode decomposition(EMD) analysis of the time
series of magnetic element parameters(Stangalini et al.2014).
There is also observational evidence for(unnoticed) magnetic
� ux oscillations detected with IMaX/ Sunrise, with periods
close to granular lifetimes(Martinez Gonzalez et al.2011). The
new model mimics the subphotospheric convection on granular
scales, which is linked to the� eld line braiding in Parker’s
nano� are heating scenario.

The content of this paper includes a theoretical part on the 3D
magnetic� eld modeling and estimates of the Poynting� ux of
convection-driven ubiquitous coronal MHD waves(Section2),
data analysis of measuring the 3D motion of magnetic elements
using HMI/ SDOmagnetograms(Section3), a discussion in the
context of previous work(Section4), and conclusions(Section5).

2. Theoretical Model

2.1. Magnetic Potential Field

The simplest representation of a magnetic potential� eld that
ful� lls Maxwell’s divergence-free condition(� �·�B�= �0) and
the current-free conditionj�= �� �× �B�= �0 is a unipolar
magnetic chargej (or centroid of a magnetic� eld distribution)
that is buried below the solar surface, which entails a magnetic
� eld Bj(x) that points(isotropically) away from the buried
unipolar charge and whose� eld strength falls off with the
square of the distancerj,
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�
�( ) ( )B x
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, 1j j
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whereBj is the magnetic� eld strength at the solar surface above a
buried magnetic charge,(xj, yj, zj) is the subphotospheric position

of the buried charge,dj is the depth of the magnetic charge,

� � � � � � � � ( )d x y z1 , 2j j j j
2 2 2

and rj�= �[x � xj, y � yj, z� zj] is the vector between an
arbitrary locationx�= �(x, y, z) in the solar corona(where we
desire to calculate the magnetic� eld) and the location(xj, yj, zj)
of the buried charge. We choose a Cartesian coordinate system
(x, y, z) with the origin in the Sun center, and we are using units
of solar radii, with the direction ofz chosen along the line of
sight from Sun center to Earth. For a location near disk center
(x�= �1, y�= �1), the depth of the magnetic charge is
dj�� �(1 � zj). Thus, the distancerj from the magnetic charge is

� � � � � � � � � � � �( ) ( ) ( ) ( )r x x y y z z . 3j j j j
2 2 2

The absolute value of the magnetic� eldBj(rj) is simply a function
of the radial distancerj (with Bj anddj being constants for a given
magnetic charge),
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From this expression, we can directly see the conservation of
magnetic� ux along a radially diverging� ux tube with cross-
section A(r)�= �r2, since the� ux ful� lls � ' � � � �( ) ( ) ( )r A r B r

� � � �( )B r r B d constj j
2 2 .

The apparent full width at half maximum(FWHM) of the
line-of-sight componentBz(x) pro� le can be calculated from the
geometric diagram shown in Figure1. We choose thex-axis at
the photospheric level and bury a magnetic chargej at a depth
dj, which has a line-of-sight componentBz(x�= �0)�= �Bj at the
photospheric level and is aligned with the vertical 3D magnetic
� eld vector B�= �(0, 0, Bj). The radial � eld component
Br(x�= �wj) intersects the photosphere at a distancex�= �wj,
inclined by an angle� from the vertical. The distance from the
magnetic charge to the photosphere isrj, and the radial
magnetic� eld at the photospheric level at the distancex�= �wj
is Br(x�= �wj)�= �Bj (dj/ rj)

2, according to Equation(4). The
corresponding line-of-sight componentBz(x�= �wj) is a factor of

�R�� ( )d rcos j j smaller than the radial componentBr(x�= �wj),
i.e., Bz(x�= �wj)�= �Br(x�= �wj) cos� , and thus has the value

�R� � � � � �
�
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2 3

which falls off with the third power of the distancerj. Thus, the
half widthwj is obtained by requiringBj (dj/ rj)

3�= �Bj/ 2, which
yields, using the Pythagorean relationship� � � �r d wj j j

2 2 2,

� � � � � x ( )w d d2 1 0.766 . 6j j j
2 3

This linear relationship means that the widthwj is always
proportional to the depthdj of the buried unipolar charge.
Equation(6) is a very practical relationship because it allows us
to directly predict the subphotospheric depthdj of a buried
magnetic charge in a potential� eld model based on the
apparent FWHM�= �2wj�� �1.53dj measured in a line-of-sight
magnetogram.
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2.2. Line-of-sight Magnetogram

We progress now from a single magnetic charge to an arbitrary
numbernm of magnetic charges and represent the general magnetic
� eld with a superposition ofnm buried magnetic charges, so that
the potential� eld can be represented by the superposition ofnm
� eldsBj from each magnetic chargej�= �1, K , nm,

� œ � œ� � � �
� � � �

�

�
�

�

�
�( ) ( ) ( )B x B x

r
B

d

r r
. 7j

j

n

j
j

n

j
j

j j1 1

2
m m

It is trivial to verify the condition of divergence-freeness for
a magnetic� eld with multiple magnetic charges. Since the
divergence operator is linear, the superposition of a number of
divergence-free� elds is divergence-free also,

� œ � œ� ‹ � � � ‹ � � � ‹ � �
�

�
��

�

�
��· · ( · ) ( )B B B 0, 8

j
j

j
j

and thusB is a potential� eld. Applications of this potential
� eld model in the framework of magnetic charges can be found
in a number of recent studies(e.g., Aschwanden & Sandman
2010; Aschwanden2013, 2016; Warren et al.2018).

Based on the superposition principle of magnetic charges
(Equation(7)), a line-of-sight magnetogramBz(x, y) can be
created with an arbitrary number of(buried) unipolar magnetic
charges, and vice versa; any line-of-sight magnetogram can
be decomposed into a� nite number of magnetic charges, i.e.,
[xj, yj, zj, Bj], j�= �1, K , nm. This inversion task can be
accomplished by forward-� tting of the coordinates[xj, yj, zj]
and � eld strengthsBj of the magnetic components(for an
example, see Figure 3 in Aschwanden & Sandman2010). Such
a decomposition directly yields the subphotospheric depthsdj
for all magnetic components in a potential� eld model.

