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Abstract—Multiple cladding modes can exist in a small-core 

optical fiber unaccompanied by core modes, yet this fact has not 

been sufficiently explored in literature to date. In this article, we 

study the self-imaging of cladding modes in small core optical 

fiber interferometers. Our analytical and numerical simulations 

and experiments show that unlike the self-imaging of core 

modes, self-imaging of cladding modes only appears at a set of 

discrete positions along the interferometer axis with an equal 

spacing corresponding to some discrete values of fiber core 

radius. This is the first observation of the discrete self-imaging 

effect in multimode waveguides. More strikingly, the self-

imaging period of cladding modes grows exponentially with fiber 

core radius, unlike the quadratic relationship in the case of core 

modes. The findings bring new insights to the mode propagation 

in an optical fiber with a core at micro/nanoscale, which may 

open new avenues for exploring multimode fiber technologies in 

both linear and nonlinear optics. 

 
Index Terms—Optical fiber cladding, Optical fiber devices, 

Optical fiber interference, Self-focusing, Talbot and self-imaging 

effect. 

 

I. INTRODUCTION 

ULTIMODE FIBERS (MMFs) have acquired significant 

popularity in areas such as telecommunications [1], [2], 

microscopic imaging [3], optical manipulation [4], [5], fiber 

lasers and amplifiers [6], [7]. Moreover, MMFs provide new 

degrees of freedom and opportunities in linear and the non-

linear optics, which are not possible to realize with single-

mode fibers (SMFs) [8]-[10]. Most of the research relating to 

single-core step-index MMFs [3], [4], no-core fibers (NCFs) 

[5], graded-index fibers [2], [10] and multicore fibers [1] has 

focused on studies of the core modes, which propagate mainly 

in the core region. In fact, the cladding region of an optical 

fiber can also act as a waveguide and can support multiple 

cladding modes, which can be excited in a standard SMF by 

a fiber Bragg grating (FBGs) or a long-period grating [11]. 

Cladding modes are useful in many applications such as 

sensing and integrated optical devices [12], [13], for example 

in sensing, cladding modes can interact much more readily 

with the surrounding environment. Mathematically the core 

modes and the cladding modes are characterized by different 

functions arising from different solutions of the Bessel 

equation [11], [14], Jm and Km for the core modes and 

functions Jm, Ym and Km for the cladding modes. Therefore, 

the cladding modes may have some distinct characteristics 

compared to core modes. Unfortunately, cladding modes 

excited by FBGs usually coexist alongside with the core 

modes, making it impossible for the cladding modes to be 

studied independently from the core modes [11], [15], [16]. It 

was common belief that there are no principal differences 

between the cladding modes and the core modes in optical 

fiber, except that they have different transverse intensity 

distributions [11].  

The modal distribution in a step-index optical fiber depends 

on the value of the V-parameter, defined as: 

𝑉 =
2𝜋𝑟co

𝜆
√𝑛co

2 − 𝑛cl
2                           (1) 

where rco, nco and ncl are the core radius and refractive indices 

of the fiber core and cladding respectively, and λ is the light 

wavelength. When V < 1, the core modes are cancelled out 

leaving only the cladding modes, and thus create a unique 

opportunity for investigation of pure cladding modes [17]-

[19]. To satisfy the condition V < 1, the rco should reach 

micro/nanoscale, which occurs in a small-core fiber (SCF). In 

an SCF, a very small core surrounded by a much larger silica 

cladding is analogous to optical microfibers and nanofibers 

which in effect possess an air cladding. Microfibers and 

nanofibers can offer numerous favorable properties such as 

strong evanescent fields, tight light confinement and large and 

manageable waveguide dispersion for manipulating light at 

micro/nanoscale, which has shown to be advantageous in a 

wide range of applications such as optical communication, 

sensors, laser and nonlinear optics [20]-[22]. An SCF with a 

core at micro/nanoscale may have different properties than 

that of the commonly used SMF and MMF. However it has 

not been sufficiently explored in literature to date [23], [24]. 

The fundamental mode in both NCF and SMF is a core-

type mode. However in an SCF the fundamental mode is a 

cladding-type mode because the core radius in the SCF is too 

small to support any core modes. Increasing the core radius of 
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the SCF will lead to transfer of the fundamental mode from a 

cladding-type to a core-type as the cut-off condition is met. 

The mode transition phenomenon is usually relevant to many 

techniques such as single-mode operation, mode selective 

excitation and evanescent coupling, which are important to 

the design of fiber lasers, sensors, devices for optical networks 

[25]-[31].  

Self-imaging is a property of multimode waveguides by 

which an input field profile is reproduced as single or multiple 

images at periodic lengths along the propagation direction of 

the waveguide [32]. The self-imaging effect is widely 

employed in design of multimode waveguide devices such as 

power splitters/combiners, Mach-Zehnder 

switches/modulators, high power laser diodes and 

semiconductor optical amplifiers [32]-[40]. Self-imaging is 

also important for studies of the exciting physical phenomena 

recently found in multimode nonlinear fiber optics such as the 

geometric parameter instability [41], spatial beam self-

cleaning [10], multimode solitons and ultrabroadband 

dispersive radiation [42]. Self-imaging in multimode 

waveguides is closely related to the propagation constants of 

the guided modes. Based on the approximate expression for 

the propagation constants of the core modes, the self-imaging 

period (LZ) for an optical fiber interferometer (OFI) utilizing 

a fiber hetero-structure SMF-MMF-SMF (SMS) is a quadratic 

function of the rco of the MMF section, presented by W. S. 

Mohammed et al. in [33] as: 

𝐿Z =
8𝑛co𝑘0𝑟co

2

𝜋
                                  (2)  

where k0 = 2π/λ is the wavenumber. This quadratic 

relationship is also suitable in the case of the OFI consisting 

of the fiber combination SMF-NCF-SMF (SNCS) [34]-[37]. 

Studies of self-imaging in a small-core optical fiber 

interferometer SMF-SCF-SMF (SSCS) may be an effective 

way to investigate the properties of cladding modes. 

