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The ST204 subgroup ofListeria monocytogenesis among the most frequently isolated
in Australia from a range of environmental niches. In this study we provide a comparative
genomics analysis of food and food environment isolates from geographically diverse
sources. Analysis of the ST204 genomes showed a highly conserved core genome with
the majority of variation seen in mobile genetic elements such as plasmids, transposons
and phage insertions. Most strains (13/15) harbored plasmids, which although varying
in size contained highly conserved sequences. Interestingly 4 isolates contained a
conserved plasmid of 91,396 bp. The strains examined were isolated over a period of
12 years and from different geographic locations suggesting plasmids are an important
component of the genetic repertoire of this subgroup and may provide a range of stress
tolerance mechanisms. In addition to this 4 phage insertion sites and 2 transposons
were identi�ed among isolates, including a novel transposon. These genetic elements
were highly conserved across isolates that harbored them, and also contained a
range of genetic markers linked to stress tolerance and virulence. The maintenance of
conserved mobile genetic elements in the ST204 population suggests these elements
may contribute to the diverse range of niches colonized by ST204 isolates. Environmental
stress selection may contribute to maintaining these genetic features, which in turn may
be co-selecting for virulence markers relevant to clinical infection with ST204 isolates.

Keywords: Listeria monocytogenes, comparative genomics, MLST, whole genome sequencing, ST204, plasmid

INTRODUCTION

Listeria monocytogenesis a foodborne bacterial pathogen which causes listeriosis in humans
(Allerberger and Wagner, 2010). This illness can manifest as a milder gastroenteritis form or a
severe invasive infection which may include disease outcomes such as meningoencephalitis, sepsis,
and stillbirth (Allerberger and Wagner, 2010). The bacterium has been isolated from a range of
sources including the environment and foods, suggesting members of the species are capable of
adaptation to diverse ecological niches (Gray et al., 2004; Fox et al., 2009; Freitag et al., 2009; Sauders
et al., 2012).

With the increasing application of more sophisticated genomic analyses, a greater insight into
L. monocytogenespopulation structure has been elucidated (Fox et al., 2012; Haase et al., 2014).
The application of Multi Locus Sequence Typing (MLST) has provided insights into the evolution
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of the species and identi�ed associations of subgroups to
certain environmental niches or clinical illness (Unterholzner
et al., 2013; Haase et al., 2014; Maury et al., 2016). Dominant
sequence types (STs) and clonal complexes (CCs; groups of
closely related STs) have been identi�ed both in a geographical
context and as well as with source associations (e.g., clinical or
food sources;Chenal-Francisque et al., 2011; Haase et al., 2014;
Ebner et al., 2015; Maury et al., 2016). These studies have, for
example, identi�ed CC1/ST1 as a dominant subgroup at both a
national or global level with strong clinical signi�cance.Similar
analysis ofL. monocytogenesisolates from France identi�ed
CC121 as the most common ST, which was predominantly
associated with food (Maury et al., 2016). Although analysis
of L. monocytogenesisolates from Australia has identi�ed
dominant subgroups also over-represented in other geographical
regions, one notable exception is the ST204 subgroup (Kwong
et al., 2016). This subgroup is among the most common ST
identi�ed in Australia, is associated with a diverse range of food
production environments and products and also with human
clinical infection. In contrast to this, it has been reportedat
lower frequency relative to other ST subgroups in studies outside
Australia and with the exception of data from France, usually
only in association with food sources (Haase et al., 2014; Ebner
et al., 2015).

Whole genome sequencing has facilitated new insights
into the genomics ofL. monocytogenesand has allowed
greater understanding of traits shared across the species along
with those characteristic of subgroups ofL. monocytogenes
(den Bakker et al., 2010; Schmitz-Esser et al., 2015; Maury
et al., 2016). Studies such as these have facilitated a greater
understanding of aspects such as strain virulence and stress
resistance mechanisms (Nightingale et al., 2005; Muller et al.,
2013). It is now becoming apparent, for example, that certain
subgroups ofL. monocytogenesmay be less pathogenic than
others, or may contain mechanisms that promote other
phenotypes such as persistence in localized environments (Cotter
et al., 2008; Van Stelten et al., 2010; Verghese et al., 2011).
Genetic variation between closely related isolates can yield
information on traits characteristic of such subgroups; analysis
of the ST121 subgroup, for example, identi�ed conserved
genetic features including a transposon mediating resistance
to quaternary ammonium compound-based sanitizers, as well
as highly conserved phage and plasmids (Schmitz-Esser et al.,
2015).

