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Abstract. We propose a new approach to indirectly estimate
basal properties of ice streams, i.e. bedrock topography and
basal slipperiness, from observations of surface topography
and surface velocities. We demonstrate how a maximum
a posteriori estimate of basal conditions can be determined
using a Bayesian inference approach in a combination with
an analytical linearisation of the forward model. Using syn-
thetic data we show that for non-linear media and non-linear
sliding law only a few forward-step model evaluations are
needed for convergence. The forward step is solved with a
numerical finite-element model using the full Stokes equa-
tions. The Fŕechet derivative of the forward function is ap-
proximated through analytical small-perturbation solutions.
This approximation is a key feature of the method and the
effects of this approximation on model performance are an-
alyzed. The number of iterations needed for convergence
increases with the amplitude of the basal perturbations, but
generally less than ten iterations are needed.

1 Introduction

The goal of geophysical inverse methods is to make quan-
titative inferences about Earth characteristics from indirect
observations (e.g.,Gouveia and Scales, 1998). Estimating
basal properties of glaciers from surface measurements is an
example of such an inverse problem. In this paper, we in-
troduce and test the suitability of a non-linear probabilistic
Bayesian inference approach (e.g.,Rodgers, 2000; Tarantola,
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2005) to estimate bedrock topography and basal slipperiness
under ice streams from surface velocities and surface geom-
etry. An identical Bayesian inference approach, but for lin-
ear media and small amplitudes of the basal perturbations,
has been presented inGudmundsson and Raymond(2008).
In Bayesian inference, a priori information about the basal
properties is expressed as a probability density function and
combined with the surface measurements to give a posteri-
ori probability distribution describing the final uncertainty of
the estimate. The solution of the inverse problem, i.e. the a
posteriori probability distribution, provides an ensemble of
solutions from which we single out the most likely one cor-
responding to the maximum of the a posteriori probability
(MAP estimate).

The forward function describing the relationship between
basal conditions (bedrock topography and basal slipperi-
ness), and the observations (surface topography, surface
velocities, rates of elevation change), is solved numeri-
cally with a two-dimensional non-linear plane-strain finite-
element model. We restrict the observations to noise-
degraded synthetic surface data generated with the forward
model. A posteriori probability distribution for the system
state is optimized via a non-linear Gauss-Newton procedure
to find the maximum a posteriori probability.

A key issue in the derivation of the solution involves de-
termining the sensitivity of surface fields to perturbation in
basal quantities. The Fréchet derivative of the forward model
can, in principle, be evaluated numerically. However, as
the computational times involved in doing so are typically
long in comparison to one forward model computation, it is,
whenever possible, preferable to evaluate the derivatives of
the forward function algebraically (Rodgers, 2000). Here we
approximate the forward model derivatives using analytical
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transfer functions (Gudmundsson, 2003). These transfer
functions describe the effects of small-amplitude perturba-
tions in basal properties (bedrock profile and slipperiness) on
surface fields in the case of Newtonian rheology and linear
sliding law. The numerical forward model solves for non-
linear rheology, non-linear sliding law, and finite-amplitude
basal perturbations. The transfer functions are, thus, only ap-
proximations to the actual Fréchet derivative of the forward
model. It is far from clear that using the analytical transfer
functions in this context will result in a usable inverse model.
What is clear, however, is that if this does work, the result-
ing improvements in computational efficiency are large. The
main focus of this paper is to determine whether this approx-
imation is adequate in situations commonly encountered in
glaciology. We do so by systematically constructing syn-
thetic data sets where, to a varying degree, assumptions of
the analytical theory are not fullfilled. Thus, we start by us-
ing linear rheology and small basal perturbations, and then in
a step-wise fashion introduce finite-amplitude effects of basal
perturbations and non-linear rheology. The influence of non-
uniform englacial temperature and non-linear sliding law on
retrieval are also examined. The case studies presented allow
us to explore the performance of the proposed inverse pro-
cedure and in particular to assess the practicality of approx-
imating the Fŕechet derivative of the forward function using
analytical small-amplitude solutions. We determine to what
extent the inverse procedure converges to the true solution
and how many iterations are needed.

The method proposed here differs in a number of ways
from previous inverse methods developed and applied to
ice streams. Thorsteinsson et al.(2003) used the analyti-
cal small-amplitude solutions byGudmundsson(2003) as a
forward model for least-squares inversion of data from Ice
Stream E, West Antarctica. In doing so the assumption was
made that non-linear effects were not strong. A novel aspect
of the method used byThorsteinsson et al.(2003) was the
simultaneous inversion for both basal topography and basal
slipperiness.Gudmundsson(2006) suggested using a formal
Bayesian inverse method instead of the least-square approach
used byThorsteinsson et al.(2003).

MacAyeal(1992) andMacAyeal et al.(1995) applied con-
trol theory to determine the basal shear stress under ice
streams using surface velocity data, ice thickness and surface
elevation.Joughin et al.(2004) used a similar method to ar-
rive at estimates of basal stress for ice streams flowing over
a perfectly plastic bed. These inverse procedures use for-
ward models that solve a reduced set of the Stokes equations.
Another interesting approach to surface-to-bed inversion can
be found inTruffer (2004) who inverted a linearized one-
dimensional forward model to calculate the basal velocity of
a valley glacier. Further examples of inversion of surface ob-
servations to determining basal conditions under glaciers can
be found in e.g.Van der Veen and Whillans(1989) andVieli
and Payne(2003). Recently,Maxwell et al.(2008) proposed
an itertive scheme for determining basal conditions by solv-

ing a sequence of well-posed forward problems to arrive at
solution to the (ill-posed) inverse problem.

The structure of the paper is as follows. We start by de-
scribing in Sect.3 the numerical forward model. We then in-
troduce the non-linear Bayesian inference method in Sect.4.
The results of the proposed inverse method are presented in
Sect.5, where the suitability of the method is discussed.

2 Notation

Vectors will be denoted by boldface italic letters (e.g.d) and
matrices by bold uppercase letters (e.g.C). Surface measure-
ments are available at discrete points, and we denote the set
of all available surface quantities as the measurement vector
d. The measurement vectord = (s,u,w)T consists of sur-
face topographys, horizontal velocityu and vertical velocity
w. The basal properties to be estimated are assembled into
one system state vectorm. The vectorm = (b,c)T contains
the basal topographyb and basal slipperinessc. The super-
script T means transposition, here to column vectors. The
subscriptprior denotes a prior estimate, while a hat (e.g.m̂)
indicates a maximum a posteriori estimate.

3 Forward model

The relation between basal properties and surface data can
be written as

d = g(m). (1)

We refer to the functiong as the forward model but we also
use the term “forward function” when referring tog. The
forward model gives the surface quantities (surface veloc-
ity and surface topography) as a function of basal properties
(bedrock topography and basal slipperiness). The model is
non-linear because the ice rheology is non-linear, the sliding
law is non-linear, and because the surface reacts in a non-
linear fashion to finite amplitude basal perturbations.

We use as a forward function a numerical flow model that
allows us to deal with all the types of nonlinearities men-
tioned above. The numerical model is a two-dimensional
finite element model that uses four-node isoparametric and
quadrilateral Hermann elements. A mixed Lagrangian-
Eulerian approach is employed in determining the position
of the steady-state surface (Leysinger Vieli and Gudmunds-
son, 2004). The numerical model solves the full equilibrium
equations, together with the mass-conservation equation for
incompressible ice. These equations readσij,j = −ρfi and
vi,i = 0, respectively, whereσij are the components of the
Cauchy-stress tensor,ρ is the ice density,f the acceleration
due to gravity andvi are the components of the velocity vec-
tor v = (u,w). The glacier geometry corresponds to a uni-
formly inclined plane slab of constant thickness on which
perturbations in bed and surface topography are superim-
posed. Figure1 illustrates the problem geometry.
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The coordinates are(x,z), wherex is parallel andz per-
pendicular to the mean slope. The equationz = s(x,t) de-
fines the surface andz = b(x) the base of the glacier. The
constitutive law is Glen’s flow law, extended, followingHut-
ter (1983), with a linear term to avoid the singularity in vis-
cosity as the deviatoric stress goes to zero

ε̇ij = A(τn−1
+τ0

n−1)σ
(d)
ij . (2)

In this equation,A is the rate factor,n the stress exponent,
ε̇ij , σ (d)

ij andτ are the strain rate, the deviatoric stress tensors
and the effective shear stress, respectively. The parameterτ0
is the crossover stress at which the linear and power terms
contribute equally to the total strain rate. This parameter has
been introduced only in model runs where the model geom-
etry did not give rise to a sufficiently big mean longitudinal
strain rate to avoid a large effective viscosity at the surface.
Values for the rate factor for temperate ice are taken from
Paterson(1994), and the dependency on temperature follows
Smith and Morland(1981).

Boundary conditions along the bed are specified by a slid-
ing relation of the form

ub = c(x)τm
b , (3)

whereub is the sliding velocity tangential to the bed,c(x)

the sliding coefficient,τb the bed parallel shear stress andm

the basal sliding exponent. Basal sliding is introduced in the
finite-element model by adding a uniform thin layer of differ-
ent viscosity to the base of the glacier such that relation (3)
is fulfilled.

The ice surface (z = s(x,t)) is stress-free and evolves with
time according to the kinematic boundary condition until
steady-state is reached. The kinematic boundary condition
reads

∂s

∂t
+u

∂s

∂x
= w, (4)

wheres(x,t) describes the surface elevation,t is the time,
and u and w are the horizontal and vertical velocity com-
ponents, respectively. In model runs accumulation and ab-
lation are not taken into account, but doing so represents a
straightforward modification. The kinematic boundary con-
dition (Eq. 4) is integrated forward in time with an semi-
implicit Crank-Nicholson scheme. To speed up the evolu-
tion of the free surface towards steady-state, we initialize the
computations with the analytical steady-state surface profile
from (Gudmundsson, 2003). Periodic displacement bound-
ary conditions are imposed along the upstream and down-
stream glacier model boundaries.

The size of the mesh in thex-direction follows a Gaussian
repartition centered around the middle of the prescribed per-
turbations where we expect the largest deformations. This
allows to reduce the total amount of elements and computa-
tional time. The results of the numerical model have been
validated by comparison with relevant perturbation theories
(Raymond and Gudmundsson, 2005).

z

x

h(0)

Fig. 1. Illustration of the problem geometry and coordinate sys-
tem. Gaussian-shape bedrock perturbation and corresponding sur-
face reaction are shown as a black line. The dashed lines show the
undisturbed glacier geometry.

3.1 Perturbed fields

We define perturbations in boundary data and all field vari-
ables as the difference between the value of the variable in
question at some given point and its spatial averaged mean
value. For the basal topography, for example, we write

b(x) = b̄+1b(x), (5)

whereb(x) is the bedrock profile,̄b the mean bedrock eleva-
tion, and1b(x) = b(x)− b̄ the bedrock perturbation. Sim-
ilarly, the function describing the basal slipperinessc(x) is
written as

c(x) = c̄(1+1c(x)), (6)

where c̄ is the mean basal slipperiness, andc̄1c(x) is the
basal slipperiness perturbation. Perturbations in bedrock to-
pography are referred to in the following asb perturbations,
and perturbations in basal slipperiness asc perturbations.

Similarly to the basal perturbations, the steady-state sur-
face topography (s), surface horizontal velocity (u), and
surface vertical velocity (w) are partitioned ass(x) = s̄ +

1s(x),u(x) = ū+1u(x),w(x) = w̄ +1w(x), respectively.
Collectively 1u, 1w and1s are the surface perturbations
and1b and1c the basal perturbations. For reasons of nota-
tional compactness we will sometimes refer tos, u andw as
the surface perturbations and tob andc as the basal pertur-
bations.

4 Non-linear Bayesian inverse approach

We perform a Bayesian inverse calculation to determine both
bedrock topography and basal slipperiness from surface to-
pography and surface velocities data. In Bayesian infer-
ence, the notion of knowledge and uncertainty about data
and system state is expressed in terms of probability density
functions (pdfs). The solution of the inverse problem is a
posterior probability distributionP(m|d,mprior) for the sys-
tem statem, conditional on the surface measurementsd and
prior informationmprior. Using Bayes theorem this posterior
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probability can be written as the combination of prior infor-
mationmprior and the datad

P(m|d,mprior) =
P(m|mprior)P (d|m)

P (d)
. (7)

The denominator of Eq. (7) is independent of the system state
and does not affect the position of the maximum of the con-
ditional probability on the left hand side of Eq. (7). Hence,
the a posteriori distribution reduces to the product of two
terms, i.e. the a priori distributionP(m|mprior) for the sys-
tem statem and the likelihood functionP(d|m). The likeli-
hood function measures the probability of observing the data
d if the system state wasm, while the prior distribution in-
corporates prior information that is known independently of
the measurements. As an example, the bed topography could
be known independently from radio-echo sounding measure-
ments. The a priori information may also arise from the-
oretical considerations (e.g., bedrock perturbation must be
smaller than ice thickness), or some expectations (e.g., basal
slipperiness not negative).

Equation (7) is general. In this study, we assume that both
data and modeling uncertainties can be described by Gaus-
sian distributions. The a priori probability density function is
therefore of the form

P(m|mprior) = (8)

exp

[
−

1

2
(m−mprior)

T C−1
M (m−mprior)

]
,

whereCM is the a priori covariance matrix describing the un-
certainties in the prior system state. The likelihood function
is given by

P(d|m) = exp

[
−

1

2
(d −g(m))T C−1

D (d −g(m))

]
. (9)

Here, CD is the covariance matrix of the noise in the data
andg(m) is the forward modeling operator encapsulating the
relevant physics in the relation between surface datad and
system statem as described in more detail in Sect.3.

Defining the cost function by

J (m) = −2lnP(m|d,mprior)

and substituting Eqs. (8) and (9) into Eq. (7) we obtain

J (m) = [(d −g(m))T C−1
D (d −g(m)) (10)

+ (m−mprior)
T C−1

D (m−mprior)].

We solve Eq. (10) for the minimum ofJ (m) correspond-
ing to the maximum of the posterior probability distribution
P(m|d,mprior), that is, we single out the most likely sys-
tem statem̂ from the ensemble described by the pdf. This
solution is referred to as the maximum a posteriori solution
(Rodgers, 2000, p. 66,84). Because the forward modeling
operatorg(m) is non-linear, there is no explicit solution to
Eq. (10). We therefore perform a non-linear optimization to

find the maximum a posteriori solution̂m that maximizes
P(m|d,mprior). To find the minimum ofJ (m) we equate the
derivative in respect tom of Eq. (10) to zero.

Defining

φ(m) = ∇mJ (m) = (11)

−KT (m)CD
−1

[d −g(m)]+C−1
M (m−mprior),

whereK(m) = ∇mg(m) is the Jacobian matrix, the solution
of the optimization problem is given byφ(m̂) = 0.

The value ofm̂ is found using Newton’s method for sys-
tems of equations via the iteration

mi+1 = mi −[∇mφ(mi)]
−1φ(mi), (12)

where the subscripti denotes thei-th iteration, and

∇mφ(m) = C−1
M +KT (m)C−1

D K(m) (13)

− [∇mKT (m)]C−1
M [d −g(m)].

The term∇mK(m) is the second derivative of the cost func-
tion, also called its Hessian. Equation (13) involves both the
first derivativeK(m) and the second derivative∇mK(m) of
the forward model. As the product of∇mK(m) with the vec-
tor C−1

D [d−g(m)] is small in the moderately non-linear case
and becomes smaller as the solution proceeds, this term can
be ignored. Substituting Eqs. (11) and (13) into the Newto-
nian iteration Eq. (12) gives themi+1 iteration according to
the Gauss-Newton method, namely

mi+1 = mi +(C−1
M +KT

i C−1
D K i)

−1 (14)

[KT
i C−1

D (d −g(mi))−C−1
M (mi −mprior)],

whereK i = K(mi). The Fŕechet derivative of the forward
model K i , is approximated using linear transfer functions,
i.e

K i =


∂gs (m)

∂b
∂gs (m)

∂c
∂gu(m)

∂b
∂gu(m)

∂c
∂gw(m)

∂b
∂gw(m)

∂c

≈

 Tsb Tsc
Tub Tuc
Twb Twc

. (15)

The transfer functionsT are analytical solutions for linear
rheology describing the effects of small-amplitude variations
in bed topography and basal slipperiness on surface fields
(Gudmundsson, 2003, 2008). The transfer functionsT have
a two letter suffix. The first suffix denotes the effect and
the second one the cause.Tsb describes a change in surface
topography caused by a perturbation in bedrock topography,
whereasTuc describes a change in surface-parallel velocity
caused by a spatial variation in basal slipperiness. Figure2
shows examples of analytical transfer functions as functions
of the wavelength for bothb andc perturbations.

When using the transfer function formulation forK i ,
Eq. (14) is most easily solved in Fourier space. In Eq. (14) all
vector components, i.e., surface fields, a priori and basal per-
turbations are therefore transformed to frequency space by
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the relationFs whereF is the unitary discrete Fourier trans-
form matrix ands the vector to be transformed. The covari-
ance matrices for the data and model parametersCD andCM
are transformed to the Fourier space by the relationFCFH

whereC is the matrix to be transformed andH the Hermitian
transpose. The transposeT in Eq. (14) is substituted with the
Hermitian transposeH .

The covariance matrix of the maximum a posteriori solu-
tion m̂ is given by

Ĉ = (K̂T C−1
D K̂ +C−1

M )−1. (16)

4.1 Quantifying uncertainties

4.1.1 Data uncertainties

The covariance matrix for the noise in the dataCD is defined
as

CD =

Cs 0 0
0 Cu 0
0 0 Cw

. (17)

The matrixCD is a block diagonal matrix consisting of
the matrices describing the uncertainties in the surface to-
pographyCs , horizontal velocityCu and vertical velocity
Cw along the main diagonal. The off-diagonal blocks are
zero matrices, since no cross-correlation between errors in
surface topography, horizontal and vertical velocity is con-
sidered. The covariance matrix for the noise in surface to-
pographyCs takes the form

Cs =


σ 2

s1s1
σ 2

s1s2
··· σ 2

s1sN

σ 2
s2s1

σ 2
s2s2

··· σ 2
s2sN

...
...

. . .
...

σ 2
sN s1

σ 2
sN s2

··· σ 2
sN sN

,

whereN is the number of discretization points. The matrix
elementσ sisj is the covariance of surface datasi andsj with
1≤ i,j ≤ N . If the noise in the data is uncorrelated, the cor-
responding covariance matrix is of diagonal form.Cu and
Cw are of the same form but with the indicess replaced byu
andw, respectively.

The covariance matrix formprior is defined as

CM =

(
Cb 0
0 Cc

)
, (18)

whereCb andCc have the same structure asCs . No a pri-
ori cross-correlation between the a priori estimates of basal
topography and basal slipperiness is considered.

The correlation between off-diagonal elements is assumed
to follow a Gaussian distribution and the elements ofCb are
therefore given by

[Cb]ij = σbexp

(
−

(xi −xj )
2

l2b

)
. (19)
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Fig. 2. (a) Steady-state amplitude ratios and phase shifts for
both bedrock (Tsb) and basal slipperiness perturbations (Tsc). (b)
Steady-state amplitude ratios and phase shifts of surface-parallel
velocities for a bedrock (Tub) and basal slipperiness perturbation
(Tuc). The medium is Newtonian. The mean surface slope is 0.5◦

and the mean non-dimensional basal slipperiness isC̄ = 200.

σb describes the variance of the fluctuation about the mean
mprior of the Gaussian probability density that characterizes
the uncertainty of the a priori estimate,lb is the correlation
length andx the position. A corresponding expression is
used for basal slipperiness a priori covariance matrix (Cc)
with lc denoting the correlation length.

4.2 First guess

To start the iteration we need an initial guess formi=0 in
Eq. (14). The initial guess generally corresponds to the a

www.the-cryosphere.net/3/265/2009/ The Cryosphere, 3, 265–278, 2009
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priori values for the model parametersmprior. Here, to de-
finemi=0, we assume that the relationship between basal and
surface properties is linear (i.e. the ice rheology is linear and
the amplitude of the basal perturbation is small) and can be
completely described using the perturbation theory ofGud-
mundsson(2003). Thus, the forward relation Eq. (1) simpli-
fies tod = Km+ε, whereK is a matrix of transfer functions.
As all pdfs are still Gaussian, the cost function is of same
form as Eq. (10) but with g(m) replaced byK . Taking the
negative logarithm of this new expression and maximizing
with respect tod, the maximum a posteriori solution is given
by

m̂linear= mprior+(C−1
M +KT C−1

D K)−1 (20)

KT C−1
D (d −Kmprior).

Hence, we start the inverse procedure by settingmi=0 =

m̂linear.

4.3 Convergence

The iteration is continued until either the convergence test

J (mi)−J (mi−1) � (3×N) (21)

is fulfilled, or a maximum number of iterations has been
exceeded. The above criterion is based on the fact that
3× N corresponds theoretically to the expected value of
J (m̂) (Tarantola, 2005).

4.4 Inverse procedure

In summary, the different steps involved in the iterative opti-
mization by which the objective functionJ (m) is minimized,
are:

i Initialization step: define a first guess formi=0 assum-
ing everything can be described perfectly by the ana-
lytical transfer functions valid for small-amplitudes and
Newtonian rheology.

ii Forward step: calculate the steady-state surface re-
sponseg(mi) for the given bedrock and the distribu-
tion of the basal slipperiness with the non-linear forward
finite-element model

iii Convergence test: test for convergence using Eq. (21).
Once the stopping criterion is satisfied, stop the iteration
procedure, else

iv Inverse step: determine incremental corrections to the
bedrock profile and the distribution of the basal slipper-
iness using Eq. (14). Return to step (ii)

Note that the analytical transfer functions are used not only
in the initialization step (i) but also in step (iv).

5 Model experiments

The main focus of this paper is to evaluate the performance
of the inverse method described above in situations typi-
cally encountered on active ice streams. The key novel as-
pect of the method is the use of the analytical transfer func-
tions in approximating the Fréchet derivative of the forward
model. This approximation renders the method tractable on
current generation of computers. On the other hand, because
the transfer functions are based on small-amplitude perturba-
tions theory, this aspect of the method is also the one which
might most severely restrict its applicability.

We start by inverting for basal properties for cases where
we expect the method to work, i.e. for linear rheology, linear
sliding law, and small perturbation amplitudes. Subsequently
we introduce large perturbation amplitudes, non-linear ice
rheology, and non-linear sliding. Only a subset of the ex-
periments performed are presented here. A more detailed
description can be found inRaymond(2007).

Synthetic data

All synthetic surface data sets (i.e. surface topography, hor-
izontal and vertical velocity) were generated with the finite-
element forward model described in Sect.3. The perturba-
tions in bedrock and basal slipperiness correspond either to
Gaussian peak distributions

1b(x) = abexp

(
−

(x −xb)
2

σ 2
b

)
(22)

or to a step-shaped sigmoidal function

1b(x) = ab tanh(x), (23)

with a corresponding expressions for thec perturbations.
Hereab is the basal amplitude,xb the center of the pertur-
bation and the standard deviationσb defines the width of the
basal perturbation.

The synthetic surface data set was corrupted by uncorre-
lated Gaussian noise. The forward relation Eq. (1) hence
modifies to

d = g(m)+ε, (24)

whereε are uncorrelated measurement errors.
The surface data was assumed to be available at equally

spaced location along the profile. The surface data was in-
terpolated to the nodes of the non-equidistant finite-element
mesh. This interpolation introduces errors that, in general,
are spatially correlated, and the covariance matrix describ-
ing the surface data errors is therefore no longer of diagonal
form. Data were interpolated using the Best Linear Unbi-
ased Estimate (BLUE) (e.g.Kitanidis, 1997). The method
makes use of the experimental variogram to describe the spa-
tial variability of the measurements. The variogram was ap-
proximated with an isotropic Gaussian model. Key aspect

The Cryosphere, 3, 265–278, 2009 www.the-cryosphere.net/3/265/2009/



M. J. Raymond and G. H. Gudmundsson: Non-linear inversion of synthetic data 271

of this interpolation method is that it delivers full covariance
matricesCs , Cu, andCw, describing the combined effects of
noise in the original surface data and the errors and correla-
tions introduced by the interpolation.

Non-dimensionalisation

All results are presented in non-dimensional form. The
dimensional variables entering the problem are substituted
through scalings by non-dimensional variables (Raymond
and Gudmundsson, 2005). The spatial variables (x andz) are
scaled with the mean ice thicknessh̄ and the velocity compo-
nents (u andw) with the mean surface-parallel deformational
velocity ūd . The stresses and the pressure are scaled by the
mean basal shear stressτ̄b. For a given mean surface slope,
mean ice thickness, and stress-law exponent, the rate factor
is scaled so that the mean forward deformational velocity is
equal to unity. It follows that in non-dimensional form, the
rate factorA equals toA = (n+1)/2. When inserted into
the sliding law these scalings give a non-dimensional basal
slipperinessC(x) = c(x)τ (0)m/ūd where as beforec(x) is
the dimensional slipperiness andC(x) is its non-dimensional
counterpart. It further follows that̄C = ūb/ūd , whereC̄ is the
mean non-dimensional slipperiness (C(x) = C̄(1+1C)) and
ūb and ūd are the mean basal and deformational velocities,
respectively.C̄ is therefore equal to the slip ratio which is
defined as the ratiōub/ūd .

5.1 Experiments with constant rate factor

5.1.1 Linear rheology, linear sliding law, and small-
amplitude perturbations

Figure3 illustrates a synthetic surface data set generated with
the numerical forward model. The data represents surface
response to a combined perturbation in both bedrock profile
and basal slipperiness. The amplitudes of both basal distur-
bances are small (5% of their respective mean values) and the
perturbations are Gaussian shaped with a standard deviation
of 12 mean ice thicknesses. Mean surface slope was 0.5◦ and
mean slip ratio equal to 200. Further information on basal
parameters is given in Table1 and in the figure caption.

The non-dimensionalized surface data were corrupted by
uncorrelated Gaussian noise with zero mean and standard de-
viation equal to 5×10−4 for the surface topography, 10−3

and 3×10−3 for the horizontal and vertical velocity compo-
nents, respectively. This level of noise is realistic for situa-
tions where surface measurements are done using GPS tech-
nology. Synthetic measurements were equally spaced with
an interval equal to two ice thicknesses. The interpolation of
surface data on the surface nodal points of the finite-element
mesh was done with the method of best linear unbiased es-
timator (BLUE). The surface data covariance matrix used in
the inversion is the corresponding BLUE estimate of interpo-
lation errors.
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Fig. 3. Steady-state surface topographys, horizontalu and verti-
cal w velocity components generated for Gaussian peak distribu-
tions forb andC as shown in Fig.4 (black lines with circles). The
medium is Newtonian. The mean surface slopeα = 0.5◦ and mean
basal slipperiness̄C = 200. Note that for this illustration, the sur-
face velocities are normalized with the slip ratioC̄.

Table 1. Values of the model parameters for all Gaussian perturba-
tion experiments. Heren is the stress exponent in Glen’s flow law,
m the basal sliding exponent,ab andac are the amplitudes of the
bedrock and basal slipperiness perturbations, respectively,α is the
mean surface slope andh the mean ice thickness. In all Gaussian
experiments, the center of the bedrock and basal slipperiness per-
turbations are located atxb = 10 andxc = −10, respectively. The
widths of the basal perturbations are described by the standard de-
viationσb = σc = 12 mean ice thicknesses. The mean basal slipper-
iness isC̄ = 200 and the rate factor is constant.

experiment n, m ab, ac α h(m)

5.1.1 n = 1, m = 1 0.05 0.5◦ –
5.1.2 0.2 0.5◦ –
5.1.3 n = 3, m = 1 0.05 0.2◦ 1000
5.1.4 0.2 0.2◦ –
5.1.5 n = 3, m = 3 0.05 0.2◦ 1000
5.1.6 0.2 0.2◦ 1000

The a priori estimate was no perturbation in either basal
topography or basal slipperiness with large unknowns. The
a priori covariance matrix was a Gaussian with diagonal el-
ements corresponding to a 25% error in the respective mean
values of basal slipperiness and ice thickness. The a priori
correlations lengths for both thec and theb perturbation were
equal to 10 mean ice thicknesses.

Figure4 shows the inferred bed topography and basal slip-
periness distribution using the data shown in Fig.3. The first
guess and the maximum a posteriori solution obtained after
two iterations are shown. For comparison the true basal dis-
turbances are depicted using solid lines with circles. As can
be seen in Fig.4, the first guess (blue lines), obtained by as-
suming a linear relationship between basal and surface prop-
erties, already resolves both basal perturbations quite accu-
rately. This is to be expected since the ice rheology is linear
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Fig. 4. Inferred,(a) bed topography and,(b) basal slipperiness dis-
tributions estimated from the surface data set shown in Fig.3. The
true basal perturbations are the black lines with circle, and the it-
erations are labeled with iteration number. The maximum a pos-
teriori solution is the red line. Both a priori estimates of bedrock
topography and basal slipperiness were set to zero. The medium is
Newtonian, mean surface slope is 0.5◦ and mean basal slipperiness
C̄ = 200. Note that the 0th iteration and the MAP virtually coincide
with the true bedrock perturbation in panel (a). Lines in cyan show
the retrieval error estimate defined as the square root of the diagonal
elements of the a posteriori error covariance matrixĈ (Eq.16).

and perturbation amplitudes fairly small (5%). Nevertheless,
the subsequent iterative optimization significantly improves
on the initial estimate, and the final maximum a posteriori so-
lution (m̂) obtained after only two iterations is almost identi-
cal to the true value of the basal disturbances (m). In Fig. 4
lines in cyan show the retrieval error estimate as given by
Eq. (16).

Figure 5 shows the residuals between observations and
FE-model predictions for, (a) the surface topography1s, (b)
the horizontal velocity1u and, (c) the vertical velocity1w

for iteration number 0 and 2. The residuals are defined as
1d i = d −g(mi) where1d i is the vector of residuals and
g(mi) the forward finite-element model prediction for the
system statemi at iteration numbersi = 0,2. As can be seen,
only the horizontal velocity is poorly predicted by the FE-
model in the first guess. This is almost definitely because the
slipperiness perturbation, which has a much larger effect on
horizontal velocity component than the vertical one and neg-
ligible effect on surface topography, is not resolved in full
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Fig. 5. Residuals between observations and FE-model predictions
for (a) surface topography,(b) horizontal and(c) vertical velocity.
The residuals are defined as1di = d −g(mi) with i the iteration
number. The dotted lines correspond to the square-roots of the main
diagonal of the data covariance matrixCD determined with the op-
timal interpolation method BLUE.

detail in this initial step. Note that even in the final MAP
estimate theb perturbation is better resolved than thec per-
turbation. As we will see below, this is generally the case.

5.1.2 Linear rheology, linear sliding law, and large am-
plitude Gaussian perturbations

Figure6 shows the inferred bedrock and basal slipperiness
perturbations for the Gaussian peak distributions as used in
the example above, but now for perturbation amplitudes of
20% instead of 5%. All other parameters are the same as in
previous 5% amplitude example.
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Fig. 6. Same as Fig.4 but for basal perturbation amplitudes of 0.2.
Note extensive superimposing of different lines with true bedrock
topography for iterations≥ 1 in panel(a).

Whereas for 5% amplitude perturbation it would have
been surprising had the method not converged in a few itera-
tions, we now have basal amplitudes that can be expected to
be too large to be well retrieved in the first initialization step
(step (i)). In addition, the Fréchet derivative of the forward
model used in step (iv) is now considerably less accurate.
As expected on the basis of this, the first guess retrieval is
poorer than it was in the 5% amplitude case. The initializa-
tion step creates a peak in the basal slipperiness at the right
position (x = −10). However, it also produces a negative
peak atx = 10 with a considerable amplitude of more than
−0.1.

Encouragingly, a positive perturbation of smaller ampli-
tude appears at the same location in the next iteration step
(Fig. 7). In the following iterations the retrieval converges
quickly to the true solution. Only two more iterations are
needed as compared to the 5% amplitude case, and only a to-
tal of four iterations is needed to compute the MAP estimate.

5.1.3 Non-linear ice rheology, linear sliding law, and
small-amplitude Gaussian perturbations

In the following experiment, we introduce a non-linear ice
rheology, i.e.n = 3 rather thann = 1 in Eq. (2). The 5%
amplitude experiment with the two Gaussian shaped bedrock
and slipperiness perturbations described above was repeated.
Despite the introduction of non-linear ice rheology the inver-
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Fig. 7. Residuals1di between observations and FE-model predic-
tions for (a) surface topography,(b) horizontal and(c) vertical ve-
locity. The dotted lines correspond to the square-roots of the main
diagonal of the data covariance matrixCD determined with the op-
timal interpolation method BLUE.

sion algorithm not only converged but did so in only 7 iter-
ations. Further details of this experiment and other small-
amplitude experiments using bump-shaped sigmoidal func-
tions can be found inRaymond(2007).

5.1.4 Non-linear ice rheology, linear sliding law, and
large-amplitude Gaussian perturbations

We now consider non-linear rheology and relative large am-
plitudes of the basal perturbations of 20%. Both rheological
and finite-amplitude nonlinearities are thus present and affect
the surface response. The cross-over stress wasτ0 = 0.3τ̄b.
The mean surface slope is nowα = 0.2◦ instead ofα = 0.5◦.
Note that the results are not dependent on the exact value of
the surface slope.

The maximum a posteriori solution, computed using 11
iterations, is shown in Fig.8 along with the true basal
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Fig. 8. Inferred(a) bed topography and(b) basal slipperiness distri-
butions for non-linear rheology and perturbation amplitudes of 0.2.
α = 0.2◦, C̄ = 200, n = 3 andτ0 = 0.3. Note superimposing of
MAP line with true bedrock topography in panel (a).

disturbances (black lines with circles). As can be seen, the
inverse procedure converged to the correct solution and the
MAP reproduces quite accurately the prescribed basal distur-
bances. The initialization step is somewhat inaccurate (see
Fig. 8) and the amplitudes of the initial guess for theb and
the c perturbations had to be forced to remain smaller than
30% of the respective mean values. In comparison to the
linear-rheology case (experiment5.1.2) twice as many itera-
tions are needed for convergence.

Looking at the residual (Fig.9) shows that the iteration is
in the form of a damped oscillation towards the final solution.
This is seen in both theb and thec perturbation fields. After
iteration 3, the oscillating behavior disappears.

5.1.5 Non-linear rheology, non-linear sliding law, and
small-amplitude Gaussian perturbations

In all previous experiments the sliding law was linear (i.e.
m = 1). In the following, we will consider the inversion
of synthetic data generated for non-linear ice rheology and
non-linear sliding law, i.e.m = 3 in Eq. (3). The ampli-
tude of the basal perturbations is 5%. In this experiment, the
mean ice thickness̄h = 1000 m,τ0 = 10 kPa, and the defor-
mational surface velocityud = 4.03 m a−1. The optimization
procedure converged to the correct solution in 10 iterations.
Further details of this experiment can be found inRaymond
(2007).
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Fig. 9. Residuals between observations and FE-model predictions
for (a) surface topography,(b) horizontal and(c) vertical velocity.
The dotted lines correspond to the square-roots of the main diagonal
of the data covariance matrixCD.

5.1.6 Non-linear rheology, non-linear sliding law, and
large-amplitude Gaussian perturbations

The following experiment considers amplitudes of the basal
perturbations of 20%. All other parameters are the same as
in the previous experiment. Figure10 shows the inferred
bedrock and basal slipperiness distributions (red lines). As
for non-linear ice rheology, linear sliding law and large-
amplitude perturbations (Sect.5.1.3, see also Fig.8), the am-
plitudes of the initial guess for the basal slipperiness had to
be forced to remain smaller than 50% of the respective mean
values (blue lines in Fig.10) by imposing a corresponding
constrain on the first guess. Interestingly, the form of the
initial basal slipperiness distribution is similar to the corre-
sponding linear-sliding case (Sect.5.1.3), but with a larger
amplitude. The MAP solution is obtained in 14 iterations
and reproduces quite accurately the prescribed perturbations.
As compared to the corresponding linear-sliding case, only
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Fig. 10. Inferred(a) bed topography and(b) basal slipperiness dis-
tributions for non-linear ice rheology and non-linear sliding law
with basal sliding exponentm = 3 and basal perturbation ampli-
tudes of 0.2. Lines in cyan show the retrieval error estimate.

3 more iterations are needed for convergence. Figure11
shows the residuals between observations and FE-model pre-
dictions.

5.2 Temperature-dependent non-linear ice rheology

We now introduce two modifications to the experimental
setup, 1) the rate factor is no more constant across the thick-
ness, and 2) we use basal perturbations corresponding to
bump-shaped sigmoidal functions instead of the Gaussian
used above. The vertical variation in rate factor corresponds
to a linear variation in ice temperature from−25◦ at the sur-
face to 0◦ at the base. The rate factorA is then determined us-
ing the double exponential fit betweenA and temperature de-
rived bySmith and Morland(1981). The surface-parallel de-
formational velocity amounts in this case toud = 1.27 m a−1.

The basal disturbances are shown in Fig.12. The parame-
ters are: mean ice thicknessh̄ = 300 m, surface slopeα = 1◦,
slip ratioC̄ = 40, cross over stressτ0 = 0 kPa, and 5% bump-
shaped perturbations inb andc (see also Table2). Surface
data errors and a priori estimates are the same as in all previ-
ous experiments.

As can be seen in Fig.12 the (linear) initialization step
(blue lines) already gives a good approximation to the true
bump-shaped perturbations inb andc. In comparison to the
retrieval of theb perturbation, thec initial estimate is, how-
ever, less accurate and the rate of convergence slower (see
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Fig. 11. Residuals between observations and FE-model predictions
for (a) surface topography,(b) horizontal and(c) vertical velocity
for selected iterations. The dotted lines correspond to the square-
roots of the main diagonal of the data covariance matrixCD.

