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ABSTRACT 

Middle- and long-distance running performance is constrained by the complex interaction of 

physiological, biomechanical and neuromuscular factors. Several of these factors have the potential 

to be enhanced both acutely and chronically using strength-based exercise. A plethora of research 

has investigated the efficacy of strength training (ST) activities for improving physiological 

determinants of performance via enhancements in neuromuscular- and tendon-related properties. 

This body of literature has previously not been reviewed, nor is it known the extent to which the 

distance running community engage with ST. Moreover, research is specifically lacking in the post-

pubertal adolescent age group and very few works have considered whether strength-based exercise 

could acutely potentiate performance-related outcomes. 

The first aim of this thesis was to systematically review the literature on ST for distance runners. 

Based upon findings from 26 studies, it was evident that ST activities have the capability of 

improving time-trial performance, running economy (RE) and important anaerobic qualities 

following a 6-14 week intervention. Despite these findings, it is uncertain what proportion of runners 

include ST in their routine, and whether runners of a specific age and competitive status are more 

likely to participate. 

The second study of this thesis aimed to explore ST practices of competitive distance runners 

(n=667). The most common activities utilised were stretching (86.2%) and core stability exercises 

(70.2%), despite limited evidence for their value. Resistance training and plyometric training (PT) 

were used by 62.5% and 35.1% of runners respectively. A disproportionately high number of under-

17 and under-20 year old runners included PT, running drills and circuit training in their training, 

compared to older age groups. Indeed, ST is recommended for adolescent athletes to develop a wide-

range of physical competencies, lower injury risk and enhance performance.  

A test-retest reliability investigation was conducted (Study 3) in a group of adolescent distance 

runners, to ascertain the reproducibility of a range of important physiological and biomechanical 

variables related to distance running performance and strength outcomes. Following allometric 

scaling of variables influenced by body mass, reliability indices showed a high level of 

reproducibility across all physiological parameters and maximal speed (typical error ≤ 2%; intra-

class correlation coefficient > 0.8; effect size (ES) < 0.6). Biomechanical metrics displayed moderate 

levels of inter-session consistency. Minimal detectable change values (95% confidence) were 

calculated to provide a robust threshold for identifying magnitude based inference terms in 

subsequent studies. 

Study 4 investigated the effect of a ten week ST programme on a group of post-pubertal adolescent 

distance runners. Participants were randomly assigned to a group that added two weekly ST sessions 

to their training, or a control group, who continued their normal running. ST enhanced RE by a small 
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extent (ES: 0.31-0.51) and was highly likely to improve maximal speed without deleterious effects 

on body composition and other aerobic parameters.  

The final study of this thesis investigated the efficacy of a short bout of strength-based exercise on 

physiological parameters and time to exhaustion (TTE) in a group of high-performing adolescent 

runners. Seventeen young male distance runners performed a baseline assessment session followed 

by two identical trials organised in a randomised crossover design. Prior to each trial, participants 

completed either six depth jumps (DJ) or a control condition. The DJ condition produced moderate 

significant improvements (-3.7%, p<0.05, ES: 0.67) in RE, which was considered ‘possibly 

beneficial’. A small individual response was evident, which may in part be mediated by explosive 

strength status. TTE and other physiological variables were unaffected (ES: <0.2, p>0.05). 

In conclusion, the addition of ST to the training routine of a middle- or long-distance runner appears 

to provide a performance advantage via improvements in RE and anaerobic factors. Despite these 

well-established benefits of ST, competitive runners tend to prefer other non-running based training 

techniques under the impression they lower injury risk and improve performance. Importantly, 

results from studies 4 and 5 in this thesis have shown that in the post-pubertal adolescent age-group, 

both chronic (ten week) and acute strength-based exercise interventions provide a small to moderate 

but possibly beneficial effect on RE.    
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sMART Speed achieved during a maximal anaerobic running test 

SpT Sprint training 

ST Strength training 

sV̇O2max  Speed associated with maximal oxygen uptake 

SWC Smallest worthwhile change 

S&C Strength and conditioning 

TE Typical error 

TT Time-trial 

TTE Time to exhaustion 

V̇CO2  Volume of expired carbon dioxide 

vGRFjump Peak vertical ground reaction force during concentric phase of a squat jump 

V̇O2 Oxygen uptake

V̇O2max  Maximal oxygen uptake 

V̇O2peak Peak oxygen uptake during a maximal test 
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Running is one of the purest forms of human locomotion and is the most popular sports-related 

physical activity in England (Audickas, 2017). The aim for most competitive distance runners is to 

complete a race distance in as short a time as possible. Performance in middle- (0.8 – 3 km) and long-

distance (5 – 42.2 km) running is limited by a complex interplay of intrinsic and extrinsic factors. Of 

the intrinsic factors, physiological, anthropometric and biomechanical variables are all known to 

contribute to performance outcomes. From a physiological perspective, the ‘classical’ model (di 

Prampero et al., 1986; Joyner, 1991; Sparling, 1984) identifies three main parameters, which largely 

influence long-distance running performance: maximal oxygen uptake (V̇O2max), running economy 

(RE), and fractional utilisation (sustainable percentage of V̇O2max). Additionally, speed at V̇O2max 

(sV̇O2max) provides a composite measure of V̇O2max and RE, and has been used to explain differences 

in performance amongst trained distance runners (Billat and Koralsztein, 1996). A strong relationship 

between blood lactate (BL) parameters and distance running performance has also been reported in 

adult runners (Fay et al., 1989; Grant et al., 1997). 

Whilst V̇O2max values differ little in homogenous groups of distance runners, RE displays a high 

degree of inter-individual variability (Conley and Krahenbuhl, 1980; Morgan and Craib, 1992). In 

well-trained distance runners, RE and V̇O2max also appear to be largely unrelated qualities (Shaw et 

al., 2015), suggesting that each contribute independently to performance for different individuals.  

Defined as the oxygen or energy cost of sustaining a given sub-maximal running speed, RE is 

underpinned by a variety of anthropometric, physiological, biomechanical and neuromuscular factors 

(Barnes and Kilding, 2015a; Saunders et al., 2004a). Traditionally, chronic periods of running 

training have been used to enhance RE (Jones and Carter, 2000; Svedenhag and Sjodin, 1985), 

however novel approaches such as strength training (ST) modalities have also been shown to elicit 

improvements following a 6-14 week intervention period (Balsalobre-Fernandez et al., 2016; 

Denadai et al., 2017).  

For middle-distance runners, cardiovascular-related parameters associated with aerobic energy 

production can explain a large proportion of the variance in performance (Abe et al., 1998; Brandon, 

1995; Brandon and Boileau, 1992; Ingham et al., 2008; Lacour et al., 1990b; Padilla et al., 1992; 

Rabadan et al., 2011). However a large contribution is also derived from anaerobic sources of energy 

(Brandon, 1995; Busso and Chatagnon, 2006). Anaerobic capabilities can explain differences in 

physiological profiles between middle- and longer-distance runners (Brandon, 1995) and are more 

sensitive to discriminating performance in groups of elite middle-distance runners than traditional 

aerobic parameters (Paavolainen et al., 2000). Anaerobic capacity and event specific determinants, 

such as sV̇O2max and the speed achieved during a maximal anaerobic running test (sMART), have 

also been proposed as limiting factors for distance runners (Billat et al., 1994; Brandon and Boileau, 

1992; Houmard et al., 1991).  

Both RE and anaerobic factors (speed, anaerobic capacity and sMART) rely on the generation of 

rapid force during ground contact when running (Beattie et al., 2014; Moore, 2016). Programs of ST 
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provide an overload stimulus to the neuromuscular system, which improves motor unit recruitment, 

firing frequency, musculotendinous stiffness and intra-muscular co-ordination, and therefore 

potentially provides distance runners with a strategy to enhance their RE and event-specific 

determinants (Paavolainen et al., 2000). In addition, an improvement in force-generating capacity 

would theoretically allow athletes to sustain a lower percentage of maximal strength, thereby 

reducing anaerobic energy contribution (Fletcher and MacIntosh, 2017). This reduction in relative 

effort may therefore enhance RE and BL concentration. As sV̇O2max is a function of RE, V̇O2max and 

anaerobic factors, it would also be expected to show improvements following a ST intervention. 

Several recent reviews in this area have provided compelling evidence that a short-term ST 

intervention is likely to enhance RE (Balsalobre-Fernandez et al., 2016; Berryman et al., 2017; 

Denadai et al., 2017) in the order of ~4% (Denadai et al., 2017). Whilst these reviews have provided 

valuable insight into how ST specifically impacts RE, studies also typically measure other important 

aerobic and anaerobic determinants of distance running performance, which have not previously been 

fully synthesised in a review. Body composition also appears to be an important determinant of 

distance running performance, with low body mass conferring an advantage (Cavanagh et al., 1977; 

Coetzer et al., 1993). Resistance training (RT) is generally associated with a hypertrophic response 

(Schoenfeld et al., 2016), however this is known to be attenuated when lower limb RT and endurance 

running training are performed concurrently within the same programme (Wilson et al., 2012b). 

Changes in body composition as a consequence of ST in distance runners have yet to be fully 

addressed in reviews on this topic. 

There are also a number of recent publications (Beattie et al., 2017; Clark et al., 2017; Denadai and 

Greco, 2017b; Giovanelli et al., 2017; Karsten et al., 2016; Stohanzl et al., 2017; Vikmoen et al., 

2016; Vikmoen et al., 2017) that have not been captured in previous reviews (Balsalobre-Fernandez 

et al., 2016; Denadai et al., 2017) on this topic, which potentially provide valuable additional insight 

into the area. Previous papers, which have reviewed the impact of ST modalities on distance running 

performance, have done so alongside other endurance sports (Beattie et al., 2014; Berryman et al., 

2017) or are somewhat outdated (Jung, 2003; Tanaka and Swensen, 1998; Yamamoto et al., 2008). 

Furthermore, although improvements in RE would likely confer a benefit to distance running 

performance, the outcomes from studies which have used a time trial (TT) have not been 

comprehensively reviewed. Performance-related outcome measures provide high levels of external 

validity compared to physiological parameters, therefore it is likely that a collective summary of 

results would be of considerable interest to coaches and athletes.  

Despite the seemingly large body of literature that has investigated the impact of ST on parameters 

relating to distance running, very little is known about the extent to which runners are incorporating 

such activities into their training programme. Previous research has documented the training 

practices of distance runners (Bale et al., 1985; Hewson and Hopkins, 1995; Karp, 2007; Knechtle 

et al., 2011; Voight et al., 2011), however very few studies mention the degree to which ST activities 
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are included. Such information could be used to understand the impact of the current scientific 

knowledge and influence the development of professional coaching courses and programmes of 

education for the coaches of athletes, as well as shape the direction of the present thesis. 

There is convincing evidence that programmes of ST exercise are safe and effective for young 

athletes (Behringer et al., 2011; Harries et al., 2012), and may offset the risk of injury (Myer et al., 

2011). Studies on ST in youth populations have tended to focus on the development of strength-

related qualities, which underpin a variety of different sports skills (Faigenbaum et al., 2016; Harries 

et al., 2012). Current guidelines suggest that adolescents should participate in 2-3 ST sessions per 

week, which are supervised by appropriately qualified personnel (Lloyd et al., 2014; Myer and Wall, 

2006).  

Approximately a quarter of 11-15 year olds participate regularly in cross-country, jogging or road 

running activities in the UK (DCMS, 2016) and endurance running represented the second most 

popular sport (18.7%) in a survey (n=7794) of Scandanavian 14 year olds (Tammelin et al., 2003). 

Despite the abundance of research that has investigated the effect of ST on adult distance runners, 

there is a dearth of knowledge on adolescent runners. The results of research in this important age-

group would potentially be highly useful, as any positive outcomes in terms of performance-related 

improvement would provide a compelling message for adolescent runners, their parents and coaches, 

who potentially hold concerns surrounding the use of such activities in young athletes (Stone et al., 

2014). 

Acute improvements in distance running performance and related physiological factors using various 

pre-performance ergogenic strategies are also an area which has been explored (Bailey et al., 2012; 

Barnes et al., 2015; Ingham et al., 2013; Jones et al., 2003a; Kressler et al., 2011; Murphy et al., 

2012; Stellingwerff, 2013). The use of a short bout of strength-based exercise, termed a ‘loaded 

conditioning activity’ (LCA), in the warm-up routine of athletes has been investigated extensively 

for short duration explosive activities such as jumps and sprints, generally showing improvements in 

performance (Maloney et al., 2014; Seitz and Haff, 2016; Wilson et al., 2013). The improvements 

have been attributed to the ‘post-activation potentiation’ (PAP) phenomena which is associated with 

a short-term enhancement in neuromuscular performance as a result of a muscle’s prior contractile 

history (Tillin and Bishop, 2009). Several mechanisms are thought to explain a PAP response, 

including phosphorylation of myosin light chains (MLC), which increases the sensitivity of calcium 

ions at a molecular level (MacIntosh, 2010), recruitment of higher order motor units (Tillin and 

Bishop, 2009), and enhanced musculotendinous stiffness (Maloney et al., 2014). Although 

individuals who possess a greater proportion of type II muscle fibres (Vandervoort et al., 1983) and 

well-trained performers (Seitz and Haff, 2016) are more likely to gain a benefit from a LCA, previous 

research has shown a potentiation response is possible in endurance-trained individuals (Hamada et 

al., 2000; Morana and Perrey, 2009). Despite this finding, very little research has been conducted 

experimentally to examine whether an improvement in distance running performance is possible 
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following an LCA. A group of young highly-trained middle-distance runners represent a group of 

endurance athletes who are perhaps most likely to experience an improvement in performance-

related measures following a LCA, as it is probable they will have a higher percentage of type II 

muscle fibres compared to their long-distance adult counterparts (Larsson and Karlsson, 1978). 

 

1.1 Aims of Thesis 

Research investigating the impact of ST on distance runners is extensive, yet these findings have 

previously not been reviewed for all physiological factors that contribute to performance. Despite a 

consensus in the scientific literature concerning the chronic benefits of ST on RE, it is currently 

uncertain whether competitive runners incorporate strength and conditioning (S&C) related activities 

into their training. The post-pubertal period represents a crucial time, where athletes typically elect 

to specialise in a single sport and performance inevitably improves rapidly (Brenner, 2016; Myer et 

al., 2015). There is also compelling evidence that ST activities are beneficial to adolescent athletes, 

however there is a lack of literature specifically in young distance runners. Strategic manipulation of 

warm-up activities to gain a short-term performance advantage has also received considerable 

research attention, specifically for power-based athletes. To-date there have been virtually no studies 

that have examined whether an acute bout of strength-based exercise can improve physiological 

parameters related to distance running performance.  

Based upon this current understanding, the overall aim of this thesis was to examine the utility of 

strength-based exercise for distance runners, with a focus on the post-pubertal adolescent age-group. 

This aim was addressed over the course of five specific studies, which were as follows: 

1. Investigate the efficacy of ST modalities on the physiological determinants and performance 

of middle- and long-distance runners by conducting a systematic review (Study 1). 

2. Describe the extent to which distance runners engage with ST activities and the 

characteristics of those who participate in various activities (Study 2). 

3. Quantify the reliability of physiological and biomechanical markers relating to performance 

outcomes in adolescent distance runners (Study 3). 

4. Examine the effect of a 10 week ST intervention on the physiological determinants of 

performance in post-pubertal adolescent distance runners (Study 4). 

5. Evaluate the impact of including an LCA in a warm-up routine on physiological variables 

and time to exhaustion (TTE) in young male distance runners (Study 5).  
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2.1 Introduction and Aims of Literature Review 

It is traditionally viewed that distance running performance is limited by physiological factors 

associated with the cardiovascular and metabolic systems (Thompson, 2017) and is improved with 

extensive sub-maximal training (Seiler, 2010). Conversely, ‘strength’ refers to an individual’s ability 

to apply force under a specified set of movement constraints (Goodwin and Cleather, 2016), which 

is principally underpinned by neuromuscular qualities. ST involves modalities of exercise that seek 

to improve the ability to express force under these circumstances (Zatsiorsky and Kraemer, 2006), 

such as RT, explosive resistance training (ERT) or ballistic training, and plyometric training (PT). It 

is apparent therefore that aerobic endurance training and ST sit at somewhat opposite ends of an 

adaptation continuum (Hawley, 2009). From a training specificity perspective, it may be expected 

that these disparate types of exercise offer little benefit to one another in terms of the outcomes that 

each aim to achieve. 

The aims of this literature review are four-fold. Firstly, the physiological determinants of middle- 

and long-distance running performance are examined to enable identification of exercise 

interventions that have the potential to improve performance (Sections 2.2 - 2.4). Secondly, and 

relating to Study 1 of the thesis, a systematic review is conducted, which investigates the efficacy of 

ST on the physiological determinants and performance of distance runners (Section 2.5). Thirdly, the 

acute impact of a short bout of strength-based exercise, or an LCA, on outcomes relating to endurance 

performance are explored from a mechanistic and evidenced-based perspective (Section 2.6). Finally, 

a brief overview of the literature that has addressed youth athlete development and the effects of ST 

on adolescent populations is also included (section 2.7).  

 

2.2 Deterministic Models of Middle- and Long-Distance Running Performance 

Outside of actual race performances, which can be influenced by a variety of exogenous factors, a 

time-trial (TT) represents the gold standard measure of performance (Currell and Jeukendrup, 2008). 

Despite the high level of ecological validity associated with TT performance, internal validity can be 

questionable due to confounding factors such as pacing, drafting of other participants, motivation, 

and environmental conditions if performed outdoors. To ameliorate several of these limitations, some 

investigators advocate the use of TTE tests at an intensity that closely resembles the competitive 

event as a proxy of performance (Hopkins et al., 2001), although this approach has also been recently 

been criticised for lacking relevance (Dankel et al., 2017b).  

Several physiological markers have been identified as being highly associated with middle- and long-

distance running performance (Bassett and Howley, 2000; Brandon and Boileau, 1992; Conley and 

Krahenbuhl, 1980; Coyle, 1995; Denadai et al., 2004; Joyner, 1991; Joyner and Coyle, 2008; 

McLaughlin et al., 2010; Sparling, 1984). Measurement of these variables in a tightly controlled 

laboratory environment allows scientists to further understand the factors that underpin successful 
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distance running performance and retain high levels of construct validity (Currell and Jeukendrup, 

2008). Bassett and Howley (2000) provide a summary of the major determinants of endurance 

running performance (see Figure 2.1), which is widely recognised at the ‘classical’ model (Bassett 

and Howley, 1997; di Prampero et al., 1986; Joyner, 1991; Sparling, 1984). V̇O2max represents the 

upper limit for the rate of aerobic metabolism, with the lactate threshold (LT) corresponding to the 

fraction of V̇O2max that can be sustained (%V̇O2max at LT) for a given distance. Running performance 

is subsequently determined by how much energy is utilised (RE) at the fractional utilisation of 

V̇O2max. Collectively, these determinants are capable of predicting 16 km performance with more 

than 95% accuracy in well-trained runners (McLaughlin et al., 2010).  

 

Figure 2.1. The ‘classical’ model of distance running providing a summary of main determinants 

influencing performance (Joyner, 1991; Taken from: Bassett and Howley, 2000). V̇O2max = maximal 

oxygen uptake, LT = lactate threshold 

 

These determinants described by the classical model have also been identified as important predictors 

of middle-distance running performance (Abe et al., 1998; Brandon and Boileau, 1992; Ingham et 

al., 2008; Lacour et al., 1990b; Rabadan et al., 2011). Ingham and colleagues (2008) were able to 

explain 96% of inter-individual variability using only V̇O2max and RE as predictors of performance in 

62 national and international 800/1500 m runners. Aerobic-based qualities are clearly a necessity for 

the middle-distance events, however the relative importance of the factors described in the classical 

model are different between middle- and long-distance runners (Thompson, 2017). Owing to the 

higher speeds exhibited in middle-distance events, energy requirements far exceed that which can be 

provided via aerobic metabolism (Brandon, 1995). Anaerobic capabilities, such as those identified 
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in Figure 2.2, are therefore necessary for success in middle-distance events, thus runners are less 

dependent upon aerobic determinants for success (Brandon, 1995; Houmard et al., 1991).  

 

Figure 2.2. Physiological determinants model for middle-distance running (Brandon, 1995). V̇O2max 

= maximal oxygen uptake. 

 

Since direct measurement of running-related anaerobic capabilities is problematic, studies have used 

indirect assessments of ‘endurance specific muscular power’ (Billat and Koralsztein, 1996; Houmard 

et al., 1991; Paavolainen et al., 1999a; Paavolainen et al., 2000; Paavolainen et al., 1999b; 

Paavolainen et al., 1999c). The seminal paper by Paavolainen and co-workers (1999a) demonstrated 

that the addition of explosive ST (ERT and PT) to the programme of highly-trained distance runners 

for nine weeks produced superior improvements in 5 km TT performance, RE, sMART, jump and 

sprint performance. The same authors also demonstrated that sMART and 20 m sprint were able to 

accurately predict 5 km TT performance (Paavolainen et al., 1999c) and force-producing 

characteristics (ground-reaction force and pre-activation of gastrocnemius) were identified as 

important factors for 10 km performance (Paavolainen et al., 1999b). These investigations gave rise 

to an alternative deterministic model of distance running performance, which includes limiting 

factors relating to the neuromuscular system (Figure 2.3).  
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Figure 2.3. Determinants of distance running performance including both aerobic and 

neuromuscular influences (Paavolainen et al., 1999a). O2 = oxygen, PCr = phosphocreatine, V̇O2max 

= maximal oxygen uptake, LT = lactate threshold, sMART = speed achieved during a maximal 

anaerobic running test 

 

 

 

2.3 Limitations to Performance and Strategies to Improve Determinants  

2.3.1 Maximal Oxygen Uptake 

It is well-established that V̇O2max is a key determinant of both middle- (Brandon, 1995; Foster, 1983; 

Ingham et al., 2008) and long-distance running performance (Bassett and Howley, 2000; Foster, 

1983) therefore the objective for any distance runner is to maximise their aerobic power (Jones and 

Carter, 2000). Elite standard male distance runners possess V̇O2max values of 70-85 mL.kg-1.min-1 and 

their female counterparts 60-75 mL.kg-1.min-1 (Jones, 2006b; Svedenhag and Sjodin, 1985), which is 

typically 40-50% higher than age-matched sedentary controls (Wilmore and Costill, 1999). Although 

V̇O2max is highly trainable, it is believed to have a strong genetic component (Bray et al., 2009). In 

highly-trained distance runners, V̇O2max values are likely to be close to the genetic ceiling therefore 

tend to be similar and poor at explaining the inter-individual variability in performances (Allen et 

al., 1985; Conley and Krahenbuhl, 1980). Although a high V̇O2max is considered a pre-requisite for 

high-standard distance running performance, other physiological factors must therefore provide a 

more accurate prediction of performance, particularly in homogenous groups of runners (Denadai et 

al., 2004; Morgan et al., 1989; Noakes et al., 1990). Indeed, case studies of the world-record holder 

for the women’s marathon (Jones, 2006b) and a former elite cyclist (Coyle, 2005) show V̇O2max 
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remained relatively stable over long periods of time (7-11 years), despite improvements in 

performance.  

Both continuous training and high-intensity (90-100% V̇O2max) interval training elicit improvements 

in V̇O2max following a 3-24 week training intervention (Milanovic et al., 2015). However there is a 

growing body of evidence that suggests high-intensity training provides a more potent stimulus to 

maximise adaptations long-term (Bacon et al., 2013; Gist et al., 2014), including in highly-trained 

endurance athletes (Kubukeli et al., 2002; Laursen and Jenkins, 2002). Therefore, it is perhaps likely 

that a combination of continuous and high-intensity running sessions yield the greatest benefit to 

V̇O2max in the long-term (Seiler, 2010).  

A summary of the physiological adaptations that underlie improvements in V̇O2max as a consequence 

of endurance training are shown in Figure 2.4. The Fick equation defines that V̇O2max is the product 

of maximal cardiac output (stroke volume x heart rate (HR)) and the difference in oxygen 

concentration between arterial and venous blood (a – v̅O2 diff). This suggests that adaptations 

underpinning an improvement in V̇O2max could be a consequence of either central (oxygen delivery 

by cardiovascular system) or peripheral (oxygen extraction at muscular level) mechanisms (Levine, 

2008). Central mechanisms relating to increases in blood volume, red blood cell mass and stroke 

volume largely explain inter-individual variability in V̇O2max values and correlate well with 

improvements, particularly after periods of >12 weeks (Montero et al., 2015). Although theoretical 

models (Wagner, 2015) suggest improvements in V̇O2max may be partly explained by peripheral 

factors such as augmented capilliarisation and increases in size and density of mitochondrial content, 

there is little experimental evidence indicating these mechanisms limit oxygen extraction. Theories 

surrounding a possible contribution to V̇O2max improvement from motor unit recruitment have also 

been offered (Brink-Elfegoun et al., 2007; Hawkins et al., 2007) but have been largely dismissed 

(Levine, 2008; Lundby et al., 2017). Circulatory factors (total oxygen carrying capacity of blood) 

therefore appear to be the dominant factor underlying improvements in V̇O2max (Lundby et al., 2017).  

Conversely, ST is associated with a hypertrophy response that increases body mass and has been 

reported to decrease capillary density, oxidative enzymes and mitochondrial density (Dudley, 1988; 

Kraemer et al., 1996; Tesch et al., 1987), which should adversely impact aerobic performance. 

Theoretically there is therefore little basis for ST as a strategy to enhance aerobic power. However it 

is important to address as part of a systematic review whether in fact V̇O2max is negatively affected 

when distance running is performed concurrently with ST (see Section 2.5). 
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Figure 2.4. A summary of the physiological adaptations underpinning improvements in V̇O2max 

with exercise training (Lunby et al., 2017). VO2max = maximal oxygen uptake, SV = stroke 

volume, HR = heart rate, a – vO2 diff = difference in oxygen concentration between arterial and 

venous blood, O2 = oxygen. 