This study provides a genomic analysis of the
L. monocytogenesST204 subgroup, a prevalent subgroup
which has colonized a range of environmental niches in Australia
and is linked with sporadic illness in humans. A panel of
15 isolates were chosen to represent diverse sources (foods
including milk, cheese, and pork, as well as food production
environments), di�erent geographical locations (including
the Australian States of New South Wales, South Australia,
Tasmania, Victoria and Western Australia, as well as an isolate
from Ireland) and di�erent isolation dates (ranging from 2000
to 2015). This study includes characterization of mobile genetic
elements harbored by ST204 isolates from Australia and abroad,
including phage, transposons and plasmids.

MATERIALS AND METHODS

Isolates Included in This Study
Table 1lists the 15 isolates included in this study. To understand
the high prevalence of this subgroup noted in food and food
environment niches, isolates were selected from a range of food
or food processing facility environments (including dairy and
meat foods, as well as food production environments). Fourteen
isolates originated in Australia and one was isolated from ameat
production facility in Ireland. Australian isolates were sourced
from �ve di�erent States: New South Wales (n D 5), South
Australia (n D 1), Tasmania (n D 1), Victoria (n D 6), and
Western Australia (n D 1). The years of isolation ranged from
2000 to 2015.

Whole Genome Sequencing, Assemblies
and Annotations
Genomic DNA was extracted from isolates using the DNeasy
Blood and Tissue kit (QIAGEN, Hilden, Germany) according
to the manufacturer's instructions. DNA quantity was measured
using the Qubit dsDNA HS assay kit (Thermo Scienti�c,
Waltham, MA), and an A260/A280 of 1.8–2.0 was con�rmed
using a NanoDrop spectrophotometer (Thermo Scienti�c,
Waltham, MA). DNA preparations were sent to the Ramaciotti
Centre for Genomics (University of New South Wales, Sydney,
Australia) for sequence ready genomic library preparation using
the Nextera XT library prep kit (illumina, San Diego, CA).
Subsequently 300 bp paired-end sequencing was performed
using the illumina MiSeq platform. Raw reads were pre-
processed to remove adapter sequences and low quality reads
using the Trimmomatic version 0.22 software (Bolger et al.,
2014). De novo assembly was performed using the SPAdes
(Species Prediction and Diversity Estimation) genome assembler
tool version 2.5.1 based on an algorithm which employs
multisized De bruijn graphs with K-mer values of “21, 33,
55, and 77” to construct the contiguous sequences (contigs)
(Bankevich et al., 2012). FASTA �les generated were processed
through the online gene annotator RAST (Rapid Annotation of
microbial genomes using Subsystems Technology) to produce
GENBANK �les (Aziz et al., 2008). Genome analysis including
mobile element alignments was performed using Geneious
software (Kearse et al., 2012). This Whole Genome Shotgun
project has been deposited at DDBJ/ENA/GenBank under
the accessions: LXQP00000000 (strain 2882); LXQQ00000000
(strain 2919); LXQR00000000 (strain 2937); LXQS00000000
(strain 2939); LXQT00000000 (strain 2945); LXQU00000000
(strain 2964); LXQV00000000 (strain 2973); LXQW00000000
(strain 2977); LXQX00000000 (strain 2978); LXQY00000000
(strain 2981); LXQZ00000000 (strain 3002); LXRA00000000
(strain Lm15-001); LXRB00000000 (strain Lm15-011);
LXRC00000000 (strain Lm15-027); LXRD00000000 (strain
UCDL175). The versions described in this paper are
versions LXQP01000000, LXQQ01000000, LXQR01000000,
LXQS01000000, LXQT01000000, LXQU01000000,
LXQV01000000, LXQW01000000, LXQX01000000,
LXQY01000000, LXQZ01000000, LXRA01000000,
LXRB01000000, LXRC01000000, LXRD01000000, respectively.
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Comparative Genomic Analysis
To visualize comparative BLAST alignments, chromosomes
were compared using an in-house BLAST ring alignment python
script, circles1.2.py (https://github.com/tallnuttcsiro/circles);
plasmids were compared using BRIG software (Alikhan et al.,
2011); transposon and phage alignments were visualized using
Easy�g software (Sullivan et al., 2011). SNP analysis was
performed using the Parsnp program, part of the Harvest
suite (Treangen et al., 2014).To construct an ordered
chromosome pangenome, an optical map was generated
for isolate UCDL175 using the Argus

TM
optical mapping

system and MapSolver software (OpGen, Gaithersburg, MD).
Assembled contigs were ordered by mapping to anNcoI
genome restriction map. To construct a plasmid pangenome,
unique features across all plasmids were combined into a
single contig, ordered based on the largest closed plasmid
pUCDL175.

RESULTS AND DISCUSSION

Listeria monocytogenescan occupy a diverse set of environmental
niches in addition to sporadic carriage in animal and human
hosts where it may also cause associated infection (Vazquez-
Boland et al., 2001; Grif et al., 2003; Ho et al., 2007; Sauders
et al., 2012). Geographical or niche-speci�c variations have been
identi�ed in relation to associations with certain subgroups,
for example ST9 and ST121 are highly represented among
food isolates in many jurisdictions (Chenal-Francisque et al.,
2011; Ebner et al., 2015). An interesting observation in the
distribution of L. monocytogenesSTs among isolates from
Australia is the high relative proportion of ST204 isolates,
which have not been identi�ed at this high relative abundance
in other geographical populations (Chenal-Francisque et al.,
2011; Haase et al., 2014; Kwong et al., 2016). In addition, a
diverse range of clinical and non-clinical sources are associated
with these ST204 isolates, including various foods and the
environment. This study interrogated draft genome sequences
of representative isolates from this dominant subgroup of
L. monocytogenesidenti�ed in Australia to understand their
associated genetic characteristics and identify the presence of
genetic markers related to clinical illness and/or environmental
stress.

Overview of the ST204 Pangenome
A summary of the genomes of the 15 ST204 isolates included
in this study is shown inTable 1. Genome sizes ranged from
2.95 to 3.11 Mbp, with a GC content ranging from 37.7% up
to 38%. The number of gene CDSs (coding DNA sequence)
ranged from 2886 in the smallest genome to 3096 in the largest
genome. A core genetic backbone was shared by all ST204
isolates in this study; where greatest variation was observed in the
presence or absence of mobile genetic elements such as plasmids,
transposons or phage insertions (Figures 1, 2). Plasmids were
present in 13 of the 15 isolates. There were four phage insert
regions identi�ed among isolates, and two transposon insertions
(Figure 1).
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FIGURE 1 | BLAST ring representation of the chromosome features of isolates in this study. Each ring represents the chromosome of a single isolate, BLAST
aligned to a pangenome reference which includes all geneticfeatures of isolates combined into a single ordered contig reference. Ribosomal RNA regions are labeled
“rRNA.” Transposons: TnyfbR and TnILP. Phage locations are identi�ed by the “Phi” pre�x.

Classical L. monocytogenes Virulence and
Stress Tolerance Markers
The LIPI-1 pathogenicity island (Vázquez-Boland et al., 2001),
comprising key virulence genes, contained a single SNP when
compared to that of the EGD-e Type strain (Figure S1). This SNP
was positioned in the metalloprotease genempl, which plays a
role in intracellular survival; the SNP resulted in a conservative
amino acid (AA) change (D! E) at position 460 in the gene,
outside the active site and zinc binding domains. Previous
studies have identi�ed two notable mutations in important
L. monocytogenesvirulence markers: truncation of the InlA
invasion protein and a deletion in the ActA protein which plays
a role in intracellular mobility and cell to cell spread (Jonquières
et al., 1998; Moriishi et al., 1998; Nightingale et al., 2005). Analysis
of the ST204 genomes of isolates in this study showed that they
all encode for full length InlA and ActA proteins. None of the
ST204 isolates harbored the LIPI-3 or the newly described LIPI-4
pathogenicity islands (Cotter et al., 2008; Maury et al., 2016).

All ST204 isolates contained theL. monocytogenesstress
survival islet SSI-1 and shared 100% nucleotide identity tothe
EGD-e strain, with one exception (Ryan et al., 2010). The ST204
2981 isolate contained a single nucleotide deletion in itslmo0446
homolog leading to the occurrence of a premature stop codon
(PMSC) in the gene sequence, which suggests it produces a
truncated 172 AA protein (the wild type protein being 330

AA in length). Nucleotide sequence analysis suggests the 172
AA product to still include the complete catalytic domain and
contains all the conserved amino acids of a penicillin V acylase.
The bcrABCresistance cassette, which contributes to resistance
to quaternary ammonium compounds (QACs) was present on
the plasmids of 11 isolates as indicated inTable 2 (Elhana�
et al., 2010). The sequence shared 100% identity to that of the
corresponding region on the pN1-011A plasmid of the N1-011A
strain. These genetic markers provide resistance to a range of
stresses and growth limiting conditions including sanitizers used
in food processing environments (Elhana� et al., 2010; Ryan
et al., 2010). Taken together, these resistance markers point to the
capacity of the ST204 group to colonize a wide range of niches
with various associated stress conditions.