In this article, we present a comparative study of the self-

imaging of core modes and cladding modes in SSCS, SNCS 

and SMS structures. The modal characteristics of core modes 

and cladding modes are analyzed. The discrete nature and 

exponential growth behavior of the self-imaging in SSCS are 

predicted independently by both analytical and numerical 

simulations and verified by spectral measurements. The 

discrete nature is analyzed based on the constructive 

interference of adjacent radial modes. The implications of the 

results for linear and nonlinear multimode fiber optics are 

discussed. 

II. METHODS 

Fig. 1 shows three different types of OFIs: SNCS (a), SSCS 

(b) and SMS (c). In an OFI, the fundamental mode of the input 

SMF is at first coupled into the guided modes in the middle 

fiber section and after propagating through the middle fiber 

section light is then re-coupled into the output SMF. The 

guided modes in the middle fiber section can be represented 

as radial LP0n modes for the on-axis excitation, as shown in 

Fig. 1(d). Due to the difference in the propagation constants 

(phase) of LP0n, constructive or destructive modal 

interferences occur along the middle fiber section. At the 

periodic self-imaging positions, the input field is replicated 

along the middle fiber section in both amplitude and phase. 

The structural and material features of the middle fiber section 

can be determined by measuring the interference spectrum 

 

Fig. 1.  (a), (b) and (c) are respectively the SMF-NCF-SMF (SNCS), SMF-
SCF-SMF (SSCS) and SMF-MMF-SMF (SMS) optical fiber interferometers 

(OFIs). (d) The transverse intensity profile of fundamental modes in the input 

and output SMFs, and partial LP0n modes in middle fiber section. (e) 
Experimental setup for the measurement of the multimode interference 

spectra. (f) and (g) are respectively the refractive index variation along a cross 
section radius of an optical fiber placed in the air without (NCF) and with 

(SMF, SCF and MMF) a fiber core.   

using an experimental setup shown in Fig. 1(e). 

The cross-sectional views of the NCF are shown in Fig. 1(f) 

while a general model for the SMF, SCF and MMF is shown 

in Fig. 1(g), where we have assumed that the fibers are placed 

in the air. In the simulations, the rco of the middle fiber section 

of the OFI is the only variable parameter, covering the entire 

radial range from 0 to 62.5 µm. The other parameters for the 

middle fiber section are: rcl = 62.5 µm, nco = 1.451 and ncl = 

1.445 (λ = 1550 nm). The parameters of the input/output SMF 

are rco = 4.15 µm, rcl = 62.5 µm, nco = 1.4504 and ncl = 1.4447. 

The refractive index of the surrounding medium (air) is nair = 

1. It should be noted that both the fibers with rco equal to 0 µm 

and 62.5 µm are NCFs (bare fibers, which in effect possess an 

air cladding). In this work, the refractive index of NCF with 

rco = 0 µm is equal to 1.445 (same as the ncl of SCF, as shown 

in Fig.1(f)), while the one with rco = 62.5 µm is equal to 1.451 

(the nco of SCF).  

The simulations were carried out by both an analytical and 

a numerical method, including the effective refractive index 

(neff), the transverse intensity profile (TIP), the longitudinal 

intensity distribution (LID), the on-axis intensity, and the 

transmission spectra. In the analytical method, a guided-mode 

propagation analysis (MPA) was employed, with the field 

functions and the eigenvalue equations for three-layer step-

index optical fibers (shown in Fig.1(g)). In the numerical 

method, a commercial software package BeamPROP (Rsoft, 

Pasadena, CA, USA) based on a 3-dimensional finite 

difference beam propagating method (FD-BPM) was used. 

All the simulations were performed in the scalar mode, under 

the assumption that the linear polarization (LP) 

approximation is valid for the fiber due to a relatively small 

difference between the core and cladding nco (1.451) and ncl 



(1.445). The LP approximation is also suitable for the NCF 

(SNCS) due to the mode fields far from cutoff [35], although 

the difference between ncl and nair is relatively large. In the 

BPM simulation of the neff, TIP, LID and on-axis intensity, 

the mesh size is 0.05 µm along the X and Y directions and 1 

µm along the Z direction. In the BPM simulation of 

transmission spectra, the mesh size is 0.2 µm along the X and 

Y direction and 4 µm along the Z direction. 

In the experiments, the broadband light source (Thorlabs 

S5FC1005s, 1030 nm-1660 nm) and the optical spectrum 

analyser (OSA, Agilent 86142B) were used. The middle fiber 

section in the OFIs were cleaved and measured manually, the 

measurement error of the length was controlled to within 0.03 

mm. The OFIs were fabricated by automated fusion splicing. 

III. RESULTS 

A. The LP0n modes in OFIs  

As mentioned in the previous section, the guided modes in 

the middle fiber section of OFIs can be represented as radial 

modes LP0n for the on-axis excitation. Since both the cladding 

modes and core modes are studied in this work, the field 

profiles of LP0n in a three-layer step-index optical fiber are 

used and written as [43], [19]: 

𝐸0n(𝑟) =

{
 
 
 

 
 
 𝐴0𝐽0 (𝑢

𝑟

𝑟co
) , 𝑟 ≤ 𝑟co              

𝐴1𝐽0 (𝑢
′
𝑟

𝑟cl
) + 𝐴2𝑌0 (𝑢

′
𝑟

𝑟cl
),         

                  𝑟co ≤ 𝑟 ≤ 𝑟cl

𝐴3𝐾0 (𝑣
𝑟

𝑟cl
) , 𝑟 ≥ 𝑟cl             

if  𝑛eff < 𝑛cl 

 (3) 

And as 

𝐸0n(𝑟) =

{
 
 
 

 
 
 𝐴0

′ 𝐽0 (𝑢
𝑟

𝑟co
) , 𝑟 ≤ 𝑟co             

𝐴1
′ 𝐼0 (𝑣

′
𝑟

𝑟cl
) + 𝐴2

′𝐾0 (𝑣
′
𝑟

𝑟cl
),     

                      𝑟co ≤ 𝑟 ≤ 𝑟cl

𝐴3
′𝐾0 (𝑣

𝑟

𝑟cl
) ,      𝑟 ≥ 𝑟cl            

  if  𝑛eff > 𝑛cl 

(4) 

where J0, Y0, I0 and K0 are zero-order usual Bessel and 

modified Bessel functions, 𝐴0 ,  𝐴0
′ , are the normalization 

coefficients and 𝑢, 𝑢′, 𝑣, 𝑣′ , 𝐴1, 𝐴1
′ , 𝐴2, 𝐴2

′ , 𝐴3 and 𝐴3
′   are 

defined as follows: 