 

2.3.2 Running Economy 

Although V̇O2max represents an important determinant of performance in a heterogeneous population 

of distance runners, RE, defined as the oxygen or energy cost to run at a given sub-maximal velocity, 

appears to be far better at distinguishing between differences in performance amongst populations 

with similar V̇O2max scores (Conley and Krahenbuhl, 1980; Daniels, 1985; Ingham et al., 2008). As 

shown in the hypothetical example in Figure 2.5, an individual with good RE will use less oxygen 

(or energy) than a runner with poor economy for the same sub-maximal running speed, despite both 

individuals being matched for V̇O2max.  In this regard, RE can compensate for possessing a low 

V̇O2max. Jones (2006) suggested a value of 200 mL.kg-1.km-1 is considered average for a distance 

runner. Inter-individual variation in RE can be as high as 30% in groups of runners homogenous for 

V̇O2max, and improvements in RE appear to be closely related to performance improvements (Beneke 

and HÜtler, 2005; Coyle, 2005; Hoogkamer et al., 2016; Jones, 2006b; Saunders et al., 2010). The 

dominance of East African distance runners on the international-stage, who are reported to possess 

superior RE compared to their European and North American counterparts (Larsen and Sheel, 2015; 

Wilber and Pitsiladis, 2012), is also likely to have spawned the interest in RE as a determinant of real 

significance to distance running performance. Whilst RE is fairly simple to measure in a laboratory 

setting, the factors underpinning its manifestation are a reflection of a complex interaction between 

several physiological systems (Figure 2.6). Many of the factors affecting RE can be modified with 
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the use of training interventions. Factors that are non-modifiable or cannot be easily controlled, such 

as anthropometric variables and environmental conditions, will not be discussed as part of this 

review.  

 

 

Figure 2.5. Hypothetical example of how two runners with the same maximal oxygen uptake (V̇O2max) 

may differ in terms of their running economy and speed at V̇O2max, which is a product of both 

physiological determinants. 

 

2.3.2.1 Physiological Mechanisms 

Cardiorespiratory mechanisms associated with breathing and HR may be partly responsible for the 

energy cost associated with exercise. Minute ventilation values during sub-maximal exercise have 

been suggested to contribute 6-7% of the overall energy requirement (Milic-Emili et al., 1962), and 

a relationship has previously been reported for changes in minute ventilation and improvements in 

RE following a running training intervention (Franch et al., 1998). If respiratory physiology is 

improved via training this may therefore contribute to an enhancement in RE. Although HR is 

positively correlated with RE (Pate et al., 1992), it is unlikely that reduced myocardial V̇O2 makes a 

significant contribution to lower RE values (Bailey and Pate, 1991).  
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Figure 2.6. Factors underpinning running economy as potential avenues for enhancement (Barnes 

and Kilding, 2015a; Barnes and Kilding, 2015b; Fletcher and MacIntosh, 2017; Moore, 2016) 

 

Continuous running (Beneke and HÜtler, 2005; Moore et al., 2012) and interval training (Barnes et 

al., 2013a; Denadai et al., 2006; Franch et al., 1998) have been shown to enhance RE via adaptations 

relating to improvements in oxygen delivery and utilisation within the muscle cell. Specifically, an 

increase in mitochondrial density, haematological variables and buffering capacity have been noted 

following endurance training interventions (Blomqvist and Saltin, 1983; Holloszy and Coyle, 1984) 

and these changes enable runners to utilise less energy for a given sub-maximal speed. Several 

authors have suggested that endurance training history is an important factor determining superior 

RE (Mayhew et al., 1979; Midgley et al., 2007a; Morgan et al., 1995; Nelson and Gregor, 1976). For 

example, Mayhew and colleagues (1979) found a significant relationship (r = 0.62) between years of 

training and RE, and case reports have demonstrated continued improvement in RE over long periods 

of time (Conley et al., 1984; Daniels, 1974; Ingham et al., 2012; Jones, 2006b). Recreational runners 

have also been shown to possess higher stride-to-stride movement variability, more inconsistent 

muscle recruitment patterns and longer durations of muscle activity compared to moderately-trained 

runners (Chapman et al., 2008). These factors suggest an inferior level of motor control in lesser 

trained runners, which is in line with findings from across the motor learning literature showing that 

long-term practice of a skill decreases movement variability, and results in reduced amplitude and 

duration of muscle activity, thus improving economy (Osu et al., 2002; Thoroughman and Shadmehr, 

1999). 

Skeletal muscles are composed of fibres that possess a range of metabolic and contractile 

characteristics (Zierath and Hawley, 2004) that are likely to influence RE (Morgan and Craib, 1992). 

Fibres are commonly classified according to their physiological properties as type I, type IIa or type 

IIx. Type I are generally found in higher proportions in successful endurance athletes (Costill et al., 

1976b; Saltin et al., 1977) and possess functional characteristics that should positively influence RE, 
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however evidence for a relationship between fibre type and RE is mixed (Bosco et al., 1987; 

Kyrolainen et al., 2003). Skeletal muscles demonstrate plasticity, which allows them to adapt over 

time to the contractile activity and loading they are exposed to (Zierath and Hawley, 2004). Long-

term exposure to low-intensity endurance training has shown that type II fibres can take on many of 

the characteristics of type I fibres (mitochondrial density, oxidative enzymes, capillary density, 

ATPase activity) (Taylor and Bachman, 1999; Widrick et al., 1996), which may also contribute to an 

improved RE. 

Long-distance runners tend to be shorter and lighter than middle-distance runners (Cavanagh et al., 

1977) and one of the principal reasons cited for the success of East African distance runners is their 

low body mass compared to Caucasian runners (Larsen and Sheel, 2015; Wilber and Pitsiladis, 2012). 

Carrying metabolically inactive tissue such as excess body fat or muscle elevates RE since a greater 

level of absolute force is required to overcome gravity, which demands a higher level of muscle 

activation (Keller et al., 1996; Taylor et al., 1980). Reducing body fat via exercise and nutritional 

interventions is therefore an effective strategy to improve RE.  

Chronic periods of RT are likely to produce a hypertrophic response, which increases muscle cross-

sectional area (Schoenfeld, 2010). Intuitively this may appear to be a negative consequence for a 

distance runner. However if the increase in muscle size contributes towards an improvement in force 

generating ability during the stance phase of running, this would theoretically result in a lower 

relative intensity, reducing the need for recruitment of higher threshold motor units, which are 

associated with high rates of energy usage (Fletcher and Macintosh, 2017). It has recently been 

questioned whether an increase in muscle cross-sectional area is a mechanism at all for the 

improvements in force production observed following a RT intervention (Buckner et al., 2016; 

Dankel et al., 2018). It is important to recognise that if an increase in muscle cross-sectional area 

does not directly contribute towards enhancement of force production, the additional mass would 

negatively impact RE. Moreover, adding mass to distal regions of the lower limb (triceps surae) is 

more metabolically costly than adding mass to proximal muscle groups (gluteals) due to the 

additional cost associated with angular displacement of a heavier swinging limb during the recovery 

phase of gait (Jones et al., 1986). 

  

2.3.2.2 Musculotendinous Mechanisms  

It has recently been suggested that the energy cost associated with active skeletal muscle contraction 

represents the majority of the metabolic cost associated with sub-maximal running (Fletcher and 

MacIntosh, 2015). The amount of energy required for a muscle to contract during running is 

dependent upon the force required, duration of contraction, length-tension and force-velocity needed 

to move a limb through a specific angular displacement (Fletcher and MacIntosh, 2017). For any 

given running speed, force production (impulse) is predominantly required to overcome the 
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acceleration due to gravity. Therefore as running speed increases and less time is available to generate 

force on the ground, the demand for producing force quickly increases (Weyand et al., 2000). RE 

therefore tends to increase as a function of speed because higher peak forces are required in shorter 

time frames, thus greater levels of muscle activation are needed (Keller et al., 1996; Kram and Taylor, 

1990). If target force can be developed isometrically, motor unit activation will be minimised (Chow 

and Darling, 1999) and thus energy cost will be low (Fletcher and MacIntosh, 2017). However, the 

force-velocity relationship dictates that if muscle shortening contributes to the achievement of a 

given target force, a greater level of muscle activation is required to maintain the required force and 

thus energy demand increases. Energy cost of running is therefore proportional to the contribution 

derived from concentric muscle actions and the velocity of these contractions. Although the early 

part of ground contact is likely to involve a lengthening muscle contractions, which are highly energy 

efficient, a subsequent shortening contraction is required to produce sufficient vertical force to 

overcome gravity. This is also likely to increase the volume of muscle recruited, as fascicle length 

increases the active cross-sectional area involved in force production (Roberts et al., 1998). 

Moreover, for a given amount of muscular force, energy cost will also be minimised if the muscle 

contracts at its optimal length (Gordon et al., 1966). Therefore if joint angular displacement during 

ground contact is high, energy cost is likely to be increased. It follows that if a runner has the 

capability to reduce muscle fibre shortening by achieving close to an isometric state rapidly during 

ground contact, this will minimise energy cost (Fletcher and MacIntosh, 2017). Muscle activation is 

achieved via a combination of motor unit recruitment and firing frequency (Fuglevand et al., 1993), 

therefore an improvement in these neural mechanisms via ST may lead to an improvement in RE. 

In addition to the active components of the muscle-tendon unit, the series elastic component 

(tendons) will also be stretched during early ground contact, which momentarily stores potential 

strain energy that can subsequently be released to reduce energy cost. It has been estimated that 

tendons in the foot and ankle contribute 30-40% of the energy required to sustain running at a 

moderate speed (Cavagna et al., 1964; Ker et al., 1987). A simultaneous rapid lengthening of the 

muscle fibres would also stimulate muscle spindles, contained within specialised intrafusal fibres, to 

provide sensory feedback via Ia afferent neurons, initiating a monosynaptic reflexive response that 

increases subsequent concentric force output (Sinkjær et al., 1996). 

Pre-activation of muscles immediately prior to foot strike is an important feature of stretch-

shortening cycles and is thought to facilitate greater musculotendinous stiffness during running via 

tolerance of impact forces on landing (Kyrolainen et al., 2001). Higher levels of muscle activity have 

been associated with greater energy cost (Kyrolainen et al., 2001), however an increase in preparatory 

muscle activation prior to foot strike is likely to reduce overall energy cost if the initial muscle length 

change is of smaller magnitude and at a lower velocity (Abe et al., 2007).   

It is believed that tendons behave in such a manner that seeks to optimise the length-tension and 

force-velocity of muscle fascicles to minimise energy cost (Fletcher et al., 2013; Ishikawa et al., 
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2007; Kawakami et al., 1998; Lutz and Rome, 1994). Theoretically, a more compliant tendon would 

be capable of storing and returning higher levels of energy (Fletcher and MacIntosh, 2017), however 

previous studies have shown that the most economical runners possess stiffer tendons (Arampatzis 

et al., 2006; Dalleau et al., 1998; Dumke et al., 2010; Rogers et al., 2017). This paradox can be 

explained by the fact that tendons operate primarily to optimise muscle force-length-velocity 

relationships thereby reducing energy cost (Fletcher and MacIntosh, 2017). The additional 

mechanical energy stored and released from tendons represents only a small reduction in total energy 

cost (Fletcher and MacIntosh, 2015; 2017; Ker et al., 1987), particularly when it is considered that a 

stiffer Achilles tendon actually stores less strain energy for any given force. In theory, a tendon with 

optimal stiffness is capable of accommodating all of the muscle-tendon unit length change during 

human running (Ishikawa et al., 2007; Lichtwark et al., 2007). The tendon would therefore provide 

the majority of energy for force generation from storage and return of elastic strain energy and allow 

muscles to work under isometric conditions, which minimises energy cost. This theory has been 

tested experimentally in both frogs (Holt et al., 2014; Lutz and Rome, 1994) and chickens (Gabaldón 

et al., 2008) and appears to occur. It should be noted that if a tendon is too stiff, muscle fibres will 

invariably be required to lengthen and shorten to cope with the impact forces at ground contact and 

there would be little opportunity for storage of strain energy. Therefore it has been suggested that an 

optimal stiffness exists for different running speeds that will minimise energy cost of running 

(Fletcher and MacIntosh, 2017). Various ST techniques have been shown to increase tendon stiffness 

(Fletcher et al., 2010; Kubo et al., 2001a; Kubo et al., 2002; Kubo et al., 2001b), therefore it seems 

likely ST may enhance RE. It is thought that alterations to the intra-cellular matrix (material 

properties) of tendons, rather than increases in cross-sectional area or resting tendon length, underpin 

increases in tendon stiffness following a RT or PT intervention (Bohm et al., 2015). 

 

2.3.2.3 Biomechanical Mechanisms 

A distance runners freely-chosen stride frequency and stride length correspond to the RE associated 

with the lowest RE, and trained runners are capable of adjusting their stride frequency in a fatigued 

state to optimise energy cost (Moore, 2016). However, based upon mathematical modelling it is 

thought that (on average) optimal stride frequency should be 3% faster and stride length 3% shorter 

for most trained runners (Cavanagh et al., 1977; Connick and Li, 2014; De Ruiter et al., 2014). For 

less trained runners, these values are thought to be further from the optimum (De Ruiter et al., 2014). 

Ground contact time reduces as running speed increase, however it is recognised that energy cost is 

proportional to the average vertical force during ground contact but inversely related to the ground 

contact time over which the force is applied (Fletcher and MacIntosh, 2017; Kram and Taylor, 1990). 

A higher stride frequency and shorter ground contact time would maximise the contribution from 

stored elastic energy, since less would be wasted as heat (Alexander, 1991). However, short ground 

contact time also increases the demand to generate force rapidly, therefore a higher level of muscle 
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activation is required, which increases metabolic cost. Therefore, for a given running speed, there 

seems to be a trade-off, which favours a cadence slightly lower than optimal and longer ground 

contact time to optimise RE for each individual. This hypothesis is supported by several papers 

showing an inverse relationship between RE and ground contact time (Chapman et al., 2012; Di 

Michele and Merni, 2014; Williams and Cavanagh, 1987), although other studies have not confirmed 

this finding (Folland et al., 2017; Heise and Martin, 2001; Støren et al., 2011). Although longer 

ground contact times at a given sub-maximal speed appear to lower metabolic cost, it is also likely 

that excessively long contact times would produce a higher braking force (Moore et al., 2016) as a 

result of a longer stride length.  

Foot strike patterns have been investigated as a potential kinematic factor that may influence RE 

because of differences in the length of the moment arm to the ankle plantarflexors created by forefoot 

and rearfoot strike patterns (Williams and Cavanagh, 1987). Theoretically, a forefoot strike pattern 

should allow an isometric state of contraction to be achieved throughout stance and elastic strain 

energy to be stored and released optimally (Fletcher and Macintosh, 2017). However, in the main, 

experimental evidence has failed to show differences in RE between forefoot, midfoot and rearfoot 

strikers across a range of running speeds (Cunningham et al., 2010; Gruber et al., 2013; Perl et al., 

2012). It is likely that habituation to a footstrike pattern and differences in the running speed used to 

analyse kinematics confounds results of these studies. Heel strike patterns are often associated with 

an excessive displacement of the foot in front of the centre of mass at ground contact, which 

substantially increases braking forces (Lieberman et al., 2015). Although some gait re-training 

studies have demonstrated reductions in horizontal placement of the foot relative to centre of mass 

and decreased peak braking and propulsive forces, no effect on RE has been noted (Arendse et al., 

2004; Fletcher et al., 2008; Heiderscheit et al., 2011).  

Vertical oscillation of a runners centre of mass and reduced knee and hip range of motion during 

stance phase also appears to be related to RE (Folland et al., 2017; Moore, 2016). A small vertical 

displacement of centre of mass would imply that the joints of the lower limb move through a smaller 

range (possess higher leg spring stiffness) and thus perform less work against gravity, which would 

produce less vertical impulse with muscles acting closer to isometric (Slawinski and Billat, 2004; 

Teunissen et al., 2007). Acute increases in a runners vertical oscillation has been shown to increase 

energy cost (Egbuonu et al., 1990; Tseh et al., 2008), and reducing vertical displacement of centre of 

mass can improve RE (Halvorsen et al., 2012). It would also seem plausible that improving a runner’s 

maximum strength and rate of force development (RFD) would minimise the displacement of lower 

limb joints at ground contact and thus reduce vertical oscillation during stance.  

An initial foot strike at ground contact that falls in front of the centre of mass will cause a horizontal 

braking effect, which momentarily reduces horizontal velocity and increases RE as a greater 

subsequent concentric force is required to maintain running speed compared to a smaller horizontal 

impulse (Moore, 2016). Indeed, horizontal velocity of the pelvis was recently used as a marker of 
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this braking effect and was shown to be correlated with RE (Folland et al., 2017).  In conjunction 

with this observation, a greater angle of dorsiflexion and shank angle relative to vertical, was also 

been shown to be negatively related to RE (Folland et al., 2017). Higher horizontal velocity of the 

heel and greater plantarflexion velocity have also been shown to be associated with better RE 

(Williams and Cavanagh, 1987). Presumably therefore, striking the ground with active ankle 

plantarflexion and the shank positioned closer to vertical (under the centre of mass) is likely to reduce 

horizontal braking impulse, aid in creating leg stiffness and optimise RE. 

A less extended leg position at toe-off has consistently been shown to relate to superior RE 

(Cavanagh et al., 1977; Moore et al., 2014a; Moore et al., 2012; Williams and Cavanagh, 1987). In 

a fully extended position, based upon the length-tension relationship, muscles are at a poor length to 

generate force, therefore can contribute little to propulsion. Lower limb extension towards end range 

of motion also requires work to be performed concentrically, which incurs a high energy cost. Indeed, 

Moore et al. (2012) showed that novice runners improved their RE following a ten week training 

programme, with the extent of improvement being related to the degree of knee extension at toe-off. 

It was speculated that this strategy maximises effective force production and minimises energy cost 

of running via either performing less unnecessary work or reducing the distance the leg is required 

to travel during the subsequent swing phase. 

Despite limited research coverage, it is generally accepted that upper limb biomechanics play an 

integral role in optimising RE (Moore, 2016). Natural arm swing during running appears to 

contribute to reducing vertical oscillation, counteracts the vertical angular momentum created by the 

lower limbs and aids in controlling excessive rotations in the torso and pectoral girdle (Moore, 2016). 

A lower level of transverse plane shoulder angular displacement and shoulder angular velocity was 

found to relate to better RE in Collegiate cross-country runners (Anderson and Tseh, 1994), however 

there are currently no studies which have investigated the influence of altering natural arm swing 

with an intervention, and the impact this has on RE. 

Studies have attempted to improve RE via gait re-training techniques (Clansey et al., 2014; Craighead 

et al., 2014; Fletcher et al., 2008; Messier and Cirillo, 1989) or reduce stride length in runners 

identified as ‘over-striders’ (Morgan et al., 1994), but have generally shown no alteration in RE, 

despite alterations in running biomechanics. It may be possible that a greater running volume was 

required to habituate runners to the new technique, or that incorrect biomechanical factors were 

targeted (Moore, 2016). It therefore appears that the best strategy to lower energy cost via these 

kinematic and spatiotemporal factors is to allow runners to self-optimise through acquiring greater 

running experience. 

In general, there appears to be an inverse relationship between flexibility and RE (Craib et al., 1996; 

Gleim et al., 1990; Hunter et al., 2011; Jones, 2002; Trehearn and Buresh, 2009), suggesting that 

being less flexible is beneficial for RE. However, this has not been a consistent findings, with other 

studies showing higher levels of flexibility relate to better RE (Beaudoin and Blum, 2005; Godges et 
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al., 1989; Godges et al., 1993; Nelson et al., 2001). It has been suggested that inflexibility in joints, 

may limit range of motion, thus reduce energy expenditure and facilitate storage and return of elastic 

energy during running (Gleim et al., 1990; Jones, 2002). It is possible though that an optimal level 

of flexibility may exist at various joints, however this optimum range may be quite low for many 

joints of the lower limb and trunk. Results therefore depend upon the inter-individual variability in 

the flexibility of participants, which joints are assessed, and the sex of participants, as females are 

typically more flexible (Trehearn and Buresh, 2009). A systematic review on this topic concluded 

that pre-session stretching may enhance RE, however chronic stretching has little effect on RE 

(Shrier, 2004).  

 

2.3.3 Speed at Maximal Oxygen Uptake and Critical Speed 

Although V̇O2max and RE are highly useful physiological parameters, they are of limited practical use 

to runners because they fail to provide a meaningful expression of running speed that can be used to 

prescribe training and predict performance (Jones, 2006). sV̇O2max provides a composite measure of 

V̇O2max and RE based upon the RE-speed relationship extrapolated via a linear regression line to the 

V̇O2max value. As shown in Figure 2.5, a runner with superior (lower) RE at a range of sub-maximal 

speeds who possesses a similar V̇O2max to another runner, is likely to have a superior sV̇O2max. As 

V̇O2max represents a ceiling of an individual’s aerobic metabolic power, a poor value will also 

generate a weak sV̇O2max score. The amalgamation of several physiological qualities into this single 

determinant appears to more accurately differentiate performance, particularly in well-trained 

runners (McLaughlin et al., 2010; Noakes et al., 1990; Saunders et al., 2004b; Stratton et al., 2009). 

It has been suggested that the optimal running speed to develop V̇O2max is at sV̇O2max (Billat and 

Koralsztein, 1996; Wenger and Bell, 1986), thus this value has a high level of practical relevance for 

runners and their coaches. 

The critical speed model, which represents exercise tolerance at boundary between the heavy and 

severe intensity domains, potentially offers an alternative to measurement of sV̇O2max that is currently 

uninvestigated in runners (Denadai and Greco, 2017a; 2017b). Two main parameters can be assessed 

using the critical speed model; critical speed itself, which is defined as the lower boundary of the 

severe intensity domain, which when maintained to exhaustion leads to attainment of V̇O2max, and 

the curvature constant of the speed-time hyperbola above critical speed, which is represented by the 

total distance that can be covered prior to exhaustion at a constant speed (Jones et al., 2010). Middle-

distance running performance (800 m) is strongly related to critical speed models (r = 0.83-0.94) in 

trained runners (Bosquet et al., 2006), and may be more important than RE in well-trained runners 

(Denadai and Greco, 2017b). 
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2.3.4 Fractional Utilisation and Lactate Threshold 

The proportion of V̇O2max that a runner can access and maintain for long periods is referred to as 

‘fractional utilisation’, and is an important factor capable of predicting performance (Costill et al., 

1973; Maughan and Leiper, 1983). A runner’s speed at a reference point on the lactate-speed curve, 

or BL for a given running speed, are also important predictors of distance running performance 

(Farrell et al., 1979; Fay et al., 1989; Yoshida et al., 1993). The LT is represented by the first rise in 

the BL value (~1 mMol.L-1) from baseline (Jones et al., 1999), which in well-trained distance runners 

can be sustained for 1-2 h. With increasing intensity thereafter, the lactate turnpoint (LTP) can be 

identified as the second inflection point on the curve where the rise is more sudden and sustained 

(Kilding and Jones, 2005), usually between 2-4 mMol.L-1 (Jones, 2006). This running speed will 

usually be equivalent to a trained runners 10 km race pace (Jones, 2006).  A runners LT corresponds 

closely with the fractional utilisation of V̇O2max that can be sustained for a given distance (Bassett 

and Howley, 2000), therefore an increase in LT also allows a greater proportion of aerobic power to 

be accessed.  

Measurement of BL offers practitioners with a useful way to evaluate performance and monitor 

changes over time. Identification of a runners speed associated with LT and LTP (sLTP) plus 

equivalent HR values allows coaches to individualise training pace zones more precisely. In general, 

continuous recovery runs should be performed at a speed below LT, intensities between LT and LTP 

used for steady running, LTP pace used for ‘tempo’ efforts (20-40 min), sV̇O2max for extensive 

interval training to improve V̇O2max, and speeds faster than sV̇O2max used for intensive interval training 

designed to develop anaerobic capabilities (Jones, 2006b; Laursen and Jenkins, 2002; Midgley et al., 

2007a; Midgley et al., 2006b). A shift to the right of the speed-lactate curve represents an 

improvement in performance, which is primarily underpinned by metabolic adaptations relating to 

an ability to buffer and clear metabolites from the blood (Jones and Carter, 2000).  

 

2.3.5 Anaerobic Determinants 

The contribution of anaerobic factors to distance running performance is well-established (Brandon, 

1995; Green and Patla, 1992). In particular, anaerobic capacity and neuromuscular capabilities are 

thought to play a large role in discriminating performance in runners who are closely matched from 

an aerobic perspective (Bulbulian et al., 1986; Paavolainen et al., 1999c). An individual’s sV̇O2max 

perhaps provides the most event-specific representation of neuromuscular capabilities in distance 

runners, however measures of maximal running speed and anaerobic capacity are also potentially 

important (Noakes, 1988).  

The middle-distance events rely heavily on the capacity of anaerobic energy processes and the ability 

to tolerate high levels of metabolic acidosis (Thompson, 2017). BL values of ~20 mMol.L-1 have 

been observed following 800 m running in males and females, indicating a substantial contribution 
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from anaerobic glycolytic energy sources (Lacour et al., 1990a). For an 800 m runner, near-maximal 

velocities of running are reached during the first 200 m of the race (Reardon, 2013), which 

necessitates a high capacity of the neuromuscular and anaerobic system. It has also been hypothesised 

that middle-distance runners who possess a higher maximal running speed and greater anaerobic 

capacity are able to compensate for a lower aerobic capacity (Brandon, 1995). Indeed, a negative 

relationship between aerobic and anaerobic capacity in an elite group of nine middle-distance and 

six long-distance runners has previously been observed (Crielaard and Pirnay, 1981).  