ST204 Plasmids
A comparative BLAST analysis of plasmids from each of the
13 plasmid-containing isolates against a plasmid pangenome
pseudomolecule is shown inFigure 2. With the exception of
isolates 2937 and 2939, plasmids from other isolates shared an
approximately 20 kb region which contained a number of genes
linked to stress response. Analysis of the plasmids identi�ed
a 91,396 bp plasmid shared by four isolates: p2882, p2945,
p2981, and pUCDL175. The plasmid nucleotide sequence was
identical for p2882, p2945, and p2981, with one single nucleotide
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FIGURE 2 | BRIG representation of the plasmids of isolates in t his study. Each ring represents the plasmid of an individual isolate. The plasmid pangenome
reference contains all unique genetic markers identi�ed among the entire pool of plasmids identi�ed, combined into a single contig reference. The % identity refers to
the similarity to the plasmid reference pan-genome.

polymorphism (SNP) di�erence in pUCDL175. This SNP
resulted in a non-conservative AA change in a DEAD/DEAH
box helicase-like protein at position AA332 (pUCDL175 had
an isoleucine at this position compared to a threonine in the
other isolates). The presence of a conserved plasmid among the
four isolates was particularly interesting as one of these isolates,
UCL175, was derived from a meat food processing environment
in Ireland; the other three were isolated in Australia from apork
meat sample, a meat food processing environment, and a cheese
sample. In addition to this, the temporal range of the isolations
was over a 12 year period (from the year 2000 through to 2012).
This data suggests selection pressure has maintained this plasmid
in geographically diverse niches and over a prolonged period of
time; with just a single SNP identi�ed in the plasmid of the isolate
from Ireland, relative to its three counterparts from Australia.
The plasmid contains features of a Type IV secretion system
including Tra-family proteins which play a role in conjugal
transfer of plasmids in Gram-positive bacteria (Grohmann et al.,

2003). Another feature of this and other plasmids identi�ed in
this study is the presence of heavy metal resistance gene operons.
Recent evidence suggests very low levels of heavy metals and
antibiotics present in the environment can select for plasmid
carriage in bacterial species (Gullberg et al., 2014). It may be
that this, or other selection factors, while even at very low levels
are maintaining the presence of these plasmids in the ST204
isolates and their progeny. As indicated inFigure 2, a number
of other genes implicated in stress response were identi�ed such
as cold, heat, or osmotic stress. Maintaining these plasmidsmay
present a competitive advantage for these isolates, allowingthem
to colonize and compete in a diverse range of ecological niches
and tolerate a range of environmental stressors.

A number of other plasmids shared homology with the
91,396 bp plasmid (the smaller plasmids p2973 and pLm15-
011, and the larger p2919 plasmid). This may indicate a shared
ancestral plasmid that has undergone genetic rearrangement
and divergence over time. Indeed, the remaining plasmids
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TABLE 2 | Presence of selected virulence and stress response markers
among isolates in this study.

Virulence Stress tolerance

Isolate LIPI-3 LIPI-4 inlA actA SSI-1 bcrABC qacH

2882 – – WTa WT C C �

2919 – – WT WT C C �

2937 – – WT WT C � �

2939 – – WT WT C � �

2945 – – WT WT C C �

2964 – – WT WT C C �

2973 – – WT WT C C �

2977 – – WT WT C C �

2978 – – WT WT C C �

2981 – – WT WT Cb C �

3002 – – WT WT C � �

Lm15-001 – – WT WT C C �

Lm15-011 – – WT WT C C �

Lm15-027 – – WT WT C � �

UCDL175 – – WT WT C C �

SSI-1 is the stress-survival islet. The bcrABC cassette and qacH arequaternary
ammonium compound resistance markers.
aWT, codes full-length protein with no truncation or deletion.
b Isolate 2981 contains a PMSC in its lmo0446 homolog.