For the sake of simplicity, we formulate the following
theoretical model for observations near disk center, but it can
be generalized to arbitrary positions on the solar disk in a
straightforward way (see the Appendix in Aschwanden
et al.2012).

2.3. Tracking the Subphotospheric Vortex Motion

The solar granulation has a typical scale ofL�� �1000 km
self-organized by the solar convection process(subject to the
Rayleigh–Bénard instability) and is driven by a vertical
temperature gradient(Lorenz1963). As a consequence of the
negative vertical temperature gradient,dT/dh�< �0, circular
vortex motions are expected in the vertical plane in the shallow
depths of the solar convection zone. Besides the unmagnetized
hydrodynamic� uids, we envision that magnetic elements are
also generated in the solar convection zone and occasionally
become entrained in a convective vortex whirl, where the
magnetic element is� rst transported in the upward direction,
then is advected in the horizontal direction toward intergranular
lanes, and� nally is buffeted in the network. The trajectory of a
magnetic element may start near the midpoint at the bottom of a
granule(Figure2) and may end near the top of a granule, with
subsequent advection into an intergranular lane.

A novel step of this study is that for the� rst time, we are
going to use the subphotospheric depths measured from a time
sequence of line-of-sight magnetogramsBz(x, y, t) by tracking
the vortex motion of subphotospheric convection. We envision
a simple geometric model of granular vortex motion where the
strongest up� ows occur in the midpoint of a granule. A cross-
section of a granule is shown in Figure2, which consists of two
convective cell cross-sections that rotate in opposite directions
so that emerging magnetic elements arise and emerge in the
midpoint of a granule while they subsequently stream toward
the edges of granules into intergranular lanes or toward the
network.

The evolution of the magnetic� eld of a traced magnetic
element generally exhibits a rise time when the magnetic� eld
strength monotonically increases(t1�< �t0�< �t2) followed by a
decay time when the magnetic� eld monotonically decreases
(t0�< �t�< �t2), which we interpret as compression and decom-
pression phases of a magnetic element. The compression phase
occurs when the magnetic element is sucked up between two
counterrotating vortices(Figure 2), while the decompression
phase occurs when the magnetic element arrives near the top of
a granule. We found that the time evolution can be adequately
characterized by a Gaussian function plus a constant back-
ground,

�U
� � � �

��
��

�
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�
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t t
Bexp

2
, 9
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0
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2
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where � G represents a timescale that corresponds to the
Gaussian(half) width.

Applying the conservation of the magnetic� ux during the
vertical upward motion of the magnetic� eld during a
compression phase, we can predict the time evolution of the
width w(t) of a magnetic element, since the area varies as
A(t)�� �w(t)2, and conserving the magnetic� ux � (t)�= �A(t) B
(t)�= �const, the magnetic� eld variesB(t)�� �A(t)� 1�� �w(t)� 2,

Figure 1. Cross-section of a unipolar magnetic sourceM, showing the
geometric relation between the half widthwj and depthdj of a unipolar chargej.
The line-of-sight direction is the(vertical) z-axis, and the(horizontal) direction
is thex-axis. For the calculation of the line-of-sight pro� le Bz(x), see text.
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or inversely asw(t)�� �B(t)� 1/ 2,
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( )w t w

B t
B

. 100
0

1 2

For the evolution of the depthd(t) of a magnetic element, we
assume vertical transport from an initial depthd1�= �d(t�= �t1) at
a location below a granular convection cell, while the vertical
transport ends at a� nal depthd2�= �d(t�= �t2) above a granular
convection cell near the photosphere(Figure 2). All depth
locationsd(t) during this vertical transport time interval are
constrained by an upper limitduni(t) that is given by the width
w(t) of the potential � eld of an unipolar point charge
(Equation(6)),

�- ��( ) ( ) ( ) ( )d t d t w t1.3 . 11uni

Only in the deepest layers below the convection cells do we
expect that the magnetic� ux element is not affected by the
compression of convection cells, where the depth can be estimated
from the unipolar point charge depth, i.e.,d1�� �1.3w1 at timet1,
while the depth at the end of the emergence process is close to the
photospheric height level. Interpolating the depth evolution
between the bottom and top of a convection cell with a constant
speed, we expect a linear depth variationd(t) with time,

� � � �( ) ( ) ( )d t v t t . 12z 2

where the(constant) vertical upward velocityvz is de� ned by

�x
��( )

( )v
d

t t
. 13z

1

2 1

Thus, our simple analytical model(Equations(9)–(13)) of
the vertical motion during the emergence of a magnetic element
is constrained by the observed evolution of the magnetic� eld
B(t), the (half) widths w(t), and the (largest) depth d1�=
d(t�= �t1)�= �1.3w1 at the initial phase of the emergence
process. The theoretical model makes two predictions:(i) the
conservation of the magnetic� ux (Equation(10)), and(ii ) an
upper limit of depthsd(t)�� �duni(t)�� �1.3w(t) (Equation(11)).

We will test these theoretical predictions in the following
(Section3.4). If the data match these theoretical relationships,
the method of 3D tracking from line-of-sight magnetograms is
strongly supported. The only assumptions that go into this
model are the conservation of the magnetic� ux and a constant
velocity for the vertical upward motion of a magnetic element.
We neglected horizontal motions(vx, vy) in our simple model
here, but it can easily be included by tilting the vertical axis.