A number of studies have investigated the relationship between anaerobic- and neuromuscular-

related variables and performance in middle- and long-distance running events. Houmard and 

colleagues (1991) observed that counter-movement jump (CMJ) and power recorded during a 

Margaria run-test were related to 5 km time in well-trained male runners. Hudgins and colleagues 

(2013) also showed significant relationships between a three-step jump test and 800 m (r = -0.83) 

and 3 km (r = -0.72) time in 11 middle-distance runners. A relationship was also present between the 

same measure and 5 km (r = -0.71) performance in a group of 12 long-distance runners (Hudgins et 

al., 2013). Recently, significant relationships between 800 m performance and 20 m sprint (r = 0.72), 

200 m sprint (r = 0.84), CMJ (r = -0.69), and loaded squat velocity (r = -0.58) were observed in 

national and international male 800 m runners (personal best range: 1.43 – 1.58) (Bachero-Mena et 

al., 2017). Sprint performances (300 m and 100 m) were also capable of explaining 85% of the inter-

individual variability in 800 m performance in a group of 11 male runners (Deason et al., 1991), and 

similarly, 50 m sprint time has shown be to correlated with 10 km performance (r = 0.62) in females 

(Tharp et al., 1997). In addition, Paavolainen and associates (1999c) showed that speed during a 5 

km correlated with 20 m sprint time (r = 0.68) and sMART (r = 0.63). This finding was later 

corroborated by Nummela and co-workers (2006) who showed that sMART correlated with 5 km 

TT speed (r = 0.77) and V̇O2max (r = 0.77). The authors also argued that neural input was an important 

determinant of 5 km speed as the average electromyography (EMG) activity from five lower limb 

muscles was also related (r = 0.60) (Nummela et al., 2006).  

Correlation findings are useful in helping to explain how much variability in distance running 

performance can be explained by an anaerobic or neuromuscular factor, but this does not imply that 

anaerobic capabilities are responsible for superior distance running performances. It has been 

recognised that ST activities are capable of improving measures of maximal strength and explosive 

power in middle- and long-distance runners (Beattie et al., 2014; Berryman et al., 2017; Jung, 2003; 

Ronnestad and Mujika, 2014), and that these improvements likely underpin the positive changes seen 

in physiological parameters such as RE (Denadai et al., 2017). Several reviews have also been 

conducted aiming to summarise the literature that has investigated the effect of ST interventions on 

sprint performance (Bolger et al., 2015; de Villarreal et al., 2012; Seitz et al., 2014), however no 

recent systematic review has documented whether ST provides benefits to anaerobic running 

capabilities in middle- and long-distance runners specifically. 
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2.3.6 Oxygen Uptake Kinetics 

The V̇O2 kinetic response refers to the rate with which V̇O2 rises at the onset of exercise, and along 

with the other determinants of performance described herein, has been suggested to be an important 

determinant of middle- and long-distance running performance (Jones and Burnley, 2009). At the 

onset of exercise, the demand for energy increases rapidly, which is primarily accommodated by 

breakdown of phosphocreatine and anaerobic glycolysis to resynthesise adenosine triphosphate. The 

resultant rise in intra-muscular metabolites stimulates an increased rate of oxidative phosphorylation, 

that continues to rise in an exponential fashion (‘fast component’) until the demand for energy is met 

(defined by a steady state V̇O2). Above moderate intensities of running, a V̇O2 ‘slow component’ will 

be observable, which is characterised by a continued rise in V̇O2 and delays attainment of a steady 

state. A more rapid V̇O2 kinetic response therefore enhances muscle metabolic stability, accompanied 

by a lower oxygen deficit, thereby offsetting fatigue.  

V̇O2 kinetics appear to be a more sensitive measure than more traditional determinants of 

performance such as V̇O2max and BL markers when investigating the physiological response to an 

intervention (Koppo et al., 2004; Norris and Petersen, 1998; Phillips et al., 1995).  Well-trained 

runners typically possess faster V̇O2 kinetics compared to lesser trained runners (Caputo and Denadai, 

2004; Kilding et al., 2007), and elite distance runners have similar ‘time constants’ to thoroughbred 

racehorses (Jones and Poole, 2009). Kilding and co-workers (2006) found that long-distance runners 

possessed superior V̇O2 kinetics compared to middle-distance runners of a similar competitive status. 

The authors also observed that inter-individual differences in V̇O2 kinetic response could be partly 

explained by the volume of running training that runners were undertaking, irrespective of event 

specialism (Kilding et al., 2006). High concentrations of phosphocreatine in the muscle, that delays 

oxidative phosphorylation processes, are typically found in athletes with high anaerobic capacity, 

such as middle-distance runners (Berger and Jones, 2007; Kilding et al., 2006). This may also be a 

mechanism by which the V̇O2 kinetic response is limited during early stages of exercise (Meyer, 

1988). 

Research investigating strategies to improve the V̇O2 kinetic response have largely focussed on 

endurance training and the influence of pre-performance ‘priming’ exercise (Jones and Burnley, 

2009). Endurance training interventions have been shown to increase the fast component of the V̇O2 

kinetic response and reduce the slow component (Carter et al., 2000), although it is uncertain what 

type of training optimises adaptation (Poole and Jones, 2012). Section 2.6.2 discusses the effect of 

priming exercise on the V̇O2 kinetic response to a subsequent exercise bout.  
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2.4 Limitations to Performance in Adolescent Middle- and Long-Distance Runners  

Despite extensive research investigating the physiological factors that underpin distance running 

performance in adults, less is known about the determinants of success in specific populations, such 

as adolescents. In studies that have assessed the relationship between physiological parameters and 

performance in young runners, participants have typically been homogenous for age, but may differ 

markedly in their maturation status (Beunen and Malina, 1988) and level of training (Wilson et al., 

1999). This is likely to influence the extent to which physiological parameters correlate with 

performance measures compared to groups of well-trained adult runners, who generally have similar 

characteristics with respect to these confounding variables. Moreover, the method used to partition 

groups of young participants for differences in body size for variables such as V̇O2max and RE is also 

likely to influence findings (Eisenmann et al., 2001). 

In general, the physiological determinants of performance for adolescents appears to be similar to 

those of adult runners. A number of investigations have confirmed that V̇O2max  is a significant 

predictor (r=0.5-0.9) of performance for 1500 m (Abe et al., 1998; Almarwaey et al., 2003), 3 km 

(Abe et al., 1998; Mahon et al., 1996; Unnithan et al., 1995), 5 km (Abe et al., 1998; Cunningham, 

1990) and cross-country (Cole et al., 2006; Fernhall et al., 1996) in young (10-18 years) groups of 

runners. RE (or V̇O2 at ventilatory threshold or LT) also appears to be related to middle- (Almarwaey 

et al., 2003; Mayers and Gutin, 1979; Unnithan et al., 1995) and long-distance performance (Cole et 

al., 2006; Fernhall et al., 1996), although this is not always the case (Abe et al., 1998; Cunningham, 

1990). The discrepancy in findings in these studies is likely due to the small inter-individual 

variability in RE despite differences in running performance compared to other studies. Additionally, 

sV̇O2max (Abe et al., 1998; Almarwaey et al., 2003; Cole et al., 2006; Cunningham, 1990) and 

fractional utilisation (Mahon et al., 1996; Unnithan et al., 1995) have also been shown to significantly 

correlate with distance running performance in adolescents.   

Evidence for anaerobic variables contributing to performance is far less convincing in young distance 

runners compared to adult runners. Almarwaey and colleagues (2003) reported no significant 

relationship between Wingate test power and both 800 m and 1500 m performance in adolescent 

boys and girls. Similarly, CMJ height, muscle power and isokinetic knee extension and flexion 

strength have all been shown to be unrelated to 5 km performance in adolescent (16-18 years) runners 

(Cole et al., 2006; Dellagrana et al., 2015). Conversely, Mahon and co-authors (1996) showed that 

55 m sprint and CMJ were significant predictors of 3 km TT in preadolescent children. This finding 

may simply be a reflection of individuals possessing high or low levels of athletic ability across the 

range of tests utilised, or the higher level of specificity in the tests used compared to other studies 

(Almarwaey et al., 2003; Cole et al., 2006; Dellagrana et al., 2015). Collectively, it seems measures 

of anaerobic and neuromuscular capabilities contribute little to distance running performance in 

adolescents. However, it is currently unknown whether anaerobic and strength-related factors are 



44 

 

able to predict inter-individual variability in RE in this age-group, which is known to be partly 

underpinned by these attributes. 
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2.5 Chronic Effects of Strength Training on the Physiological Determinants of Middle- and 

Long-Distance Running Performance: A Systematic Review (Study 1) 

2.5.1 Aim 

Section 2.3 described the important physiological parameters that constrain middle- and long-

distance running performance. The efficacy of ST on these determinants of performance has received 

considerable attention in the literature, however to date, the results of these studies have not been 

fully synthesised in a review on the topic. Consequently the aim of this systematic review was to 

analyse the evidence surrounding the use of ST on distance running parameters that includes both 

aerobic and anaerobic qualities, in addition to body composition and performance-related outcomes. 

This work also provides a forensic, critical evaluation that, unlike previous work, highlights areas 

that future investigations should address to improve methodological rigor, such as ensuring valid 

measurement of physiological parameters and maximising control over potential confounding 

factors.  

 

2.5.2 Method 

2.5.2.1 Literature Search Strategy 

The PRISMA statement (Moher et al., 2009) was used as a basis for the procedures described herein. 

Electronic database searches were carried out in Pubmed, SPORTDiscus and Web of Science using 

the following  search terms and Boolean operators: ("strength training" OR "resistance training" OR 

"weight training" OR "weight lifting" OR "plyometric training" OR "concurrent training") AND 

("distance running" OR "endurance running" OR "distance runners" OR "endurance runners" OR 

"middle distance runners") AND ("anaerobic" OR "sprint" OR "speed" OR "performance" OR "time" 

OR "economy" OR "energy cost" OR "lactate" OR "maximal oxygen uptake" OR "VO2max" OR 

"aerobic" OR "time trial"). Searches were limited to papers published in English and from 1st January 

1980 to 6th October 2017. 

 

2.5.2.2 Inclusion and Exclusion Criteria 

For a study to be eligible, each of the following inclusion criteria were met:  

 Participants were middle- (800 m – 3000 m) or long-distance runners (5000 m – ultra-

distance). Studies using triathletes and duathletes were also included because often these 

participants possess similar physiology to distance runners and complete similar volumes of 

running training.  

 A ST intervention was applied. This was defined as heavy (less than nine repetition 

maximum (RM) loads and/or 80% of 1RM) or isometric resistance training (HRT), moderate 



46 

 

load (9-15 RM and/or 60-80% 1RM) RT, ERT, reactive ST or PT. Sprint training (SpT) 

could be used in conjunction with one or more of the above ST methods, but not exclusively 

as the only intervention activity.  

 The intervention period lasted four weeks or longer. This criteria was employed as 

neuromuscular adaptations have been observed in as little as 4 weeks in non-strength trained 

individuals (Baroni et al., 2013; Mayhew et al., 1995). 

 A running only control group (CG) was used that adopted similar running training to the 

intervention group(s) 

 Data on one or more of the following physiological parameters was reported: V̇O2max, RE, 

sV̇O2max, TT performance, TTE, BL response, anaerobic capacity, maximal speed, measures 

of body composition 

 Published in full in a peer-reviewed journal 

Studies were excluded if any of the following criteria applied: 

 Participants were non-runners (eg students, untrained/less than six months running 

experience). Further restrictions were not placed upon experience/training status. 

 The running training and/or ST intervention was poorly controlled and/or reported 

 The intervention involved only SpT or was embedded as part of running training sessions 

 Participants were reported to be in poor health or symptomatic  

 Ergogenic aids were used as part of the intervention  

Using the mean V̇O2max values provided within each study, participants training status was considered 

as moderately-trained (male V̇O2max ≤55 mL.kg-1.min-1), well-trained (male V̇O2max 55-65 mL.kg-

1.min-1) or highly-trained (male V̇O2max ≥65 mL.kg-1.min-1) (Denadai et al., 2017; Jones, 2006a). For 

female participants, the V̇O2max thresholds were set 10 mL.kg-1.min-1 lower (Jones, 2006a). In the 

absence of V̇O2max values, training status was based upon the training or competitive level of the 

participants: moderately-trained = recreational or local club, well-trained = Collegiate or provincial, 

highly-trained = national or international.  

 

2.5.2.3 Study Selection  

Figure 2.7 provides a visual overview of the study selection process. Search results were imported 

into a published software for systematic reviews (Ouzzani et al., 2016) which allowed a blind 

screening process to be performed by two independent reviewers (author and Principal Supervisor). 

Any disagreements were resolved by consensus. The initial search yielded 454 publications. 

Following the removal of duplicates (n=190), publications were filtered by reading the title and 

abstract (inter-rater reliability (IRR): 95.3%, Cohens k = 0.86) leaving 19 review articles or 

commentaries, and 47 potentially relevant papers, which were given full consideration. Five 
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additional records were identified as being potentially relevant via manual searches of previously 

published reviews on this topic and the individual study citations. These 52 studies were considered 

in detail for appropriateness, resulting in a further 26 papers (Barnes et al., 2013b; Bluett et al., 2015; 

Childs et al., 2011; Chtara et al., 2005; Clark et al., 2017; Esteve-Lanao et al., 2008; Glowacki et al., 

2004; Guglielmo et al., 2009; Hamilton et al., 2006; Hasegawa et al., 2011; Hickson, 1980; Hickson 

et al., 1988; Kelly et al., 2008; Maćkała and Stodółka, 2014; Mikkola et al., 2011; Roschel et al., 

2015; Sato and Mokha, 2009; Saunders et al., 2004c; Sedano et al., 2013; Spurrs et al., 2002; Stohanzl 

et al., 2017; Taipale et al., 2010; Taipale et al., 2014; Taipale et al., 2013; Tong et al., 2016; Vorup 

et al., 2016) being excluded (IRR: 94.2%, Cohens k = 0.88) for the following reasons: not published 

in full in a peer-reviewed journal (Childs et al., 2011; Hasegawa et al., 2011; Saunders et al., 2004c; 

Spurrs et al., 2002), absence of a running only CG (Barnes et al., 2013b; Guglielmo et al., 2009; 

Hamilton et al., 2006; Hickson, 1980; Hickson et al., 1988; Maćkała and Stodółka, 2014; Mikkola et 

al., 2011; Roschel et al., 2015; Sedano et al., 2013; Taipale et al., 2010; Taipale et al., 2014; Taipale 

et al., 2013), participants were non-runners (Bluett et al., 2015; Chtara et al., 2005; Glowacki et al., 

2004; Kelly et al., 2008), no physiological parameters were measured (Esteve-Lanao et al., 2008), 

dissimilar running training was applied between groups (Vorup et al., 2016), the ST intervention was 

poorly controlled (Hamilton et al., 2006), and the intervention did not involve one of the 

aforementioned types of ST (Clark et al., 2017; Sato and Mokha, 2009; Stohanzl et al., 2017; Tong 

et al., 2016).  
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Figure 2.7. Search, screening and selection process for suitable studies. IRR = inter-rater reliability. 

 

2.5.2.4 Analysis of Results 

The Physiotherapy Evidence Database (PEDro) scale was subsequently used to assess the quality of 

the remaining 26 records (Albracht and Arampatzis, 2013; Beattie et al., 2017; Berryman et al., 2010; 

Bertuzzi et al., 2013; Bonacci et al., 2011; Damasceno et al., 2015; Ferrauti et al., 2010; Fletcher et 

al., 2010; Giovanelli et al., 2017; Johnston et al., 1997; Karsten et al., 2016; Mikkola et al., 2007; 

Millet et al., 2002; Paavolainen et al., 1999a; Pellegrino et al., 2016; Piacentini et al., 2013; Ramirez-

Campillo et al., 2014; Saunders et al., 2006; Schumann et al., 2015; Schumann et al., 2016; 

Skovgaard et al., 2014; Spurrs et al., 2003; Storen et al., 2008; Turner et al., 2003; Vikmoen et al., 
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2016; Vikmoen et al., 2017) by the two independent reviewers. Two studies reported their results 

across two papers (Schumann et al., 2015; Schumann et al., 2016; Vikmoen et al., 2016; Vikmoen et 

al., 2017), therefore both are considered as single studies hereafter, thus a total of 24 studies were 

analysed. The PEDro scale is a tool recommended for assessing the quality of evidence when 

systematically reviewing randomised-controlled trials (Maher et al., 2003). Each paper is scrutinised 

against eleven items relating to the scientific rigor of the methodology, with items 2-11 being scored 

0 or 1. Papers are therefore awarded a rating from 0 to 10 depending upon the number of items which 

the study methodology satisfies (10 = study possesses excellent internal validity, 0 = study has poor 

internal validity). No studies were not excluded based upon their PEDro scale score and IRR was 

excellent (93.2%, Cohens k = 0.86).  

Results are summarised as a percentage change and the p-value for variables relating to: strength 

outcomes, RE, V̇O2max, sV̇O2max, BL response, TT, anaerobic performance and body composition. 

Due to the heterogeneity of outcome measures in the included studies and the limitations associated 

with conditional probability, where possible, an effect size (ES) statistic (Cohens d) is also provided. 

ES values are based upon those reported in the studies or were calculated using the ratio between the 

change score (post-intervention value minus pre-intervention value) and a pooled standard deviation 

(SD) at baseline for intervention and CGs. Values were interpreted as trivial <0.20; small 0.20-0.59; 

moderate 0.60-1.20; and large >1.20. 

 

2.5.3 Results 

2.5.3.1 Participant Characteristics 

A summary of the participant characteristics for the 24 studies which met the criteria for inclusion in 

this review is presented in Table 2.1. A total of 469 participants (male n=352, female n=96) are 

included, aged between 17.3 – 44.8 years. V̇O2max  data were reported for all but five studies (Albracht 

and Arampatzis, 2013; Bonacci et al., 2011; Piacentini et al., 2013; Ramirez-Campillo et al., 2014; 

Schumann et al., 2015; Schumann et al., 2016) and ranged from 47.0 to 70.4 mL.kg-1.min-1. Based 

upon weighted mean values in the studies that reported participant characteristics for each group, age 

(30.2 vs 29.0 years), body mass (68.1 vs 70.0 kg), height (1.74 vs 1.74 m) and V̇O2max (57.3 vs 57.7 

mL.kg-1.min-1) appeared to differ little at baseline for ST groups and CGs respectively. Moderately 

trained or recreational level runners were used in nine studies (Albracht and Arampatzis, 2013; 

Bonacci et al., 2011; Ferrauti et al., 2010; Johnston et al., 1997; Karsten et al., 2016; Pellegrino et 

al., 2016; Piacentini et al., 2013; Schumann et al., 2015; Schumann et al., 2016; Turner et al., 2003), 

well-trained participants in ten studies (Beattie et al., 2017; Berryman et al., 2010; Bertuzzi et al., 

2013; Damasceno et al., 2015; Giovanelli et al., 2017; Paavolainen et al., 1999a; Skovgaard et al., 

2014; Spurrs et al., 2003; Storen et al., 2008; Vikmoen et al., 2016; Vikmoen et al., 2017), and highly-

trained or national/international runners were used in four studies (Fletcher et al., 2010; Millet et al., 
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2002; Ramirez-Campillo et al., 2014; Saunders et al., 2006). National caliber junior runners were 

also used in one investigation (Mikkola et al., 2007).  Participants took part or competed in events 

ranging from the middle-distances to ultra-marathons, and several studies used triathletes (Bonacci 

et al., 2011; Karsten et al., 2016; Millet et al., 2002) or duathletes (Vikmoen et al., 2016; Vikmoen 

et al., 2017).  

 

2.5.3.2 Study Design and PEDro Scores 

Table 2.1 also provides an overview of several important features of study design, including PEDro 

scale scores. Studies lasted 6-14 weeks with the exception of two investigations, which lasted 24 

weeks (Schumann et al., 2015; Schumann et al., 2016) and 40 weeks (Beattie et al., 2017). Fourteen 

studies provided detailed accounts of the running training undertaken by the participants. However 

these were usually reported from monitoring records, thus only three studies were deemed to have 

appropriately controlled for the volume and intensity of running in both groups (Berryman et al., 

2010; Paavolainen et al., 1999a; Schumann et al., 2015; Schumann et al., 2016; Vikmoen et al., 2016; 

Vikmoen et al., 2017). Six studies provided little or no detail on the running training that participants 

performed (Albracht and Arampatzis, 2013; Beattie et al., 2017; Fletcher et al., 2010; Karsten et al., 

2016; Pellegrino et al., 2016; Piacentini et al., 2013). ST in all but three investigations (Mikkola et 

al., 2007; Paavolainen et al., 1999a; Skovgaard et al., 2014) was supplementary to running training, 

and one paper provided the CG with alternative activities (stretching and core stability) matched for 

training time (Saunders et al., 2006). 

Studies all scored a 4, 5 or 6 on the PEDro scale. All investigations had points deducted for items 

relating to blinding of participants, therapists and assessors. Differences in the scores awarded were 

mainly the result of studies not randomly allocating participants to groups and failing to obtain data 

for more than 85% of participants initially allocated to groups; or this information not being explicitly 

stated. 

 

2.5.3.3 Training Programmes 

Table 2.2 provides a summary of the training characteristics associated with the ST intervention and 

running training used concurrently as part of the study period. The ST activities used were RT or 

HRT (Albracht and Arampatzis, 2013; Bertuzzi et al., 2013; Damasceno et al., 2015; Ferrauti et al., 

2010; Fletcher et al., 2010; Johnston et al., 1997; Karsten et al., 2016; Mikkola et al., 2007; Piacentini 

et al., 2013; Storen et al., 2008; Vikmoen et al., 2016; Vikmoen et al., 2017), PT (Berryman et al., 

2010; Pellegrino et al., 2016; Ramirez-Campillo et al., 2014; Spurrs et al., 2003; Turner et al., 2003), 

ERT (Berryman et al., 2010), or a combination of these methods (Beattie et al., 2017; Bonacci et al., 

2011; Giovanelli et al., 2017; Saunders et al., 2006; Schumann et al., 2015; Schumann et al., 2016), 
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which in some cases also included SpT (Millet et al., 2002; Paavolainen et al., 1999a; Skovgaard et 

al., 2014).  

All studies utilised at least one multi-joint, closed kinetic chain exercise with the exception of two 

studies that used isometric contractions on the ankle plantarflexors (Albracht and Arampatzis, 2013; 

Fletcher et al., 2010). One study employed only resistance machine exercises for lower limb HRT 

(Ferrauti et al., 2010), whereas all other studies used free weights, bodyweight resistance or a 

combination of machines and free weights. ST (using lower limb musculature) was scheduled once 

(Beattie et al., 2017; Berryman et al., 2010; Ferrauti et al., 2010), twice (Beattie et al., 2017; Bertuzzi 

et al., 2013; Damasceno et al., 2015; Karsten et al., 2016; Mikkola et al., 2007; Piacentini et al., 2013; 

Ramirez-Campillo et al., 2014; Schumann et al., 2015; Schumann et al., 2016; Spurrs et al., 2003; 

Vikmoen et al., 2016; Vikmoen et al., 2017), three times (Bonacci et al., 2011; Fletcher et al., 2010; 

Giovanelli et al., 2017; Johnston et al., 1997; Millet et al., 2002; Saunders et al., 2006; Skovgaard et 

al., 2014; Spurrs et al., 2003; Storen et al., 2008; Turner et al., 2003), or four times (Albracht and 

Arampatzis, 2013) per week. One study used 15 sessions over a six week period (Pellegrino et al., 

2016) and one study reported 2.7 h of ST activity per week (Paavolainen et al., 1999a).  

HRT was typically prescribed in 2-6 sets of 3-10 repetitions per exercise at relatively heavy loads 

(higher than 70% 1RM or to repetition failure). PT prescription consisted of 1-6 exercises performed 

over 1-6 sets of 4-10 repetitions, totalling 30-228 foot contacts per session. Most studies applied the 

principle of progressive overload and some authors reported periodised models for the intervention 

period (Beattie et al., 2017; Damasceno et al., 2015; Giovanelli et al., 2017; Saunders et al., 2006; 

Skovgaard et al., 2014; Vikmoen et al., 2016; Vikmoen et al., 2017). Studies which included SpT 

tended to utilise short distances (20-150 m), over 4-12 sets at maximal intensity (Millet et al., 2002; 

Paavolainen et al., 1999a; Skovgaard et al., 2014). ST was supervised or part-supervised across all 

studies with the exception of three, one which was unsupervised (Turner et al., 2003) and two where 

it was unclear from the report (Millet et al., 2002; Paavolainen et al., 1999a). 

Running training varied considerably (16-170 km.wk-1, 3-9 sessions.wk-1) across the studies, with 

various levels of detail provided regarding weekly volume and intensity. Importantly, all studies that 

added ST reported that running training did not differ between groups. 

 

2.5.3.4 Strength Outcomes 

All but two studies (Bonacci et al., 2011; Karsten et al., 2016) measured at least one strength-related 

parameter (Table 2.3). Across all studies that used 1RM testing (Beattie et al., 2017; Bertuzzi et al., 

2013; Damasceno et al., 2015; Johnston et al., 1997; Mikkola et al., 2007; Millet et al., 2002; 

Piacentini et al., 2013; Schumann et al., 2015; Schumann et al., 2016; Skovgaard et al., 2014; Storen 

et al., 2008), the intervention produced a statistically significant improvement (4-33%, ES: 0.7-2.4). 