(p2964, p2977, p2978, p2937, and p2939) shared most of their
sequence with p2919, with some minor additional regions as
indicated in Figure 2. The pLm15-011 plasmid from isolate
Lm15-011 had an identical sequence to that of p2882, p2945,
and p2981, with the exception of a missing 213 bp (this
deleted region included a non-coding region as well as the
�rst 29 bp of a plasmid replication protein). Another variant
of the 91,396 bp plasmid was identi�ed in isolate 2919, which
contained a larger plasmid with additional genetic features
including a CRISPR-associated protein and a toxin/anti-toxin
(TA) system (p2919,Figure 2). This was identi�ed as the Type
II Phd-Doc TA system, whose mode of action targets the 30S
ribosomal subunit inhibiting translation elongation (Liu et al.,
2008; Unterholzner et al., 2013). Two isolates harbored smaller
homologs of the 91,396 bp plasmid: 2973 and Lm15-001. p2973
is 38,115 bp in length and shares 100% identity with nucleotide
sequence contained within the 91,396 bp plasmid. pLm15-001
is 38,191 bp in size, and di�ers with p2973 in that it contains
a 76 bp insert and four SNPs in a non-coding region of
the plasmid; all CDSs, however, are 100% identical in both
plasmids.

The remaining plasmids (p2964, p2977, p2978, p2937, and
p2939) are primarily composed of various homologs of other
sequence contained in p2919 as illustrated inFigure 2; p2964,
however, does contain two notable additional CDSs encoding
enolase and a gene implicated in pH homeostasis. Two of these
plasmids (p2937 and p2939) also contained the Type II Phd-
Doc TA system present in p2919. It is worth noting that these
ST204 plasmids share a high degree of similarity to the large
148,959 bp pN1-011A plasmid, suggesting variations of this

plasmid may be spread more widely across theL. monocytogenes
population.

Transposon Inserts
Two transposon insertions were identi�ed among isolates in
this study: one in theyfbR gene (TnyfbR) and another in an
internalin-like protein homolog of thelmo2026gene in the EGD-
e strain (TnILP). The organization of both transposons are shown
in Figure 3.

The 35,763 bp TnyfbRtransposon was present in eight isolates
(Table 1 and Figure 1). This transposon is homologous to a
previously identi�ed genomic island in the Scott A outbreak
strain (Figure 3A; Lee et al., 2013). Four SNPs were identi�ed
between the Scott A and ST204 transposon, however the insert
site di�ered between ST204 isolates that harbored the genomic
island and Scott A. This may underly results from the study
by Lee et al. (2013)suggesting multiple loci for insertion across
di�erent strains. It contains an arsenic resistance cassette, which
includes thearsA-1, arsA-2, arsB-1, arsB-2, arsD-1, arsD-2, arsR-
1, and arsR-2genes.arsA and arsB form a complex coupled
with ATP which is responsible for extrusion of arsenic from the
bacterial cell (Rosen, 2002). Expression is regulated byarsRand
arsD (San Francisco et al., 1990; Wu and Rosen, 1993). This
transposon also contains a cadmium resistance cassette. Other
notable features include an anti-restriction protein and anFtsK
domain protein.

A second novel transposon was identi�ed in 12 ST204
isolates, termed TnILP, and was identi�ed integrated into an
internalin-like protein (Figure 3B). It is 43,478 bp in length
and contains a number of proteins involved in electron transfer
such as �avodoxin and oxidoreductase CDSs, including 2,5-
diketo-D-gluconic acid reductase. These enzymes have a variety
of associated functions, including the oxidative stress response
(Gaudu and Weiss, 2000; Mbandi et al., 2007; Chaturongakul
et al., 2008; Moyano et al., 2014). This transposon also
contained a number of genes encoding cell wall associated
proteins including internalin-like LPXGT-motif containing
proteins. Two other notable gene homologs of the EGD-e
strain, lmo0842and lmo2026, were present in TnILP. Previous
studies using transposon mutagenesis approaches have identi�ed
roles for these genes in virulence. Anlmo0842mutant strain
showed decreased ability to proliferate in the liver and spleen
(Cummins et al., 2013), whereas a role forlmo2026 in
translocating across the blood-brain barrier and/or subsequent
multiplication has been suggested (Autret et al., 2001; Bierne
et al., 2007). The potential contribution of the TnILP genes
to stress response and virulence, however, requires further
study.