2.4. Poynting Flux of Convective Vortex Motion

In our model, we assume that magnetic elements are
entrained into the convective vortex motion, which causes a
magnetic� eld variationBj(t) at the solar surface according to
the square dependence of the subphotospheric depthdj(t)
variation of the magnetic charge(Equation(4)). The associated
variation in the magnetic pressurepm(t),

�Q
� � � � � ���( )

( ) ( )
[ ] ( )p t

B t E t
V

G
8

erg cm , 14m
m

2
2 3

which corresponds to a variation in the magnetic energyEm(t),

� � � �( ) ( ) [ ] [ ] ( )E t p t V G cm erg , 15m m
2 3

whereV is the spatial volume. We can de� ne this volume from
a 3D � ux tube with a cross-sectional areaA and a height
corresponding to the density scale height� of the solar corona,

�M�� ( )V A . 16

In hydrostatic equilibrium, the density scale height� of the
solar corona is proportional to its temperatureT,

�M� x � q� �
�
�

�
�

[ ] ( )
T

5 10
1 MK

cm . 179

Figure 2. Diagram of a subphotospheric granule, which consists of two oppositely rotating convection cells(large circles) that squeeze the widthw(t) of a magnetic
element(hatched ellipses) to a minimum size ofw0 during the vertical upward motion. The rotation angle is indicated withf (t), the radius of a convection cell is
r0�= �d0 � w0, the depth of the center of the convection cells isd0, and the distance between the centers of the two convection cells is 2d0.
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We can now quantify the Poynting� ux FP, which is an energy
input per areaA and time unit� ,

� U � Q � U � Q
�M
�U
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E
A

B V
A

B
8 8

erg cm s , 18p
m

2 2
2 1

where� is the lifetime of a granular vortex motion. The area
dependenceA cancels out and the scale height� can be
replaced by the mean coronal temperatureTe,
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This estimated Poynting� ux, which is produced ubiquitously
over the photospheric solar surface, is several orders of
magnitude above the heating requirement for the quiet Sun or
coronal holes, which isFp�= �3�× �105 erg cm� 2 s� 1 for the
quiet Sun andFp�= �8�× �105 erg cm� 2 s� 1 for a coronal hole,
respectively(Withbroe & Noyes1977). Thus, we conclude that
dissipation of the convection-driven generation of Alvénic
waves by only� 1% is suf� cient to heat the quiet Sun or
coronal holes, while the remainder of the injected Poynting� ux
is available to heat the chromosphere and accelerate the
solar wind.

2.5. Alfvénic Loop Oscillations

In our model, the footpoint motion of coronal loops is
dictated by the vortex motion of the solar granulation, which
for typical values(L�� �1000 km, � �� �7 minutes) produces a
velocity of v�� �(L/ 2)/ � �� �1 km s� 1, similar to the observa-
tional result ofvobs�� �0.3 km s� 1 inferred from CoMP data
(Tomczyk et al.2007).

Transverse kink-mode oscillations are expected when the
phase speed matches the resonance condition of the Alfvénic
loop crossing times. The Alfvén speed is
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where� �= �1.27 is the mean molecular weight andni is the ion
density. The kink speed is
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where� 0/ � i is the inner to the outer density ratio. The kink-
mode period is given by the kink-speed crossing time,
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From this resonance condition of the kink-speed crossing time,
we can express the magnetic� eld strengthB as a function of
the loop lengthL, the kink-mode periodPkink, and ion density
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In our model, we consider the convective vortex motion with a
mean period ofPmin�� �7 minutes as an exciter of kink-mode
oscillations. From the relation(Equation(20)), we predict that
the typical magnetic� eld is B�� �15 G (for a loop length of
L�� �10 Mm).

3. Data Analysis and Results

3.1. Data Selection

For the data analysis of our project on determining the 3D
trajectories of magnetic elements in the quiet Sun, we select an
HMI/ SDOmagnetogram(� le type hmi_M_45 s) at an arbitrary
time(2010 June 19, 01:27:42 UT). We extract a time sequence
of 26 HMI images after the starting time of 01:27:42 UT with
an HMI cadence of 45 s, which covers a time interval of 1170 s
(19.5 minutes), ending at 01:47:12 UT.

From the full-disk images, we select a small� eld of view
(0.1Re ) near disk center(making sure that it does not contain
any active region). The chosen� eld of view is at heliographic
longitude and latitude N00E00, which corresponds to the
Cartesian coordinatesx1�= �� 17.4, x2�= �+ 17.4, y1�= �� 35.0,
and y2�= �� 0.48 Mm with respect to Sun center. The HMI
images have a pixel size of 05 (or 362 km). Because HMI
magnetograms with full resolution turned out to be too noisy
for the purpose of our project, we rebin them by a factor of two
into macropixels with a size of 2�× �2 pixels (with 1 0 or
725 km resolution). The� eld of view of 0.1Re then contains a
subimage with a size of 47�× �47 macropixels. Coaligment
between the HMI images is assumed to be of subarcsecond
accuracy. We eliminate the solar rotation by correcting for the
synodic rotation period ofTsyn�= �27.2753 days, which
amounts to an incremental shift of� x�� �84 km for an HMI
cadence of 45 s.

3.2. Decomposition of Magnetograms

The next analysis step is the decomposition of magneto-
grams into a� nite numbernm of unipolar magnetic charges,
which are each characterized by four parameters: the spatial 3D
coordinates[xj, yj, zj]; j�= �1, K ; nm; and the magnetic� eld
strengthBj at the photospheric surface vertically above the
location of each magnetic charge. These physical parameters
[Bj, xj, yj, zj], are obtained from the inversion of the observables
[Bz, xp, yp, wp], where[xp, yp] is the projected 2D position of a
local peak value of the line-of-sight magnetic� eld component
Bz, andwp is the apparent FWHM of a magnetic element. The
technical details of this inversion are given in the Appendix of
Aschwanden et al.(2012) and Aschwanden(2016). From the
decomposition of the time sequence ofnt�= �26 magnetograms
into nm�= �200 magnetic components andnp�= �4 parameters
each, we obtain a total ofnt�× �nm�× �np�= �20,800(automati-
cally) measured parameters[B(t, m), x(t, m), y(t, m), z(t, m)],
t�= �1, K , nt, m�= �1, K , nm. The number of magnetic
componentsnm corresponds to a threshold of the minimum
magnetic� eld strength in the model and is typically chosen at
three standard deviations above the noise level.
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3.3. 3D Tracking of Magnetic Elements