Maximal voluntary contraction (MVC) was also used to assess strength capacity in seven papers, 



52 

 

with the majority reporting improved (7-34%, ES: 0.38-1.65) scores following ST (Albracht and 

Arampatzis, 2013; Ferrauti et al., 2010; Mikkola et al., 2007; Paavolainen et al., 1999a; Spurrs et al., 

2003) but others reporting no difference compared to a CG (Ferrauti et al., 2010; Fletcher et al., 2010; 

Schumann et al., 2015; Schumann et al., 2016). Performance on a jump test was shown to improve 

(3-9%, ES: 0.25-0.65) in some studies (Berryman et al., 2010; Millet et al., 2002; Paavolainen et al., 

1999a; Ramirez-Campillo et al., 2014; Vikmoen et al., 2016), however other studies showed no 

change compared to a CG (Beattie et al., 2017; Mikkola et al., 2007; Pellegrino et al., 2016; Saunders 

et al., 2006; Schumann et al., 2015; Schumann et al., 2016; Turner et al., 2003) and in one study the 

CG improved to a greater extent than the intervention group (Piacentini et al., 2013). Changes in an 

ability to produce force rapidly also showed mixed results, with some studies showing improvements 

in peak power output (Berryman et al., 2010) and RFD (Mikkola et al., 2007; Storen et al., 2008) and 

others showing no change in these parameters (Giovanelli et al., 2017; Saunders et al., 2006; Spurrs 

et al., 2003). Similarly, stiffness, when measured directly or indirectly (using reactive strength index) 

during non-running tasks, has been shown to improve (ES: 0.43-0.90) (Albracht and Arampatzis, 

2013; Piacentini et al., 2013; Ramirez-Campillo et al., 2014; Spurrs et al., 2003) and remain 

unchanged (Beattie et al., 2017; Damasceno et al., 2015; Millet et al., 2002) following ST. Vertical 

or leg stiffness during running showed improvements (10%, ES: 0.33) at relatively slow speeds 

(Giovanelli et al., 2017) and also at 3 km race pace (ES: 1.2) following ST (Millet et al., 2002). 

 

2.5.3.5 Running Economy 

An assessment of RE was included in all but four (Bertuzzi et al., 2013; Karsten et al., 2016; Ramirez-

Campillo et al., 2014; Schumann et al., 2015; Schumann et al., 2016) of the studies in this review 

(Table 2.3). RE was quantified as the oxygen cost of running at a given speed in every case, except 

in three studies where a calculation of energy cost was used (Albracht and Arampatzis, 2013; Fletcher 

et al., 2010; Pellegrino et al., 2016). Statistically significant improvements (2-8%, ES: 0.14-3.22) in 

RE were observed for at least one speed in 14 papers. A single measure of RE was reported in four 

of these papers (Berryman et al., 2010; Karsten et al., 2016; Skovgaard et al., 2014; Storen et al., 

2008), and a further four studies assessed RE across multiple different speeds and found 

improvements across all measures taken (Albracht and Arampatzis, 2013; Johnston et al., 1997; 

Millet et al., 2002; Spurrs et al., 2003). Six papers reported a mixture of significant and non-

significant results from the intensities they used to evaluate RE (Giovanelli et al., 2017; Mikkola et 

al., 2007; Paavolainen et al., 1999a; Piacentini et al., 2013; Saunders et al., 2006; Turner et al., 2003). 

Six studies failed to show any significant improvements in RE compared to a CG (Bonacci et al., 

2011; Damasceno et al., 2015; Ferrauti et al., 2010; Fletcher et al., 2010; Pellegrino et al., 2016; 

Vikmoen et al., 2016).  
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2.5.3.6 Maximal Oxygen Uptake 

No statistically significant changes were reported in V̇O2max or peak oxygen uptake during a maximal 

test (V̇O2peak) for any group in the majority of studies that assessed this parameter (Berryman et al., 

2010; Bertuzzi et al., 2013; Damasceno et al., 2015; Giovanelli et al., 2017; Johnston et al., 1997; 

Karsten et al., 2016; Mikkola et al., 2007; Millet et al., 2002; Saunders et al., 2006; Skovgaard et al., 

2014; Spurrs et al., 2003; Storen et al., 2008; Vikmoen et al., 2016). Three papers observed 

improvements for V̇O2max in the intervention group, but the change in score did not differ significantly 

from that of the CG (Beattie et al., 2017; Ferrauti et al., 2010; Pellegrino et al., 2016). One study 

detected a significant improvement (4.9%) in V̇O2max for the CG compared to the intervention group 

(Paavolainen et al., 1999a). 

 

2.5.3.7 Speed Associated with V̇O2max 

Nine studies provided data on sV̇O2max or a similar metric (Beattie et al., 2017; Berryman et al., 2010; 

Bertuzzi et al., 2013; Damasceno et al., 2015; Giovanelli et al., 2017; Karsten et al., 2016; Mikkola 

et al., 2007; Millet et al., 2002; Vikmoen et al., 2016). Just two of these papers reported statistically 

significant improvements (3-4%, ES: 0.42-0.49) in the ST group compared to the CG (Berryman et 

al., 2010; Damasceno et al., 2015). One study (Millet et al., 2002) reported a 2.6% improvement (ES: 

0.57) and another (Beattie et al., 2017) a 4.0% increase (ES: 0.9) after a 40 week intervention, 

however these changes were not significantly different to the CG. 

 

2.5.3.8 Blood Lactate Parameters 

BL value was measured at fixed velocities in six studies (Albracht and Arampatzis, 2013; Ferrauti et 

al., 2010; Fletcher et al., 2010; Mikkola et al., 2007; Saunders et al., 2006; Schumann et al., 2016) 

and speed assessed for fixed concentrations of BL (2-4 mMol.L-1) or LT in six studies (Beattie et al., 

2017; Ferrauti et al., 2010; Pellegrino et al., 2016; Schumann et al., 2015; Storen et al., 2008; 

Vikmoen et al., 2016). One study using young participants observed significantly greater 

improvements (11-12%) at two speeds compared to the CG (Mikkola et al., 2007). Other studies 

found no significant changes following the intervention (Albracht and Arampatzis, 2013; Beattie et 

al., 2017; Fletcher et al., 2010; Pellegrino et al., 2016; Saunders et al., 2006; Storen et al., 2008; 

Vikmoen et al., 2016) or a change which was not superior to the CG (Ferrauti et al., 2010; Schumann 

et al., 2015; Schumann et al., 2016). 
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2.5.3.9 Time Trial Performance  

To assess the impact of ST directly upon distance running performance, studies utilised a TT over 

1000 m (preceded by 5x1 km) (Schumann et al., 2015; Schumann et al., 2016), 1500 m (Skovgaard 

et al., 2014), 2.4 km (Ramirez-Campillo et al., 2014), 3 km (Berryman et al., 2010; Pellegrino et al., 

2016; Spurrs et al., 2003), 5 km (Karsten et al., 2016; Paavolainen et al., 1999a), 10 km (Damasceno 

et al., 2015; Skovgaard et al., 2014), 5 min (Vikmoen et al., 2016), and 40 min (Vikmoen et al., 

2017). There were similarities to competitive scenarios in most studies, including performances 

taking place under race conditions (Karsten et al., 2016; Pellegrino et al., 2016; Ramirez-Campillo 

et al., 2014; Schumann et al., 2015; Schumann et al., 2016; Spurrs et al., 2003), on an outdoor 

athletics track (Damasceno et al., 2015; Karsten et al., 2016; Ramirez-Campillo et al., 2014; 

Skovgaard et al., 2014), on an indoor athletics track (Berryman et al., 2010; Paavolainen et al., 1999a; 

Pellegrino et al., 2016; Schumann et al., 2015; Schumann et al., 2016; Spurrs et al., 2003), and 

following a prolonged (90 min) submaximal run (Vikmoen et al., 2017). Performance improvements 

were statistically significant compared to a CG for eight of the 12 trials. The exceptions were a 40 

min TT (Vikmoen et al., 2017), a 1000 m repetition (Schumann et al., 2015; Schumann et al., 2016), 

and two studies that used a 3 km TT (Berryman et al., 2010; Spurrs et al., 2003). Statistically 

significant 3 km improvements were observed for all groups in one case (Berryman et al., 2010), 

however the ES was larger for the two intervention groups (0.37 and 0.46) compared to the CG 

(0.20). Improvements over middle-distances (1500 m – 3000 m) were generally moderate (3-5%, 

ES: 0.4-1.0). Moderate to large effects (ES: >1.0) were observed for two studies (Karsten et al., 2016; 

Skovgaard et al., 2014) that evaluated performance over longer distances (5 – 10 km), however the 

relative improvements were quite similar (2-4%) over long distances compared to shorter distances 

(Damasceno et al., 2015; Karsten et al., 2016; Paavolainen et al., 1999a; Skovgaard et al., 2014).  

 

2.5.3.10 Anaerobic Outcomes 

Tests relating to anaerobic determinants of distance running performance were used in five 

investigations. Sprint speed over 20 m (Paavolainen et al., 1999a; Ramirez-Campillo et al., 2014) 

and 30 m (Mikkola et al., 2007) showed statistically significant improvements following ST (1.1-

3.4%). Two studies provided evidence for enhancement of sMART (Mikkola et al., 2007; 

Paavolainen et al., 1999a), and one further study showed no change in anaerobic running distance 

after six weeks of HRT (Karsten et al., 2016). A 30 s Wingate test was also used in one paper, 

however no differences in performance were noted (Damasceno et al., 2015). 
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2.5.3.11 Body Composition 

Body mass did not change from baseline in 18 of the studies (Albracht and Arampatzis, 2013; Beattie 

et al., 2017; Berryman et al., 2010; Bonacci et al., 2011; Damasceno et al., 2015; Ferrauti et al., 2010; 

Giovanelli et al., 2017; Johnston et al., 1997; Millet et al., 2002; Paavolainen et al., 1999a; Piacentini 

et al., 2013; Ramirez-Campillo et al., 2014; Saunders et al., 2006; Skovgaard et al., 2014; Spurrs et 

al., 2003; Storen et al., 2008; Vikmoen et al., 2016; Vikmoen et al., 2017), however one investigation 

reported a significant increase (2%, ES: 0.32) following ST (Mikkola et al., 2007). This study also 

documented changes in the thickness of quadriceps femoris muscle in both the intervention (3.9%, 

ES: 0.35) and CG (1.9%, ES: 0.10) (Mikkola et al., 2007). Similarly, an increase in total lean mass 

(3%) and leg lean mass (3%) was found following 12 weeks of ST despite little alteration in cross-

sectional area of the vastus lateralis and body mass being noted (Schumann et al., 2015; Schumann 

et al., 2016). Another study observed a significant decrease (-1.2%) in body mass in the CG, with no 

change in the intervention group (Vikmoen et al., 2016). A significant increase in leg mass (3.1%, 

ES: 1.69) was also noted in this study (Vikmoen et al., 2016; Vikmoen et al., 2017). Other indices of 

body composition that exhibited no significant changes were: fat mass (Beattie et al., 2017; 

Giovanelli et al., 2017; Johnston et al., 1997; Mikkola et al., 2007; Paavolainen et al., 1999a; 

Piacentini et al., 2013), fat-free mass (Giovanelli et al., 2017; Johnston et al., 1997; Piacentini et al., 

2013), lean muscle mass (Beattie et al., 2017; Mikkola et al., 2007), skinfolds (Bonacci et al., 2011; 

Damasceno et al., 2015), and limb girth measurements (Bonacci et al., 2011; Johnston et al., 1997; 

Paavolainen et al., 1999a).  
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Table 2.1. Participant characteristics and design of each study.  

C = control group, CS = core stability, F = female, h = hours, HRT = heavy resistance training, I = intervention group, M = male, PT = plyometric training, RT = 

resistance training, RTWBV = resistance training with whole body vibration, V̇O2max = maximal oxygen uptake, wk = week. 

 

Study Participant characteristics Study Design 

n (I/C) Sex Age 

(years) 

V̇O2max  

(mL.kg-1.min-1) 

Training background 

(event specialism) 

Duration 

(weeks) 

Randomised? Running 

controlled? 

ST added 

or replace 

running? 

PEDro 

score 

Albracht & 

Arampatzis 

26 (13/13) M I=27, 

C=25 

- Recreational (≥ 3 

runs.wk-1, 30-120 

km.wk-1) 

14 No No Added 5 

Beattie et al.  20 (11/9) M=19 

F=1 

I=29.5, 

C=27.4 

I=59.6, 

C=63.2 

Collegiate and national 

level (1500 m-10 km) 

40 No No Added 4 

Berryman et 

al. 

28 (HRT 

n=12, PT 

n=11, C n=5) 

M HRT=31, 

PT=29, 

C=29 

HRT=57.5, 

PT=57.5, 

C=55.7 

3-7 runs.wk-1. 

Provincial level (5 km 

– marathon)  

8 Yes Yes Added 5 

Bertuzzi et 

al. 

22 (RTWBV 

n=8, RT n=8, 

C n=6) 

M RTWBV=3

4, RT=31, 

C=33 

RTWBV=56.3, 

RT=57.4, 

C=56.1 

Local 10 km (35-45 

min) race competitors  

6 Yes No 

(monitored) 

Added 6 

Bonacci et 

al. 

8 (3/5) M=5 

F=3 

21.6 - Moderately-trained 

triathletes (34.8 

km.wk1) 

8 Yes No 

(monitored) 

Added 5 

Damasceno 

et al. 

18 (9/9) M I=34.1, 

C=32.9 

I=54.3, 

C=55.8 

Local 10 km (35-45 

min) race competitors 

8 Yes No 

(monitored) 

Added 6 

Ferrauti et 

al. 

20 (11/9) M=14 

F=6 

 40.0 I=52.0, 

C=51.1 

Experienced (8.7 

years) recreational (4.6 

h.wk-1) 

8 Yes No 

(monitored) 

Added 6 
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Fletcher et 

al. 

1  2 (6/6) M I=22.2, 

C=26.3 

I=67.3, 

C=67.6 

Regional/national/ 

international level 

 (1500 m – marathon) 

8 Yes No Added 6 

Giovanelli 

et al. 

25 (13/12) M I=36.3, 

C=40.3 

I=55.2, 

C=55.6 

Experienced (11.7 

years, >60 km.wk-1) 

ultra-distance 

competitors 

12 Yes No 

(monitored) 

Added 6 

Johnston et 

al. 

12 (6/6) F 30.3 I=50.5, 

C=51.5 

>1 year experience, 

20-30 miles.wk-1, 4-5 

days.wk-1 

10 Yes No 

(monitored) 

Added 6 

Karsten et 

al. 

16 (8/8) M=11 

F=5 

I=39,  

C=30 

I=47.3, 

C=47.0 

Recreational triathletes 

(>2 years, 3-5 

days.wk-1, 180-300 

min.wk-1) 

6 Yes No Added 6 

Mikkola et 

al. 

25 (13/12) M=18 

F=7 

I=17.3, 

C=17.3 

I=62.4, 

C=61.8 

High-school runners 

(>2 years) 

8 No No 

(monitored) 

Replace (I: 

19%, C: 

4%) 

4 

Millet et al. 15 (7/8) M I=24.3, 

C=21.4 

I=69.7, 

C=67.6 

Experienced (6.8 

years) triathletes (n=7 

national/international) 

14 Yes No 

(monitored) 

Added 6 

Paavolainen 

et al. 

18 (10/8) M I=23, 

C=24 

I=63.7, 

C=65.1 

Experienced (8 years) 

cross-country runners 

(545 h.year-1) 

9 Unclear 

(matched on 

V̇O2max & 5 

km) 

Yes Replace (I: 

32%, C: 

3%) 

4 

Pellegrino et 

al. 

22 (11/11) M=14 

F=8 

I=34.2, 

C=32.5 

I=48.0, 

C=47.7 

Experienced 

recreational (local 

clubs and races) 

6 Yes No Added 6 

Piacentini et 

al. 

16 (HRT n=6, 

RT n=5, C 

n=5) 

M=16 

F=4 

HRT=44.

2 

- Local (>5 years, 4-5 

days.wk-1) masters 

6 Yes No Added 4 

Table 2.1 (continued) 
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RT=44.8 

C=43.2 

runners (10 km –  

marathon) 

Ramírez-

Campillo et 

al. 

32 (17/15) M=19 

F=13 

22.1 - National/international 

competitive level 

(1500 m – marathon) 

6 Yes No 

(monitored) 

Added 6 

Saunders et 

al. 

15 (7/8) M I=23.4, 

C=24.9 

I=67.7, 

C=70.4 

National/international 

competitive level (3 

km) 

9 Yes No 

(monitored) 

Added (but 

C matched 

with 

stretching/

CS) 

6 

Schumann 

et al. 

27 (13/14) M 33 - Recreational (>12 

months; ≥ 2 runs.wk-1) 

24 Unclear 

(matched by 

performance) 

Yes Added 5 

Skovgaard 

et al. 

21 (12/9) M 31.1 59.4 Experienced (7.5 

years) recreational 

(29.7 km.wk-1, 3.3 

runs.wk-1) 

8 Yes Yes (I 

only) 

Replace (I: 

42%) 

6 

Spurrs et al.  17 (8/9) M 25 I=57.6, 

C=57.8 

Experienced (10 

years); 60-80 km.wk-1 

6 Yes No 

(monitored) 

Added 6 

Støren et al. 17 (8/9) M=9 

F=8 

I=28.6, 

C=29.7 

I=61.4, 

C=56.5 

Well-trained (5 km: 

M=18.42, F=19.23) 

8 Yes No 

(monitored) 

Added 6 

Turner et al. 18 (10/8) M=8 

F=10 

I=31, 

C=27 

I=50.4, 

C=54.0 

Basic training (>6 

months; ≥ 3 runs.wk-1) 

6 Yes No 

(monitored) 

Added 6 

Vikmoen et 

al. 

19 (11/8) F I=31.5, 

C=34.9 

53.3 Well-trained 

(duathletes) 

11 Yes Yes Added 5 

  
Table 2.1 (continued) 
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Table 2.2. Intervention and running training variables.  

AIT = aerobic interval training, BW = body weight, CMJ = counter-movement jump, C = control group, CS = core stability, DJ = drop jump, ERT = explosive 

resistance training, ET = endurance training (eg cycling, swimming, roller skiing), GCT = ground contact time, h = hours, HIIT = high-intensity interval training, 

HRmax = maximum heart rate (predicted from 220-age), HRT = heavy resistance training, I = intervention group, LB = lower body, LSD = long slow distance run, 

MVC = maximum voluntary contraction, PPO = peak power output, PT = plyometric training, RDL = Romanian deadlift, RM = repetition maximum, RT = 

resistance training, SpT = sprint training, ST = strength training, UB = upper body, RTWBV = resistance training with whole body vibration 

 

Study Intervention 

type 

Main exercises Frequency Volume per 

session 

Intensity ST 

supervised? 

Recovery 

between 

sessions 

Running training 

Albracht & 

Arampatzis  

HRT 

(isometric) 

Ankle plantarflexion (5o 

dorsiflexion, knee 

extended, 40o hip 

flexion) 

4 per week 4 sets x 4 reps 

(3 s loading, 3 

s relaxation) 

90% MVC 

(adjusted 

weekly) 

Yes - I: 66 km.wk-1 

C: 62 km.wk-1 

Beattie et 

al.  

HRT/ERT/ 

PT 

PT: pogo jumps, depth 

jumps, CMJ 

HRT: back squat, RDL, 

lunge 

ERT: jump squats 

Wk 1-20: 2 

per week; 

Wk 21-40: 

1 per week 

9-12 sets (2-3 

sets per 

exercise); PT: 

4-5 reps, 

HRT: 3-8 

reps, ERT: 3 

reps  

Load 

progressed 

when 

competent 

Yes ≥ 48 h 

between 

sessions 

(wk 1-20). 

Separate 

session to 

running 

Not reported (usual 

running training) 

Berryman 

et al.  

ERT and PT ERT: concentric squats 

PT: DJ 

1 per week ERT and PT: 

3-6 sets x 8 

reps 

ERT: >95% 

PPO 

PT: 20-60 cm 

so rebound 

>95% CMJ  

Yes - 2 x AIT (1x peak 

speed, 1x80% peak 

speed) 

1 x LSD (30-60 

min) 

Bertuzzi et 

al.  

RT and 

RTWBV 

Half-squats  2 per week 3-6 sets x 4-

10 reps 

periodised 

70-100% 

1RM over 12 

weeks 

Yes Different 

days to runs 

57-61 km.wk-1 
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Bonacci et 

al.  

PT/ERT PT: CMJ, knee lifts, 

ankle jumps, bounds, 

skips, hurdle jumps 

ERT: Squat jumps, back 

ext., hamstring curls 

3 per week PT: 1-5 sets x 

5-10 reps or 

20-30 m 

RT:  2-5 sets 

x 8-15 reps 

Max height / 

fast velocity 

Yes - Same as previous 3 

months. I: swim 

(7.3 km), cycle 

(137.6 km), run 

(34.8 km) 

C: swim (10.1 km), 

cycle (147.5 km), 

run (29.0 km) 

Damasceno 

et al.  

HRT Half-squat, leg press, 

calf raise, knee ext. 

2 per week 2-3 sets x 3-

10 reps 

10RM 

periodised to 

3RM 

Yes 72 h 

between 

HRT 

sessions. 

Different 

days to runs 

36-41 km.wk-1 

@50-70% V̇O2max 

Ferrauti et 

al.  

HRT Machines: leg press, 

knee ext., knee flexion, 

hip ext., ankle ext.; UB 

exercises 

1 per week 

LB; 1 per 

week UB  

LB: 4 sets x 

3-5 reps 

3-5 RM Yes - I: 240 min.wk-1, C: 

276 min.wk-1 

Fletcher et 

al.  

HRT 

(isometric) 

Plantarflexions 3 per week 4 sets x 20 s 80% MVC Yes - 70-170 km.wk-1 

Giovanelli 

et al.  

CS/RT 

(4wk) 

HRT/ERT/ 

PT (8wk)    

CS: 6 exercises (eg 

planks) 

RT/HRT: single leg 

half-squat, step-up, 

lunges 

ERT: CMJ, split squat 

PT: jump rope, high 

knees 

3 per week 5-8 exercises, 

1-3 sets x 6-

15 reps (30 s 

rest) 

 

- Partly 

(only wk 1 

and 2) 

≥ 48 h 

between 

sessions. 

Not day 

after 

races/AIT 

I: normal running 

training 

C: 70-140 km.wk-1, 

5-7 sessions.wk-1 

Table 2.2 (continued) 
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Johnston et 

al.  

HRT Squats, lunge, heel 

raises (straight- and 

bent-leg), knee 

ext./flexion, 8xUB 

exercises 

3 per week 3 sets x 6 reps 

squat and 

lunge; 2 sets x 

20/12 reps 

bent-/straight-

leg heel raise; 

3 sets x 8 reps 

knee 

ext./flexion 

RM each set Yes ≥ 48 h 

between 

HRT 

sessions. ≥ 

5 h between 

HRT and 

running 

sessions. 

4-5 days.wk-1, 32-48 

km.wk-1 

Karsten et 

al. 

HRT RDL, squat, calf raises, 

lunges 

2 per week 4 sets x 4 reps 80% 1RM  Yes ≥ 48 h 

between 

HRT 

sessions. 

3-5 sessions/ 180-

300 min.wk-1 

Mikkola et 

al. 

SpT/PT/ERT PT: alternative, calf, 

squat, hurdle jumps 

ERT: Squat, calf raise, 

hurdle jump, leg 

ext./curl  

3 per week 

(each 

intervention 

type once) 

SpT: 5-10 sets 

x 30-150 m 

PT/ERT: 2-3 

sets x 6-10 

reps  

PT: BW 

ERT: low 

load, high 

velocity 

Unclear - I: 8.8 h.wk-1, 

C: 8.5 h.wk-1 

Millet et al. HRT Hamstring curl, leg 

press, seated press, 

squat, leg ext., heel 

raise 

3 per week 3-5 sets x 3-5 

reps 

>90% 1RM 

(reassessed 

every 3 

weeks) 

Yes Separate 

session to 

running 

Total: I=7 h.wk-1, 

C=6.6 h.wk-1; 

Running: I=48 

km.wk-1, C=44 

km.wk-1 

Paavolainen 

et al. 

SpT/PT/ERT PT: alternative, drop 

and hurdle jumps, CMJ, 

hops 

ERT: leg press, knee 

ext. and flexion 

Not 

reported; 

2.7 h per 

week 

SpT: 5-10 sets 

x 20-100 m 

PT/ERT: 5-20 

reps.set-1 / 30-

200 

reps.session-1 

PT: BW or 

barbell 

ERT: 0-40% 

1RM 

Unclear - I: 8.4 h.wk-1 

(9 sessions) C: 9.2 

h.wk-1 (8 sessions) 
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Pellegrino 

et al. 

PT Modified version of 

Spurrs et al. (jumps, 

bounds, hops) 

15 sessions 

total 

60-228 foot 

contacts 

Progressively 

increased 

Yes - I: 34.4-36.2 km.wk-1 

C: 29.5-31.3 km.wk-

1 

Piacentini 

et al. 

HRT and RT Squat, calf press, 

lunges, eccentric quad, 

calf raise, leg press + 

UB exercises 

2 per week HRT: 4 sets x 

3-4 reps 

RT: 3 sets x 

10 reps 

HRT: 85-

90% 1RM 

RT: 70% 

1RM 

Yes - 4-5 days.wk-1, 50 

km.wk-1 

Ramírez-

Campillo et 

al. 

PT DJ 2 per week 60 contacts (6 

sets x 10 reps) 

20 reps  @20 

cm, 20 reps 

@40 cm, 20 

reps @60 cm 

Yes ≥ 48 h 

between PT 

sessions. 

Performed 

before runs. 

I: 64.7 km.wk-1 

C: 70.0 km.wk-1 

(AIT preferred) 

Saunders et 

al. 

PT/HRT PT: CMJ, ankle jumps, 

bounds, skips, hurdle 

jumps, scissor jumps 

HRT: back ext., leg 

press, hamstring curls 

3 per week PT: Progress 

from 1-6  sets 

x 6-10 

reps/10-30 m 

HRT: 1-5 sets 

x 6-10 reps 

(except back 

ext.) 

PT: fast GCT 

HRT: Leg 

press 60% 

1RM 

 

Yes - 107 km.wk-1 (3x 

AIT, 1x LSD 60-

150 min, 3x LSD 

30-60 min, 3-6x 

LSD 20-40 min) 

Schumann 

et al. 

