Hollis, C. J., Dunkley Jones, T., Anagnostou, Eleni, Bijl, P. K., Cramwinckel, M. J., Cui, Y., Dickens, G. R., Edgar, K. M., Eley, Y., Evans, D., Foster, G. L., Frieling, J., Inglis, G. N., Kennedy, E. M., Kozdon, R., Lauretano, V., Lear, C. H., Littler, K., Meckler, N., Naafs, B. D. A., Pälike, H., Pancost, R. D., Pearson, P., Royer, D. L., Salzmann, Ulrich, Schubert, B., Seebeck, H., Sluijs, A., Speijer, R., Stassen, P., Tierney, J., Tripati, A., Wade, B., Westerhold, T., Witkowski, C., Zachos, J. C., Zhang, Y. G., Huber, M. and Lunt, D. J. (2019) The DeepMIP contribution to PMIP4: methodologies for selection, compilation and analysis of latest Paleocene and early Eocene climate proxy data, incorporating version 0.1 of the DeepMIP database. Geoscientific Model Development Discussions, 2019. pp. 1-98. ISSN 1991-962X
|
Text
gmd-2018-309.pdf - Published Version Available under License Creative Commons Attribution 4.0. Download (4MB) | Preview |
Abstract
The early Eocene (56 to 48 million years ago) is inferred to have been the most recent time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Global mean temperatures were also substantially warmer than present day. As such, study of early Eocene climate provides insight into how a super-warm Earth system behaves and offers an opportunity to evaluate climate models under conditions of high greenhouse gas forcing. The Deep Time Model Intercomparison Project (DeepMIP) is a systematic model-model and model-data intercomparison of three early Paleogne time slices: latest Paleocene, Paleocene-Eocene thermal maximum and early Eocene climatic optimum. A previous article outlined the model experimental design for climate model simulations. In this article, we outline the methodologies to be used for the compilation and analysis of climate proxy data, primarily proxies for temperature and CO2. This paper establishes the protocols for a concerted and coordinated effort to compile the climate proxy records across a wide geographic range. The resulting climate atlas will be used to constrain and evaluate climate models for the three selected time intervals, and provide insights into the mechanisms that control these warm climate states. We provide version 0.1 of this database, in anticipation that this will be expanded in subsequent publications.
Item Type: | Article |
---|---|
Additional Information: | This discussion paper is a preprint. It is a manuscript under review for the journal Geoscientific Model Development (GMD). |
Subjects: | F800 Physical and Terrestrial Geographical and Environmental Sciences |
Department: | Faculties > Engineering and Environment > Geography and Environmental Sciences |
Depositing User: | Elena Carlaw |
Date Deposited: | 16 Apr 2019 15:18 |
Last Modified: | 31 Jul 2021 12:33 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/39009 |
Downloads
Downloads per month over past year