Elderly activities recognition and classification for applications in assisted living

Chernbumroong, Saisakul, Cang, Shuang, Atkins, Anthony and Yu, Hongnian (2013) Elderly activities recognition and classification for applications in assisted living. Expert Systems with Applications, 40 (5). pp. 1662-1674. ISSN 0957-4174

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.eswa.2012.09.004

Abstract

Assisted living systems can help support elderly persons with their daily activities in order to help them maintain healthy and safety while living independently. However, most current systems are ineffective in actual situation, difficult to use and have a low acceptance rate. There is a need for an assisted living solution to become intelligent and also practical issues such as user acceptance and usability need to be resolved in order to truly assist elderly people. Small, inexpensive and low-powered consumption sensors are now available which can be used in assisted living applications to provide sensitive and responsive services based on users current environments and situations. This paper aims to address the issue of how to develop an activity recognition method for a practical assisted living system in term of user acceptance, privacy (non-visual) and cost. The paper proposes an activity recognition and classification method for detection of Activities of Daily Livings (ADLs) of an elderly person using small, low-cost, non-intrusive non-stigmatize wrist worn sensors. Experimental results demonstrate that the proposed method can achieve a high classification rate (>90%). Statistical tests are employed to support this high classification rate of the proposed method. Also, we prove that by combining data from temperature sensor and/or altimeter with accelerometer, classification accuracy can be improved.

Item Type: Article
Uncontrolled Keywords: Assisted living systems; Activities of Daily Livings (ADLs); Wrist-worn multi-sensors; Elderly care; Feature selection and classification
Subjects: B800 Medical Technology
G400 Computer Science
Department: Faculties > Business and Law > Newcastle Business School
Depositing User: Paul Burns
Date Deposited: 13 Dec 2018 17:37
Last Modified: 19 Nov 2019 09:51
URI: http://nrl.northumbria.ac.uk/id/eprint/37252

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics