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Abstract. We propose a new approach to indirectly estimate2005 to estimate bedrock topography and basal slipperiness
basal properties of ice streams, i.e. bedrock topography andnder ice streams from surface velocities and surface geom-
basal slipperiness, from observations of surface topographwetry. An identical Bayesian inference approach, but for lin-
and surface velocities. We demonstrate how a maximurear media and small amplitudes of the basal perturbations,
a posteriori estimate of basal conditions can be determinedhas been presented Gudmundsson and Raymoi2008.
using a Bayesian inference approach in a combination withn Bayesian inference, a priori information about the basal
an analytical linearisation of the forward model. Using syn- properties is expressed as a probability density function and
thetic data we show that for non-linear media and non-linearcombined with the surface measurements to give a posteri-
sliding law only a few forward-step model evaluations are ori probability distribution describing the final uncertainty of
needed for convergence. The forward step is solved with dhe estimate. The solution of the inverse problem, i.e. the a
numerical finite-element model using the full Stokes equa-posteriori probability distribution, provides an ensemble of
tions. The Fechet derivative of the forward function is ap- solutions from which we single out the most likely one cor-
proximated through analytical small-perturbation solutions.responding to the maximum of the a posteriori probability
This approximation is a key feature of the method and the(MAP estimate).

effects of this approximation on model performance are an- The forward function describing the relationship between
alyzed. The number of iterations needed for convergencebasal conditions (bedrock topography and basal slipperi-
increases with the amplitude of the basal perturbations, buhess), and the observations (surface topography, surface
generally less than ten iterations are needed. velocities, rates of elevation change), is solved numeri-
cally with a two-dimensional non-linear plane-strain finite-
element model. We restrict the observations to noise-
degraded synthetic surface data generated with the forward
model. A posteriori probability distribution for the system

The goal of geophysical inverse methods is to make quansta'_ce is optimiz_ed via a non-li_ne_ar Gaus_s_-Newton procedure
titative inferences about Earth characteristics from indirect!© find the maximum a posteriori probability.

observations (e.gGouveia and Scale4998. Estimating A key issue in the derivation of the solution involves de-
basal properties of glaciers from surface measurements is aig¢rmining the sensitivity of surface fields to perturbation in
example of such an inverse problem. In this paper, we in_ba5a| gquantities. The Echet derivative of the forward model
troduce and test the suitability of a non-linear probabilistic ¢an, in principle, be evaluated numerically. However, as

Bayesian inference approach (e@p’dgerszooq Taranto]a the Computa’[ional times involved in dOing SO are typlcally
long in comparison to one forward model computation, it is,

1 Introduction

Correspondence to: whenever possible, preferable to evaluate the derivatives of
G. H. Gudmundsson the forward function algebraicallfRodgers2000. Here we
BY (ghg@bas.ac.uk) approximate the forward model derivatives using analytical
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transfer functions Gudmundsson2003. These transfer ing a sequence of well-posed forward problems to arrive at
functions describe the effects of small-amplitude perturba-solution to the (ill-posed) inverse problem.

tions in basal properties (bedrock profile and slipperiness) on The structure of the paper is as follows. We start by de-
surface fields in the case of Newtonian rheology and linearscribing in Sect3 the numerical forward model. We then in-
sliding law. The numerical forward model solves for non- troduce the non-linear Bayesian inference method in Sect.
linear rheology, non-linear sliding law, and finite-amplitude The results of the proposed inverse method are presented in
basal perturbations. The transfer functions are, thus, only apSect.5, where the suitability of the method is discussed.
proximations to the actual Echet derivative of the forward

model. It is far from clear that using the analytical transfer i

functions in this context will result in a usable inverse model. 2 Notation

?;Vh?ralsrgj/iiz’ez?gviivfc:}wis Lzrt];ti:nglz f(r]ilt(:)iiizm:r(é :2‘: ;esﬁztéVectors will be denoted by boldface italic letters (elyand
g mp P y ge. matrices by bold uppercase letters (€. Surface measure-

main focus of this paper is to determine whether this aPPrOX ents are available at discrete points, and we denote the set

|mat.|on Is adequate in situations cqmmonly encountered "ot all available surface guantities as the measurement vector
glaciology. We do so by systematically constructing syn-

thetic data sets where, to a varying degree, assumptions Q . The measurement vectdr= (s,u,w)” consists of sur-
i ’ . ’ ce topography, horizontal velocity: and vertical velocit
the analytical theory are not fullfilled. Thus, we start by us- pography w y

ing linear rheology and small basal perturbations, and then in.- The basal properties to be estimated are assembled into
9 gy P ’ rf)ne system state vecter. The vectomn = (b,¢)” contains

a step-wise fashion introduce finite-amplitude effects of basa . . i}
perturbations and non-linear rheology. The influence of non- he basal topographly and basal slipperiness The super

uniform englacial temperature and non-linear sliding law OnscnptT. means transposm_on, hgre 0 colulmn vectorsA. The
retrieval are also examined. The case studies presented allogy DSCrPlprior denotes a prior estimate, while a hat (ig.
: . ifdicates a maximum a posteriori estimate.

us to explore the performance of the proposed inverse pro-
cedure and in particular to assess the practicality of approx-
imating the Fechet derivative of the forward function using 3 Forward model
analytical small-amplitude solutions. We determine to what
extent the inverse procedure converges to the true solutiodhe relation between basal properties and surface data can
and how many iterations are needed. be written as

The method proposed here differs in a number of ways; _

e . =g(m). (1)

from previous inverse methods developed and applied to
ice streams. Thorsteinsson et a{2003 used the analyti- We refer to the functiorg as the forward model but we also
cal small-amplitude solutions budmundssoif2003 as a  use the term “forward function” when referring g0 The
forward model for least-squares inversion of data from Iceforward model gives the surface quantities (surface veloc-
Stream E, West Antarctica. In doing so the assumption wadty and surface topography) as a function of basal properties
made that non-linear effects were not strong. A novel aspecfbedrock topography and basal slipperiness). The model is
of the method used byhorsteinsson et a(zooa was the non-linear because the ice rheology is non-linear, the S|Id|ng
simultaneous inversion for both basal topography and basdPW is non-linear, and because the surface reacts in a non-
slipperinessGudmundsso2006 suggested using a formal linear fashion to finite amplitude basal perturbations.
Bayesian inverse method instead of the least-square approach We use as a forward function a numerical flow model that
used byThorsteinsson et a{2003. allows us to deal with all the types of nonlinearities men-

MacAyeal(1992 andMacAyeal et al(1995 applied con-  tioned above. The numerical model is a two-dimensional
trol theory to determine the basal shear stress under icénite element model that uses four-node isoparametric and
streams using surface velocity data, ice thickness and surfacguadrilateral Hermann elements. A mixed Lagrangian-
elevation.Joughin et al(2004 used a similar method to ar- Eulerian approach is employed in determining the position
rive at estimates of basal stress for ice streams flowing ovePf the steady-state surfaceefysinger Vieli and Gudmunds-
a perfectly plastic bed. These inverse procedures use forson 2004. The numerical model solves the full equilibrium
ward models that solve a reduced set of the Stokes equationg§guations, together with the mass-conservation equation for
Another interesting approach to surface-to-bed inversion cafncompressible ice. These equations regd; = —pf; and
be found inTruffer (20049 who inverted a linearized one- vii =0, respectively, where;; are the components of the
dimensional forward model to calculate the basal velocity ofCauchy-stress tensa,is the ice densityf the acceleration
avalley glacier. Further examples of inversion of surface ob-due to gravity and; are the components of the velocity vec-
servations to determining basal conditions under glaciers ca#fr v = (u,w). The glacier geometry corresponds to a uni-
be found in e.gvVan der Veen and Whilland 989 andVieli formly inclined plane slab of constant thickness on which
and Payng2003. RecentlyMaxwell et al.(2008 proposed ~ Perturbations in bed and surface topography are superim-
an itertive scheme for determining basal conditions by solv-posed. Figurd illustrates the problem geometry.
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The coordinates aréx, z), wherex is parallel and; per-
pendicular to the mean slope. The equaticAs(x,t) de-
fines the surface and= b(x) the base of the glacier. The 2 o
constitutive law is Glen’s flow law, extended, followihut- f h

X

ter (1983, with a linear term to avoid the singularity in vis-
cosity as the deviatoric stress goes to zero

Gj=AC" " o, )

In this equationA is the rate factor the stress exponent, "9- 1. lllustration of the problem geometry and coordinate sys-
(d) tem. Gaussian-shape bedrock perturbation and corresponding sur-

éj,0;;" andr are the strain rate, the deviatoric stress tensorg,ce reaction are shown as a black line. The dashed lines show the
and the effective shear stress, respectively. The parameter yndisturbed glacier geometry.

is the crossover stress at which the linear and power terms

contribute equally to the total strain rate. This parameter has

been introduced only in model runs where the model geom3 1  Perturbed fields

etry did not give rise to a sufficiently big mean longitudinal

strain rate to avoid a large effective viscosity at the surfacewe define perturbations in boundary data and all field vari-
Values for the rate factor for temperate ice are taken fromaples as the difference between the value of the variable in
Patersor{1994), and the dependency on temperature follows question at some given point and its spatial averaged mean

Smith and Morland1981J). value. For the basal topography, for example, we write
Boundary conditions along the bed are specified by a slid-

ing relation of the form b(x)=b+ Ab(x), (5)

up=c)7, (3) whereb(x) is the bedrock profile; the mean bedrock eleva-

whereu,, is the sliding velocity tangential to the bee(x)  tion, andAb(x) = b(x) — b the bedrock perturbation. Sim-
the sliding coefficientr; the bed parallel shear stress amd  ilarly, the function describing the basal slipperiness) is
the basal sliding exponent. Basal sliding is introduced in thewritten as

finite-element model by adding a uniform thin layer of differ-

ent viscosity to the base of the glacier such that relat®)n ( ¢(x) =c(1+Ac(x)), (6)

is fulfilled. . . . _ .
The ice surfacez(=s(x,)) is stress-free and evolves with Wherec is the mean basal slipperiness, anfic(x) is the

time according to the kinematic boundary condition until basal slipperiness perturbation. Perturbations in bedrock to-

steady-state is reached. The kinematic boundary conditio?@9raphy are referred to in the following aperturbations,
and perturbations in basal slipperinesg gerturbations.

reads
Similarly to the basal perturbations, the steady-state sur-
as as . .
E”L”a_ =w, (4) face topographys(, surface horizontal velocityuj, and
X

surface vertical velocityy) are partitioned as(x) =§ +

wheres(x,r) describes the surface elevatianis the time,  Ag(x),u(x) =i + Au(x), w(x) = w + Aw(x), respectively.

andx andw are the horizontal and vertical velocity com- Collectively Au, Aw and As are the surface perturbations

ponents, respectively. In model runs accumulation and abandAp and Ac the basal perturbations. For reasons of nota-

lation are not taken into account, but doing so represents gonal compactness we will sometimes refesta andw as

Straightforward modification. The kinematic boundary CON- the surface perturba’[ions andid@ndc as the basal pertur-

dition (Eq. 4) is integrated forward in time with an semi- pations.

implicit Crank-Nicholson scheme. To speed up the evolu-

tion of the free surface towards steady-state, we initialize the

computations with the analytical steady-state surface profiley Non-linear Bayesian inverse approach

from (Gudmundssaon2003. Periodic displacement bound-

ary conditions are imposed along the upstream and downwe perform a Bayesian inverse calculation to determine both

stream glacier model boundaries. bedrock topography and basal slipperiness from surface to-
The size of the mesh in thedirection follows a Gaussian pography and surface velocities data. In Bayesian infer-

repartition centered around the middle of the prescribed perence, the notion of knowledge and uncertainty about data

turbations where we expect the largest deformations. Thisind system state is expressed in terms of probability density

allows to reduce the total amount of elements and computafunctions (pdfs). The solution of the inverse problem is a

tional time. The results of the numerical model have beenposterior probability distributio (m|d, mpyrior) for the sys-

validated by comparison with relevant perturbation theOI’ieStem staten, conditional on the surface measuremehtnd

(Raymond and Gudmundssd@009. prior informationmpyrior. Using Bayes theorem this posterior

www.the-cryosphere.net/3/265/2009/ The Cryosphere, 3,2852009
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probability can be written as the combination of prior infor- find the maximum a posteriori solutiaf that maximizes
mationmprior and the data P (m|d,mprior). To find the minimum ot/ (m) we equate the

derivative in respect t of Eq. (10) to zero.
P(m|mprior)P(d|m) (7) Deﬁning
P(d)

The denominator of Eq7} is independent of the system state $(m) =V J (m) = (11)
and does not affect the position of the maximum of the con- —KT(m)Cofl[d—g(m)]JrC,\_Al(m — Mprior),

ditional probability on the left hand side of Ecf)( Hence,
the a posteriori distribution reduces to the product of two LT e A
terms, i.e. the a priori distributio® (m|mpyior) for the sys- of the opt|m|zat|Aop problem '? given %’(",l) =0.

tem staten and the likelihood functior? (d|m). The likeli- The value qu IS found using Newton's method for sys-
hood function measures the probability of observing the datdems of equations via the iteration

d if the system state wam, while the prior distribution in- o -1 )

corporates prior information that is known independently of '+ m; — [V $m)] = (m:). (12)

the measurements. As an example, the bed topography coulghere the subscriptdenotes the-th iteration, and
be known independently from radio-echo sounding measure-

P(m|d, mprior) =

whereK (m) = V,, g (m) is the Jacobian matrix, the solution

ments. The a priori information may also arise from the- V¢ (m) = Cyt + K7 (m)C5K (m) (13)
oretical cons.lderatllons (e.g., bedrock perturpatlon must be _ [VmKT(m)]C'\f/Il[d_g(m)].

smaller than ice thickness), or some expectations (e.g., basal

slipperiness not negative). The termV,,K (m) is the second derivative of the cost func-

Equation ¥) is general. In this study, we assume that bothtion, also called its Hessian. Equatidt8) involves both the
data and modeling uncertainties can be described by Gausirst derivativeK (im) and the second derivativé,, K (m) of
sian distributions. The a priori probability density function is the forward model. As the product 8f,K (m) with the vec-
therefore of the form tor CBl[d—g(m)] is small in the moderately non-linear case
and becomes smaller as the solution proceeds, this term can
be ignored. Substituting Eqsl1) and (L3) into the Newto-
nian iteration Eq.12) gives them;; iteration according to
the Gauss-Newton method, namely

P(m |mprior) = ®)

1 _
eXpl:_E (m — mprior)TCMl(m - mprior)] )

wher.eC.M i; thea prjori covariance matrix Qesqribing the Un- ;g =m; +(Cyt+ K7 C5tK) ™t (14)
certainties in the prior system state. The likelihood function T 1 21
is given by [Kl CD (d_g(ml)) _CM (m; _mprior)]a

1 S whereK; = K(@mn;). The Féchet derivative of the forward
P(d|m) :exp[—z(d—g(m)) Co (d—g(’"))] () modelK;, is approximated using linear transfer functions,

i.e

Here, Cp is the covariance matrix of the noise in the data ‘
andg (m) is the forward modeling operator encapsulating the % % Tsb Tsc
relevant physics in the relation between surface dagad  K; = % % ~| Tu Tuc |- (15)
system staten as described in more detail in SeBt. dgw(m) 3gw(m) Twb Twe

Defining the cost function by ab oc

The transfer functiong are analytical solutions for linear
rheology describing the effects of small-amplitude variations
in bed topography and basal slipperiness on surface fields
(Gudmundssor2003 2008. The transfer function$ have
J(m) = [(d—g(m))Tcgl(d—g(m)) (20) a two letter suffix. The first suffix denotes the effect and
the second one the causks, describes a change in surface
topography caused by a perturbation in bedrock topography,
We solve Eq. 10) for the minimum ofJ (m) correspond-  whereasT ,c describes a change in surface-parallel velocity
ing to the maximum of the posterior probability distribution caused by a spatial variation in basal slipperiness. Figure
P(m|d,mprior), that is, we single out the most likely sys- shows examples of analytical transfer functions as functions
tem statern from the ensemble described by the pdf. This of the wavelength for both andc perturbations.
solution is referred to as the maximum a posteriori solution When using the transfer function formulation fét;,
(Rodgers 2000 p. 66,84). Because the forward modeling Eq. (14) is most easily solved in Fourier space. In Egd)(@ll
operatorg (m) is non-linear, there is no explicit solution to vector components, i.e., surface fields, a priori and basal per-
Eqg. 10). We therefore perform a non-linear optimization to turbations are therefore transformed to frequency space by

J(m)=—2InP(m|d, mprior)

and substituting Eqs8f and @) into Eq. (/) we obtain

+ (m —mprior)Tcsl(m —mprior)]-

The Cryosphere, 3, 26348 2009 www.the-cryosphere.net/3/265/2009/
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the relationFs whereF is the unitary discrete Fourier trans-

[\

form matrix ands the vector to be transformed. The covari-
ance matrices for the data and model param&grandCy, 2
. =]
are transformed to the Fourier space by the relaiof!” £
whereC is the matrix to be transformed affdthe Hermitian 5
transpose. The transpoSén Eq. (14) is substituted with the £
Hermitian transposé . g
The covariance matrix of the maximum a posteriori solu- a
tion m is given by
C=KTca*K+cyh L (16) 5
Q
ke
4.1 Quantifying uncertainties £
(%]
4.1.1 Data uncertainties g
o
The covariance matrix for the noise in the d@fg is defined g ]
as 1 10 100 1000
wavelength
C; 0 O b
Cb=| 0C, 0 |]. a7)
0 0GCy 8
>
The matrixCp is a block diagonal matrix consisting of g
the matrices describing the uncertainties in the surface to- 5
pographyC,, horizontal velocityC, and vertical velocity =
=

C, along the main diagonal. The off-diagonal blocks are

zero matrices, since no cross-correlation between errors in
surface topography, horizontal and vertical velocity is con-

sidered. The covariance matrix for the noise in surface to-
pographyC; takes the form

2 2 2

Phase shift (deg.)
|
a
o
T
1/
A\
|

6S2151 USZ‘LSZ o USZ‘LSN b ! T 1
e o -100F j E
52851 782852 S2SN E | ]
CS = . . . . P 150 F ! ]
: o -150L ) E
2 ;2 2 Tt ‘ ‘ ]
Osysy Osysa """ Osysw 1 10 100 1000

wavelength
whereN is the number of discretization points. The matrix
element gy, is the covariance of surface dafaands; with  £iq > (a) Steady-state amplitude ratios and phase shifts for
1<i,j <N. Ifthe noise in the data is uncorrelated, the cor- poth bedrock Tsp) and basal slipperiness perturbatiofisd. (b)
responding covariance matrix is of diagonal for@, and  Steady-state amplitude ratios and phase shifts of surface-parallel
C,, are of the same form but with the indiceseplaced by velocities for a bedrockT,,) and basal slipperiness perturbation

andw, respectively. (Tuc).- The medium is Newtonian. The mean surface slope5s 0
The covariance matrix fanprior is defined as and the mean non-dimensional basal slipperine€s=200.
Cy — (Cb 0) (18)
M=\oc. /) oy describes the variance of the fluctuation about the mean
) mpyrior Of the Gaussian probability density that characterizes
whereC, andC. have the same structure @. NO a pri-  the uncertainty of the a priori estimatg, is the correlation
ori cross-correlation betyveen_ the a priori (_astlmates of basafength andx the position. A corresponding expression is
topography and basal slipperiness is considered. used for basal slipperiness a priori covariance matfi) (

The correlation between off-diagonal elements is assumeg;ip I denoting the correlation length.
to follow a Gaussian distribution and the elementEgfare

therefore given by 4.2 First guess
o _(xi_xj)z To start the iteration we need an initial guess f@rg in
[Cylij =onexp| ———L—|. (19) o
I Eq. (14). The initial guess generally corresponds to the a

www.the-cryosphere.net/3/265/2009/ The Cryosphere, 3,2852009



270 M. J. Raymond and G. H. Gudmundsson: Non-linear inversion of synthetic data

priori values for the model parametergyior. Here, to de- 5 Model experiments

finem;—o, we assume that the relationship between basal and

surface properties is linear (i.e. the ice rheology is linear andlhe main focus of this paper is to evaluate the performance
the amplitude of the basal perturbation is small) and can bef the inverse method described above in situations typi-
completely described using the perturbation theorgati- cally encountered on active ice streams. The key novel as-
mundssor(2003. Thus, the forward relation EqL) simpli- pect of the method is the use of the analytical transfer func-
fies tod = Km +¢, whereK is a matrix of transfer functions. tions in approximating the Echet derivative of the forward

As all pdfs are still Gaussian, the cost function is of samemodel. This approximation renders the method tractable on
form as Eq. {0) but with g(m) replaced byK. Taking the  current generation of computers. On the other hand, because
negative logarithm of this new expression and maximizingthe transfer functions are based on small-amplitude perturba-
with respect ta, the maximum a posteriori solution is given tions theory, this aspect of the method is also the one which

by might most severely restrict its applicability.
We start by inverting for basal properties for cases where
Htlinear=Mprior+ (Cyt + KT CptK) ™2 (20)  we expect the method to work, i.e. for linear rheology, linear
K" Cg(d — Kmprior). sliding law, and small perturbation amplitudes. Subsequently
we introduce large perturbation amplitudes, non-linear ice
Hence, we start the inverse procedure by setingo=  rheology, and non-linear sliding. Only a subset of the ex-
Mlinear. periments performed are presented here. A more detailed

description can be found Raymond(2007).
4.3 Convergence

. L . o Synthetic data
The iteration is continued until either the convergence test

All synthetic surface data sets (i.e. surface topography, hor-
izontal and vertical velocity) were generated with the finite-
is fulfilled, or a maximum number of iterations has been €lement forward model described in Se&t.The perturba-
exceeded. The above criterion is based on the fact thalions in bedrock and basal slipperiness correspond either to
3x N corresponds theoretically to the expected value ofGaussian peak distributions

J (m) (Tarantola20035. )
Ab(x) =ay, exp(——(x — ) ) (22)

J(m;)—J(mi_1) K (3xN) (21)

4.4 Inverse procedure o
In summary, the different steps involved in the iterative opti- or to a step-shaped sigmoidal function
mization by which the objective functi is minimized,
are: y J onm) Ab(x) = aptanh(x), (23)
with a corresponding expressions for theperturbations.
Hereaq,; is the basal amplitude;;, the center of the pertur-
bation and the standard deviation defines the width of the
basal perturbation.

The synthetic surface data set was corrupted by uncorre-
i Forward step: calculate the steady-state surface relatéd Gaussian noise. The forward relation Ef). f{ence

sponseg(m;) for the given bedrock and the distriby- modifies to

t!o_n of the basal slipperiness with the non-linear forward d=g(m)+e, (24)

finite-element model

i Initialization step: define a first guess far;_o assum-
ing everything can be described perfectly by the ana-
lytical transfer functions valid for small-amplitudes and
Newtonian rheology.

wheree are uncorrelated measurement errors.

The surface data was assumed to be available at equally
spaced location along the profile. The surface data was in-
terpolated to the nodes of the non-equidistant finite-element

iv Inverse step: determine incremental corrections to theMesh. This interpolation introduces errors that, in general,

bedrock profile and the distribution of the basal slipper- are spatially correlated, and the covariance matrix describ-
iness using Eq.1@). Return to step (ii) ing the surface data errors is therefore no longer of diagonal

form. Data were interpolated using the Best Linear Unbi-
Note that the analytical transfer functions are used not onlyased Estimate (BLUE) (e.dKitanidis, 1997. The method
in the initialization step (i) but also in step (iv). makes use of the experimental variogram to describe the spa-
tial variability of the measurements. The variogram was ap-
proximated with an isotropic Gaussian model. Key aspect

iii Convergence test: test for convergence using Ef. (
Once the stopping criterion is satisfied, stop the iteration
procedure, else

The Cryosphere, 3, 26348 2009 www.the-cryosphere.net/3/265/2009/
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of this interpolation method is that it delivers full covariance (.4
matricesCy, C,, andC,,, describing the combined effects of

noise in the original surface data and the errors and correla- 0.03f
tions introduced by the interpolation.

0.02f

Non-dimensionalisation 001

All results are presented in non-dimensional form. The
dimensional variables entering the problem are substituted
through scalings by non-dimensional variabl@&aymond  _, . . . s .
and GudmundssgR005. The spatial variables:(andz) are =60 —40 —20 0 20 40 60
scaled with the mean ice thickngsand the velocity compo-

nents ¢ andw) with the mean surface-parallel deformational Fig. 3. Steady-state surface topographyhorizontalu and verti-

velocity iiy. The stresses and the pressure are scaled by theal w velocity components generated for Gaussian peak distribu-

mean basal shear stregs For a given mean surface slope, tions forb andC as shown in Fig4 (black lines with circles). The

mean ice thickness, and stress-law exponent, the rate factonedium is Newtonian. The mean surface slape 0.5° and mean

is scaled so that the mean forward deformational velocity isbasal slipperinesé = 200. Note that for this illustration, the sur-

equal to unity. It follows that in non-dimensional form, the face velocities are normalized with the slip raio

rate factorA equals toA = (n+1)/2. When inserted into

the sliding law these scalings give a non-dimensional basal )

slipperinessC (x) = c(x)t(o)’”/ﬁd where as before(x) is Table 1. Vr_;llues of the m_odel parameters for aII_Gausstan perturba-
. - . . . . . tion experiments. Here is the stress exponent in Glen’s flow law,

the dimensional slipperiness afdx) is its non-dimensional

Rt z. m the basal sliding exponeni;, anda,. are the amplitudes of the
counterpart. Itfurther follows thaf = i; /ia, whereC is the bedrock and basal slipperiness perturbations, respectivétythe

mean n9n-dimensional slipperinesy{) = C(l_"‘AC)) and_ ~ mean surface slope arkdthe mean ice thickness. In all Gaussian
up andiy are the mean basal and deformational velocities,experiments, the center of the bedrock and basal slipperiness per-
respectively. C is therefore equal to the slip ratio which is turbations are located aj, = 10 andx. = —10, respectively. The

defined as the ratiay, /it . widths of the basal perturbations are described by the standard de-
viation o, = o = 12 mean ice thicknesses. The mean basal slipper-
5.1 Experiments with constant rate factor iness isC =200 and the rate factor is constant.
5.1.1 Linear rheology, linear sliding law, and small- experiment n,m ap,ac o  h(m)
amplitude perturbations 511 n—lm—1 005 08 ~
. . . : 5.1.2 0.2 0.5 -
Figure3illustrates a synthetic surface data set generated with
. 5.1.3 n=3,m=1 005 0.2 1000
the numerical forward model. The data represents surface 514 02 02 -

response to a combined perturbat.ion in both bedrock pr_ofile 5.1.5 n=3,m=3 005 0.2 1000
and basal slipperiness. The amplitudes of both basal distur- 516 02 0.2 1000
bances are small (5% of their respective mean values) and the
perturbations are Gaussian shaped with a standard deviation
of 12 mean ice thicknesses. Mean surface slope wasadb o o
mean slip ratio equal to 200. Further information on basal 1he @ priori estimate was no perturbation in either basal
parameters is given in Tableand in the figure caption. topography or basal slipperiness with large unknowns. The
The non-dimensionalized surface data were corrupted by Priori covariance matrix was a Gaussian with diagonal el-
uncorrelated Gaussian noise with zero mean and standard d§MeNts corresponding to a 25% error in the respective mean
viation equal to 5< 10~4 for the surface topography, 19 values (_)f basal slipperiness and ice thickness. _The a priori
and 3x 1073 for the horizontal and vertical velocity compo- correlations Iengths for t_)oth theand theb perturbation were
nents, respectively. This level of noise is realistic for situa-€dual to 10 mean ice thicknesses.
tions where surface measurements are done using GPS tech-Figure4 shows the inferred bed topography and basal slip-
nology. Synthetic measurements were equally spaced witfperiness distribution using the data shown in BigThe first
an interval equal to two ice thicknesses. The interpolation ofguess and the maximum a posteriori solution obtained after
surface data on the surface nodal points of the finite-elemerfwo iterations are shown. For comparison the true basal dis-
mesh was done with the method of best linear unbiased edurbances are depicted using solid lines with circles. As can
timator (BLUE). The surface data covariance matrix used inb€ seen in Figd, the first guess (blue lines), obtained by as-

the inversion is the corresponding BLUE estimate of interpo-suming a linear relationship between basal and surface prop-
lation errors. erties, already resolves both basal perturbations quite accu-

rately. This is to be expected since the ice rheology is linear
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Fig. 4. Inferred,(a) bed topography andb) basal slipperiness dis- ¢
tributions estimated from the surface data set shown inFighe

true basal perturbations are the black lines with circle, and the it- 0.02f
erations are labeled with iteration number. The maximum a pos-

teriori solution is the red line. Both a priori estimates of bedrock 0
topography and basal slipperiness were set to zero. The medium is 3
Newtonian, mean surface slope i$0and mean basal slipperiness

€ =200. Note that the Oth iteration and the MAP virtually coincide
with the true bedrock perturbation in panel (a). Lines in cyan show
the retrieval error estimate defined as the square root of the diagonal  _; o
elements of the a posteriori error covariance maﬁ)riéEq. 16). -6

-0.02f

-0.041

-40 -20 0 20 40 60
X

Fig. 5. Residuals between observations and FE-model predictions
and perturbation amplitudes fairly small (5%). Neverthelessfor (a) surface topographyb) horizontal andc) vertical velocity.
the subsequent iterative optimization significantly improvesThe residuals are defined asl; =d — g(m;) with i the iteration
on the initial estimate, and the final maximum a posteriori so-humber. The dotted lines correspond to the square-roots of the main
lution () obtained after only two iterations is almost identi- diagonal of the data covariance mat@iy determined with the op-
cal to the true value of the basal disturbanos$ (In Fig.4  timalinterpolation method BLUE.
lines in cyan show the retrieval error estimate as given by

Eq._(16). _ ) detail in this initial step. Note that even in the final MAP
Figure 5 shows the residuals between observations antestimate the perturbation is better resolved than thper-

FE-model predictions for, (a) the surface topographty (b)  tyrbation. As we will see below, this is generally the case.
the horizontal velocityAu and, (c) the vertical velocitAw

for iteration number O and 2. The residuals are defined a%.1.2 Linear rheology, linear sliding law, and large am-

Ad; =d — g(m;) where Ad; is the vector of residuals and plitude Gaussian perturbations

g(m;) the forward finite-element model prediction for the

system stater; at iteration numbers=0,2. As can be seen, Figure6 shows the inferred bedrock and basal slipperiness
only the horizontal velocity is poorly predicted by the FE- perturbations for the Gaussian peak distributions as used in
model in the first guess. This is almost definitely because théhe example above, but now for perturbation amplitudes of
slipperiness perturbation, which has a much larger effect or20% instead of 5%. All other parameters are the same as in
horizontal velocity component than the vertical one and neg-previous 5% amplitude example.

ligible effect on surface topography, is not resolved in full
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Fig. 6. Same as Fig4 but for basal perturbation amplitudes of 0.2. o4l — |
Note extensive superimposing of different lines with true bedrock =
topography for iterations 1 in panel(a). < 0.2}
Whereas for 5% amplitude perturbation it would have

been surprising had the method not converged in a few itera- %0 40 20 0 20 20 60
tions, we now have basal amplitudes that can be expected to
be too large to be well retrieved in the first initialization step

(step (i)). In addition, the Exchet derivative of the forward . X .
del used in step (iv) is now considerably less accuratetlons for (a) surface topographyp) horizontal andc) vertical ve-
mo focity. The dotted lines correspond to the square-roots of the main

As expected on the basis of this, the first guess retrieval isdiagonal of the data covariance mat@y determined with the op-
poorer than it was in the 5% amplitude case. The initializa-ima| interpolation method BLUE.

tion step creates a peak in the basal slipperiness at the right

position (« = —10). However, it also produces a negative

peak atr = 10 with a considerable amplitude of more than sion algorithm not only converged but did so in only 7 iter-

-0.1. ations. Further details of this experiment and other small-
Encouragingly, a positive perturbation of smaller ampli- amplitude experiments using bump-shaped sigmoidal func-

tude appears at the same location in the next iteration stefions can be found iRaymond(2007).

(Fig. 7). In the following iterations the retrieval converges

quickly to the true solution. Only two more iterations are 5.1.4 Non-linear ice rheology, linear sliding law, and

needed as compared to the 5% amplitude case, and only a to- large-amplitude Gaussian perturbations

tal of four iterations is needed to compute the MAP estimate.
We now consider non-linear rheology and relative large am-

5.1.3 Non-linear ice rheology, linear sliding law, and plitudes of the basal perturbations of 20%. Both rheological

small-amplitude Gaussian perturbations and finite-amplitude nonlinearities are thus present and affect
the surface response. The cross-over stressrya).37;.

In the following experiment, we introduce a non-linear ice The mean surface slope is now= 0.2° instead ofx = 0.5°.

rheology, i.e.n =3 rather tham =1 in Eq. ). The 5%  Note that the results are not dependent on the exact value of

amplitude experiment with the two Gaussian shaped bedrockhe surface slope.

and slipperiness perturbations described above was repeated. The maximum a posteriori solution, computed using 11

Despite the introduction of non-linear ice rheology the inver- iterations, is shown in Fig8 along with the true basal

Fig. 7. ResidualsAd; between observations and FE-model predic-
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butions for non-linear rheology and perturbation amplitudes of 0.2. 0.5t 2. 4
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disturbances (black lines with circles). As can be seen, the
inverse procedure converged to the correct solution and the _ ‘ ‘ ‘ ‘ ‘

= -40 -20 0 20 40 60

MAP reproduces quite accurately the prescribed basal distur-
bances. The initialization step is somewhat inaccurate (see
Fig. 8) and the amplitudes of the initial guess for thand Fig. 9. Residuals between observations and FE-model predictions
the ¢ perturbations had to be forced to remain smaller thanfor (a) surface topographyb) horizontal andc) vertical velocity.
30% of the respective mean values. In comparison to thelhe dotted lines correspond to the square-roots of the main diagonal
linear-rheology case (experimehtL.? twice as many itera-  ©f the data covariance matrp.

tions are needed for convergence.

Looking at the residual (Fi) shows that the iteration is
in the form of a damped oscillation towards the final solution.
This is seen in both the and thec perturbation fields. After
iteration 3, the oscillating behavior disappears.

X

5.1.6 Non-linear rheology, non-linear sliding law, and
large-amplitude Gaussian perturbations

The following experiment considers amplitudes of the basal
perturbations of 20%. All other parameters are the same as
in the previous experiment. Figu shows the inferred

bedrock and basal slipperiness distributions (red lines). As

In all previous experiments the sliding law was linear (i.e. for non-linear ice rheology, linear sliding law and large-
m =1). In the following, we will consider the inversion amplitude perturbations (Seét1.3 see also FigB), the am-

of synthetic data generated for non-linear ice rheology andPlitudes of the initial guess for the basal slipperiness had to
non-linear sliding law, i.em =3 in Eq. @). The ampli-  be forced to remain smaller than 50% of the respective mean
tude of the basal perturbations is 5%. In this experiment, the/alues (blue lines in Figl0) by imposing a corresponding
mean ice thickness = 1000 m,zo = 10 kPa, and the defor- constrain on the first guess. Interestingly, the form of the
mational surface velocity; = 4.03ma L. The optimization  initial basal slipperiness distribution is similar to the corre-
procedure converged to the correct solution in 10 iterationssponding linear-sliding case (Se6t1.3, but with a larger

Further details of this experiment can be foundiaymond ~ amplitude. The MAP solution is obtained in 14 iterations
(2007. and reproduces quite accurately the prescribed perturbations.

As compared to the corresponding linear-sliding case, only

5.1.5 Non-linear rheology, non-linear sliding law, and
small-amplitude Gaussian perturbations
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Fig. 10. Inferred(a) bed topography an¢b) basal slipperiness dis- —0.
tributions for non-linear ice rheology and non-linear sliding law 0.1H Z-
with basal sliding exponent: = 3 and basal perturbation ampli- — 1a
tudes of 0.2. Lines in cyan show the retrieval error estimate. 0
B
-0.1
3 more iterations are needed for convergence. Fidure —o2k
shows the residuals between observations and FE-model pre
dictions. 03 ~40 —20 0 20 40 60

5.2 Temperature-dependent non-linear ice rheology

Fig. 11. Residuals between observations and FE-model predictions
We now introduce two modifications to the experimental for (a) surface topographyb) horizontal and(c) vertical velocity
setup, 1) the rate factor is no more constant across the thicko" Selected iterations. The dotted lines correspond to the square-
ness, and 2) we use basal perturbations corresponding {gets of the main diagonal of the data covariance malfix
bump-shaped sigmoidal functions instead of the Gaussian
used above. The vertical variation in rate factor correspondgable 2. Values of the model parameters for the bump-shaped sig-
to a linear variation in ice temperature fron25° at the sur-  moidal perturbation experiments. Hegganda, are the amplitudes
face to 0 atthe base. The rate factaris then determined us-  of the bedrock and basal slipperiness perturbations, respectively,
ing the double exponential fit betwedrand temperature de- is the mean surface slope ahdhe mean ice thickness. In both
rived by Smith and Morland1983). The surface-parallel de- e>_<p_eriments, the stress exponent in Glen’s_ ﬂow_S , the basal
formational velocity amounts in this casedp=1.27 m al. sliding exponentz = 1 and the mean basal slipperingss- 40.

The basal disturbances are shown in Big. The parame-
ters are: mean ice thickneks= 300 m, surface slope = 1°,
slip ratioC = 40, cross over stresg = 0 kPa, and 5% bump- 5.2 005 P 300
shaped perturbations inandc (see also Tabl@). Surface 5.3 005 P 300
data errors and a priori estimates are the same as in all previ-
ous experiments.

As can be seen in Figl2 the (linear) initialization step  Fig. 12b) and a total of 14 iterations is needed for conver-
(blue lines) already gives a good approximation to the truegence. In contrast to Fi@, the estimates converge towards
bump-shaped perturbationsérandc. In comparison to the  the solution without oscillations and the residuals (Rig).
retrieval of theb perturbation, the initial estimate is, how-  diminish continuously towards the noise-level.
ever, less accurate and the rate of convergence slower (see

experiment ap,a. o  h(m)
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Fig. 12. Inferred(a) bed topography an¢b) basal slipperiness dis- | 72-
tributions for a temperature dependent ice rheolags: 8, 7o = 0). NN T i
The temperature varies linearly across the ice depth fr@% at —14.
the surface to Dat the bottom. . 00 ]
<
-0.04}
. In Raymond(l2.007)_a corresponding experiment using —0.06
isothermal conditions is described. Comparisons reveals that
about four times as many iterations are needed than for the  -0.08———-—_ : 5 0 15

0
isothermal case to fit the observed data down to the noise x

level. The final MAP model estimates are, however, equally

good showing that only the rate of convergence but not thetig. 13. Residuals between observations and FE-model predictions

quality of the solution suffers when the rate factor varies or (&) surface topographyp) horizontal and(c) vertical velocity
across the depth for selected iterations. The dotted lines correspond to the square-

roots of the main diagonal of the data covariance malgix

5.3 Forward model parameter error

The output of the forward model depends not only on the Let us consider the s_yntheti_c sgrface data generated _for
basal boundary conditions, that is on the form of ¢hend _bump-s_haped perturbations with linear temperature profile
the b perturbations, but also on a number of forward modelincreasing from-25° at the surface to‘at the bottom (see
parameters. There are a total of six such forward model palh€ case for temperature-dependent ice rheology in SEjt.
rameters: the stress exponemendm, mean ice thicknegs, 1€ true deformational velocity amounts to 1.27mand

and mean surface slope the mean slipperiness, and the ~ the corresponding slip ratio i€ = 40. As the temperature
rate factorA. In all experiments described above it has beenProfile is not known, we start by estimating a linear tempera-
assumed that the values of these model parameters are knoi® Profile with surface temperature20” and bottom tem-
with perfect accuracy, whereas in a real situation these paPerature 0. The mean surface deformational veloaity is
rameters are always only known within some error bounds£stimated to be 1.45 nT_é using the Stan'derd temperature-
The general approach to this problem would be to inclugedependent flow Iaw_for ice. The slip ratio is then estimated
the forward model parameters as elements of the system stafi°™ the mean longitudinal surface speede- 35. These
and formally invert for these parameters in a manner identicafStimated values of the forward model characteristics are
to the inversion fob andec. Here we limit the discussion to  Subsequently introduced in the inverse calculations as well
the case where the forward model uses an incorrect estimaf@s in the forward finite-element model.

of englacial temperature.
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solution together with the a posteriori error covariance ma-
trix. The availability of such an error estimate greatly facili-
ties any quantitative analysis of the results. Furthermore, the
method does not require any prior smoothing of input data.
We have shown that the &chet derivative of the forward
model can be adequately approximated by small-amplitude
analytical solutionsGudmundssor2003 for the method to
converge. Our key result is that this remains the case even
‘ ‘ when the problem is strongly non-linear. This result is of
10 20 30 considerable practical value as this approximation greatly en-

a 0.06

—o—true B
0.041 —— MAP for c@=40
—— MAP for c@=35

0.02

-0.02f

-0.041

-0.06 ' ’
-30 -20 -10

0
X hances the numerical efficiency of the method by sparing the
b 006 ; ; ‘ ; ; time-consuming numerical evaluation of model derivatives.
004l jmﬁor a0 = The proposed method is capable of dealing with both non-

— MAP for c9=35 linear finite-amplitude effects and rheological nonlinearities.

~ 002 In all case studied, the inverse procedure converged quickly
> o and to the correct solution and in only a few iterations, with
O ool the exact number of iterations needed being dependent on the
' type and magnitude of non-linear effects.
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