HRT/ERT/ 

PT 

HRT: leg press, knee 

flexion, calf raise 

+UB/core exercises 

ERT: Squat jumps, 

step-ups 

PT: Drop jumps, hurdle 

jumps 

2 per week HRT (wks 5-

24): 5-12 reps 

per set 

HRT (wks 5-

24): 60-85% 

1RM 

ERT: 20-

30% 1RM 

Yes Same 

session as 

running. 

>48 h 

between 

sessions 

Weekly: 2x run (35-

45 min/65-85% 

HRmax), 2x LSD 

(35-40 min & 70-

125 min/60-65% 

HRmax), 1-2x AIT 

and HIIT 

Table 2.2 (continued) 
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Skovgaard 

et al.  

SpT/HRT HRT: squat, deadlift, 

leg press 

SpT x 2 per 

week 

HRT x 1 

per week 

SpT: 4-12 sets 

x 30 s (3 min 

rest) 

HRT: 3-4 sets 

x 6-8 reps 

wks 1-4; 4 

sets x 4 reps 

wks 5-8 

SpT: 

maximal 

effort 

HRT: 15RM 

to 8RM wks 

1-4; 4RM 

wks 5-8 

Yes 3-4 d 

between 

SpT/HRT 

sessions. 

Different 

days to runs 

I: AIT (4x4+2min 

@85% HRmax); 50 

min @75-85% 

HRmax  

C: 40 km total (4 

km AIT) 

Spurrs et al. PT Jumps, bounds, hops 2-3 per 

week 

60-180 foot 

contacts  

Bilateral 

progressed to 

unilateral and 

greater height 

Yes Separate 

session to 

running 

60-80 km per week 

Støren et al. HRT Half-squats 3 per week 4 sets x 4 reps 4RM Yes - I: 253 min.wk-1 

(+119 min other 

ET) 

C: 154 min.wk-1 

(+120 min other 

ET) 

Turner et 

al. 

PT Vertical jumps and hops 

(continuous and 

intermittent), split 

jumps, uphill jumps 

3 per week 40-110 foot 

contacts (5-30 

s per exercise) 

Bodyweight, 

short contact 

time 

No 

(logbooks) 

Performed 

in running 

sessions 

Continued regular 

running (≥ 3 

runs.wk-1, ≥ 10 

miles.wk-1) 

Vikmoen et 

al. 

HRT Machines: Half-squats, 

unilateral leg press, 

cable hip flexion, calf 

raises 

2 per week 3 sets x 4-10 

reps 

(periodised 

3wk cycles) 

Sets 

performed to 

RM failure 

Partly (1 

session per 

weeks 3-

11) 

HRT first 

session or 

performed 

on different 

days 

4.3 sessions.wk-1; 

3.7 h @60-82% 

HRmax, 1.1 h @83-

87% HRmax, 0.8 h 

@>87% HRmax 
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Table 2.3. Outcomes of the studies. Percentage changes, effect size (ES) and p-value only reported for statistically significant group results or ES > 0.2. All results 

presented are for the intervention (I) group unless stated (eg C = control). Variables measured where no-significance (NS) difference for time (pre- vs post-score) 

and no group x time (GxT) interaction was detected, are also listed. 

ARD = anaerobic running distance, BJ = broad jump, BL = blood lactate, CMJ = counter-movement jump, C = control group, DJ = drop jump, DJRSI = drop jump 

reactive strength index, EC = energy cost, EMG = electromyography, ERT = explosive resistance training, FFM = fat-free mass, FU = fractional utilization, GCT = 

ground contact time, GRF = ground reaction force, HR = heart rate, HRT = heavy resistance training, I = intervention group, kleg = leg stiffness, kvert  = vertical 

stiffness, (s)LT = (speed at) lactate threshold, MAS = maximal aerobic speed, MTS = musculotendinous stiffness, MVC = maximum voluntary contraction, PPO = 

peak power output, PT = plyometric training, QF = quadriceps femoris, RCP = respiratory compensation point (VE/VCO2), RFD = rate of force development, RM = 

repetition maximum, RMR = resting metabolic rate, RT = resistance training, RTWBV = resistance training with whole body vibration, SJ = squat jump, TT = time 

trial, TTE = time to exhaustion, s = speed, sMART = speed during maximal anaerobic running test, V̇O2 = oxygen uptake, V̇O2max / V̇O2peak = highest oxygen uptake 

associated with a maximal aerobic exercise test, sV̇O2max = speed associated with V̇O2max, Wk = week 

 

Study Main strength 

outcomes 

Economy V̇O2max / 

V̇O2peak 

sV̇O2max Blood 

Lactate 

Time trial Anaerobic 

measures 

Body composition 

Albracht & 

Arampatzis  

Plantarflexion MVC 

(6.7%, ES=0.56, 

p=0.004), max 

Achilles tendon force 

(7.0%, ES=0.55, 

p<0.01), Tendon 

stiffness (15.8%, 

ES=0.90, p<0.001) 

V̇O2@10.8 km.h-1 

(5.0%, ES=0.79)  

@12.6 km.h-1 (3.4%, 

ES=0.51). 

EC@10.8 km.h-1 

(4.6%, ES=0.61)  

@12.6 km.h-1  (3.5%, 

ES=0.50), all p<0.05 

- - BL@10.8 

and 12.6 

km.h-1, NS 

- - Body mass, NS 

Beattie et 

al.  

1RM back squat (wk 0-

20: 19.3%, ES=1.2, 

p=0.001) 

DJRSI (wk 0-20: 7.3%, 

ES=0.3, NS GxT; wk 

Ave. of 5 speeds 

Wk 0-20: 5.0%, 

ES=1.0, p=0.01. 

Wk 0-20: 

0.1%, 

ES=0.1, 

p=0.013.  

Wk 0-20: 

3.5%, 

ES=0.7, NS. 

s2mMol.L-1, 

s4mMol.L-1, 

NS 

- - Body mass, fat 

and lean muscle, 

NS 
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0-40: 14.6%, ES=0.5, 

NS GxT)  

CMJ (wk 0-20: 11.5%, 

ES=0.5, NS GxT; wk 

0-40: 11.5%, ES=0.6, 

NS GxT) 

Wk 0-40: 3.5%, 

ES=0.6, NS. 

 

Wk 0-40, I: 

7.4%, 

ES=0.5, 

p=0.003, C: 

2.8%, 

ES=0.6, NS 

Wk 0-40: 

4.0%, 

ES=0.9, NS 

Berryman 

et al.  

PPO (ERT: 15.4%, 

ES=0.98, p<0.01; PT: 

3.4%, ES=0.24, 

p<0.01). 

CMJ (ERT: 4.5%, 

ES=0.25, p<0.01; PT: 

6.0%, ES=0.52, 

p<0.01) 

@12 km.h-1  

ERT: 4%, ES=0.62, 

p<0.01. 

PT: 7%, ES=1.01, 

p<0.01 

NS ERT: 4.2%, 

ES=0.43, 

p<0.01. 

PT: 4.2%, 

ES=0.49, 

p<0.01 

- 3 km TT  

ERT: 4.1%, 

ES=0.37. 

PT: 4.8%, 

ES=0.46. 

C: 3.0%, 

ES=0.20; 

all p<0.05, 

GxT NS 

- Body mass, NS 

Bertuzzi et 

al.  

1RM half squat (RT: 

17%, p≤0.05; RTWBV: 

18%, p≤0.05) 

- NS NS - - - - 

Bonacci et 

al.  

- @12 km.h-1 (after 45 

min AIT cycle) NS 

-  - - - Body mass, 

skinfolds, thigh 

and calf girth, NS 

Damasceno 

et al. 

1RM half-squat (23%, 

ES=1.41, p<0.05), 

DJRSI, wingate test NS 

@12 km.h-1 NS  NS sV̇O2max 

(2.9%, 

ES=0.42, 

p<0.05) 

- 10 km TT 

(2.5%, 

p=0.039), 

increased 

speed in 

final 7 laps 

(p<0.05) 

30 s 

Wingate 

test, NS 

Body mass and 

skinfold, NS 
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Ferrauti et 

al. 

Leg extension MVC 

(33.9%, ES=1.65, 

p<0.001); leg flexion 

MVC (9.4%, ES=0.38, 

NS) 

@LT (ES=0.40, 

p<0.05, NS GxT) 

@8.6 and 10.1 km.h-1, 

NS 

FU@10.1 km.h-1 

(ES=0.61, p=0.05 

GxT) 

5.6%, 

ES=0.40, NS 

GxT 

 

- BL@10.1 

km.h-1 (I: 

13.1%, C: 

12.1%, NS 

GxT).  

s4 mMol.L-1 

(I: 4.2%, C: 

2.6%, NS 

GxT). 

- - Body mass, NS 

Fletcher et 

al.  

Isometric MVC (I: 

21.6%, C: 13.4%), NS 

GxT 

EC@75,85,95% sLT, 

NS 

- - BL@ 

75,85,95% 

sLT, NS. 

 

- - - 

Giovanelli 

et al. 

SJ PPO, NS  

kleg@10 km.h-1, (9.5%, 

ES=0.33, p=0.034), 

@12 km.h-1 (10.1%, 

ES=0.33, p=0.038).  

kvert @8,10,12,14 km.h-

1, NS 

@8 km.h-1 (6.5%, 

ES=0.43, p=0.005), 

@10 km.h-1 (3.5%, 

ES=0.48, p=0.032), 

@12 km.h-1 (4.0%, 

ES=0.34, p=0.020), 

@14 km.h-1 (3.2%, 

ES=0.35, p=0.022),  

@RCP NS 

NS NS - - - Body mass, FFM, 

fat mass, NS 

Johnston et 

al. 

1RM squat (40%, 

p<0.05), knee flexion 

(27%, p<0.05) 

@12.8 km.h-1 (4.1%, 

ES=1.76, p<0.05),  

@13.8 km.h-1 (3.8%, 

ES=1.61, p<0.05) 

NS - - - - Body mass, fat 

mass, FFM, limb 

girth, NS 

Karsten et 

al. 

- - NS NS - 5 km TT 

(3.5%, 

ES=1.06, 

p=0.002) 

ARD, NS - 
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Mikkola et 

al.  

MVC (8%), 1RM 

(4%), RFD (31%) on 

leg press; all p<0.05. 

CMJ and 5-bounds, NS 

@14 km.h-1 (2.7%, 

ES=0.32, p<0.05), 

@10,12,13 km.h-1, NS 

NS NS  BL@12 

km.h-1 (12%, 

p<0.05), 

@14 km.h-1 

(11%, 

p<0.05) 

- sMART 

(3.0%, 

p<0.01), 

s30 m 

sprint 

(1.1%, 

p<0.01) 

Body mass (2%, 

ES=0.32, p<0.01). 

Thickness of QF 

(I: 3.9%, 

ES=0.35, p<0.01; 

C: 1.9%, 

ES=0.10, 

p<0.05); fat%, 

lean mass, NS  

Millet et al. 1RM half-squat (25%, 

p<0.01), 1RM heel 

raise (17%, p<0.01), 

hop height (3.3%, 

p<0.05) 

kleg@3km pace 

(ES=1.2, p<0.05) 

GCT, hop stiffness, NS 

@75% vV̇O2max (7.4%, 

ES=1.14, p<0.05) 

@~92% V̇O2max (5.9%, 

ES=1.15, p<0.05) 

NS 2.6%, 

ES=0.57, 

p<0.01, NS 

GxT 

- - - Body mass, NS 

Paavolainen 

et al. 

MVC knee extension 

(7.1%, p<0.01), 5BJ 

(4.6%, p<0.01)   

@15 km.h-1 (8.1%, 

ES=3.22, p<0.001)  

@13.2 km.h-1, NS 

V̇O2 @LT, NS 

C: (4.9%, 

p<0.05) 

V̇O2max 

demand 

(3.7%, 

p<0.05, NS 

GxT) 

- - 5 km TT 

(3.1%, 

p<0.05) 

s20 m 

(3.4%, 

ES=0.77, 

p<0.01) 

sMART 

(ES=1.98, 

p<0.001) 

Body mass, fat %, 

calf and thigh 

girth, NS 

Pellegrino 

et al. 

CMJ (5.2%, p=0.045, 

NS GxT) 

@10.6 km.h-1 (1.3%, 

p<0.05 group) NS GxT 

@7.7, 9.2, 12.1, 13.5, 

15.0, 16.4 km.h-1, NS. 

 

5.2%, 

ES=0.49, 

p=0.03, NS 

GxT 

- sLT, NS 3km TT 

(2.6%, 

ES=0.20, 

p=0.04) 

- - 
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Piacentini 

et al.  

1RM leg press (HRT: 

17%, ES=0.69, 

p<0.05), CMJ (C: 7%, 

ES=0.63, p<0.05), SJ 

(C: 13%, ES=0.83, 

p<0.01), Stiffness (RT: 

13%, ES=0.64, 

p<0.05) 

@10.75 km.h-1 

/marathon pace (HRT: 

6.2%,  p<0.05). 

@9.75,11.75 km.h-1, 

NS 

- - - - - Body mass, fat 

mass, FFM, 

RMR, NS 

Ramírez-

Campillo et 

al. 

CMJ (8.9%, ES=0.51, 

p<0.01), DJ @20 cm 

(12.7%, ES=0.43, 

p<0.01), DJ @40 cm 

(16.7%, ES=0.6, 

p<0.05) 

- - - - 2.4 km TT 

(3.9%, 

ES=0.4, 

p<0.05) 

20 m 

sprint 

(2.3%, 

ES=0.3, 

p<0.01) 

Body mass, NS 

Saunders et 

al. 

SJ RFD and peak 

force, NS.  

5CMJ, NS 

@18 km.h-1 (4.1%, 

ES=0.35, p<0.05) 

@14,16 km.h-1, NS 

NS - BL 

@14,16,18 

km.h-1, NS 

- - Body mass, NS 

Schumann 

et al. 

1RM leg press (I: NS, 

C: -4.7%, p=0.011), 

MVC leg flexion (-

9.7%, p=0.031, 

ES=0.96, NS GxT), 

MVC leg press NS, 

MVC knee ext. NS,  

CMJ NS 

- - - BL during 

6x1 km (I: 

NS, C:, 21%, 

NS GxT) 

s4 mMol.L-1 

(I: 6%, C: 

8%, NS 

GxT). 

1 km TT 

after 5x 1 

km, 60 s 

rec. (I: 9%, 

C: 13%, NS 

GxT) 

- Body mass, NS; 

CSA vastus 

lateralis (group 

diff. I: 7%, C: -

6%, NS GxT); 

Total and leg lean 

mass (I: 2%, NS 

GxT)  

Skovgaard 

et al.  

1RM squat (wk 4: 

3.8%, wk 8: 12%, 

p<0.001); 1RM leg 

press (wk 4: 8%, 

p<0.05; wk 8: 18%, 

@12 km.h-1 (wk 8: 

3.1%, ES=1.53, 

p<0.01) 

NS - - 10 km TT 

(wk 4: 

3.8%, 

ES=1.50, 

p<0.05). 

- Body mass, NS 
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p<0.001), 5RM 

deadlift (wk 4: 14%, 

wk8: 22%, p<0.001) 

1500 m TT 

(wk 8: 

5.5%, 

ES=0.67, 

p<0.001) 

Spurrs et al. MTS @75% MVC 

(left: 14.9%, right: 

10.9%, p<0.05), Calf 

MVC (left: 11.4%, 

right: 13.6%, p<0.05).  

RFD NS 

@12 km.h-1 (6.7%, 

ES=0.45), 14 km.h-1 

(6.4%, ES=0.45), 16 

km.h-1 (4.1%, 

ES=0.30), all p<0.01 

NS - - 3km TT 

(2.7%, 

ES=0.13, 

p<0.05, NS 

GxT) 

- Body mass, NS 

Støren et al. 1RM (33.2%, p<0.01) 

and RFD (26%, 

p<0.01) half-squat 

@70% V̇O2max (5%, 

ES=1.03, p<0.01) 

NS - sLT, LT 

%V̇O2max, NS 

- - Body mass, NS 

Turner et al. CMJ and SJ, NS Ave. of 3 speeds: 

M=9.6, 11.3, 12.9, 

F=8.0, 9.6, 11.3 km.h-1 

(2-3%, p≤0.05) 

@9.6 km.h-1, NS 

- - - - - - 

Vikmoen et 

al. 

1RM half-squat (45%, 

ES=2.4, p<0.01), SJ 

(8.9%, ES=0.83, 

p<0.05), CMJ (5.9%, 

ES=0.65, p<0.05) 

@10 km.h-1, NS NS NS s3.5 mMol.L-

1, NS 

5 min TT 

(4.7%, 

ES=0.95, 

p<0.05). 

40 min TT, 

NS 

 I: Leg mass 

(3.1%, ES=1.69, 

p<0.05), body 

mass, NS  

C: Leg mass (-

2.2%), body mass 

decrease (-1.2%, 

p<0.05) 
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2.5.4 Discussion 

The aim of this systematic review was to identify and evaluate current literature which investigated 

the effects of ST exercise on the physiological determinants of middle- and long-distance running 

performance. The addition of new research published in this area, and the application of more liberal 

criteria provided results for 50% more participants (n=469) compared to a recent review on RE 

(Denadai et al., 2017). Based upon the data presented herein, it appears that ST activities can 

positively affect performance directly and provide benefits to several physiological parameters that 

are important for distance running. However, inconsistencies exist within the literature, that can be 

attributed to differences in methodologies and characteristics of study participants, thus practitioners 

should be cautious when applying generalised recommendations to their athletes. Despite the 

moderate PEDro scores (4, 5, or 6), the quality of the works reviewed in this paper are generally 

considered acceptable when the unavoidable constraints imposed by a training intervention study 

(related to blinding) are taken into account. 

 

2.5.4.1 Running Economy 

RE is influenced by a variety of factors, including force-related and stretch-shortening cycle qualities, 

which can be improved with ST activities. In general, a ST intervention, lasting 6-20 weeks, added 

to the training programme of a distance runner appears to enhance RE by 2-8%. This finding is in 

agreement with previous meta-analytical reviews in this area that show concurrent training has a 

beneficial effect (~4%) on RE (Balsalobre-Fernandez et al., 2016; Denadai et al., 2017). In real terms, 

an improvement in RE of this magnitude should theoretically allow a runner to operate at a lower 

relative intensity and thus improve training and/or race performance. No studies attempted to 

demonstrate this link directly, although inferences were made in studies, which noted improvements 

in RE and performance separately (Berryman et al., 2010; Paavolainen et al., 1999a; Skovgaard et 

al., 2014). Other works provide evidence that small alterations in RE (~1.1%) directly translate to 

changes (~0.8%) in sub-maximal (Hoogkamer et al., 2016) and maximal running performance 

(Frederick et al., 1984). The typical error (TE) of measurement of RE has been reported to be 1-2% 

(Morgan et al., 1991; Pereira and Freedson, 1997; Saunders et al., 2004b) and the smallest 

worthwhile change (SWC) ~2% (Hoogkamer et al., 2016; Saunders et al., 2004b; Shaw et al., 2013), 

which is thought to represent a ‘real’ improvement and not simply a change due to variability of the 

measure. Taken together, it is therefore likely that the improvements seen in RE following a period 

of concurrent training would represent a meaningful change in performance. 

Improvements were observed in moderately-trained (Albracht and Arampatzis, 2013; Johnston et al., 

1997; Piacentini et al., 2013; Turner et al., 2003), well-trained (Beattie et al., 2017; Berryman et al., 

2010; Giovanelli et al., 2017; Paavolainen et al., 1999a; Skovgaard et al., 2014; Spurrs et al., 2003; 

Storen et al., 2008) and highly-trained participants (Millet et al., 2002; Saunders et al., 2006), 
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suggesting runners of any training status can benefit from ST. Different modes of ST were utilised 

in the studies, with RT or HRT (Albracht and Arampatzis, 2013; Johnston et al., 1997; Mikkola et 

al., 2007; Piacentini et al., 2013; Storen et al., 2008), ERT (Berryman et al., 2010), PT (Berryman et 

al., 2010; Spurrs et al., 2003; Turner et al., 2003), and a combination of these activities (Beattie et 

al., 2017; Giovanelli et al., 2017; Saunders et al., 2006), all augmenting RE to a similar extent. Single-

joint isometric RT may also provide a benefit if performed at a high frequency (4 d.wk-1) (Albracht 

and Arampatzis, 2013). Several studies adopted a periodised approach to the types of ST prioritised 

during each 3-6 week cycle (Beattie et al., 2017; Giovanelli et al., 2017; Saunders et al., 2006; 

Skovgaard et al., 2014), which is likely to provide the best strategy to optimise gains long-term (Rhea 

and Alderman, 2004).  

Six studies (Bonacci et al., 2011; Damasceno et al., 2015; Ferrauti et al., 2010; Fletcher et al., 2010; 

Pellegrino et al., 2016; Vikmoen et al., 2016) failed to show any improvement in RE and a further 

six (Giovanelli et al., 2017; Mikkola et al., 2007; Paavolainen et al., 1999a; Piacentini et al., 2013; 

Saunders et al., 2006; Turner et al., 2003) observed both improvements and an absence of change at 

various speeds. This implies benefits are more likely to occur under specific conditions relating to 

the choice of exercises, participant characteristics, and speed used to measure RE. In most studies 

that observed a benefit, exercises with free weights were utilised (Beattie et al., 2017; Giovanelli et 

al., 2017; Johnston et al., 1997; Millet et al., 2002; Piacentini et al., 2013; Skovgaard et al., 2014). 

Multi-joint exercises using free weights are likely to provide a superior neuromuscular stimulus 

compared to machine-based or single-joint exercises as they demand greater levels of co-ordination, 

multi-planar control, activation of synergistic muscle groups (McCaw and Friday, 1994; Schwanbeck 

et al., 2009) and usually require force to be produced from closed-kinetic chain positions. These 

types of exercise also have a greater biomechanical similarity to the running action so are therefore 

likely to provide a greater level of specificity and hence transfer of training effect (Young, 2006). An 

insufficient overload or a lack of movement pattern specificity may therefore be the reason for the 

absence of an effect in studies that used only resistance machines (Ferrauti et al., 2010; Vikmoen et 

al., 2016) or a single-joint exercise (Fletcher et al., 2010). These studies were also characterised by 

a lower frequency of sessions compared to studies that used similar RT exercises but did observe an 

improvement in RE (Albracht and Arampatzis, 2013; Mikkola et al., 2007).  

Moderately-trained runners were used in three of the six studies showing an absence of effect 

(Bonacci et al., 2011; Ferrauti et al., 2010; Pellegrino et al., 2016) and one used triathletes who 

performed a relatively low volume of running (34.8 km.wk-1) as part of their training (Bonacci et al., 

2011). However, a similar number of studies used recreational athletes did show a positive effect 

(Albracht and Arampatzis, 2013; Johnston et al., 1997; Piacentini et al., 2013; Turner et al., 2003), 

suggesting that training level is unlikely to be the reason for the lack of response in these studies. 

This is also confirmed by recent observations that showed improvement in RE following a period of 
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concurrent training was similar across individuals irrespective of training status and the number of 

sessions per week ST was performed (Denadai et al., 2017).  

The speed used to assess RE may also explain the discrepancies in results across studies. It has been 

suggested that runners are most economical at the speeds they practice at most (Saunders et al., 

2004b), and for investigations that utilised PT, stretch-shortening cycle improvements are likely to 

manifest at high running speeds where elastic mechanisms have greatest contribution (Bonacci et al., 

2011; Cavagna and Kaneko, 1977). Therefore a velocity-specific measurement of RE may be the 

most valid strategy to establish whether an improvement has occurred. For example, Saunders and 

associates (2006) observed an improvement (p=0.02, ES: 0.35) at 18 km.h-1 in elite runners, but an 

absence of change at slower speeds. Similarly, Millet and colleagues (2002) noted large (ES: > 1.1) 

improvements at speeds faster than 75% sV̇O2max (~15 km.h-1) in highly-trained triathletes, and 

Paavolainen et al. (1999a) detected changes at 15 km.h-1 but not slower speeds in well-trained 

runners. Furthermore, Piacentini and co-workers (2013) found improvement at race-pace in 

recreational marathon runners but not at a slower and a faster speed. Improvements observed at faster 

compared to slower speeds may also reflect improvements in motor unit recruitment as a 

consequence of ST. As running speed increases there is a requirement for greater peak vertical forces 

due to shorter ground contact times, that elevates metabolic cost (Fletcher and MacIntosh, 2017). To 

produce higher forces, yet overcome a reduction in force per motor unit as a consequence of a faster 

shortening velocity, more motor unit recruitment is required (Barnes and Kilding, 2015a). Thus, an 

increase in absolute motor unit recruitment following a period of ST would result in a lower relative 

intensity reducing the necessity to recruit higher threshold motor units during running (Fletcher and 

MacIntosh, 2017). Several studies that failed to show any response used a single speed to assess RE 

(Bonacci et al., 2011; Damasceno et al., 2015; Vikmoen et al., 2016), perhaps indicating that the 

speed selected was unsuitable to capture an improvement. Furthermore, only a small number of 

studies used relative speeds (Beattie et al., 2017; Ferrauti et al., 2010; Fletcher et al., 2010; Millet et 

al., 2002; Storen et al., 2008), with most choosing to assess participants at the same absolute intensity. 

A given speed for one runner may represent a high relative intensity, whereas for another runner it 

may be a relatively low intensity. Therefore selecting the same absolute speed in a group 

heterogeneous with respect to V̇O2max, may not provide a true reflection of any changes which take 

place following an intervention. Moreover, this may also confound any potential improvements 

observed in fractional utilisation of V̇O2max. 