From the nt�× �nc�= �5200 magnetic elements that we
extracted from the magnetograms duringnt�= �26 time steps
and nc�= �200 local peaks in eachBz(x, y) magnetogram, we
group the cospatial locations sampled at various times into a set
of unique locations(xi, yi), i�= �1, K , ni that have a minimum
separation(of two full widths) from each other and a� eld
strength above a thresholdBthresh that corresponds to three
standard deviations of the background magnetic� eld � uctua-
tions. The minimum separation distance of two full widths is an
empirical criterion that optimizes the separation versus the
clustering of substructures in magnetic elements. While the
analytical model is shown in Figure3, the observed line-of-
sight magentograms of three cases are shown in Figures4(g),
5(g), and6(g), where a crosshair marks the unique location of
each of the three magnetic elements, and a circle indicates the
area with a radius that corresponds to the minimum separation
between different unique source locations. Figures4–6 show
the (smoothed) propagation distance in thex-direction x(t)
(Figures4(a), 5(a), and6(a)) andy-directiony(t) (Figures4(b),
5(b), and 6(b)), upper limits on the depths of the magnetic
elementsd(t) (Figures 4(c), 5(c), and 6(c)), widths of the
magnetic elementsw(t) (Figures4(d), 5(d), and6(d)), magnetic
� eld strengthB(t) (Figures4(e), 5(e), and6(e)), and projected
source motiony(x) (Figures4(f), 5(f), and 6(f)).The spatial
propagation distance shown in Figures4–6 is smoothed with a
boxcar of � ve time steps, which is 5�× �45 s�= �225 s for the
HMI cadence. A 1D scan of the magnetogram that goes
through the center of the magnetic element is also shown
(Figures4(h), 5(h), and 6(h)), along with a Gaussian� t that
provides the width measurementsw(t).

Let us describe the measurements of the� rst example in
more detail(Figure4). The automated detection algorithm� nds
a magnetic element from the location(xp, yp) of the absolute
maximum (peak) � eld strength(Figure 4(g)). The magnetic
� eld variationB(tp, xp, yp) at this location is tracked(within a
radius of two FWHM) in time,B(t) (Figure4(e)), starting from
the peak timetp to the start timets (at the� rst minimum value

to the left), as well as to the end timete (at the� rst minimum
value to the right). This encompasses the time range from
ts�= �400 to te�= �1120 s in this example(Figure 4(e)). The
structure seen before at timet�< �400 s is considered to be a
separate structure. The algorithm then eliminates the� rst
detected structure from subsequent searches of smaller
magnetic elements.

The measured FWHM of the automatically detected
magnetic elements(see Figures4(h), 5(h), and6(h)) are listed
in Table 1 (second column), having a mean and standard
deviation of FWHM�= �1373�± �440 km, or 1 9�± �0 6, which
is twice the value of the 2× 2 macropixels we used from the
HMI magnetograms. Thus, it appears that these magnetic
features are spatially resolved. If the features were unresolved,
we would expect that(i) the measured width is equal to the
HMI macropixel resolution of 725 km,(ii ) the widthw(t) as a
function of time should be a constant with this value of 725 km,
and(iii ) the predicted and observed width pro� le w(t) should be
uncorrelated, i.e., have a low cross-correlation coef� cient of
CCC�� �0.5, which is not the case(see Figures4(d), 5(d), and
6(d) and Table1). Of course, this does not mean that the
magnetic counterparts of the granules envisioned in our model
(Figure2) are spatially resolved in the HMI magnetogram, but
since we derive all our measurements from the HMI
magnetogram, rather than from optical images where granules
are visible, the spatial scale of granules does not explicitly enter
our analysis.

3.4. Tests of Theoretical Predictions

We are now testing two theoretical predictions of our simple
model of the emergence of a magnetic element(Figure 3).
From the measured magnetic� eld evolutionB(t) with a peak
value of B0�= �B(t�= �t0) at the peak timet0, magnetic� ux
conservation predicts an evolution of the(half) width of a
magnetic element according to Equation(10),
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���
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B t
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. 24pred
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Table 1
Statistical Measurements of 14 Magnetic Elements:L2�= �2D Propagation Distance,� �= �t2 � t1 Time Duration,v2�= �the Mean 2D Horizontal Velocity,vz�= �the
Vertical Velocityvz, Bsig�= �Standard Deviation of Magnetic Field Strength Fluctuations,Bmax�= �Maximum Magnetic Field Strength, CCCw�= �Cross-correlation

Coef� cient of Observed and Predicted Widths

No. FWHM L2 � v2 vz Bsig Bmax CCCw

(km) (km) (s) (km s� 1) (km s� 1) (G) (G)

1 1237 476 720 0.7 1.8 12.7 235.1 0.82
2 1152 735 540 1.4 2.0 12.8 178.2 0.77
3 1252 740 315 2.4 2.5 12.3 150.1 0.88
4 1093 690 360 1.9 3.1 12.7 116.9 0.51
5 1358 437 405 1.1 1.8 11.7 78.2 0.55
6 1108 618 270 2.3 3.1 11.4 62.5 0.88
7 1696 751 585 1.3 1.8 12.8 55.1 0.81
8 1104 708 360 2.0 2.6 12.1 53.2 0.67
9 1301 349 270 1.3 2.8 11.9 51.7 0.86
10 1331 338 180 1.9 1.4 11.9 50.7 0.55
11 1132 474 225 2.1 4.0 12.7 42.7 1.00
12 1525 1273 450 2.8 1.3 12.0 39.2 1.00
13 2782 1416 405 3.5 1.9 12.5 38.8 1.00
14 1164 117 270 0.4 2.5 11.7 36.0 1.00

1373 652 382 1.8 2.3 12.2 84.9 0.81
± 440 ± 349 ± 150 ± 0.8 ± 0.8 ± 0.5 ± 61.8 ± 0.18

Note.�The averages and standard deviations are indicated at the bottom of the table.
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The Gaussian function of the magnetic� eld variation B(t)
(Equation (9)) is shown in Figures4(e), 5(e), and 6(e)
(indicated by the data points with diamonds and the� tted
Gaussians with red curves). The predicted widthswpred(t) are
shown in Figures4(d), 5(d), and6(d)), also with red curves. In
order to quantify the consistency between the two time pro� les,
we calculate the cross-correlation coef� cient CCCw,

��
�œ �q

� œ � œ

( ) ( )

( ) ( )
( )

w t w t

w t w t
CCC , 25w

i i i

i i i i

pred
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for which we � nd values of CCCw�= �0.82, 0.77, and 0.88
(Figures4(d), 5(d), and6(d)) for the three magnetic elements 1,
2, and 3. Therefore, the observedw(t) and theoretically
predicted widthswpred are highly correlated and con� rm the
magnetic� ux conservation during the emergence of a magnetic
element.

Our second theoretical prediction is that the width evolution
w(t) of a magnetic element during emergence(Figure 3)
provides an upper limit on the depth of the magnetic element,
i.e., d(t)�� �1.3w(t), according to Equation(6). Assuming that
the width of a magnetic element is not squeezed by convective
vortex motion at depths below the convection cells, in particular
at the start timet1 of vertical transport, we have a depth
measurement ofd1�= �d(t�= �t1)�= �1.3w(t1)�= �1.3w1. At the

end of the vertical transport, when the magnetic element arrives
at photospheric levels, the� nal depth is very shallow, i.e.,
d2�� �0. Connecting these two depth valuesd1 and d2 with a
constant velocity, we obtain a linearly decreasing depth
evolution d(t), which is marked with a red curve in
Figures4(c), 5(c), and6(c). The test of our theoretical model
is whether the predicted depth evolution, i.e.,dpred(t)�= �vz
(t2 � t) (Equation(12)), ful� lls the inequality of the observed
upper limitsd(t)�� �dpred(t) at all times during the interval[t1, t2],
which is indeed found to be the case(Figures4(c), 5(c), and
6(c)), while equality is found to extend over a depth range of
d�� �500–1500 km. The initial depths are found to bed�� �1500
(Figure4(c)), 1000(Figure5(c)), and 800 km(Figure6(c)).

3.5. Statistics of Magnetic Elements

We perform statistics of magnetic element tracking in an area
the size of 0.1Re during a total time duration of� 20 minutes
and � nd a total ofni�= �14 magnetic elements that have a
maximum magnetic� eld strength above a threshold level of
three standard deviations of the unsigned magnetic� eld
strength; in addition, we match a depth cross-correlation
coef� cient of CCCw�� �0.5. The statistical parameters of these
14 magnetic elements are listed in Table1, which provides
typical values for comparisons.

The tracked 2D distance of a magnetic element is found to be
L2�= �650�± �350 km, which is close to the half value of a
canonical granule size(Lgran/ 2�� �500 km), as expected for
emergence near the center of a granule.

The mean duration of a magnetic element trajectory is
� �= �380�± �150 s(or � �= �6.4�± �2.5 minutes). This agrees well
with the canonical lifetime of granules(� 7 minutes), which is
expected for the duration of coherent transport in a convective
vortex. Note that the duration of a coherent event is
characterized by a coherent rise and decay time of the magnetic
� eld evolution B(t). In our measurement technique, the
evolution of the magnetic� eld B(t) starts with a minimum
B1�= �B(t�= �tstart), peaks atBmax�= �B(t�= �tpeak), and ends with
a subsequent minimumB2�= �B(t�= �tend), which de� nes the
observed duration� �= �tend� tstart.

The average velocity is found to bev2�= �1.8�± �0.8 km s� 1

for the horizontal motion andvz�= �2.3�± �0.8 km s� 1 for the
vertical motion. These values are close to previously obtained
values, i.e.,v�� �2 km s� 1 (Manso Sainz et al.2011).

The noise in the magnetogram corresponds to a standard
deviation of the unsigned� eld strength ofBsig�= �12.2�± �0.5 G,
from which we set a threshold ofBthresh�= �3 Bsig�= �36.3 G.
Similar values for the standard deviation of the unsigned
magnetic � eld strength were obtained by others, e.g.,
Bsig�= �11.8 G (DeForest et al.2007). Above this level, we
found 14 magnetic elements with peak� eld strengths of 36
G�� �Bmax�� �235 G. Setting a lower limit of CCCw�> �0.5, we
found mean cross-correlation coef� cients of CCCw�= �0.81�± �
0.18.

3.6. Poynting Flux of Convective Motion

We are now in a position to estimate the Poynting� ux of the
subphotospheric convection based on our measurements. From
the magnetic� eld pro� les B(t) of the various magnetic
elements, we have to separate the motion-related magnetic
� eld componentBmotion(t) and the stationary equilibrium

Figure 3.Analytical model of the vertical transport of a magnetic element, which
includes the depthd(t) (a), the half widthw(t) (b), and the variation of the
magnetic � eld B(t) (c), based on magnetic� ux conservation and constant
velocity. The model parameters areB0�= �300 G,w0�= �1000 km,d0�= �1500 km,
t1�= �500 s,t0�= �1000 s, andt2�= �1500 s.
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magnetic� eld componentBstat(t),

� � � �( ) ( ) ( ) ( )B t B t B t . 26stat motion

The motion-related componentBmotion induces an apparent
variability of the magnetic� eld due to the subsurface motion of
magnetic elements driven by the rolling granular vortex
motion, which is apparent as magnetic� ux emergence,
advection, or submergence. In contrast, the stationary comp-
onentBstat represents an equilibrium between the generation of
magnetic � ux and the energy loss of magnetic� elds by
transport from the photosphere to chromospheric and coronal
structures, for instance, by Alfvénic waves. While we modeled
the motion-related time-variable magnetic� eld Bmotion(t) by
automated detection of emerging magnetic elements, we can

estimate the stationary component from the background
magnetic� eld, which we found to have a mean and standard
deviation ofBbg�= �12.2�± �0.5 G(Table1). The replenishment
time of the stationary magnetic� eld can be estimated from the
lifetime of a granule, which is equivalent to the duration of a
magnetic element for which we measured a mean value
of � �= �6.4�± �2.5 minutes(Table1). Inserting these values of
Bbg�= �12.2 G,� �= �6.4 minutes, and a coronal temperature of
T�= �1.0 MK into the expression of Equation(20), we obtain a
Poynting� ux of Fp�� �7�× �107 erg cm� 2 s� 1 (at the base of the
corona). Interestingly, only� 1% of this energy is needed to
heat the quiet-Sun corona or coronal holes, leaving ample
energy to also heat the chromosphere and compensate for the
solar wind, radiative, and conductive energy losses.

