Bertola, Marco, El, Gennady and Tovbis, Alexander (2016) Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472 (2194). p. 20160340. ISSN 1364-5021
Full text not available from this repository.Abstract
Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrödinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of rogue waves can be achieved via the consideration of multiphase, or finite-band, fNLS solutions of whom the standard SFBs and the structures forming due to their collisions represent particular, degenerate, cases. A generalized rogue wave notion then naturally enters as a large-amplitude localized coherent structure occurring within a finite-band fNLS solution. In this paper, we use the winding of real tori to show the mechanism of the appearance of such generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the fNLS equation that exhibit generalized rogue waves.
Item Type: | Article |
---|---|
Subjects: | F300 Physics |
Department: | Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering |
Depositing User: | Becky Skoyles |
Date Deposited: | 03 Dec 2018 15:23 |
Last Modified: | 10 Oct 2019 20:17 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/37048 |
Downloads
Downloads per month over past year