Several common procedural issues exist in the studies reviewed, which may influence the 

interpretation of results and therefore conclusions drawn. The majority of studies quantified RE and 

V̇O2max as a ratio to body mass, however V̇O2 does not show a linear relationship with increasing body 

size (Bergh et al., 1991). It is also known that the relationship between body size and metabolic 

response varies across intensities, with a trend for an increasing size exponent as individuals move 

from low-intensity towards maximal exercise (Batterham and Jackson, 2003; Markovic et al., 2007). 
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Moreover, allometric scaling is likely to decrease inter-individual variability (Helgerud, 1994), 

potentially improving the validity of observations . Ratio-scaling RE for all velocities to body mass 

is therefore theoretically and statistically inappropriate (Curran-Everett, 2013). Just two studies 

(Berryman et al., 2010; Storen et al., 2008) used an appropriate allometric scaling exponent (0.75) to 

account for the non-linearity associated with V̇O2 response to differences in body mass, both 

establishing a large ES in their results. The unsuitability of ratio-scaling as a normalisation technique 

when processing physiological data is likely to have influenced the statistical outcomes of some 

studies and thus inaccurate conclusions may have been generated. 

RE was expressed as oxygen cost in all but three studies (Albracht and Arampatzis, 2013; Fletcher 

et al., 2010; Pellegrino et al., 2016), which quantified RE using the energy cost method. As the energy 

yield from the oxidation of carbohydrates and lipids differs, subtle alterations in substrate utilisation 

during exercise can confound measurement of RE when expressed simply as an oxygen uptake (V̇O2) 

value. Energy cost is therefore the more valid metric for expressing economy, compared to traditional 

oxygen cost, as metabolic energy expenditure can be calculated using the respiratory exchange ratio, 

thus accounting for differences in substrate utilisation (Fletcher et al., 2009; Shaw et al., 2014). 

Despite attempts to control for confounding variables such as diet and lifestyle in most studies, 

equivalence in inter-trial substrate utilization cannot be guaranteed, which may have impacted upon 

the measurement of RE. 

 

2.5.4.2 Maximal Oxygen Uptake 

Thirteen works in this review found no change in V̇O2max following the intervention period, 

demonstrating that although ST does not appear to positively influence V̇O2max, it also does not hinder 

aerobic power. Although ST in most studies was supplementary to running training, it appears that 

the additional physiological stimulus provided by ST was insufficient to elicit changes in 

cardiovascular-related parameters (Hurley et al., 1984). Three studies did observe significant 

increases in aerobic power that did not differ to the change observed in the CG (Beattie et al., 2017; 

Ferrauti et al., 2010; Pellegrino et al., 2016), and one further study found an improvement in V̇O2max 

in the CG only (Mikkola et al., 2007). It is perhaps surprising that more studies did not find an 

increase in V̇O2max (in any group) given that participants continued their normal running training 

through the study period. Improvements in V̇O2max of 5-10% have been shown following relatively 

short periods (<6 weeks) of endurance training (Jones and Carter, 2000), however the magnitude of 

changes is dependent upon a variety of factors including the initial fitness level of individuals and 

the duration and nature of the training programme (Wenger and Bell, 1986). V̇O2max is known to have 

an innate upper limit for each individual, therefore in highly-trained and elite runners, long-term 

performance improvement is likely to result from enhancement of other physiological determinants, 

such as RE, fractional utilisation and sV̇O2max (Billat and Koralsztein, 1996; Martin et al., 1986; 
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Morgan et al., 1989). A number of studies used moderately-trained participants (Beattie et al., 2014; 

Ferrauti et al., 2010; Johnston et al., 1997; Pellegrino et al., 2016; Turner et al., 2003), who would 

be the most likely to show an improvement in V̇O2max following a 6-14 week period of running, with 

two investigations demonstrating improvements for both groups (Ferrauti et al., 2010; Pellegrino et 

al., 2016). The absence of V̇O2max improvement in other papers suggests that the duration of the study 

and/or the training stimulus, was insufficient to generate an improvement (Wenger and Bell, 1986). 

Indeed, one study of 40 weeks duration in Collegiate level runners observed similar improvements 

(ES: 0.5-0.6) in V̇O2max in both groups (Beattie et al., 2017), suggesting a longer time period may be 

required to detect changes in runners with a higher training status. High-intensity aerobic training 

(>80% V̇O2max) is a potent stimulus for driving changes in V̇O2max (Midgley et al., 2006b), however 

some studies reported runners predominantly utilised low-intensity (<70% V̇O2max) continuous 

running (Damasceno et al., 2015; Mikkola et al., 2007; Millet et al., 2002), which may also explain 

the lack of changes observed.  

 

2.5.4.3 Speed Associated with V̇O2max  

Improvements for sV̇O2max (3-4%, ES: 0.42-0.49) were found in two investigations (Berryman et al., 

2010; Damasceno et al., 2015), with a further two studies observing improvements (2.6-4.0%, ES: 

0.57-0.9) that could not be ascribed to the training differences between the groups (Beattie et al., 

2017; Millet et al., 2002). A number of studies also found little change in sV̇O2max following an 

intervention (Bertuzzi et al., 2013; Giovanelli et al., 2017; Karsten et al., 2016; Mikkola et al., 2007; 

Vikmoen et al., 2016). As sV̇O2max is the product of the interaction between aerobic and 

neuromuscular variables, a small improvement in one area of physiology may not necessarily result 

in an increase in sV̇O2max. Damasceno et al. (2015) found an improvement in sV̇O2max (2.9%, p<0.05, 

ES: 0.42) despite detecting no change in V̇O2max, RE or Wingate performance, therefore attributed 

the change to the large improvements (23%, ES: 1.41) in the force producing ability they observed 

in participants. Conversely, Berryman and associates (2010) found changes in sV̇O2max (4.2%, ES: 

0.43-0.49) alongside improvements in RE (4-7%, ES: 1.01), moderate increases in power output, and 

no change in V̇O2max scores. Beattie and co-workers (2017) credited the change in sV̇O2max they 

observed (20 weeks: 3.5%, ES: 0.7) to the accumulation of improvements in RE, V̇O2max and 

anaerobic factors, however these were not sufficiently large enough to provide a significant group x 

time interaction. Millet and colleagues (2002) found notable improvements in RE (7.4%, ES: 1.14), 

however changes in RE could not explain the changes observed in sV̇O2max (r=-0.46, p=0.09). It may 

also be the case that longer periods of ST are required before an improvement in sV̇O2max is detected, 

as studies showing an improvement (2.6-4.0%, ES: 0.57-0.9) from baseline lasted 14 weeks or more 

(Beattie et al., 2017; Millet et al., 2002), and studies showing little change tended to be 6-8 weeks in 

duration (Bertuzzi et al., 2013; Karsten et al., 2016; Mikkola et al., 2007).  
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The conflicting results could also be explained by the inconsistency in methods used to define 

sV̇O2max. A number of different protocols and predictive methods have been suggested to assess 

sV̇O2max (Billat and Koralsztein, 1996), including determination from the V̇O2-speed relationship 

(Daniels et al., 1984) and the peak running speed attained during a maximal test using speed 

increments to achieve exhaustion (Billat et al., 1994; Noakes, 1988). All studies that measured 

sV̇O2max in this review did so via an incremental run to exhaustion progressed using speed. sV̇O2max 

was taken as the highest speed that could be maintained for a full 60 s stage (Berryman et al., 2010; 

Bertuzzi et al., 2013; Mikkola et al., 2007), an average of the final 30 s (Giovanelli et al., 2017; 

Karsten et al., 2016), the mean speed in the final 120 s (Vikmoen et al., 2016), or the minimum speed 

that elicited V̇O2max (Beattie et al., 2017; Millet et al., 2002). Although a direct approach to the 

measurement of sV̇O2max has been recommended (Billat and Koralsztein, 1996), due to the speed 

increments (0.5-1.0 km.h-1) used in these investigations, this may not provide sufficient sensitivity to 

detect a change following a short- to medium-term intervention. Damasceno and associates (2015) 

calculated sV̇O2max using a more precise method based upon the fractional time participants reached 

through the final stage of the test multiplied by the increment rate. This perhaps provided a greater 

level of accuracy that allowed the authors to identify the differences in changes which existed 

between the groups. Taken together, there is weak evidence that sV̇O2max can be improved following 

a ST intervention, despite constituent physiological qualities often exhibiting change. Differences in 

the protocols used to determine sV̇O2max makes comparison problematic, however a more precise 

measurement of sV̇O2max that accounts for partial completion of a final stage is likely to provide the 

sensitivity to identify subtle changes that may occur. 

Critical speed also represents a potentially valuable determinant of distance running performance, 

which has currently received very little attention in the research. Evidence from studies using 

untrained participants has demonstrated that the total amount of work that can be performed above 

critical power during high-intensity cycling exercise is improved (35-60%) following 6-8 weeks of 

RT (Bishop and Jenkins, 1996; Sawyer et al., 2014). Future investigations should therefore address 

the dearth in literature around how ST might positively influence parameters related to the critical 

speed model (Denadai and Greco, 2017b). 

 

2.5.4.4 Blood Lactate Markers 

In contrast to RE, ST appears to have little impact upon BL markers. This is quite surprising as an 

improvement in RE should theoretically result in an enhancement in speed for a fixed BL 

concentration. This suggests that adaptations to RE can occur independently to changes in metabolic 

markers of performance. An absence of change in BL also implies that ST does not alter anaerobic 

energy contribution during running, thus assuming aerobic energy cost of running is reduced 
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following ST, it can be inferred that total energy cost (aerobic plus anaerobic energy) is also likely 

to be reduced. Previous studies have shown as little as six weeks of endurance training can improve 

BL levels or the speed corresponding to an arbitrary BL value in runners (Billat et al., 2004; Carter 

et al., 1999; Tanaka et al., 1984). The intensity of training is important to elicit improvement in BL 

parameters (Londeree, 1997), therefore it appears that the running training prescription may have 

been insufficient to stimulate improvements, or the training status of participants meant a longer 

period was required to realise a meaningful change. In addition, the inter-session reliability of BL 

measurement between 2-4 mMol.L-1 is ~0.2 mMol.L-1 (Pfitzinger and Freedson, 1998; Winter et al., 

2006), therefore over a short study duration this metric may not provide sufficient sensitivity to detect 

change. 

Training at an intensity above the LT is likely to result in a reduction in the rate of BL production 

(and therefore accumulation), or an improved lactate clearance ability from the blood (Jones and 

Carter, 2000). Short duration high-intensity bouts of activity generate high levels of BL so drive 

metabolic adaptations that can result in an improvement in performance (Burgomaster et al., 2006; 

Harmer et al., 2000; Jacobs et al., 1987). Studies that have utilised high-repetition, low-load RT in 

endurance athletes therefore have the potential to produce high BL concentrations so may provide 

an additional stimulus to improve performance via BL parameters. This theory is supported by works 

that have demonstrated improvements in BL-related variables in endurance athletes following an 

intervention that uses a strength-endurance style of conditioning with limited rest between sets 

(Hamilton et al., 2006; Marcinik et al., 1991; Mikkola et al., 2011). The ST prescription in the studies 

reviewed was predominantly low-repetition, high-intensity RT or PT, which is unlikely to have 

provided a metabolic environment sufficient to directly enhance adaptations related to BL markers. 

 

2.5.4.5 Time Trial Performance 

Physiological parameters such as V̇O2max, sV̇O2max, RE and LT are clearly important determinants 

that can be quantified in a laboratory, however for a runner, TT performance possesses a far higher 

degree of external validity. Similar improvements in TT performance were observed for middle-

distance events (3-5%, ES: 0.4-1.0) and long-distance events up to 10 km (2-4%, ES: 1.06-1.5). In 

the majority of these studies, time-trials took place in a similar environment and under comparable 

conditions to a race, therefore these findings have genuine applicability to ‘real-life’ scenarios. These 

improvements are likely to be a consequence of significant enhancements in one or more 

determinants of performance. Interestingly, Damasceno and co-authors (2015) found an 

improvement in 10 km TT performance due to the attainment of higher speeds in the final 3 km, 

despite observing no change in RE during a separate assessment. This suggests that greater levels of 

muscular strength may result in lower levels of relative force production per stride, thereby delaying 

recruitment of higher threshold muscle fibres and thus providing a fatigue resistant effect (Hayes et 
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al., 2004). This subsequently manifests in a superior performance during the latter stages of long-

distance events (Damasceno et al., 2015). 

Four studies observed no difference in performance change compared to a CG (Berryman et al., 

2010; Schumann et al., 2015; Schumann et al., 2016; Spurrs et al., 2003; Vikmoen et al., 2017). 

Vikmoen and colleagues (2017) attributed a lack of effect in their 40 min TT to the slow running 

speed caused by the 5.3% treadmill inclination used in the test. This was also the only study to use a 

treadmill set to a pre-determined speed that participants could control once the test had commenced. 

The absence of natural self-pacing may therefore have prevented participants achieving their true 

potential on the test. Spurrs et al. (2003) and Berryman et al. (2010) both found improvements in 3 

km performance compared to a pre-training measure of a comparable magnitude to other studies 

(2.7-4.8%, ES: 0.13-0.46), however changes were not significantly different to a CG, suggesting ST 

provided no additional benefit or there was a practice effect associated with the test.  

It could be possible that enhancement of physiological qualities in some studies could be attributed 

to RT being positioned immediately after low-intensity, non-depleting running sessions (Baar, 2014). 

This arrangement of activities in concurrent training programmes has been shown to provide a 

superior stimulus for endurance adaptation compared to performing separate sessions, and without 

compromising the signalling response regulating strength gains (Coffey et al., 2009; Wang et al., 

2011). This however appears not to be the case, as most studies reported ST activities took place on 

different days to running sessions (Bertuzzi et al., 2013; Damasceno et al., 2015; Skovgaard et al., 

2014) or were at least performed as separate sessions within the same day (Beattie et al., 2017; 

Giovanelli et al., 2017; Johnston et al., 1997; Mikkola et al., 2007; Spurrs et al., 2003; Vikmoen et 

al., 2017). Only three studies performed ST and running immediately after one another, with one 

positioning PT before running (Ramirez-Campillo et al., 2014) and one  lacking clarity on sequencing 

(Turner et al., 2003). Schumann and colleagues (2015, 2016) observed no additional benefit to both 

strength and endurance outcomes compared to a running only group, when ST was performed 

immediately following an incremental running session (65-85% maximal HR), citing residual fatigue 

that compromised quality of ST sessions as the reason.   

 

2.5.4.6 Anaerobic Running Performance 

Tests for pure maximal sprinting velocity (20-30 m) were used in three studies (Mikkola et al., 2007; 

Paavolainen et al., 1999a; Ramirez-Campillo et al., 2014) and showed improvements (1.1-3.4%) 

following ST in every case. This confirms results from previous studies that have shown sprinting 

performance can be positively affected by a ST intervention in shorter-distance specialists (Blazevich 

and Jenkins, 2002; Kamandulis et al., 2012; Satkunskiene et al., 2009). This finding has important 

implications for distance runners, as competitive events often involve mid-race surges and outcomes 

are frequently determined in sprint-finishes, particularly at an elite level (Hanley, 2014; 2015; 
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Sandford et al., 2017; Tucker et al., 2006). Middle-distance runners also benefit from an ability to 

produce fast running speeds at the start of races (Turnes et al., 2014), therefore improving maximum 

speed allows for a greater ‘anaerobic speed reserve’ (Bundle et al., 2003), resulting in a lower relative 

work-rate, and thus decreasing anaerobic energy contribution (Jung, 2003). Interestingly, endurance 

training in cyclists has been shown to improve critical power (Vanhatalo et al., 2011) but reduce 

work capacity for short duration exercise (Jenkins and Quigley, 1992; Vanhatalo et al., 2008). It is 

unknown whether long-term aerobic training has a similar effect on anaerobic running qualities, 

however ST offers a strategy to avoid this potential negative consequence. 

The sMART provides an indirect measure of anaerobic and neuromuscular performance, and has a 

strong relationship (r=0.85) to sV̇O2max (Paavolainen et al., 2000). The sMART is particularly 

relevant to middle-distance runners because it requires athletes to produce fast running speeds under 

high-levels of fatigue caused by the acidosis and metabolites derived from glycolysis (Rusko, 1996). 

Both studies that included this test observed significant improvements in sMART (1.1-3.4%), which 

can be attributed to changes observed in neuromuscular power as a result of the ST intervention 

(Mikkola et al., 2007; Paavolainen et al., 1999a). One study showed no alteration in the predicted 

distance achieved on an anaerobic running test following six weeks of HRT, however the validity 

and reliability of the test was questioned by the authors (Karsten et al., 2016). Performance on a 30 

s Wingate test was also unchanged following eight weeks of running training combined with HRT 

in recreational participants (Damasceno et al., 2015). This finding perhaps underlines the importance 

of selecting tests which are specific to the training which has been performed in the investigation. 

 

2.5.4.7 Strength Outcomes 

Changes in strength outcomes were evident in most studies despite all but one (Mikkola et al., 2007) 

observing no change in body mass. Since strength changes can be ascribed to both neurological and 

morphological adaptations (Folland and Williams, 2007), it is therefore likely that improvements are 

primarily underpinned by alterations in intra- and inter-muscular co-ordination. It is also known that 

initial gains in strength in non-strength trained individuals are the consequence of neural adaptations 

rather than structural changes (Kraemer et al., 1996). An improvement in force producing capability 

is perhaps expected in individuals who have little or no ST experience (Sale, 1988), however 

concurrent regimens of training have consistently been shown to attenuate strength-related adaptation 

(Wilson et al., 2012b). 

The seminal paper published by Hickson was the first to identify the potential for endurance exercise 

to mitigate strength gains, when both training modalities were performed concurrently within the 

same programme (Hickson, 1980). Follow-up investigations have since shown mixed results 

(Kraemer et al., 1995; Lundberg et al., 2013; McCarthy et al., 1995; McCarthy et al., 2002; Ronnestad 

et al., 2012; Sale et al., 1990), but evidence from this review clearly demonstrates that, for the 
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distance runner at least, strength-related improvements are certainly possible following a concurrent 

period of training. Nevertheless, the study designs adopted by the works under review did not include 

a strength-only training group, thus it is not possible to determine whether strength adaptation was 

in fact negated under a concurrent regimen. One study using well-trained endurance cyclists with no 

ST experience, observed a blunted strength response in a group who added ST to their endurance 

training compared to a group who only performed ST (Ronnestad et al., 2012). Based upon this 

finding and other similar observations (Chtara et al., 2008; Hennessy and Watson, 1994; Kraemer et 

al., 1995) it seems likely that although distance runners can significantly improve their strength using 

a concurrent approach to training, strength outcomes are unlikely to be maximised. Moreover, the 

degree of interference with strength-adaptation also appears to be exacerbated when volumes of 

endurance training are increased and the duration of concurrent training programmes is longer (Baar, 

2014; Wilson et al., 2012b). 

 

2.5.4.8 Body Composition  

RT performed 2-3 times per week is associated with increases in muscle cross-sectional area as a 

principal adaptation (Hakkinen, 1989). Although gains in gross body mass may appear to be an 

unfavourable outcome for distance runners, the addition of muscle mass to proximal regions of the 

lower limb (i.e. gluteal muscles) should theoretically provide an advantage, via increases in hip 

extension forces, minimising moment of inertia of the swinging limb, and reducing absolute energy 

usage (Fletcher and MacIntosh, 2017). It is somewhat surprising that virtually all studies 

demonstrated an absence of change in body mass, fat-free mass, lean muscle mass and limb girths. 

Other than one investigation (Beattie et al., 2017), the duration of the studies that observed no effect 

on measures of body composition was <14 weeks, suggesting this may not have been sufficiently 

long to demonstrate a clear hypertrophic response. There is also a possibility that small increases in 

muscle mass within specific muscle groups (e.g. gluteals) were present, and contributed to the 

improvements observed in RE, but these may not have been detectable using a gross measure of 

mass. Evidence for this may have occurred in the Schumann et al. (2015, 2016) study, who observed 

increases in total lean mass (3%) despite noting no significant change in body mass or cross-sectional 

area of the vastus lateralis compared to baseline measures.   

The interference effect observed during concomitant integration of endurance and ST as part of the 

same programme may also provide an explanation for the lack of change in measures of mass. 

Following a bout of exercise, a number of primary and secondary signalling messengers are up 

regulated for 3-12 h (Yang et al., 2005), which initiate a series of molecular events that serve to 

activate or suppress specific genes. The signalling messengers that are activated, relate to the specific 

stress which is imposed on the physiological systems involved in an exercise bout. ST causes 

mechanical perturbation to the muscle cell, which elicits a multitude of signalling pathways that lead 
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to a hypertrophic response (Spiering et al., 2008). In particular, the secretion of insulin-like growth 

factor-1 as a result of intense muscular contraction is likely to cause a cascade of signalling events 

which increase activity of phosphoinositide-3-dependent kinase (Pl-3k) and the mammalian target of 

Rapamycin (mTOR) (Glass, 2005; Song et al., 2005; Vary, 2006). There is strong evidence that 

mTOR is responsible for mediating skeletal muscle hypertrophy via activation of ribosome proteins 

which up regulate protein synthesis (Bodine, 2006). Prolonged exercise bouts, such as those 

associated with endurance training, activate metabolic signals related to energy depletion, uptake and 

release of calcium ions from the sarcoplasmic reticulum and oxidative stress in cells (Irrcher et al., 

2003). Adenosine monophosphate activated kinase (AMPK) is a potent secondary messenger which 

functions to monitor energy homeostasis (Hardie and Sakamoto, 2006) and when activated, 

modulates the release of peroxisome proliferator co-activator-1α, which along with calcium-

calmodulin-dependent kinases increase mitochondrial function to enhance aerobic function (Horman 

et al., 2002; Irrcher et al., 2003; Rose and Hargreaves, 2003). Crucially though, AMPK also acts to 

inhibit the Pl-3k/mTOR stage of the pathway via activation of the tuberous sclerosis complex thereby 

suppressing the ST induced up regulation of protein synthesis (Baar, 2006; Nader, 2006). This 

conflict arising at a molecular signalling level therefore appears to impair the muscle fibre 

hypertrophy response to ST and attenuate increases in body mass (Nader, 2006). 

 

2.5.4.9 Muscle-Tendon Interaction Mechanisms  

The potential mechanisms for the positive changes observed in physiological parameters 

underpinning running performance were directly investigated in three studies (Albracht and 

Arampatzis, 2013; Fletcher et al., 2010; Pellegrino et al., 2016), and were inferred from gait measures 

(Giovanelli et al., 2017; Millet et al., 2002; Paavolainen et al., 1999a; Saunders et al., 2006; Spurrs 

et al., 2003) and strength outcomes in others.  It is well-documented that muscle-tendon unit stiffness 

correlates well with RE (Arampatzis et al., 2006; Dalleau et al., 1998; Dumke et al., 2010; Rogers et 

al., 2017). Tendons are also highly adaptable to mechanical loading and have been shown to increase 

in stiffness in response to HRT and PT (Albracht and Arampatzis, 2013; Foure et al., 2010; Kubo et 

al., 2002). Despite observing no statistical effect for HRT on RE, Fletcher and colleagues (2010) 

found a relationship between the change in RE and the changes observed in Achilles tendon stiffness. 

Notwithstanding these associations, it is likely that improvements in RE are a consequence of the 

interaction between adaptations to tendon properties and improvements in motor unit activation 

which influence behaviour of force-length-velocity properties of muscles (Fletcher and MacIntosh, 

2017). It tends to be assumed that improved tendon stiffness allows the body to store and return 

elastic energy more effectively, which results in a reduction in muscle energy cost due to a greater 

contribution from the elastic recoil properties of tendons (Kyrolainen et al., 2001). Indeed, authors 

of studies in the present review have argued that the improvements observed in RE following a period 

of ST are due to an enhanced utilisation of elastic energy during running (Giovanelli et al., 2017; 
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Millet et al., 2002; Paavolainen et al., 1999a; Spurrs et al., 2003). An alternative proposal, based 

upon more recent evidence, suggests the Achilles tendon provides a very small contribution to the 

total energy cost of running therefore improvements in stiffness provide a negligible reduction in 

energy cost (Fletcher et al., 2013; Fletcher and MacIntosh, 2015). Instead, a tendon with an optimal 

stiffness contributes to improving RE by minimising the magnitude and velocity of muscle 

shortening, thus allowing muscle fascicles to optimise their length and remain closer to an isometric 

state (Fletcher and MacIntosh, 2017). A reduction in the amount and velocity of fibre shortening 

therefore reduces the level of muscle activation required and hence the energy cost of running 

(Fletcher et al., 2013).  

The improvements observed in maximal and explosive strength, which can be attributed to increases 

in motor unit recruitment and firing frequency,  enable the lower limb to resist eccentric forces during 

the early part of ground contact (Sale, 1988) and thus contribute to the attainment of a near isometric 

state during stance. As the force required to sustain speed during distance running performance is 

submaximal, the level of motor unit activation needed can be minimised when fascicles contract 

isometrically (Fletcher and MacIntosh, 2017). This enables the Achilles tendon in particular to 

accommodate a greater proportion of the muscle-tendon unit length change during running thereby 

reducing metabolic cost (Fletcher and MacIntosh, 2015).  Variables which provide an indirect 

measure of the neuromuscular systems ability to produce force rapidly and utilise tendon stiffness 

were found to improve in other studies that showed improvements in running performance and/or 

key determinants (Berryman et al., 2010; Mikkola et al., 2007; Millet et al., 2002; Paavolainen et al., 

1999a; Ramirez-Campillo et al., 2014; Storen et al., 2008). However, some studies found 

improvements in running-related parameters despite observing no alterations in jump performance 

(Beattie et al., 2017; Mikkola et al., 2007; Pellegrino et al., 2016; Saunders et al., 2006; Turner et al., 

2003), RFD (Giovanelli et al., 2017; Saunders et al., 2006; Spurrs et al., 2003), or stiffness (Beattie 

et al., 2017; Damasceno et al., 2015; Millet et al., 2002) illustrating that measures were insufficiently 

sensitive to detect change, or a combination of mechanisms are likely to be contributing towards the 

enhancements observed. 