Figure 4. (a) Time variation of thex-coordinatex(t) and(b) y-coordinatey(t), (c) an upper limit of the depthd(t) (diamonds), (d) the observed widthw(t), (e) the
magnetic� eldB(t) at the photospheric level with a threshold of 3� (dashed line), (f) the 2D motiony(x), (g) the HMI/ SDOmagnetogram, and(h) a scanBz(x). The red
curves represent the theoretical predictions of a constant velocity(c) and magnetic� ux conservation model(d). The crosshairs indicate the location of the traced
magnetic element, and the circle marks the separation radius between two adjacent magnetic elements(g).
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4. Discussion

We discuss the methods of 2D(Section4.1) and 3D(Section
4.2) tracking of magnetic elements, advective versus diffusive
transport(Section4.3), the convection-driven Poynting� ux
and generation of ubiquitous Alfvénic waves(Section4.4), and
Parker’s braiding scenario of coronal heating(Section4.5).

4.1. 2D Tracking of Magnetic Elements

A new method of this study is the capability of tracking
magnetic elements in 3D Euclidean space, i.e., measuring the
trajectories[x(t), y(t), z(t)] of the center of magnetic elements
below the solar photospheric surface, assuming a potential or
slightly nonpotential magnetic� eld model. To our knowledge, all
previous tracking methods were restricted to track magnetic
features on the solar surface, which represents a 2D projection
of the true 3D trajectory(e.g., Crockett et al.2009;

Keys et al.2011). Abramenko et al.(2011) detected and tracked
bright point features in the photosphere using a method described
in Abramenko et al.(2010). The method takes advantage of the
small size, enhanced intensity, and strong gradient in intensity
around bright points and employs smoothing, unsharp-marking,
and thresholding. Manso Sainz et al.(2011) manually detected
and tracked small loop footpoints, following their dual appearance
with opposite polarities at the two ends of a linear polarization
region above some threshold. Since the loop footpoints are
con� ned to the photosphere and chromosphere, this method
essentially yields 2D trajectories. Giannattasio et al.(2013)
implemented an iterative procedure that resolves both weak and
strong peaks of magnetic features in magnetograms, while a
segmented temporal sequence is then used to reconstruct
the trajectories of magnetic features, which also yields 2D
trajectories. Stangalini et al.(2014) used the“Yet another Feature
Tracking Algorithm” (YAFTA) (Welsch & Longcope2003;

Figure 5. Representation similar to Figure4 but for the second-strongest magnetic element, no. 2.
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DeForest et al.2007), which identi� es and tracks magnetic pixels
belonging to the same local maximum in magnetograms with the
downhill method and yields 2D trajectories. Using the YAFTA
code with corrections to properly account for interactions of
magnetic elements, Gošic et al.(2014) showed that internetwork
regions are the main source of� ux for the network. In addition to
this, Gošic et al.(2016) described in a consistent way for the� rst
time how individual supergranular cells gain and lose magnetic
� ux. Iida (2016) used the clumping method of Parnell et al.
(2009). Agrawal et al.(2018) used a semiautomated procedure to
track and verify magnetic� ux elements, a combination of the
downhill and the clumping method of Parnell et al.(2009). In
summary, since all previous codes track features from photo-
spheric line-of-sight magnetograms, preferentially near disk
center, the tracked paths are 2D trajectories[x(t), y(t)], while no
information on the third-dimensionz(t) has been retrieved.

4.2. 3D Tracking of Magnetic Elements

In contrast, the decomposition method of a line-of-sight
magnetogram into unipolar magnetic charges(Sections2.1 and
2.2) yields information on the third coordinatez(t) of a unipolar
charge(or magnetic element). For the sake of simplicity, we use
the simplest kinematic model of the source motion of a magnetic
element, namely the vertical upward motion in the center of a
granule. There are two effects that come into play in this scenario.
The � rst basic effect is that a unipolar magnetic charge in a
potential � eld represents a self-similar geometry that implies a
universal ratio of � � � � � xw d 2 1 0.7662 3 between the
apparent(half) width w of a line-of-sight componentBz(x) and
the depthd of the unipolar magnetic charge. In the absence of
motion, the depthd of a unipolar charge can be directly predicted
from the observed widthw. Even in the presence of translational
motion, the same prediction holds. The second effect, however,

Figure 6. Representation similar to Figures4 and5 but for the third-strongest magnetic element, no. 3.
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when the motion of a magnetic element occurs in a� ux tube with
varying cross-section(in space and time), leads to a change in the
magnetic� eld strength according to the magnetic� ux conserva-
tion law, in order to maintain the divergence-freeness of a
potential � eld. We successfully tested the magnetic� ux
conservation law in a vertical� ux tube that is located between
two counterrotating vortices ofa granulation cell by comparing
the observed width variationw(t) with the theoretically predicted
width variation wpred�� �B(t)� 1/ 2. The relationshipduni(t)��
w(t)/ 0.766 provides only an upper limit on the depthd(t), while
the true depth can be approximately estimated from the vertical
up� ow velocityvz that is consistent with the upper limitd(t)�= �vz
(t2 � t)�� �duni(t), which is constrained by the start timet1, end
time t2, maximum velocityvz�= �d1/ (t2 � t1), and initial depthd1.

A caveat of our method is that we cannot distinguish
between compression of a magnetic element(as modeled with
conservation of the magnetic� ux in our kinematic model) and
other interaction processes with the given HMI spatial
resolution(e.g., magnetic� eld annihilation), but future work
with higher-resolution(0 16) NFI/ Hinodeand SOT data is in
progress.