𝑢 = 𝑎[𝑘0
2𝑛co

2 − (𝑛eff𝑘0)
2]1 2⁄                     (5-1)                                               

𝑢′ = 𝑏[𝑘0
2𝑛cl

2 − (𝑛eff𝑘0)
2]1 2⁄                      (5-2)                                                               

𝑣′ = 𝑏[(𝑛eff𝑘0)
2−𝑘0

2𝑛cl
2 ]1 2⁄                       (5-3)                                               

𝑣 = 𝑏[(𝑛eff𝑘0)
2−𝑘0

2𝑛air
2 ]1 2⁄  .                   (5-4)                                                 

 

𝐴1 =
𝜋𝐴0

2
[𝑢𝐽1(𝑢)𝑌0(𝑢

′𝑐) − 𝑢′𝑐𝐽0(𝑢)𝑌1(𝑢
′𝑐)]         (6-1)                                                  

𝐴2 =
𝜋𝐴0

2
[𝑢′𝑐𝐽1(𝑢

′𝑐)𝐽0(𝑢) − 𝑢𝐽1(𝑢)𝐽0(𝑢
′𝑐)]          (6-2)                                             

𝐴3 =
1

𝐾0(𝑣)
[𝐴1𝐽0(𝑢

′) + 𝐴2𝑌0(𝑢
′)]                            (6-3)                                    

 

𝐴1
′ = 𝐴0

′ [𝑣′𝑐𝐽0(𝑢)𝐾1(𝑣
′𝑐) − 𝑢𝐽1(𝑢)𝐾0(𝑣

′𝑐)]         (7-1)                                                 

   
Fig. 2.  The effective refractive index of the modes LP0n as a function of fiber 

core radius. The solid curves are results calculated by the graphical method, 
while the scattered circles are results calculated by the BPM. The inset shows 

that the cutoff of the LP01 mode changing from cladding-type to core-type is 

rco = 1.30 µm (graphical method) and rco = 1.35 µm (BPM). 

𝐴2
′ = 𝐴0

′ [𝑣′𝑐𝐽0(𝑢)𝐼1(𝑣
′𝑐) + 𝑢𝐽1(𝑢)𝐼0(𝑣

′𝑐)]            (7-2) 

𝐴3
′ =

1

𝐾0(𝑣)
[𝐴1

′ 𝐼0(𝑣
′) + 𝐴2

′𝐾0(𝑣
′)]                            (7-3) 

The neff(LP0n) is the solution of the eigenvalue equations as 

below [43]: 

[𝐽0(𝑢)−𝑌̂0(𝑢
′𝑐)][𝐾̂0(𝑣)−𝐽0(𝑢

′)]

[𝐽0(𝑢)−𝐽0(𝑢
′𝑐)][𝐾̂0(𝑣)−𝑌̂0(𝑢

′)]
=

𝐽1(𝑢
′𝑐)𝑌1(𝑢

′)

𝐽1(𝑢
′)𝑌1(𝑢

′𝑐)
      if  𝑛eff < 𝑛cl                                                                                          

(8) 

and 

 
[𝐽0(𝑢)−𝐾̂0(𝑣

′𝑐)][𝐾̂0(𝑣)+𝐼0(𝑣
′)]

[𝐽0(𝑢)+𝐼0(𝑣
′𝑐)][𝐾̂0(𝑣)−𝐾̂0(𝑣

′)]
=

𝐼1(𝑣
′𝑐)𝐾1(𝑣

′)

𝐼1(𝑣
′)𝐾1(𝑣

′𝑐)
     if  𝑛eff > 𝑛cl                                  

(9) 

where  

𝐹̂0(𝑥) =
𝐹0(𝑥)

𝑥𝐹1(𝑥)
                                (10)                               

(F representing the Bessel functions J, Y, I, or K) and  

𝑐 =
𝑟co

𝑟cl
                                    (11)                       

Equations (8) and (9) were solved by the graphical method 

and the results of the neff for the first 10 LP0n modes are shown 

as a function of rco in Fig. 2 (solid curves). The neff(LP0n) (n = 

1, 2, …, 8) calculated by BPM are also shown in Fig. 2 

(scattered circles). Due to the setting limits of mode number 

in the commercial software, only 8 modes were found with 

BPM. Clearly, the results from the analytical method and the 

BPM are consistent with each other. 

Fig. 2 is divided into two parts by the red dash horizontal 

lines located at nco and ncl. The region with ncl < neff < nco 

corresponds to the fiber core modes while the region with neff 

< ncl (rco ≠ 0 µm) is corresponding to the fiber cladding modes. 

All the modes in NCFs with rco = 0 µm or rco = 62.5 µm are 



 

Fig. 3.  The field distribution of the modes LP01 (a1-a8), LP02 (b1-b8), and LP03 (a1-c8) for several different rco as indicated, calculated by the BPM. The modes 

a1, b1 c1, a8, b8 and c8 in the no-core fibers are core-type modes; the a4-a7, b7 are also core-type modes for neff > 1.445; the rest are cladding-type modes with 

neff < 1.445. (The core-type modes are indicated by the red frames)

classified as core-type modes, since no guided mode can exist 

in an infinite air cladding region. The difference in their 

values of neff is due to the different refractive indices of the 

bare fiber, as mentioned in the section II. When a micro/nano- 

core exists in the central region of the fiber, the fiber is SCF. 

The SCF studied in this work has a core radius smaller than 

the cut-off radius of LP01, where all the guided modes LP0n 

are cladding-type mode due to neff < ncl. As the rco increases, 

the LP0n modes change from cladding-type modes to core-

type modes following the order from low to high. The 

behavior of curves in the region neff < ncl shows a feature of 

the modal reorganization (when one cladding mode moves 

into the core region, the next mode will take its original 

position), which is similar to the modal re-organization in 

overlay-coated long-period gratings and SMS [25], [26].  