HRT causes a shift in muscle fibre phenotype, from the less efficient myosin heavy chain (MHC) IIx 

to more oxidative MHC IIa, (Staron et al., 1994; Staron et al., 1990). A higher proportion of MHC 

IIa has been shown to relate to better RE (Hunter et al., 2015; Kyrolainen et al., 2003; Pellegrino et 

al., 2016), however whether changes to MHC properties as a result of ST contribute to an 

improvement in RE and performance remains to be determined. One previous study provided 

evidence that four weeks of sprint running (30 s bouts) improve RE and also the percentage of MHC 

IIx (Iaia et al., 2009), however the absence of endurance training may partly explain the shift in 

phenotype. Over a longer period (six weeks), Pellegrino and co-workers (2016) found no measurable 

changes in MHC isoforms following a PT intervention despite a significant improvement in 3 km 

TT performance, suggesting that a contribution from this mechanism is unlikely for distance running. 
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It could also be speculated that improvements in RE due to improved strength might have resulted 

in subtle changes to running kinematics, thus enabling participants to perform less work for a given 

submaximal speed (Johnston et al., 1997). There is currently little direct support for this conjecture, 

however previous work has shown that running technique is an important component of RE (Folland 

et al., 2017; Williams and Cavanagh, 1987), and improving hip strength can reduce undesirable 

frontal and transverse plane motion in the lower limb during running (Ferber et al., 2011; Snyder et 

al., 2009). One study in this review did observe a reduction in EMG amplitude in the superficial 

musculature of the lower limb following ST, however this was not accompanied by an improvement 

in RE (Bonacci et al., 2011). This suggests that favourable adaptations in neuromuscular control do 

not necessarily translate to reducing the metabolic cost of running. Additionally, two studies showed 

significant increases (3.0-4.4%) in ground contact time during submaximal running after a ST 

intervention (Ferrauti et al., 2010; Giovanelli et al., 2017), however only Giovanelli and colleagues 

(2017) found a corresponding improvement in RE. Several papers have demonstrated an inverse 

relationship between RE and ground contact times (Chapman et al., 2012; Di Michele and Merni, 

2014; Folland et al., 2017), since a lower peak vertical force is required to generate the same amount 

of impulse during longer compared to short ground contacts (Fletcher and MacIntosh, 2017). 

Although there is currently minimal evidence to suggest a ST intervention increases ground contact 

time during sub-maximal running, this mechanism may in part explain the improvements in RE.  

 

2.5.4.10 Strength Training Modality and Exercise Selection 

The works included in this review used a variety of ST modalities, however the most effective type 

of training is currently difficult to discern. Adaptations are specific to the demands placed upon the 

body, therefore it would be expected that HRT, EST and PT produce somewhat different outcomes 

(Crewther et al., 2005). This can be observed in the study by Berryman and co-workers (2010), who 

observed larger improvements in explosive concentric power in a group following an ERT 

programme compared to a group who used PT. The opposite result occurred for the CMJ, which 

places a greater reliance on a plyometric action; the PT group displayed greater improvements than 

the ERT group (Berryman et al., 2010). HRT, which is characterised by slow velocities of movement, 

is likely to improve agonist muscle activation via enhanced recruitment of the motor neuron pool, 

whereas ERT, which involves lighter loads being moved rapidly, tends to enhance firing frequency 

and hence improve RFD (Folland and Williams, 2007; Sale, 1988). PT develops properties related 

to the stretch-shortening cycle function (Markovic and Mikulic, 2010), and uses movements patterns 

which closely mimic the running action (e.g. hopping and skipping). It is therefore likely that 

although a variety of ST methods are capable of improving physiological parameters relating to 

distance running performance, the mechanisms underpinning the response may differ.  
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In less strength-trained individuals, such as those used in the studies reviewed, any novel ST stimulus 

is likely to provide a sufficient overload to the neuromuscular system to induce an adaptation in the 

short-term (Cormie et al., 2010a). This is perhaps why ST is effective even in highly-trained distance 

runners (Millet et al., 2002; Ramirez-Campillo et al., 2014; Saunders et al., 2006). Studies that have 

attempted to compare ST techniques in distance runners have generally shown HRT to be superior 

to ERT or a mixed methods approach at improving aerobic parameters (Barnes et al., 2013b; 

Guglielmo et al., 2009) and maximal anaerobic running speed (Mikkola et al., 2011). PT has also 

shown superiority to ERT for improvement of RE in moderately trained runners (Berryman et al., 

2010). Other investigations have found no differences in the physiological changes between groups 

using HRT, ERT or a mixture of modalities (Mikkola et al., 2011; Taipale et al., 2013). A number of 

studies have also shown HRT and/or ERT to be more beneficial to a muscular endurance style of ST 

(Piacentini et al., 2013; Sedano et al., 2013; Taipale et al., 2010; Taipale et al., 2014; Taipale et al., 

2013).  The addition of whole body vibration to RT also provides no extra benefit (Bertuzzi et al., 

2013). Although ERT and PT may have more appeal compared to HRT due to their higher-level of 

biomechanical similarity to running, an initial period of HRT is likely to provide an advantage long-

term by way of reducing injury risk (Lauersen et al., 2014) and eliciting a more pronounced training 

effect (Cormie et al., 2010b; James et al., 2018). Taken together, it seems that long-term, a mixed 

modality approach to ST is most effective, as this provides the variety and continual overload 

required to ensure the neuromuscular system is constantly challenged. One study that used a longer 

intervention period lends support to this notion, as significant improvements were observed in 

strength and physiological measures after 20- and 40-weeks with a periodised methodology that used 

several types of ST (Beattie et al., 2017). Further research is required to ascertain the long-term 

benefits of various ST modalities and the relative merits of different approaches to sequencing and 

progressing these modalities. 

As discussed in Section 2.5.4.1, the exercises selected in a ST programme can potentially influence 

the magnitude of neuromuscular adaptation and thus the impact on physiological determinants of 

performance. Exercises using free weights, which require force to be generated from the leg extensor 

muscles in a close-kinetic chain position, are the most likely to positively transfer to running 

performance (Gamble, 2006). Examples of RT exercises commonly used include: barbell squat, 

deadlifts, step-ups and lunging movement patterns (Beattie et al., 2017; Bertuzzi et al., 2013; 

Giovanelli et al., 2017; Johnston et al., 1997; Karsten et al., 2016; Skovgaard et al., 2014; Storen et 

al., 2008). Isometric HRT may also have value for the plantarflexors (Albracht and Arampatzis, 

2013). ERT, by its very nature, should avoid a deceleration phase, therefore exercises such as squat 

jumps and Olympic weightlifting derivatives should be utilised (Beattie et al., 2017; Berryman et al., 

2010). To maximise transfer to distance running performance, particularly at faster speeds, PT 

exercises should exhibit short ground contact times (<0.2 s) (Giovanelli et al., 2017; Johnston et al., 

1997) which approximates the contact times observed in competitive middle- (Hayes and Caplan, 

2012) and long-distance running (Hasegawa et al., 2007), and encourages a rapid excitation-
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contraction coupling sequence and improved musculotendious stiffness (Giovanelli et al., 2017; 

Millet et al., 2002; Paavolainen et al., 1999a; Spurrs et al., 2003). Exercises which possess a low to 

moderate eccentric demand such as depth jumps (DJ) from a 20-30 cm box, skipping, hopping, speed 

bounding appear most suitable (Beattie et al., 2017; Berryman et al., 2010; Bonacci et al., 2011; 

Paavolainen et al., 1999a; Saunders et al., 2006; Spurrs et al., 2003).  

 

2.5.4.11 Intra-Session Variables 

For non-strength trained individuals, exercise prescription and gradual progression is important to 

avoid injury and overtraining (Kraemer and Ratamess, 2004). Most studies initially used 1-2 sets and 

progressed to 3-6 sets over the course of the intervention period for HRT, ERT and PT, which appears 

appropriate to circumvent these risks. Several studies utilised a low (3-5) repetition range in every 

HRT session (Ferrauti et al., 2010; Karsten et al., 2016; Piacentini et al., 2013; Storen et al., 2008) at 

loads which approached maximum (≥ 80% 1RM or repetition failure), but did not observe superior 

benefits compared to investigations that prescribed RT at moderate loads (60-80% 1RM) and higher 

repetition ranges (5-15 repetitions). Sets were performed to RM in a number of studies (Damasceno 

et al., 2015; Ferrauti et al., 2010; Johnston et al., 1997; Skovgaard et al., 2014; Storen et al., 2008; 

Vikmoen et al., 2016; Vikmoen et al., 2017), which was likely employed as a means of standardising 

the intensity of each set in the absence of 1RM data for participants (Dankel et al., 2017a). Performing 

sets that lead to repetition failure induces a high level of metabolic and neuromuscular fatigue, which 

may delay recovery (Izquierdo et al., 2006). Although training to repetition failure may be more 

important than the load lifted for inducing a hypertrophy response (Morton et al., 2016), this is both 

unfavourable and unnecessary to optimise gains in strength compared to a non-repetition failure 

strategy (Davies et al., 2016). Not working to repetition failure also appears to become a more 

important feature of RT as ST status increases (Davies et al., 2016). Participants were often instructed 

to move the weights as rapidly as possible when performing the concentric phase of RT exercises, 

which increases the likelihood of maximising neuromuscular adaptations (Pareja-Blanco et al., 

2014). PT is characterised by high eccentric forces compared to running and RT, therefore repetitions 

per set were typically low (4-10 repetitions). Total foot contacts progressed from 30-60 repetitions 

in the first week of an intervention up to 110-228 repetitions after 6-9 weeks (Paavolainen et al., 

1999a; Pellegrino et al., 2016; Spurrs et al., 2003; Turner et al., 2003). Plyometric exercises were all 

performed without additional external resistance in all but one study (Paavolainen et al., 1999a) and 

in many cases a short ground contact time (Bonacci et al., 2011; Saunders et al., 2006; Turner et al., 

2003) and maximal height (Berryman et al., 2010; Bonacci et al., 2011) were cued to amplify the 

intensity. An inter-set recovery period of 2-3 minutes was typical for HRT, ERT and PT, which is in 

line with recommendations for these training techniques (Kraemer and Ratamess, 2004). Where SpT 

was incorporated into ST programmes, repetition distances were short (20-150 m) and performed at 
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or close to maximal running speed (Millet et al., 2002; Paavolainen et al., 1999a; Skovgaard et al., 

2014). 

 

2.5.4.12 Inter-Session Variables  

The majority of studies that demonstrated improvements in running physiology scheduled ST 2-3 

times per week, which is in line with the guidelines for non-strength trained individuals (Kraemer 

and Ratamess, 2004). One study used just one session per week (ERT or PT) and achieved moderate 

improvements in strength outcomes and RE after eight weeks of training (Berryman et al., 2010). 

Beattie and associates (2017) observed small improvements (ES: 0.3) in RE using a single ST session 

(mixed activities) each week for 20 weeks, however the participants had already experienced 

moderate improvement (ES: 1.0) in this parameter using a twice weekly programme in the 20 weeks 

prior. For well-trained runners who complete 8-13 running sessions per week (Paavolainen et al., 

1999a; Saunders et al., 2006), it would be useful to establish the minimal ST dosage required to elicit 

a beneficial effect to reduce the risk of overtraining. Equally, for the recreational runner, ST may 

take up valuable leisure time that could be spent running, therefore identifying the optimal volume 

and frequency of ST to achieve an improvement in performance would be desirable. A previous 

meta-analysis indicated that 2 or 3 sessions per week provides a large effect on strength, but for the 

non-strength trained individual, three sessions is superior to two sessions per week (Rhea et al., 

2003). More recently, a weak relationship was established between improvement in RE and weekly 

frequency of ST sessions in 311 endurance runners (Denadai et al., 2017). This suggests that higher 

weekly volumes of ST would not necessarily provide greater RE improvements, therefore two 

sessions per week is likely to be sufficient (Denadai et al., 2017). 

Given the volume of endurance training participants were exposed to and the duration of each study, 

it seems likely that an attenuation of strength-related adaptation would have occurred. To minimise 

this interference phenomenon, it is therefore recommended that a recovery period of  >3 h is provided 

following high-intensity running training before ST takes place (Baar, 2014). In many studies 

running training and ST took place on different days (Beattie et al., 2017; Bertuzzi et al., 2013; 

Damasceno et al., 2015; Giovanelli et al., 2017; Skovgaard et al., 2014), and several papers noted a 

gap of >3 h between running and ST on the same day (Johnston et al., 1997; Mikkola et al., 2007; 

Storen et al., 2008; Vikmoen et al., 2016; Vikmoen et al., 2017). This feature of concurrent training 

prescription therefore appears important in ensuring sufficient strength-adaptations are realised but 

without compromising running training. Although there is very little evidence that the dosage of ST 

prescribed impaired any endurance-related adaptations, recent work has highlighted that acute bouts 

of RT may cause fatigue sufficient to impair subsequent running performance, which long-term may 

result in sub-optimal adaptation (Doma et al., 2017). It is therefore recommended that this potential 

fatigue is accounted for by allowing at least 24 h recovery between a ST session and an intensive 
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running session (Beattie et al., 2017; Bertuzzi et al., 2013; Damasceno et al., 2015; Skovgaard et al., 

2014).  

The results provide compelling evidence that a relatively short period (six weeks) of ST can enhance 

physiological qualities related to distance running performance. Improvements in RE (Guglielmo et 

al., 2009) and 10 km TT performance (Skovgaard et al., 2014) have also been shown in as little as 

four weeks. A relationship between intervention duration and improvement in RE has previously 

been reported (Denadai et al., 2017), suggesting that longer periods of ST provide a larger benefit. 

The same may be true for sV̇O2max, however more research using longer periods of ST is required to 

establish if this is indeed the case. The benefits to performance also seem to be dependent on study 

duration as most short interventions (six weeks) tended to produce small TT improvements (2.4-

2.7%, ES: 0.13-0.4) (Pellegrino et al., 2016; Ramirez-Campillo et al., 2014; Spurrs et al., 2003), 

whereas longer programmes (8-11 weeks) resulted in moderate or large performance effects (3.1-

5.5%, ES: 0.67-1.50) (Paavolainen et al., 1999a; Skovgaard et al., 2014; Vikmoen et al., 2016). It 

would seem reasonable to assume that highly-trained distance runners would require a higher volume 

of ST to achieve the same benefit as less experienced runners, however this does not appear to be the 

case. Relatively short (6-9 weeks) periods of ST improved RE and TT performance to a similar extent 

in highly-trained individuals (Ramirez-Campillo et al., 2014; Saunders et al., 2006) and recreational 

runners (Pellegrino et al., 2016; Piacentini et al., 2013; Turner et al., 2003). It is therefore 

recommended that future investigations use periods of ten weeks or longer to provide further insight 

into how ST modalities may impact physiological parameters long-term in different types of distance 

runner. 

The time of year or phase of training when the research was conducted was not reported in the 

majority of studies. Several papers indicated that the intervention formed part of an off-season 

preparation period (Fletcher et al., 2010; Mikkola et al., 2007; Millet et al., 2002; Paavolainen et al., 

1999a; Piacentini et al., 2013), but others scheduled the intervention within the competition period 

(Ramirez-Campillo et al., 2014; Vikmoen et al., 2016; Vikmoen et al., 2017). Based upon the 

literature reviewed, it is currently not possible to provide specific recommendations for ST in 

different phases of a runners training macrocycle, as most studies found at least some physiological 

or performance benefits to concurrent training. Importantly though, evidence suggests that choosing 

to exclude ST following a successful intervention period results in a detraining effect which causes 

improvements to return to baseline levels within six weeks (Karsten et al., 2016). The 40 week 

intervention conducted by Beattie and colleagues (2017) provides evidence that reducing ST volume 

from two sessions per week (both with a lower limb HRT emphasis) during the preparatory phase to 

one weekly session (ERT and PT emphasis) during the in-season racing period is sufficient to at least 

maintain previous strength and physiological gains. This finding corroborates with a maintenance 

effect observed in cyclists (Ronnestad et al., 2010; Ronnestad et al., 2015) and soccer players 

(Ronnestad et al., 2011) showing one ST session per week is sufficient to preserve the strength 
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qualities developed during a preceding phase of training. Therefore, runners can decrease ST volume 

from 2-3 sessions per week (each with a lower limb focus) in preparatory phases of training to a 

single session each week during the competitive season without fearing a loss of adaptation as a 

consequence of the reduction in training density. 

It is currently uncertain what volume and intensity of running and ST are most likely to avoid the 

interference effect associated with concurrent training practices. One option to minimise attenuation 

of strength development is to organise activities into periods that concentrate on developing either 

strength or endurance adaptation (Garcia-Pallares and Izquierdo, 2011). This polarised approach to 

planning seems unnecessary and counterintuitive for distance runners who generally possess little 

ST experience, therefore require a minimal stimulus to create an adaptation. Indeed, studies that 

replaced running training with ST (Mikkola et al., 2007; Paavolainen et al., 1999a; Skovgaard et al., 

2014) found no greater benefit than those which included ST in a supplementary manner.  

 

2.5.4.13 Training Supervision 

In most studies, the ST routine was supervised and tightly monitored, however similar controls were 

often absent for the running training participants performed. It seems reasonable to assume that any 

errors in participants training logbooks would be similar across intervention and CGs, however 

validity of findings would be improved if the running component of training had been more tightly 

defined. Where supervision of the ST exercises was not included (Turner et al., 2003) or only 

included for the first two weeks (Giovanelli et al., 2017), strength measures did not improve 

following the intervention period. This indicates that a suitably qualified coach is an important 

feature of a ST programme for a distance runner who lacks ST experience. 

 

2.5.4.14 Limitations 

In addition to the limitations already highlighted in this review, there are other weaknesses that 

should be acknowledged. For many of the studies reviewed, calculation of an ES was possible for 

the variables measured, which provides insight into the meaningfulness and substantiveness of 

results. However, despite the qualitative nature of this review, interpretation of findings was 

predominantly based upon reported probability values, which can be misleading due to low sample 

sizes and the heterogeneity in the pool of participants studied. A relatively large number of studies 

have been included in this review, however several parameters (e.g. sV̇O2max and BL) were measured 

in only a small number of studies, which increases the possibility that false conclusions may be 

drawn. 

There was also a lack of detail concerning several important confounding variables in studies, such 

as the nature of running training prescription and participant’s previous experience in ST. All but 
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seven studies (Albracht and Arampatzis, 2013; Karsten et al., 2016; Millet et al., 2002; Paavolainen 

et al., 1999a; Piacentini et al., 2013; Schumann et al., 2015; Schumann et al., 2016; Turner et al., 

2003) identified that participants had not been engaged in a programme of ST for at least three 

months prior to the study commencing. Although it is perhaps unlikely that participants in these 

seven studies were strength-trained, this cannot be discounted and may therefore have influenced 

findings in these investigations.  



 
 

89 
 

2.6 Acute Effects of Loaded Conditioning Activities on Middle- and Long-Distance 

Performance  

 

2.6.1 Aim 

To acutely optimise middle- and long-distance performance, it is well-established that an active 

warm-up should be included in an athlete’s preparation routine (Bishop, 2003). Research has tended 

to focus on ‘priming’ strategies, involving high-intensity intermittent or continuous exercise 

designed to induce specific cardiovascular and metabolic adjustments, which subsequently augment 

the V̇O2 kinetic response (see Section 2.3.6) during the early stages of exercise, and thus performance 

outcomes (Bailey et al., 2009; Burnley et al., 2005; Burnley and Jones, 2007; Jones et al., 2003b).  

Conversely, for athletic performances that require high levels of power production, such as jumps 

and sprints, a plethora of research has been conducted investigating various preconditioning stimuli 

designed to potentiate the neuromuscular system, and enhance performance in these tasks (Maloney 

et al., 2014; Seitz and Haff, 2016; Wilson et al., 2013). Although it is well-established that 

physiological parameters and performance can benefit following a period of ST in middle- and long-

distance athletes (Beattie et al., 2014; Berryman et al., 2017), the possibility of using a LCA to acutely 

enhance middle- and long-distance related outcomes has only been explored recently (Barnes et al., 

2015; Chorley and Lamb, 2017; Silva et al., 2014). A LCA involves utilising a high-intensity 

resistance exercise or adding load to a movement akin to the sports skill itself, in order to elicit a 

short-term enhancement in neuromuscular function, known as PAP. The aim of this section is 

therefore to consider whether a LCA can provide an acute potentiation of middle- and long-distance 

performance from a theoretical and evidence-based perspective, and provide practical 

recommendations that can be applied to the design of a subsequent study in this thesis. 

 

2.6.2 Priming Activity 

Studies have typically shown that a warm-up which includes a bout of high-intensity exercise (60-

85% of peak power output) lasting 3-6 min is sufficient to positively influence endurance 

performance (Bailey et al., 2009; Gurd et al., 2006; Mattioni Maturana et al., 2017). Several studies 

have also investigated the effects of high-intensity intermittent and single sprint approaches to 

enhancing performance or the V̇O2 response at the onset of exercise (Bishop et al., 2003; Burnley et 

al., 2002b; Ingham et al., 2013; McIntyre and Kilding, 2015; Wilkerson et al., 2004). When compared 

to a continuous warm-up of lower intensity, a priming protocol involving 5 x 10 s near-maximal 

sprints (50 s recovery) have been shown to enhance kayak 2 min TT performance by a small (ES: 

0.2) but statistically significant margin (Bishop et al., 2003). Conversely the same protocol 5 min 

prior to a 3 km cycle TT had no effect on outcome, and was shown to attenuate performance if sprints 

were completed maximally (McIntyre and Kilding, 2015). Utilising a longer inter-repetition recovery 

duration (5 min), and rest period prior to the onset of exercise (15 min), maximal sprints (3 x 30 s) 
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were shown to enhance the amplitude to which V̇O2 rose during peri-maximal-intensity cycle exercise 

by 11% (Wilkerson et al., 2004). Similarly, the use of a single high-intensity run (200 m), performed 

20 min prior to an 800 m TT, provided a significantly faster time (1.2 s) compared to a control trial, 

which utilised 6 x 50 m ‘strides’, typical of traditional warm-up for a middle-distance runner (Ingham 

et al., 2013). Collectively these results demonstrate that a high-intensity bout of priming activity can 

positively influence V̇O2 kinetics and middle- and long-distance performance, providing the protocol 

does not lead to excessive fatigue caused by the interaction between exercise intensity and recovery 

duration. 

The mechanisms which underpin an enhancement in V̇O2 kinetics and/or performance as a result of 

priming activity, are thought to relate to an improvement in the ability to deliver oxygen to active 

tissues (Murias et al., 2014) or activation of processes associated with oxidative metabolism (Jones 

et al., 2003a). It has also been proposed that prior high-intensity exercise necessitates an increase in 

firing and/or recruitment of higher threshold motor units, which are subsequently accessible at the 

onset of exercise (Jones et al., 2003a). This may allow a greater number of muscle fibres to share the 

load imposed by exercise and decrease the demand to recruit further motor units as exercise 

progresses. This hypothesis is supported by works which show increases in integrated EMG (iEMG) 

at the onset of exercise (Burnley et al., 2002a) and during the latter half of intense exercise (Tordi et 

al., 2003) following priming. Interestingly, Burnley and colleagues (2002a) observed the 

improvement in V̇O2 kinetics during the primary component closely matched the increase in iEMG 

which was observed. This evidence indicates that other forms of high-intensity exercise, such as a 

LCA, which is capable of activating a large pool of motor units (Sale, 1987), may offer an alternative 

means of enhancing middle- and long-distance performance. 

 

2.6.3 Post-Activation Potentiation  

Mechanistically PAP is defined as an increase in a twitch response that follows a brief MVC caused 

by the phosphorylation of MLC (Houston et al., 1985; Vandervoort et al., 1983). Contemporary 

definitions of PAP encompass a range of different types of muscular contraction and tend to attribute 

acute improvements in a wide range of athletic performance tasks following a preconditioning 

stimulus to PAP (Maloney et al., 2014; Wilson et al., 2013). Moreover, evidence for MLC 

phosphorylation is somewhat weak in humans, therefore various authors have suggested that other 

mechanisms may also be responsible for a PAP response, including an increase in motor unit 

recruitment and changes in limb stiffness (Maloney et al., 2014; Tillin and Bishop, 2009). These 

mechanisms have been shown to facilitate a short-term improvement in neuromuscular performance 

that may also have utility for middle- and long-distance related outcomes. 
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The efficacy of a PAP inducing stimuli on performance in skills requiring power has been discussed 

in several recent reviews (Gouvea et al., 2013; Maloney et al., 2014; Seitz and Haff, 2016; Wilson et 

al., 2013).  Ballistic exercise protocols (3-5 repetitions of DJ, weighted jumps and weightlifting 

derivatives) and heavy resistance exercise (> 85% 1RM or 3RM) have consistently been shown to 

enhance (2-5%) vertical jump, sprint performance (≤ 100 m), repeated sprint ability and change of 

direction speed following a recovery duration of 5-10 min recovery. The effect of a PAP protocol on 

middle- and long-distance related outcomes has received far less attention. Given the paucity of 

literature, an examination of the mechanisms that underpin a PAP response could provide clues as to 

whether a benefit could exist. 

 

2.6.3.1 Phosphorylation of Myosin Light Chains 

Although PAP can be elicited in both type I and type II fibres, athletes with a higher percentage of 

type II fibres, and therefore greater MLC, tend to experience higher levels of potentiation 

(Vandervoort et al., 1983). Studies that have demonstrated positive outcomes from a LCA on 

explosive performance tasks have typically used athletes from intermittent high-intensity sports 

and/or participants with a background in ST (Maloney et al., 2014; Seitz and Haff, 2016). 

Furthermore, there appears to be a clear link between strength status and the amplitude of a 

potentiation response (Chiu et al., 2003; Gourgoulis et al., 2003). This suggests that athletes who 

excel in endurance-based sports, who typically possess a high proportion of type I fibres (Costill et 

al., 1976b), might be expected to elicit a lower PAP response compared to strength-trained athletes. 