Our method probes typical depths ofd�� �500–1500 km for
magnetic elements, while larger structures(such as sunspots)
are anchored further down. There are also tomographic
inversion methods of features in subphotospheric depths in
helioseismology(Kosovichev1999), based on the inversion of
sound-speed deviations from the numerous(standing) harmonic
p-modes, which is mathematically much more challenging than
our simple method that merely requires width measurements of
(separated) magnetic elements in photospheric magnetograms.

4.3. Advection or Superdiffusion?

What do we learn about the subphotospheric motion of
magnetic elements? A major question in this regard is whether
magnetic elements are just passively carried by advection or
perform a random walk with diffusive, subdiffusive, or
superdiffusive characteristics. Most studies conducted displa-
cement measurements(� l)2(� )�� �� � and determined whether
the diffusion coef� cient is subdiffusive(� �< �1), diffusive
(� �= �1), superdiffusive(� �> �1), or ballistic (� �= �2), which is
identical to advection along a straight line. Several studies
found a superdiffusive regime(� �= �1.48–1.67: Abramenko
et al. 2011; � �= �1.20–1.34: Giannattasio et al.2013, Caroli
et al.2015; � �= �1.48: Agrawal et al.2018). Giannattasio et al.
(2013) found superdiffusion by granular motions on temporal
scales shorter than 35 minutes, while features with longer
timescales are trapped in network regions. Others found two
regimes with the initial passive advection and subsequent
random walk buffeted by granules(Manso Sainz et al.2011).
Long-term observations were carried out over 5 days and
revealed superdiffusion for small scales and subdiffusion on
larger scales(Iida 2016).

Superdiffusion can also be expressed with a turbulent
diffusion coef� cient as a function of scale(Abramenko et al.
2011). The diffusing structures, however, are not structured
randomly but rather exhibit coherent structures that self-
organize in photospheric turbulent� ows(Chian et al.2014). A
debate originated as to whether superdiffusivity is generated by
a turbulent dispersion process or by the advection due to
convective patterns(Del Moro et al. 2015). Simulations of
passive tracers in a Voronoi network exhibit a superdiffusive

displacement spectrum that can be generated by a competitive
advection process(Del Moro et al. 2015). The horizontal
motions of photospheric intergranular bright points have also
been studied by MURaM and ROUGH simulation codes using
bright points as passive tracers, which reproduce the observed
power spectrum(Van Kooten & Cranmer2017).

The motions measured here are not strictly motions, since
the magnetic� eld evolution plays a role. The observed
superdiffusive scaling is a consequence of multiple processes
occurring, advection and� eld evolution at the smallest
temporal increments, and granular diffusion and supergranular
advection at long temporal increments.

In our model of the 3D motion of magnetic elements, we infer
a vertical upward motion during the initial emergence phase. This
motion pattern in a vertical plane is consistent with previous
measurements of advection, which supposedly occurs from the
center of a granule to its edge(or intergranular lane). Our analysis
also provides the depth range of vortex motion, which is initially
found at d�� �1500 km below the photosphere for the largest
magnetic element analyzed here(Figure 4(c)). Thus, we can
conclude that the magnetic elements traced here are consistent
with advection or ballistic motion during the observed lifetime(of
� �� �7 minutes), while a possible diffusive phase after the
advective motion to the next intergranular lane cannot be
measured here due to the limited spatial resolution of HMI
magnetograms and is left to other high-resolution instruments,
such asHinode/ NFI, SOT, and DKIST.

4.4. Convection-driven Generation of Transverse MHD Waves

Since the solar granulation pattern is covering the entire Sun
(except in sunspots), we can assume that the existence of
convection-driven vortex motion is a ubiquitous energy source
for the overlying photosphere, chromosphere, and corona. The
generation and maintenance of granule sizes� 1000 km, as
well as their characteristic lifetime of� 7 minutes, is the result
of a self-organizing process according to the Lorenz(1963)
model driven by the upward-directed, negative temperature
gradient in the convection zone. Note that self-organizing
processes(without criticality) do not produce scale-free power-
law distributions(of their length scale, timescale, or energy), as
they are produced by self-organized criticality systems, but
rather show“peaked” distributions with a preferred spatial and
temporal scale, such as the canonical granule size of
� 1000 km. For a review of self-organization processes in solar
and astrophysics, see Aschwanden et al.(2018).

A consequence of the ubiquitousconvective vortex motion is
the coupling of subphotospheric convection to resonant structures
in the solar corona, such as fast kink MHD waves and slow
magnetoacoustic waves. It has been shown previously that the
rapid footpoint motion due to turbulent granular buffeting can
effectively excite kink waves that can propagate upward and
couple with longitudinal waves(Kalkofen 1997; Hasan et al.
2003). Observational evidence for buffeting-induced kink waves in
solar magnetic elements has been recently demonstrated by the
EMD of the time series from the motion of magnetic elements
(Stangalini et al.2014). With this method, they found that the
eigenmodes consist of subharmonic oscillations of a fundamental
period ofP�= �7.6�± �0.2 minutes. Since this period is close to the
characteristic temporal scale of the photospheric convection cells, it
was argued that these oscillations are associated with buffeting-
induced oscillations(Stangalini et al.2014). There is also evidence
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for magnetic� ux oscillations from IMaX/ Sunrise observations
with periods close to granular lifetimes(Martinez Gonzalez
et al.2011), which appears to be consistent with the oscillations
detected with the eigenmode decomposition analysis of Stangalini
et al.(2014).

In our analysis, we measured for the magnetic elements a
mean lifetime of� �= �6.4�± �2.5, mean 2D spatial propagation
distance of L2�= �650�± �150 km, and mean velocity of
vw�= �1.8�± �0.8 km s� 1. If we couple these features of magn-
etic elements analyzed here with the footpoints of coronal
loops, we expect that this coupling can excite transverse waves
in coronal loops with similar periods� and transverse
displacementsL2. Most of the coronal loops in the quiet Sun
and active regions are located in closed-� eld con� gurations and
thus are closed loops and can be resonant with upward-
propagating MHD waves. We derived a typical loop length of
L�� �10,000 km, timescales ofP�� �7 minutes, and mean
magnetic� eld strengths ofB�� �15 G (Equation(23)). Ubiqui-
tous MHD waves have been detected with CoMP, which
revealed transverse velocities ofx�� �100 km and periods of
P�� �5 minutes(Tomczyk et al.2007). Based on the agreement
of these mean parameters(transverse wave speed, kink period,
ubiquity), we propose that the small-amplitude waves detected
with CoMP are coupled with the subphotospheric magnetic
elements analyzed here from HMI/ SDOmagnetograms.