The cutoff of LP01 calculated by the BPM is found at about 

rco = 1.35 µm as seen in the inset graph of Fig. 2. Which is 

slightly larger than the result (rco = 1.30 µm) calculated by the 

graphical method. The difference between the BPM results 

and the results from the graphical method may be attributed 

to the mesh size used in the former method. The mesh size in 

the numerical simulation may affect the accuracy of the 

results. In our work, we have tried several different mesh sizes 

and finally chose the best one by balancing simulation time 

with accuracy. It should be noted that the mesh size in the 

simulation here is the same as that in the simulation of on-axis 

intensity, from which the self-imaging period is decided as 

discussed later. The V-parameter is smaller than 0.7214 for 

the optical fibers with rco < 1.35 µm. 

Fig. 3 shows the field distribution of the modes LP01, LP02, 

and LP03 for several core radii, calculated by the BPM. The 

core-type modes are indicated by red frames, while the rest 

are cladding-type modes. The field profiles in Fig. 3 show the 

characteristics, as demonstrated in [27], that the energy of 

core modes is concentrated mainly inside the fiber core while 

the part distributed inside the cladding region decreases 

exponentially with increasing distance from the core 

boundary. The energy in the cladding modes can extend 

throughout the core and cladding regions. All the modes in 

NCF indicated by rco = 0 µm are core-type modes as shown in 

Figs. 3(a1), 3(b1) and 3(c1), where the energy is extended 

throughout the whole fiber cross section. As the rco increases 

from 0 to 1.1 µm, the neff of modes LP01, LP02 and LP03 

increase while their central intensity (bright circle) area 

reduces. The LP01 becomes a core-type mode beyond the 

value of rco around 1.3 µm. As shown in Figs. 3(a4)-3(a7), the 

energy of LP01 is concentrated mainly inside the fiber core. 

The LP02 changes into a core-type mode as soon as the core 

radius becomes large enough. Fig. 3(b7) shows the field 

distribution of core-type LP02 mode with rco = 13 µm, where 

the energy distribution area including both the central circle 

and the outer ring is concentrated mainly inside the fiber core. 

When rco grows up to 62.5 µm, the fiber becomes an NCF 

again, for which all the modes belong to core-type modes 

similar to NCF with rco = 0 µm, shown in Fig. 3(a8), 3(b8) 

and 3(c8).  

B. The self-imaging periods 

The field of the fundamental mode of the input SMF is 

denoted by 𝐸s(𝑟). The excited optical field in the middle fiber 

section of OFIs can be represented by the superposition of 

𝐸0n(LP0n) and shown as: 

𝐸s(𝑟, 0) = ∑ 𝑐n𝐸0n(𝑟)
N
n=1                      (12) 

where 𝐸0n is expressed by (3) and (4), and 𝑐n is the coupling 

coefficient between the fundamental mode of SMF and the 

LP0n in the middle fiber section, which is calculated as 

follows: 

𝑐n = √𝜂n                                  (13) 

𝜂n =
|∫ 𝐸s(𝑟)𝐸0n(𝑟)𝑟𝑑𝑟
∞

0
|
2

∫ |𝐸s(𝑟)|
2𝑟𝑑𝑟

∞

0 ∫ |𝐸0n(𝑟)|
2𝑟𝑑𝑟

∞

0

              (14) 



 

Fig. 4.  Analytical results: (a), (b) and (e) are the transverse intensity profile (TIP), the longitudinal intensity distribution (LID) and the on-axis intensity along 
the propagation distance inside the NCF of SNCS (rco =0 µm). (f), (g) and (h) are the on-axis intensities inside the SCF of SSCS with the rco equal to 0.35 µm, 

0.45 µm and 0.55 µm. (d), (c) and (i) are the simulated TIPs, the LIDs and the on-axis intensities inside the SCF of SSCS with the rco equal to 0.71 µm. 

The field propagating along the middle fiber section can be 

written as follows: 

𝐸(𝑟, 𝑧) = ∑ 𝑐n𝐸0n(𝑟)
N
n=1 exp (𝑗𝛽0nz)         (15) 

where 𝛽0n = 𝑘0𝑛eff(LP0n)  is the propagation constant of 

LP0n. The starting point along the Z-axis is at the splice 

between the input SMF and the middle fiber section. The on-

axis intensity (normalized to the input power) along the 

propagation distance ‘Z’ inside the middle fiber section can 

be calculated as follows: 

𝐼(𝑧) =
|∫ 𝐸s(𝑟,0)𝐸(𝑟,z)𝑟𝑑𝑟
∞

0
|
2

∫ |𝐸s(𝑟,0)|
2𝑟𝑑𝑟

∞

0 ∫ |𝐸(𝑟,z)|2𝑟𝑑𝑟
∞

0

.                (16) 

Figs. 4(a), (b) and (e) show respectively the TIP of the 

optical field in XY plane, the LID in XZ plane and the on-axis 

intensity along the propagation distance in the middle fiber 

section (NCF) of the SNCS. The light field is focused at the 

center of the TIP at the position Z = 4LS (58.64 mm), 

coinciding with the profile of the input field (the fundamental 

mode of the input SMF) at the position Z = 0, as shown in Fig. 

4(a). The on-axis intensity peak at the position Z = 4LS 

(indicated by the black diamond symbols in Fig. 4(e)) is equal 

to 0.98 of the input power, which is clearly larger than those 

of the neighboring maxima, corresponding to bright points at 

the same position in Figs. 4(a) and 4(b). It should be noted 

that achieving 100% perfect self-imaging (the normalized 

power is equal to 1) is impossible due to phase mismatches 

[36]. These features are consistent with the results in [34], 

[35], indicating that an explicit self-imaging of the input field 

is formed and the self-imaging period LZ for SNCS is equal to 

58.64 mm. The result of LZ = 58.64 mm is in reasonable 

agreement with the result of LZ = 58.24 mm calculated by (2). 

One self-imaging period of the SNCS can be divided into 

four segments with equal lengths of LS (= LZ/4). Unlike the 

light field focused at the center of the TIP (point-like image) 

at the self-imaging position (Z = 4LZ) shown in Fig. 4(a), light 

fields at positions Z = 1LS, 2LS and 3LS are mainly focused 

within a ring area with a certain width, according to the results 

of lateral field profiles calculated analytically in [34].  

Similarly, it can be deduced from Figs. 4(c), 4(d) and 4(i) 

that the other explicit self-imaging is formed at Z = 5LS (73.12 

mm) in the case of SSCS with rco = 0.71 µm. For the 

intermediate transition state where 0 µm < rco < 0.71 µm as 

shown in Figs. 4(f)-4(h), no self-imaging point exists. The 

decision was based on the following considerations. As the rco 

increases above 0 µm, the intensity of the peak at the position 

Z = 4LS (indicated by the black diamond symbols) decreases 

monotonically while the value of the peak at Z = 5LS 

(indicated by the black dot symbols) increases monotonically, 

as shown in Figs. 4(e)-4(i). When the critical point (rco = 0.71 

µm) is reached, the intensity value at Z = 5LS achieves its 

maximum while the value at Z = 4LS decreases as shown in 

Fig. 4(i). For clarity, the intensities of the peak around the 

positions Z = 4LS and Z = 5LS as shown in Figs. 4(e)-4(i) are 

respectively redrawn in Figs. 5(a) and 5(b) as a function of rco. 

The rco of the top position in Fig. 5(b) is corresponding to the 

self-imaging radius rco = 0.71 µm. Based on the monotonic 

and deterministic evolution of the on-axis intensity, it can be 

deduced that the explicit self-imaging is only formed at a 

critical core radius such as rco = 0.71 µm. In other word, the 

explicit self-imaging in the SSCS only occurs at some discrete 

values of the core radius of the SCF. 

 As the rco increases, the LZ will increase. Another set of 

values for rco allowing one to achieve explicit self-imaging are 

shown in Fig. 6, where the LZ grows up to 6LS, 7LS, 8LS, 9LS 

and 10LS for rco equal to 0.91 µm (Fig. 6(a)), 1.02 µm (Fig. 

6(b)), 1.11 µm (Fig. 6(c)), 1.18 µm (Fig. 6(d)) and 1.23 µm 



  

Fig. 5.  Analytical results: (a)-(h) shows respectively the intensity ‘I’ of peak 

around the positions Z = nLS, n = 4, 5, …,11 as a function of rco. The peak 

points in Figs. 5(a)-5(g) correspond to the self-imaging points as shown in 

Figs. 4 (e), 4(i) and 6(a)-6(e). 

 (Fig. 6(e)). These self-imaging points respectively 

correspond to the peak points for the curves shown in Figs. 

5(c), 5(d), 5(e), 5(f) and 5(g). Beyond the value of rco = 1.23 

µm, the intensity of the peak around Z = 10LS decreases as the 

rco increases, as shown in Fig. 5(g). The intensity of the peak 

around the position Z = 11LS shown in Fig.5(h) is always 

smaller than the value at position Z = 10LS in Fig. 5(g). These 

features indicate that there is no explicit self-imaging at the 

position Z = 11LS.  

The discrete self-imaging phenomenon was also confirmed 

by the BPM. The results are shown in Fig. 7, where the LZ 

grows as 4LS, 5LS, 6LS, 7LS, 8LS, 9LS and up to 10LS for rco 

equal to 0 µm (SNCS, Fig. 7(a)), 0.73 µm (Fig. 7(b)), 0.92 µm 

(Fig. 7(c)), 1.04 µm (Fig. 7(d)), 1.12 µm (Fig. 7(e)), 1.20 µm 

(Fig. 7(f)) and 1.27 µm (Fig. 7(g)). Both the analytical and the 

BPM results indicate that the self-imaging period of the SSCS 

is discrete and is closely related to that of the SNCS (rco = 0 

µm): LZ(SSCS) = (1+q/4)LZ(SNCS) = (4+q)LS, where “q” is 

a positive integer and 1 ≤ q ≤ 6. 

The values of the discrete self-imaging periods calculated 

by both the analytical method and BPM were extracted and 

fitted with an exponential function, as shown in Fig. 8. The 

fitting function can be written as:  

      𝐿Z = 𝐿Z0 + B1exp (
𝑟co

t1
)                       (17) 

For the case of analytical method, the R-squared value is 

0.99976; B1 = 1.53093 ± 0.10829; t1 = 0.30396 ± 0.00511; 

 

Fig. 6.  Analytical results: the on-axis intensities inside the SCF of SSCS with 

the rco equal to (a) 0.91 µm, (b) 1.02 µm, (c) 1.11 µm, (d) 1.18 µm and (e) 

1.23 µm.  

 

Fig. 7.  BPM results: the on-axis intensities inside (a) the NCF of SNCS, the 

SCF of SSCS with the rco equal to (b) 0.73 µm, (c) 0.92 µm, (d) 1.04 µm, (e) 

1.12 µm, (f) 1.20 µm and (g) 1.27 µm.  

LZ0= 57.15441 ± 0.54124 mm. For the case using the BPM, 

the R-squared value is 0.99804; B1 = 2.17781 ± 0.40074; 



  

Fig. 8.  The discrete and exponential growth of the self-imaging period LZ for 

the SNCS (rco = 0 µm) and the SSCS versus rco, calculated both by the 

analytical method and BPM. 

t1 = 0.3404 ± 0.01606; LZ0 = 55.92114 ± 1.62183 mm. In both 

cases, rco is a set of discrete values. The LZ0 in both cases is 

close to the LZ of SNCS (rco = 0 µm). The results calculated 

independently by two different methods are highly consistent, 

although there is a slight difference between the results at the 

relatively large rco. The difference may be due to the mesh 

size, which affects the accuracy of the numerical results as 

discussed in the part A. 

C. Exploration of the discrete characteristics  

The light field in the middle fiber section of OFI is a 

superposition of all the guided modes LP0n. At a self-imaging 

position, a constructive interference will occur among all of 

them. Surprisingly, the self-imaging period LZ in SMS is 

closely related to the constructive interference length Ln of 

two adjacent guided modes [33]. Ln is calculated for two 

adjacent modes (LP0n-1 and LP0n) when their phase difference 

equals 2π: 

𝐿n =
2𝜋

(𝛽n−1−𝛽n)
=

𝜆

[𝑛
eff
(𝐿𝑃0n−1)−𝑛eff

(𝐿𝑃0n)]
, n = 2, 3, . .. (18) 

These two adjacent guided modes will also experience 

constructive interference at the position qLn (q = 1, 2, … is an 

integer number). It was stated that the LZ is an integer multiple 

of Lp: LZ = (4p-3)Lp, where the modal number p is related to 

the mode LP0p holding the highest coupling efficiency [33]. 

However, the LZ may be not restricted to the mode with the 

highest coupling efficiency. Using Ln of any two adjacent 

modes, the corresponding length LZn is calculated as:  

𝐿
Zn
= (4n − 3)𝐿n, n = 2, 3, . ..                (19) 

Applying the neff calculated by the graphical method, the 

results for LZn are shown in Fig. 9(a), with a comparison to LZ 

calculated by (2) (indicated by the diamonds). It is interesting 

that the part of the curves below the red dashed line overlaps 

with the LZ calculated by (2). The overlapped part as redrawn 

  

Fig. 9.  (a) The values of LZn calculated by (19): LZn = (4n-3)Ln with the 

neff(LP0n) determined from the graphical results in Fig.2. The main graph of 

(b) shows the parts extracted from (a), related to the pure core modes. The 

inset of (b) shows the part extracted from (a), related to the cladding modes 

of SCF with 0 µm < rco < 1.3 µm and the core modes of NCF with rco = 0 µm. 

in Fig. 9(b) corresponds to the pure core modes (the range of 

ncl < neff < nco in Fig. 2). The equation (2) is derived from the 

2-layer model, where only the core modes are considered. The 

results indicate that the superposition of the pure core modes 

obeys the quadratic relationship between LZ and rco shown in 

(2) and the rule of 𝐿Zn = (4n − 3)𝐿n. 

On the other hand, those parts of the curves in Fig. 9(a) that 

deviate from the LZ represented by (2) correspond to the 

cladding modes. The curves above the red dash line are 

separated from each other and these phenomena may be due 

to the mode transition and the modal re-organization shown 

in Fig. 2. The part of Fig. 9(a) for rco < 1.3 µm is shown in the 

inset of Fig. 9(b), where the lines of LZn (n = 2, 3, …, 10) 

become closer as the rco decreases. At the point (rco = 0 µm), 

the lines converge to the value of 𝐿Z = (4n − 3)𝐿n, the self-

imaging period of NCF. The results indicate that the cladding 

modes in SCF with the micro/nano- core (0 µm < rco < 1.3 µm) 

do not obey the quadratic relationship between the self-

imaging period of   the core modes and the core radius. 

The derivation of (2) and (19) is based on an approximate 

expression for the neff of the core modes related to the roots of 

equation 𝐽0 = 0  [33]. Although there were some 

improvements, the simulation of SMS and SNCS in most 

publications are still based on approximate expressions for the 

core modes [35], [37]. To the best of our knowledge, there has 

been no (approximate) analytical expression for the cladding 

modes in optical fiber to date. The reason may be due to the 

complexity of the field function (3) and the eigenvalue 

equation (8) of cladding modes, which is closely related to the 



function Y0 in addition to J0 and K0.  

Although there has been no straightforward analytical 

expression for neff of cladding modes until now, some 

indications can be obtained from our simulation results. The 

arguments Dn (LZ = DnLn), between the value of self-imaging 

period LZ from analytical results in Fig. 8 and the Ln calculated 

by (18), are shown in Table I. Clearly, Dn is close to an integer 

‘round (Dn)’, where the degree of deviation: 

|Dn − 𝑟𝑜𝑢𝑛𝑑(Dn)| Dn⁄ < 1%. The degree of deviation (the 

difference between Dn and ‘round (Dn)’) may be attributed to 

two reasons: one is the errors in the calculations of the 

effective index by the graphical method; the other is the phase 

mismatches among the excited modes, which always exist 

although they are quite small [36]. The 100% perfect self-

imaging is impossible due to phase mismatches [36], 

therefore 100% integer may be also impossible. 

From Table II, it is easy to obtain the expressions similar to 

(19), as follows: 

 𝐿Zn = (5n − 4)𝐿n, n = 2,3, . . . ,10, 𝑓𝑜𝑟 𝐿Z = 5𝐿S     (20) 

𝐿
Zn
= (6n − 5)𝐿n, n = 2,3, . . . ,10, 𝑓𝑜𝑟 𝐿Z = 6𝐿S     (21) 

𝐿
Zn
= (7n − 6)𝐿n, n = 2,3, . . . ,10, 𝑓𝑜𝑟 𝐿Z = 7𝐿S     (22) 

𝐿
Zn
= (8n − 7)𝐿n, n = 2,3, . . . ,10, 𝑓𝑜𝑟 𝐿Z = 8𝐿S     (23) 

 𝐿
Zn
= (9n − 8)𝐿n, n = 2,3, . . . ,10, 𝑓𝑜𝑟 𝐿Z = 9𝐿S     (24) 

𝐿
Zn
= (10n − 9)𝐿n, n = 2,3, . . . ,10, 𝑓𝑜𝑟 𝐿Z = 10𝐿S (25) 

We plotted together groups of lines calculated by (19)-(25) in 

Fig. 10. As with the group of lines converged at the position 

(rco = 0 µm, LZ = 58.64 mm) characterized by (4n-3)Ln, each 

of other groups also has one intersect point indicated by a 

violet triangle symbol. The violet triangle symbols and the 

violet dashed line are respectively the calculated and the 

exponential fitting values of the self-imaging points (radius 

and period) shown in the Fig. 8.  

The difference between any two adjacent LZn among (19)-

(25) is equal to: 

∆𝐿Zn = (𝑛 − 1)𝐿n, n = 2,3, … ,10.                   (26) 

For n = 2, ∆𝐿Zn = 𝐿2, which is one constructive interference 

length of LP01 and LP02. L2 is longer than Ln (n > 2), deduced 

from (18). As shown in (19)-(25) and Table II, the self- 

imaging period grows as 5L2, 6L2, ..., and up to11L2. 

 

Fig. 10.  The values of LZn calculated by (19)-(25). The violet triangle 

symbols and the violet dashed line are respectively the calculated and the 

exponential fitting values of self-imaging (radius and period) as same as the 

Fig. 8. The color of lines LZn with the same mode number ‘n’ is insistent with 

that in Fig. 9. 

Therefore, it can be deduced that L2 is the shortest distance 

change possible if self-imaging is to occur. Larger distance 

changes of the self-imaging period must be an integer multiple 

of L2. The results indicate that there is no other self-imaging 

position between any two adjacent periods indicated by (19)-

(25). For example, there is no self-imaging whose period is 

between LZ = 4LS = 5L2 and LZ = 5LS = 6L2, from (19) and 

(20). Therefore, the self-imaging of pure cladding modes in 

SSCS is discrete. 

D. Experiments 

To verify the above results, simulations and the 

experimental measurements of the transmission spectra were 

carried out for both the SSCS and the SNCS structures. The 

BPM were used in this part for its convenience and  

TABLE I 
THE ARGUMENTS BETWEEN THE DISCRETE SELF-IMAGING PERIODS AND THE CONSTRUCTIVE INTERFERENCE LENGTHS 

rco (µm) LZ (mm) D2 = LZ / L2 D3 = LZ / L3 D4 = LZ / L4 D5 = LZ / L5 D6 = LZ / L6 D7 = LZ / L7 D8 = LZ / L8 D9 = LZ / L9 D10 = LZ / L10 

0 (SNCS) 58.636 5.00941 8.97887 12.99934 16.98053 20.99547 25.00504 29.02002 33.04142 37.06998 

0.71  73.116 6.03221 10.99033 15.9949 20.99286 25.99331 31.00182 36.0065 41.03591 46.04113 

0.91 87.562 7.0293 12.98382 19.0031 24.99515 30.99758 36.99459 43.00676 49.0406 55.05314 

1.02 101.953 8.04557 14.97467 22.00988 29.00472 35.99829 42.99714 50.00864 57.03445 64.05008 

1.11 116.331 9.01812 16.97317 25.01795 32.99923 40.99165 48.99595 57.00807 65.01083 73.03617 

1.18 130.702 10.03411 18.95392 28.0204 37.01572 45.9954 54.98189 63.98647 73.01578 82.03356 

1.23 145.141 11.08954 20.92305 31.00198 41.01084 50.99464 61.00377 71.01788 81.03748 91.07236 

TABLE II 

THE INTEGER ARGUMENTS BETWEEN THE DISCRETE SELF-IMAGING PERIODS AND THE CONSTRUCTIVE INTERFERENCE LENGTHS 

rco (µm) Round (D2) Round (D3) Round (D4) Round (D5) Round (D6) Round (D7) Round (D8) Round (D9) Round (D10) Round (Dn) 

0 (SNCS) 5 9 13 17 21 25 29 33 37 (4n-3) 
0.71 6 11 16 21 26 31 36 41 46 (5n-4) 
0.91 7 13 19 25 31 37 43 49 55 (6n-5) 
1.02 8 15 22 29 36 43 50 57 64 (7n-6) 
1.11 9 17 25 33 41 49 57 65 73 (8n-7) 
1.18 10 19 28 37 46 55 64 73 82 (9n-8) 
1.23 11 21 31 41 51 61 71 81 91 (10n-9) 



 

Fig.11.  (a) and (b) are the on-axis intensities inside the middle fiber section of SNCS (rco = 0 µm) and SSCS (rco = 1.1 µm). (c0)-(c8) and (d0)-(d8) show the 

TIPs in the middle fiber section of the SNCS and SSCS samples at the positions Z = nLS (n = 1, 2, …, 8), where the light wavelength was set at 1550 nm. (e1)-

(e8) and (f1)-(f8) show the simulated and measured transmission spectra of the samples, where the lengths of the middle fiber section are equal to the integer 

multiples of LS: 1LS, 2LS, …, 8LS. 

straightforward in the simulation of the spectrum. In the 

experiments, fiber type SMF28TM (from Corning) was used as 

the SMF, fiber type FG125LA (from Thorlabs) was used as 

the NCF (rco = 0 µm) and fiber type SM450 (Thorlabs) was 

used as the SCF. The rco of SM450 is about 1.1 µm, which is 

close to the discrete value of self-imaging radius rco = 1.12 µm 

(in BPM results), of which the self-imaging period is LZ = 8LS 

as shown in Fig. 7(e). The remaining fiber parameters for the 

SMF28TM, the FG125LA and the SM450 are same as those 

used in simulations, shown in section II. Figs. 11(a) and 11(b) 

are the on-axis intensity along the propagation distance inside 

the middle fiber section of the SNCS (rco = 0 µm) and SSCS 

(rco = 1.1 µm), respectively. The LZ of the SSCS (rco = 1.1 µm) 

is equal to 116.66 mm (8LS, LS = 14.58 mm), which is nearly 

double the LZ for the SNCS equal to 58.76 mm (4LS, LS = 

14.69 mm). 16 samples were studied in two groups for the 

SNCS/SSCS with the lengths of the middle fiber sections 

(NCF/SCF) equal to the integer multiples of LS: 1LS, 2LS, …, 

8LS. The TIPs of the middle fiber section were also calculated 

for the SNCS/SSCS at the positions L = nLS (n = 1, 2, …, 8), 

where the light wavelength was set at 1550 nm, as shown in 

the Figs. 11(c0)-11(c8) and 11(d0)-11(d8). The transmission 

spectra were simulated (red lines) and measured (black lines 

and circles) in the wavelength range from 1450 nm to 1650 

nm, as shown in Figs. 11(e1)-11(e8) and 11(f1)-11(f8). 