Phage Insert Regions
Four phage insert sites were identi�ed among isolates in this
study:0comK, the monocin locus cryptic prophage,0tRNA-Arg
and ' RNA-MT. Analysis with prophage detection program
(PHAST) suggests the only intact phage is0tRNA-Arg; all
others were incomplete phage. All isolates contained at least
one phage insert, with a single isolate (2973) containing phage
in all four insertion sites. Of the four prophage insertions, two
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FIGURE 3 | Transposons identi�ed among ST204 isolates. Two transposons were identi�ed: (A) The TnyfbR transposon inserted in theyfbR gene compared with
its Scott A strain homolog;(B) The TnILP transposon inserted in an internalin-like protein. The integrase genes are in light blue (marked “int”); other transposon system
and regulatory genes are in red; heavy metal resistance genes are in dark blue; oxidative stress are in green; membrane associated proteins are brown; virulence
proteins are in pink; ABC transporter system genes are in orange. Hypothetical gene or those without a known function areshaded gray. Blue lines represent similar
BLAST identity shared between genes in the arsenic resistance cassette. Sequence identity ranged from 72 to 100% as indicated by the percentage homology bar.

were highly conserved: the monocin locus phage region (present
in all isolates), and a phage insert positioned between the
fosfomycin resistance gene fosX and an RNA methyltransferase
gene (0RNA-MT, present in both 2973 and Lm15-027
isolates).

Two isolates harbored the0RNA-MT phage in their RNA
methyltransferase genes (2973 and Lm15-027) with a single SNP
in a non-coding sequence being the only di�erence in nucleotide
sequence. This phage is 56,942 bp in length and encodes a
number of restriction-modi�cation system genes, including both
Type I and Type II methyltransferases. These systems can
target foreign invading DNA with restriction endonucleases, and
associated methyltransferases protect host DNA from restriction
(Wilson and Murray, 1991; Murphy et al., 2013). A HNH family
endonuclease is also present in this phage. There are a range
of functions associated with these proteins such as excluding
other phage in the progeny of cells with mixed phage infections
(Goodrich-Blair and Shub, 1996; Moodley et al., 2012). The phage
also contained an oxidoreductase.

The monocin locus (Figure 4B) is a cryptic prophage
conserved across all lineages ofL. monocytogenesand harbors
a complete (lmaDCBA) or partial lma operon (lmaDC)
(Schäferkordt and Chakraborty, 1997; Hain et al., 2012).
LmaA elicits a hypersensitivity reaction in the immune murine
host model, and deletion mutants oflmaB and lmaD show
reduced growth in the model (Hain et al., 2012). This phage
is 13,114 bp in length and includes 18 CDSs. This region
showed 100% nucleotide sequence identity across all isolates

and shared 99% identity to the same region in the EGD-e
strain.

The only intact phage, downstream of tRNA-Arg, was 42,164
bp in length with similar variants identi�ed in four isolates:
2973, 2981, Lm15-001, and Lm15-027. The annotated phage
region contained a large proportion of genes coding for proteins
with unknown function (Figure 4C). While largely conserved
across all four isolates, some variations were identi�ed inthe
phage insert regions (e.g., 2981 and Lm15-001 contained a
methyltransferase coding gene not present in the other two
isolates).

A phage insert (0comK) in the comK gene (Figure 5) was
identi�ed in seven isolates, ranging in size from 37,660 bp
(isolate 2981) up to 41,592 bp (isolate 2919). Isolates 2964 and
2978 di�ered from one another in a single SNP present in
an lmo2305homolog “hypothetical protein” gene in an amino
acid change at position 73 (E! G) in 2978; however each
other isolate had a distinctcomK phage region as illustrated
in Figure 4. Two isolates (2919 and 2973) contained a gene
encoding the gp66 protein identi�ed in theL. monocytogenes
A118 phage (Loessner et al., 2000). This protein shares similarity
with the virulence protein LmaC of the monocin phage locus.
Interestingly the 2973 isolate also contained another copy of
the lmaC gene two genes downstream of its gp66 gene. A
previous study highlighted the importance of this phage region
in host strain escape from activated macrophages by modulating
excision of the phage, which in turn controlscomK integrity
(Rabinovich et al., 2012). This excision, however, does not
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FIGURE 4 | Genetic makers of 3 phage inserts identi�ed in isola tes in this study. (A) 0RNA-MT phage upstream of an RNA methyltransferase gene.(B) The
monocin phage locus.(C) phage insert downstream of tRNA-ARG. Integrase genes are colored light blue, phage structural genes in green, phage non-structural
genes in red, proteases in dark blue, virulence genes in pinkand oxidative stress genes in yellow. Where sequence identity was shared, this ranged from 73 to 100%
as indicated by the percentage homology bar.