4.5. Parker’s Braiding Scenario

Our kinematic analysis of subphotospheric magnetic elements
also has far-reaching consequences for coronal heating models.
For instance, the“magnetic� eld braiding” scenario of Parker
(1983, 1988) suggests that the X-ray corona is created by the
dissipation of the many tangential discontinuities arising sponta-
neously in the bipolar� elds of the active regions of the Sun as a
consequence of the random continuous motion of the footpoints
of the � eld in the photospheric convection. This concept implies
that the� eld lines become increasingly more twisted and braided
by the random motion of the footpoints. Our kinematic analysis of
magnetic elements, however, reveals that the magnetic elements
undergo� ux emergence within a timescale that is commensurate
with the lifetime of a convection cell, which is only� 7 minutes.
Furthermore, we� nd that the horizontal and vertical motion
caused by advection is nearly ballistic, rather than a diffusive
random walk. These two arguments of the short lifetime and
ballistic (nondiffusive) motion of magnetic elements contradict
Parker’s scenario of long lifetimes of line-tied magnetic� eld lines
and their continuous random-walk braiding. In other words,(i) the
footpoint motion of coronal loops is assumed to be a 2D random
walk in Parker’s model, while our measurements reveal ballistic
transport of the 3D trajectory in a vertical plane; and(ii) the
lifetime of a loop is assumed to be suf� ciently long to enable
signi� cant braiding(across many granule diameters) in Parker’s
model, while our measurements reveal a ballistic vertical upward
motion that does not last longer than a transit time across a
granular diameter. In addition, the divergence- and force-freeness
(of Maxwell’s equations) that de� ne a valid solution of the
coronal magnetic� eld (during slow braiding) predict small
misalignment angles between adjacent� eld lines, a property that
is strongly violated in the cartoon published in Parker(1983;
Figure 1) showing a strongly“kinked” � ux tube surrounded by
straight“unkinked” � ux tubes. In summary, it appears that the
assumptions of Parker’s braiding scenario are not consistent with
the observations and data analysis presented here.

5. Conclusions

In this study, we developed a method to measure for the� rst
time the 3D kinematics of the subphotospheric motion of
magnetic elements, which is used to demonstrate the convec-
tion-driven generation of ubiquitous coronal MHD waves. We
summarize the main conclusions as follows.

1. The 3D coordinates(x, y, z) of subphotospheric magnetic
elements can be traced from a magnetic potential� eld
model that uses the decomposition of a line-of-sight
magnetogram into a� nite number of unipolar magnetic
charges. Repeating this process as a function of time for a
sequence of magnetograms yields the time-dependent
kinematics[x(t), y(t), z(t]) of magnetic elements. Previous
tracking of magnetic elements was exclusively carried out
in 2D, [x(t), y(t)], while we use here for the� rst time a 3D
method using the decomposition into unipolar magnetic
charges in order to map out the third-dimensionz(t). We
� nd that unipolar magnetic elements can be probed in a
depth range ofd�� �1500 km.

2. Our emerging magnetic� ux model makes two theoretical
predictions: the magnetic� ux conservation law that
yields a correlation of the magnetic� eld strength with the
width of a magnetic element, i.e.,w(t)�� �B(t)� 1/ 2, and
the upper limits of the depths of unipolar magnetic
elements,d(t)�� �w(t)/ 0.766, both of which we tested
successfully from a sample of 14 magnetic elements
using HMI data.

3. We estimate the Poynting� ux of convective vortex
motion, FP�= �B2� / (8	� ), which depends on the mean
background magnetic� eld strength, B�� �12 G; the
lifetime of a magnetic element,� �� �7 minutes; and the
coronal temperature,Te�� �1.0 MK. Only about 1% of
this Poynting� ux is needed for the heating of the quiet
Sun or coronal holes, while the remainder is available to
heat the chromosphere and accelerate the solar wind.

4. The previous 2D tracing yielded information on advec-
tion and superdiffusion, while the present 3D tracing
reveals vertical upward motion in the emergence of
magnetic elements. We interpret the vertical upward
motion in terms of the vortex motion expected in the
convection zone of solar granulation.

5. The inferred parameters of the motion of the magnetic
elements(lifetime � �� �7 minutes, propagation distance
L2�� �650 km, velocity v�� �1.8�± �0.8 km s� 1) are in
plausible agreement with the fast kink(transverse)
MHD modes inferred from CoMP: periods of� 7
minutes, transverse displacements of� x�� �100 km,
velocity of v�� �0.3 km s� 1, which, together with the
ubiquity of both phenomena, suggests that the CoMP-
detected transverse MHD waves are generated by the
convection-driven generation of the waves.

6. Our kinematic analysis of the 3D motion of magnetic
elements reveals upward motion in a vertical plane, as
well as relatively short lifetimes for magnetic elements.
These observational results, however, are not consistent
with the theoretical picture of Parker’s braiding scenario,
which predicts random-walk(rather than vertical� ux
emergence) motion of magnetic elements and footpoint
braiding of coronal loops on much longer timescales than
observed here.
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This study attempts a deeper understanding of the coupling
between subphotospheric convection and coronal waves. While
the theoretical scenario explains the connection between the 3D
kinematics of subphotospheric magnetic elements and the
generation of fast-(kink) mode MHD waves, future data analysis
can be substantially improved by optimizing the data analysis
technique(e.g., magnetogram stacking to reduce the data noise;
larger statistics) and using more sensitive instruments(such as
SOT/ Hinodeand DKIST instead of HMI).
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