The presence of self-imaging means that the input field 



profile is reproduced at periodic lengths along the middle fiber 

section of an OFI. For the SNCS, the reproduced input profile 

(single like image) can be found in Figs. 11(c4) and 11(c8) for 

the lengths L = 4LS and L = 8LS, respectively, corresponding 

to the transmission peak appearing around the 1550 nm as 

shown in Figs. 11(e4) and 11(e8). At the other lengths L = LS, 

2LS, 3LS, 5LS, 6LS and 7LS, a single ring-like image is 

observed as shown in Figs. 11(c1)-11(c3) and 11(c5)-11(c7), 

corresponding to the transmission notch appearing around the 

1550 nm in Figs. 11(e1)-11(e3) and 11(e5)-11(e7). The 

transmission peak and the notch result from the constructive 

and destructive interference of the LP0n modes. There are 

more dips and peaks in the transmission spectra along the 

second periodic interval in Figs. 11(e5)-11(e8) compared to 

the first periodic interval in Figs. 11(e1)-11(e4), due to more 

dense interference among the guided modes along the longer 

length of the NCF. Similarly, from the analysis of Figs. 11(b), 

11(d0)-11(d8) and 11(f1)-11(f8), we can see that self-imaging 

appears at about L = 8LS for the SSCS (rco = 1.1 µm). The 

experimental results of the transmission spectra in Figs. 

11(e1)-11(e8) and 11(f1)-11(f8) match well with the 

simulation results. 

IV. DISCUSSION 

Our results show two prime characteristics of self-imaging 

in a SSCS structure: one is its discrete nature, the other is its 

exponential growth with the fiber core radius. The explicit 

self-imaging occurs only at the distinct sites along the 

propagation direction, for only a specific set of rco values, 

hence it is discrete. The LZ in an SSCS is an exponential 

function of the (discrete) values of rco, while in SMS and 

SNCS structures the LZ is a quadratic function of rco. 

Nevertheless, the self-imaging of the SSCS retains some 

features similar to those for the SNCS. Firstly, the LS is 

approximately the same in both the SNCS and SSCS 

structures. Secondly, the lengths for the generation of the 

single ring-like images or point-like images are still integer 

multiples of LS. Moreover, there exists a relationship: LZ 

(SSCS) = (1+q/4)LZ(SNCS). It can be deduced that small 

changes in LS in both SNCS and SSCS are associated with the 

function J0 while the discrete growth behavior of LZ solely in 

the SSCS is attributed to the additional function Y0. The neff of 

the core modes, obtained by solving equation J0 = 0, define 

the general characteristics of the self-imaging in SMS and 

SNCS: the relationship between LZ and LS (LZ = 4LS) is 

satisfied for all the continuous core radii. The modulation 

between J0 and Y0 in the description of the cladding modes in 

SSCS not only reflects the observed modal reorganization 

behavior, but also results in a more complex mode 

superposition compared to that of core modes.  

The discrete self-imaging effect in an SSCS can be 

regarded as the first discrete self-imaging phenomenon found 

in the multimode waveguide. As a counterpart in one-

dimensional waveguide arrays, the discrete Talbot self-

imaging effect was first found in 2005 by Robert Iwanow et 

al., who stated that the self-imaging of the input field pattern 

is only possible for a specific set of periodicities [44]. The 

waveguide arrays consisted of a large number (infinite in 

principle) of periodic evanescently coupled single-mode 

channel waveguides, which is a form of discrete system where 

the field evolution equation is effectively discretized (discrete 

diffraction) and is capable of nonlinear effects and even the 

discrete optical solitons [45], [46]. Analogously, the discrete 

self-imaging effect in SSCS indicates that the SCF may be 

also a discrete multimode physical system. The SCF with pure 

cladding modes may be a valuable platform for studying 

multimode nonlinear fiber optics. It is also expected that the 

multimode solitons, which so far have been only 

experimentally observed in the graded-index multimode fiber 

[2], could be achieved in an SCF.  

The unique light field of multiple cladding-type modes in 

the SCF, distinct from that of multiple core-type modes in the 

commonly used MMF and NCF, can be further explored in 

many applications. For example, compared to the Bessel 

beams generated by NCF or MMF and characterized by the 

function J0 [4], [5], the pure cladding modes in a SCF can be 

used to generate a new kind of Bessel beams characterized by 

the combinations of J0 and Y0. Bessel beams based on a 

truncation of Y0 having higher energy over a longer range than 

that of J0 Bessel beams were theoretically predicted in [47]. 

Indeed, the micro/nano- core in SCFs can strongly modify the 

on-axis intensity, which is critically important to the 

performance of Bessel beams in the optical manipulation [48], 

[49]. Therefore the Y0 modulated J0 Bessel beams generated 

with SCFs may offer a better performance in optical 

manipulation applications. 

V. CONCLUSION 

The effective refractive index of both the core-type and 

cladding-type modes LP0n in three-layer step-index optical 

fibers as a function of core radius, was calculated 

independently by the graphical method and the BPM. The 

cladding modes show a kind of modal reorganization 

characteristics, indicating a different behavior with that of 

core modes. The self-imaging of cladding modes in an SSCS 

was analytically and numerically calculated and confirmed by 

interference spectrum experiments for the first time. The self-

imaging in the SSCS shows the discrete nature and the 

behavior of exponential growth with the core radius of middle 

fiber section. The analysis of the constructive interference of 

adjacent guided modes shows that the self-imaging must be 

discrete since the change in distance of the self-imaging 

period must be integer multiple of L2 (the constructive 

interference length of LP01 and LP02). The discrete nature and 

exponential growth behavior found by our work indicates that 

the propagation properties of cladding modes in an SCF are 

distinct from that of the core modes in the commonly used 

NCF and MMF. The SCF may be a discrete multimode 

physical system, which deserves further study in the context 

of nonlinear multimode fiber optics. The distinctive physical 

characteristics of the self-imaging in the SSCS may provide 

new insights and rules in the design of the multi-mode 

interference devices such as optical couplers, optical 

modulators, multimode fiber lasers and space-division 

multiplexing systems. 
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