create virions. Another proposed role of thecomK phage
in host cell adaption to speci�c niches is in colonization of
food processing facilities and foods (Verghese et al., 2011).
While all isolates in this study were from foods or their
associated processing environments, it is not clear if they were
persisting at these facilities. ThecomK phage in isolate 2973
also coded a superinfection immunity protein which may play
a role in preventing subsequent host infection by other phage
(Hyman and Abedon, 2010). All comK phage also contained a
methyltransferase gene. Isolate 2973 contained a superinfection
immunity gene not present in thecomKphage of other isolates.

Three isolates (2964, 2973, and 2978) possess a serine protease
encoding gene, and Lm15-001comK encoded a HNH homing
endonuclease.

CRISPR Regions Among Isolates in This
Study
An analysis of each of the 15 isolates in this study using
CRISPR�nder software did not identify any con�rmed CRISPR
regions (Grissa et al., 2007). Two isolates harbored a CRISPR-
associated protein on their respective plasmids (2937 and
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FIGURE 5 | Comparative analysis of comK phage inserts among ST204 isolates in this study. Genes marked by number: 1, putative serine protease; 2,
putative superinfection immunity protein; 3, RecU Holliday junction resolvase; 4,lmaC; 5, phage capsid protein; 6, phage repressor protein; 7, phage transcriptional
regulator, Cro/CI family; 8, repressor (CI-like); 9, antirepressor; 10, HNH homing endonuclease; 11, repressor (CI-like); 12, transcriptional regulator; 13, phage
antirepressor protein. Phage structural or non-structural genes are colored green or red, respectively. Integrases are colored light blue, virulence-associated genes in
pink, phage proteases in dark blue. Where sequence identitywas shared, this ranged from 77 to 100% as indicated by the percentage homology bar.

2939) although the plasmids did not contain CRISPR regions
(Figure 2).

SNP Typing of Isolates in This Study
Analysis of the genome similarities through a SNP analysis again
highlighted the high degree of identity among the isolates,with
266 SNP loci identi�ed (Figure 6). While three clades can be

readily discerned from the SNP analysis (clade 1 comprising
isolates 2964, 2977, and 2978; clade 2 comprising 2973, Lm15-
001 and Lm15-027; and clade 3 comprising 2919, 2937 and 2939)
the remainder of the taxonomy had a high degree of uncertainty.
The0RNA-MT phage was only identi�ed among clade 2 isolates,
and similarly the0tRNA-Arg phage was only identi�ed among
isolates from clades 1 and 2. Two isolates (2937 and 2939)
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FIGURE 6 | SNP tree analysis of ST204 isolates in this study. SNP
phylogeny is unrooted but has been plotted as a circular phylogram to improve
readability. Presence of prophage is marked by colored dotsas per legend
with the exception of � Monocin which is present in all isolates. Bootstrap
values above 50 are displayed.

clustered together when considering core SNP loci shared byall
15 isolates; a comparison of SNPs limited to these 2 isolates alone
identi�ed 24 SNPs di�ering between them.

CONCLUSIONS

The ST204 subgroup ofL. monocytogenesis among the most
frequently isolated from food and food associated sources in
Australia, has been isolated from other environments and has
been implicated in human clinical infections. Results of this
study show a diverse accessory genome conserved among ST204
isolates including genetically related plasmids, transposons and
phage inserts which appear to be maintained among the
geographically diverse population over prolonged periods of

time. Recent studies have demonstrated how selective pressures,
often below minimum inhibitory concentrations, can selectfor
bacteria possessing associated resistance determinants (Gullberg
et al., 2011). In addition to this, co-selection is often evident when
multiple resistance genes (e.g., heavy metals and antibiotics)
are harbored on the same genetic element, such as a plasmid
(Gullberg et al., 2014). The broad range of antimicrobial and
stress resistance genes harbored by ST204 isolates may underlie
their capacity to colonize a wide range of niches. This adaptation
to a broad range of environmental stress conditions may also
be co-selecting for a range of associated virulence markers
which has implications for the clinical signi�cance of the ST204
group.
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