Table 2. Values of the model parameters for the bump-shaped sig-
moidal perturbation experiments. Hereab andac are the amplitudes
of the bedrock and basal slipperiness perturbations, respectively,α

is the mean surface slope andh the mean ice thickness. In both
experiments, the stress exponent in Glen’s flown = 3 , the basal
sliding exponentm = 1 and the mean basal slipperinessC̄ = 40.

experiment ab, ac α h (m)

5.2 0.05 1◦ 300
5.3 0.05 1◦ 300

Fig. 12b) and a total of 14 iterations is needed for conver-
gence. In contrast to Fig.8, the estimates converge towards
the solution without oscillations and the residuals (Fig.13)
diminish continuously towards the noise-level.
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Fig. 12. Inferred(a) bed topography and(b) basal slipperiness dis-
tributions for a temperature dependent ice rheology (n = 3, τ0 = 0).
The temperature varies linearly across the ice depth from−25◦ at
the surface to 0◦ at the bottom.

In Raymond(2007) a corresponding experiment using
isothermal conditions is described. Comparisons reveals that
about four times as many iterations are needed than for the
isothermal case to fit the observed data down to the noise
level. The final MAP model estimates are, however, equally
good showing that only the rate of convergence but not the
quality of the solution suffers when the rate factor varies
across the depth.

5.3 Forward model parameter error

The output of the forward model depends not only on the
basal boundary conditions, that is on the form of thec and
theb perturbations, but also on a number of forward model
parameters. There are a total of six such forward model pa-
rameters: the stress exponentsn andm, mean ice thickness̄h,
and mean surface slopeα, the mean slipperiness̄C, and the
rate factorA. In all experiments described above it has been
assumed that the values of these model parameters are known
with perfect accuracy, whereas in a real situation these pa-
rameters are always only known within some error bounds.
The general approach to this problem would be to include
the forward model parameters as elements of the system state
and formally invert for these parameters in a manner identical
to the inversion forb andc. Here we limit the discussion to
the case where the forward model uses an incorrect estimate
of englacial temperature.
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Fig. 13. Residuals between observations and FE-model predictions
for (a) surface topography,(b) horizontal and(c) vertical velocity
for selected iterations. The dotted lines correspond to the square-
roots of the main diagonal of the data covariance matrixCD.

Let us consider the synthetic surface data generated for
bump-shaped perturbations with linear temperature profile
increasing from−25◦ at the surface to 0◦ at the bottom (see
the case for temperature-dependent ice rheology in Sect.5.2).
The true deformational velocity amounts to 1.27 m a−1 and
the corresponding slip ratio is̄C = 40. As the temperature
profile is not known, we start by estimating a linear tempera-
ture profile with surface temperature−20◦ and bottom tem-
perature 0◦. The mean surface deformational velocityud is
estimated to be 1.45 m a−1 using the standard temperature-
dependent flow law for ice. The slip ratio is then estimated
from the mean longitudinal surface speed toC̄ = 35. These
estimated values of the forward model characteristics are
subsequently introduced in the inverse calculations as well
as in the forward finite-element model.
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Fig. 14. Comparison between MAP(a) bed topography and(b)
basal slipperiness as obtained with the true model characteristics
(ud = 1.27 m a−1, C̄ = 40; red lines) and with the wrong estimated
model characteristics (ud = 1.45 m a−1, C̄ = 35; blue lines). The
true basal perturbations are also shown for comparison (black lines
with circles).

Figure14 shows a comparison of the maximum a posteri-
ori model as obtained with the true model characteristics and
with the modeling errors. The true basal properties are also
shown for comparison. In both cases, the basal topography
perturbation is completely recovered. The basal slipperiness
perturbation is, on the other hand, resolved less accurately
for the case with the wrong estimated model characteristics
than with the true ones. The optimization procedure has been
stopped after 7 iterations for the wrong model and after 14
iterations for the true one. The value of the maximum a pos-
teriori solutionJ (m̂) for the case with the wrong model char-
acteristics is 8 times larger than for the true model and also
about 8 times bigger than the theoretically expected value of
J (m̂) = 3×N . Hence, the MAP solution for the model with
a wrong estimate of englacial temperatures would obviously
be rejected as valid solution of the inverse problem.

6 Summary

We have shown how a non-linear Bayesian inference ap-
proach can be used to simultaneously determine both basal
topography and basal slipperiness from surface measure-
ments of velocity and topography. We emphasize the fact that
we do not produce one single solution to the inverse problem
considered. Rather, we determine the maximum a posteriori

solution together with the a posteriori error covariance ma-
trix. The availability of such an error estimate greatly facili-
ties any quantitative analysis of the results. Furthermore, the
method does not require any prior smoothing of input data.

We have shown that the Fréchet derivative of the forward
model can be adequately approximated by small-amplitude
analytical solutions (Gudmundsson, 2003) for the method to
converge. Our key result is that this remains the case even
when the problem is strongly non-linear. This result is of
considerable practical value as this approximation greatly en-
hances the numerical efficiency of the method by sparing the
time-consuming numerical evaluation of model derivatives.

The proposed method is capable of dealing with both non-
linear finite-amplitude effects and rheological nonlinearities.
In all case studied, the inverse procedure converged quickly
and to the correct solution and in only a few iterations, with
the exact number of iterations needed being dependent on the
type and magnitude of non-linear effects.
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