Despite this supposition, endurance-trained athletes are capable of eliciting a greater twitch 

potentiation response compared to untrained individuals following a MVC (Hamada et al., 2000). 

Endurance training has also been shown to enhance shortening velocity of type I fibres (Fitts and 

Holloszy, 1977; Schluter and Fitts, 1994), with a concomitant increase in MLC (Schluter and Fitts, 

1994). This adaptation in the trained muscles of endurance-trained athletes has been attributed to an 

increased capacity for MLC phosphorylation, which therefore increases the potential of eliciting a 

PAP response (Hamada et al., 2000).  

Following a peri-maximal voluntary contraction, fatigue and potentiation can coexist within a muscle 

(MacIntosh and Rassier, 2002), with the magnitude of both a consequence of the nature of the 

contraction and the characteristics of the individual. Due to a superior resistance to fatigue in 

endurance-trained athletes, potentiation effects have also been shown to prevail for longer during an 

intermittent fatiguing task, compared to power-trained athletes (Morana and Perrey, 2009). 

Potentially therefore, despite possessing a relatively low percentage of type II fibres (and thus MLC), 

middle- and long-distance athletes could have the capability to amplify a PAP response in trained 

muscles, which may also be sufficiently long-lasting to benefit performance. In addition, it is also 

recognised that a PAP state provides the largest benefits during dynamic activities requiring low 
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frequency force outputs (Green and Jones, 1989; Vandenboom et al., 1993). These frequencies 

approximate the firing rates required to sustain repeated submaximal contractions (de Luca et al., 

1996; Hamada et al., 2000), which implies PAP could potentially be used to augment middle- and 

long-distance performance.  

 

2.6.3.2 Motor Unit Recruitment 

A LCA such as an MVC or a series of explosive dynamic contractions, require the activation of high 

threshold motor units (Sale, 1987). During such contractions, high frequency electrical impulses 

provide the input required to release large quantities of neurotransmitter at the neuromuscular 

junction, thus ensuring the activation of large motor units. Additionally, during a conditioning 

activity where a muscle is stretched rapidly, such as a plyometric exercise, Ia afferent fibres respond 

via the muscle spindle apparatus by transmitting high frequency impulses to the spinal cord (Kakuda 

and Nagaoka, 1998). This elicits a stretch reflex response whereby for each parent Ia fibre, multiple 

synapses project action potentials to adjacent efferent α-motoneurons (Aagaard et al., 2002). This in 

turn elevates output from the motoneuron pool, which can be detected as the second response to an 

artificially evoked contraction on an EMG trace, known as a H-wave (Aagaard et al., 2002). It has 

been shown that an induced tetanic contraction is capable of acutely elevating the transmittance of 

excitation potentials via the Ia afferent at the spinal cord and reduces the threshold for activation in 

higher order motor units (Hirst et al., 1981; Lüscher et al., 1983). This potentially allows a greater 

level of force to be developed for the same electrical input during activities that have a high reliance 

on the stretch-shortening cycle. Moreover, an increase in H-wave amplitude has been observed 

following MVCs in the plantarflexors (Güllich and Schmidtbleicher, 1996; Trimble and Harp, 1998) 

and knee extensors (Folland et al., 2008b) during the 5-11 min period post-LCA. Although the 

evidence for enhanced motor unit recruitment following a LCA is mainly derived from studies in 

animal models or using artificial stimulation, it is possible that PAP could exert a beneficial effect 

during dynamic activities of various durations via this mechanism (Sale, 2004; Tillin and Bishop, 

2009).  

It is well-established that during sub-maximal exercise, both PAP and fatigue are present within the 

muscle, and consequently PAP is thought to provide a mechanism to counteract the effects of 

peripheral fatigue during prolonged exercise (Boullosa et al., 2011; Rassier and Macintosh, 2000). 

When this effect becomes depressed during the latter stages of exercise due to impaired excitation-

contraction coupling, it has been postulated that an augmentation of the PAP response may enable 

force to be maintained for longer (Green and Jones, 1989; Rassier, 2000). Similarly, as middle- and 

long-distance events require relatively low motor unit firing frequencies, even a small enhancement 

in the force delivered by the motor units should improve performance (Sale, 2004). Moreover, for a 

given intensity of sub-maximal exercise, a state of potentiation, which provides a more accessible 
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pool of motoneurons, should result in motor units decreasing their firing frequency, thus delaying 

the onset of fatigue (Hamada et al., 2000; Sale, 2004). A reduction in motor unit firing frequency has 

been shown during the early part of sustained isometric contractions without any compensatory 

activation of other motor units (de Luca et al., 1996). It was suggested that a PAP response may 

partly explain this finding (de Luca et al., 1996). 

 

2.6.3.3 Stiffness  

Stiffness refers to the ability of a body, limb or joint to resist the application of a force (Brughelli 

and Cronin, 2008). An increase in musculotendinous stiffness would theoretically reduce energy cost 

of exercise, as a stiffer structure enables muscles to achieve a quasi-isometric states more rapidly. 

This in turn influences both the magnitude and rate of shortening velocity in muscle fascicles 

reducing the amount of muscular work performed (Fletcher et al., 2013; Fletcher and MacIntosh, 

2017). Improved musculotendinous stiffness also enables a greater contribution of mechanical work 

to be derived from storage and return of elastic strain energy in the Achilles tendon (Roberts et al., 

1997). A relationship between musculotendinous stiffness and RE has previously been reported 

(Arampatzis et al., 2006; Dumke et al., 2010; Rogers et al., 2017), and increases in tendon stiffness 

following a period of HRT have been shown to correlate (r2 = 0.43, p=0.02) with improvements in 

RE (Fletcher et al., 2010). Moreover, as running speed increases, tendon elastic strain energy 

provides a greater contribution to the work performed by the muscle-tendon unit at the ankle plantar-

flexors (Lai et al., 2014), Therefore it is likely that for a well-trained middle-distance runner who 

operates at relatively high speeds, an enhancement in this quality would improve performance.  

Higher stiffness is also related to greater concentric-dominant muscular capacity (Wilson et al., 

1994), which may be relevant for sports such as cycling, cross-country skiing, and swimming. 

Indeed, higher levels of musculotendinous stiffness have been shown to correlate with cycling speed 

(Watsford et al., 2010), and double poling velocity in cross-country skiing (Lindinger et al., 2009), 

thus an acute improvement in this physiological attribute may provide a mechanism to enhance 

performance for middle- and long-distance athletes. It has also been suggested that an acute 

enhancement in limb stiffness may offer an additional explanation for the improvements observed in 

explosive activities following a LCA (Maloney et al., 2014). 

Following a LCA used to induce PAP, both the muscular properties and the tensile mechanisms of a 

musculotendinous unit are likely to be affected (Gago et al., 2014). A previous review concluded that 

there was moderate evidence for decreased Achilles tendon stiffness (measured via ultrasound) after 

MVC, however activities involving a stretch-shortening cycle, such as running and hopping, have 

minimal effect (Obst et al., 2013). A subsequent investigation observed a PAP response without 

alteration in tendon stiffness following a single 6 s MVC (Gago et al., 2014), demonstrating fatigue 

may be an important factor modulating short-term changes in stiffness. It seems therefore that the 
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direction and extent of alterations in stiffness following a LCA are influenced by the mode and 

dosage of exercise employed (Obst et al., 2013). Tendons in particular appear to be more resistant to 

fatigue during conditioning activities that utilise the stretch-shortening cycle. This has implications 

when examining the efficacy of such strategies upon middle- and long-distance disciplines that rely 

heavily upon musculotendinous stiffness. 

Assessing changes in tendon structures provides one perspective on stiffness, however changes in 

vertical or limb stiffness may be the consequence of morphological alterations in other tissues or 

segments. Leg stiffness and ground contact time during a drop jump task performed on a sledge was 

shown to be positively affected following a set of back squats at 93% of 1RM in elite rugby players 

(Comyns et al., 2007). Similarly, improvements in vertical stiffness during a CMJ following three 

back squat repetitions at 90% 1RM in female volleyball players have been observed  (Moir et al., 

2011). In contrast to the aforementioned studies, these results indicate that a LCA may provide a 

suitable stimulus to acutely enhance leg and vertical stiffness during activities that require the stretch-

shortening cycle, such as distance running. Moreover, leg stiffness has been shown to decrease with 

fatigue in runners (Hayes and Caplan, 2014), therefore an increase in stiffness at the onset of exercise 

may offset this reduction. 

 

2.6.4 Experimental Evidence 

The foregoing discussion suggests that the inclusion of a LCA within the warm-up routine of middle- 

and long-distance athletes could augment subsequent performance outcomes. Only four studies have 

attempted to examine this conjecture experimentally (Table 2.4), yielding mixed results. Two studies 

have investigated the effect of heavy resistance exercise on middle- (Feros et al., 2012) and long-

distance (Silva et al., 2014) performance. Silva and colleagues (2014) found an improvement (-6.1%, 

p=0.02, ES=0.38) in 20 km TT performance in well-trained cyclists following 4 sets of 5RM on a 

leg press. The authors attributed the improvement to an increase (5.8%) in mean power during the 

first 2 km of the test, as little difference was observed across other split times. Similarly, Feros and 

co-workers (2012) utilised 5 x 5 s isometric contractions on a rowing ergometer to successfully 

enhance the first 500 m of a 1 km TT performance in elite international rowers (-1.9%, p=0.009, 

ES=0.62), however an improvement in 1 km TT performance was not noted compared to the control 

trial. Both studies found no change in perceived exertion between trials, which is thought to regulate 

effort during endurance performance (St Clair Gibson et al., 2006). This suggests that potentiation in 

the neuromuscular system allowed a greater amount of power to be developed during the first few 

minutes of exercise for the same level of effort. It therefore appears that a LCA could be beneficial 

for the early stages of a middle- or long-distance TT effort, however it is unclear whether potentiating 

starting speed facilitates an improvement in overall performance.  
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Table 2.4. Summary of studies which have investigated the acute effects of a loaded conditioning activity upon variables related to performance in middle- and long-

distance athletes. 

BL = blood lactate, BM = body mass, CC = conditioning contractions, ES = effect size, PP = peak power, NSS = no statistical significance (p<0.05), RE = running 

economy, RM = repetition maximum, rpm = revolutions per minute, RT = resistance training, TT = time trial 

Authors 

 

Participants Sport Training status Potentiation 

protocol 

Recovery Performance protocol Main findings compared to control 

condition 

Barnes et al.  11 male Distance 

running 

Well-trained  

(V̇O2max 62.1 ±5.9 

mL.kg-1.min-1, 5 

km 16.0 ±1.0 

min) 

6 x 10 s weighted 

vest (20% BM) 

sprints ~1500 m 

pace 

10 min 5 min run @14 km.h-1, 

incremental test to 

exhaustion 

RE: -6.0% (ES=1.40), peak running 

speed 2.9% (ES=0.35), %V̇O2max -

7.2% (ES=0.68) 

Chorley and 

Lamb 

10 male Cycling Highly-trained  

(V̇O2max 65.3 ±5.6 

mL.kg-1.min-1, 8.2 

±6.0 years 

cycling), 

3 x 10 s @70% 

PP, 60 rpm (30 s 

recovery) 

5 min 4 km Wattbike TT TT: -0.5% (ES=0.26), mean power 

(ES=0.24), mean  

Force (ES=0.21) all NSS. 

0-1.5 km V̇O2: 6.8% (p<0.05, 

ES=0.97)  

4 km TT  V̇O2: 2.4% (p<0.05, 

ES=0.28) 

Feros et al.  9 male,  

1 female 

Rowing Elite (V̇O2max 68.7 

±3.1  mL.kg-

1.min-1, >5 years 

RT history) 

5 x 5 s (15 s 

recovery) 

isometric CC on 

rowing ergometer 

4 min 1 km rowing 

ergometer TT 

0-500 m TT split: -1.9% (p=0.009, 

ES=0.62) 

0-500 m TT power: 6.6% (p=0.007, 

ES=0.64). 

1 km TT (ES=0.21), mean power 

(ES=0.26) both NSS 

Silva et al.  11 male Cycling  Well-trained 

(V̇O2peak  56.7 

±6.7 mL.kg-1.min-

1, 2-10 years 

running) 

4 x 5RM leg 

press 

10 min 20 km static cycle TT TT: -6.1% (p=0.02, ES=0.38). 

0-2 km mean power: 5.8% (p=0.06, 

ES=0.22) 

2-18 km (2.7%) and 18-20 km 

(0.8%) both NSS. 

Mean power (ES=0.11), V̇O2 

(ES=0.19), BL (ES=0.13) all NSS 
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Barnes et al. (2015) used six sprints wearing a weighted vest (20% body mass) to achieve beneficial 

effects to RE (-6.0%, ES=1.40) and peak running speed (2.9%, ES=0.35) in a group of well-trained 

distance runners. The authors observed a very high correlation (r=-0.88) between changes in peak 

speed and changes in leg stiffness. Evidence for individual responses to the LCA were also present. 

The acute improvements achieved in RE in this study are of a similar magnitude to those achieved 

following a 8-14 week explosive ST intervention (Berryman et al., 2010; Millet et al., 2002; 

Paavolainen et al., 1999a), and are likely to be sufficient to provide a performance benefit 

(Hoogkamer et al., 2016). Recently, Chorley and Lamb (2017) used a similar protocol in a group of 

highly-trained cyclists. Prior to a 4 km TT, participants performed three 10 s loaded sprints (70% 

peak power output) at a low cadence (60 rpm). The results showed a small (ES=0.2-0.3) and non-

significant (p>0.05) change in completion times, mean power output and mean peak force, however 

the authors suggested that the improvements were meaningful in the context of the SWC value 

(Chorley and Lamb, 2017). A statistically significant increase in V̇O2 during the first 1.5 km (6.8%, 

ES=0.97) perhaps indicates an enhancement in rate adjustment of the oxidative system, or again, a 

potentiation effect benefited the initial stages of exercise.  

 

2.6.5 Implications and Modulating factors  

A PAP response is modulated by a number of variables that each require consideration to ensure a 

performance benefit is optimised. These factors have been reviewed extensively for short-duration 

athletic performance (Maloney et al., 2014; Seitz and Haff, 2016), however recommendations should 

be examined for appropriateness in the context of middle- and long-distance performance. Based 

upon the available evidence, Figure 2.8 provides a suggested warm-up protocol that middle- and 

long-distance athletes could adopt to enhance their performance. There is convincing evidence that 

following an initial low intensity warm-up, pre-performance preparation should include a higher 

intensity priming component (e.g. 3-6 min at 60-85% peak power output) to facilitate the V̇O2 kinetic 

response during the early stages of exercise (Bailey et al., 2009; Gurd et al., 2006; Mattioni Maturana 

et al., 2017). Following a 5-10 min passive recovery from this aerobic phase of warm-up, a 

performance advantage is likely to be gained by including either near maximal intermittent sprints 

(4-6 x ~10 s) or a LCA designed to elicit a PAP response. Based upon the experimental evidence to 

date, it is likely that a PAP response will only be realised under a specific set of circumstances.   

 



 
 

97 
 

 

Figure 2.8. Suggested warm-up protocol for a middle- or long-distance athlete, including use of a 

conditioning activity to potentiate performance. PPO = peak power output 

 

2.6.5.1 Participant Characteristics 

As discussed, type II muscle fibres have a greater affinity for a PAP response (Hamada et al., 2000), 

thus endurance-trained individuals, who typically possess a low percentage of type II fibres (Costill 

et al., 1976b; Steinacker, 1993), are less likely to benefit from a LCA compared to strength-trained 

athletes. It is likely therefore, that middle-distance competitors, who possess a more even split of 

fibre phenotypes (Costill et al., 1976a) might benefit from a warm-up that includes a LCA more-so 

than a long-distance athlete. It is also possible that older endurance athletes have a lower capacity to 

generate a PAP response as age-related reductions in muscle mass have been attributed to smaller 

type II fibre size (Nilwik et al., 2013).  

As expected, strength-trained athletes tend to exhibit a larger PAP response (ES=0.53) than athletes 

with no ST experience (ES=0.07) irrespective of strength-level (Seitz and Haff, 2016). It has been 

reported that well-trained rowers and swimmers regularly utilise ST as part of their training routine 

(Aspenes and Karlsen, 2012; Lawton et al., 2011), and highly-trained distance runners include ST 

modalities more so than recreational runners (Esteve-Lanao et al., 2007; Voight et al., 2011). The 

well-trained runners, cyclists and rowers in the studies that observed an improvement in performance 

following a LCA had ST experience (Barnes et al., 2015; Feros et al., 2012; Silva et al., 2014), 

therefore it appears that possessing a background in ST may be important to ensure a LCA is 

beneficial. Furthermore, highly-trained endurance athletes are capable of eliciting an amplified PAP 

response, the extent of which appears closely related to the training status of the limb exposed to the 

LCA (Hamada et al., 2000; Morana and Perrey, 2009). It seems that training status per se, may 

therefore be as important as ST experience when considering the type of athlete who may benefit 

from a LCA. This could be attributed to an athletes skill level on a LCA, as better inter-muscular co-

ordination on a task is likely to enable higher threshold motor units to be activated (Bernardi et al., 

1996). In this regard, it may therefore be possible that a learning-effect exists, whereby middle- and 
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long-distance athletes with less ST experience are able to benefit from a LCA following a number of 

exposures to a PAP-type protocol. Further investigation is required to confirm this conjecture.  

 

2.6.5.2 Loaded Conditioning Activity 

A recent meta-analysis indicated that plyometric- and (high-load) resistance-based exercise provide 

a similar PAP response (ES: 0.41 and 0.47 respectively), whereas moderate load exercises and 

isometric contractions produce a negligible effect (ES: <0.2) on tasks requiring short bursts of 

explosive power (Seitz and Haff, 2016). Results from the studies on middle- and long-distance 

performance (Table 2.4) corroborate this finding. Silva et al. (2014)  observed an improvement (-

6.1%, ES: 0.38) in 20 km cycling performance following 5RM leg pressing, and 1 km rowing 

performance was unaltered by a series of 5 x 5 s isometric contractions (Feros et al., 2012). No studies 

to date have attempted to use a traditional plyometric exercise to elicit a PAP response in endurance 

athletes. However Barnes and colleagues (2015) added load (20% body mass) to sprints (6 x 10 s) 

and achieved improvements in RE (-6.0%, ES: 1.40), peak running speed (2.9%, ES: 0.35) and 

%V̇O2max (-7.2%, ES=0.68).  

When attempting to exploit PAP to enhance performance, a sufficiently high-intensity LCA is 

required to induce potentiation, however this also produces a high-level of fatigue. A recent review 

provides evidence for impairments in endurance-related performance for up to 72 h following a 

single bout of resistance training (Doma et al., 2017). Obviously performing multiple exercises 

and/or high load volumes will generate a level of neuromuscular fatigue that is likely to adversely 

affect a bout of endurance exercise performed immediately after. However, several studies have 

observed high levels of fatigue generated from a prescription that is not excessively different to the 

studies reviewed (Doma and Deakin, 2013; Michaut et al., 2000; Stock et al., 2010). For example, 

Michaut and colleagues (2000) found reduced twitch activation from 2 min to 48 h following 5 sets 

of 10 eccentric contractions. Although it appears that multiple sets and a low number of repetitions 

of a LCA optimise a PAP response, the effect is mediated by both strength-level and exercise 

intensity (Seitz and Haff, 2016; Wilson et al., 2013). It is likely that athletes who lack ST experience 

will develop higher levels of fatigue compared to those who are familiar with LCA-type exercises, 

however the enhanced fatigue resistance of endurance-trained athletes means they display similar 

recovery profiles to strength-trained individuals (Morana and Perrey, 2009). Thus a relatively low 

volume (≤ 6 sets x 3-5 repetitions or ~10 s) of sub-maximal contractions is most likely to yield a 

beneficial response (Maloney et al., 2014; Seitz and Haff, 2016). Further research is warranted to 

ratify this suggestion. 

A limitation of many PAP inducing techniques is the requirement for heavy and expensive 

equipment, which cannot be easily accessed in a field-based setting or prior to competition. Having 

the option to elicit a PAP response without the need for specialist equipment or facilities would be 
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of considerable practical benefit for endurance athletes and their coaches. Thus, there is appeal in 

protocols that add additional load to sport-specific movement patterns using portable inexpensive 

strategies (Barnes et al., 2015; Feros et al., 2012). Plyometric-based exercise may also provide an 

effective means of achieving a PAP outcome, however this is yet to be determined in middle- and 

long-distance athletes.  

   

2.6.5.3 Recovery Following Loaded Conditioning Activity 

The recovery time between a LCA and the outcome activity is crucial to ensuring fatigue has 

dissipated sufficiently yet a state of potentiation in the neuromuscular system remains (Wilson et al., 

2013). This presents a dilemma, which several studies have attempted to resolve by investigating the 

time course of the decay in PAP and fatigue to identify the optimal window of time where the net 

gain from potentiation is highest (Gilbert and Lees, 2005; Kilduff et al., 2007; Kilduff et al., 2008). 

Passive rest intervals of between 5-12 min after heavy resistance activities (Gouvea et al., 2013; Seitz 

and Haff, 2016; Wilson et al., 2013) and 1-6 min following a ballistic exercise (Maloney et al., 2014) 

have been suggested to enhance a short duration task. However, the temporal profile of a PAP 

response is also modulated by training status. Although weaker individuals appear to require longer 

(>8 min) recovery periods to realise a PAP response, aerobic fitness is related to an ability to recover 

from high-intensity exercise (Tomlin and Wenger, 2001). Benefits to the early part of middle-

distance efforts have been shown using a recovery duration of 4-5 min in endurance-trained athletes 

(Chorley and Lamb, 2017; Feros et al., 2012), however overall performance did not benefit from this 

scenario, perhaps suggesting some residual fatigue caused by the LCA was still present. Depending 

upon the activity utilised to induce PAP, it is therefore likely that a recovery period of between 5-10 

min should be adopted to maximise the likelihood of middle- and long-distance performance being 

enhanced. 

 

2.6.5.4 Outcome Activity 

A PAP response is transient and appears to provide negligible effects on power performance beyond 

approximately 12 min post-LCA (Gouvea et al., 2013; Wilson et al., 2013), but prevails for longer 

in endurance-trained athletes compared to power-trained individuals (Morana and Perrey, 2009; 

Pääsuke et al., 2007). This indicates that if long-distance athletes benefit from a PAP response, it 

would be likely to affect only the initial part of a performance. It may also be the case that middle-

distance performances lasting <3 min might gain more benefit compared to longer distance efforts. 

Studies that have used high-intensity sprinting as part of a warm-up lend support to this notion as 

improvements in swimming, running and kayak performance lasting 1-2 min have been demonstrated 

(Bishop et al., 2003; Hancock et al., 2015; Ingham et al., 2013). 
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Studies to date have tended to focus upon measuring TT performance (Chorley and Lamb, 2017; 

Feros et al., 2012; Silva et al., 2014), which provides a high level of ecological validity. Assessment 

of movement economy and efficiency, which have been shown to benefit from chronic exposure to 

ST (Beattie et al., 2014; Berryman et al., 2017) are also likely to benefit from acute potentiation of 

the neuromuscular system. Preliminary evidence is contradictory in this regard as Barnes and 

colleagues (2015) observed large improvements in RE following a series of weighted vest sprints, 

whereas Silva et al. (2014) found no change in V̇O2 during a 20 km cycle TT. The discrepancy is 

likely due to the intensities used to assess economy in these two papers, therefore future work should 

use a common relative intensity (below LT) in participants. 
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2.7 Strength Training in Adolescent Athletes  

Adolescence refers to the period of life between childhood and adulthood, typically considered to be 

between age 12-18 years in girls and 14-18 years in boys (Lloyd et al., 2014). The long-term health 

and fitness benefits of participating in a well-rounded programme of physical activities and sports 

during this period, which promotes physical literacy and develops a breadth of physical qualities, is 

well recognised (Lloyd et al., 2015; Roetert and Jefferies, 2014). It is argued that a systematic 

approach to the development of young athletes is grounded in a progressive and well-managed 

programme of ST, which enables aspiring young athletes to cope with the rigours of sports training 

and reach their potential (Faigenbaum, 2017; Faigenbaum et al., 2016; Lloyd et al., 2014). ST 

techniques develop a broad range of physical capacities such as agility, speed, muscular strength, 

balance, co-ordination, and motor control, which underpin performance across numerous sports and 

everyday living tasks (Lloyd and Oliver, 2012). Moreover, ST activities which develop 

neuromuscular function are likely to offset the risk of injury in youth athletes (DiFiori et al., 2014; 

Myer et al., 2011), which may reduce drop-out rates and facilitate the transition of talented young 

performers to an elite level (Fort-Vanmeerhaeghe et al., 2016; Myer et al., 2016). Several leading 

professional organisations and authorities in the area of paediatric exercise science and sports 

medicine have published statements advocating the inclusion of age- and individual-appropriate ST 

activities for young athletes (Behm et al., 2008; Bergeron et al., 2015; Faigenbaum et al., 2016; 

Granacher et al., 2016; Lesinski et al., 2016; Lloyd et al., 2016; Lloyd et al., 2014; McCambridge 

and Stricker, 2008; Smith et al., 2014).  

 

2.5.1 Early-Sport Specialisation and Long-Term Athlete Development 

Childhood and adolescence represents a crucial period of development in young athletes where a 

significant alteration in hormonal status causes rapid physical growth, development of sexual 

characteristics, and attainment of reproductive capacity (Malina, 1994). Contemporary models of 

long-term athlete development suggest adolescents should avoid training routines that focus on 

intensive training in a single sport (for >8 months per year), or a total weekly training volume which 

exceeds the athletes age in years, until late-adolescence (Lloyd et al., 2016; Lloyd and Oliver, 2012; 

Myer et al., 2016). Whilst some degree of sport-specialisation is necessary during adolescence to 

reach elite status, the timing of single sport-specialisation is more controversial. Evidence across a 

range of sports shows elite senior athletes tend to specialise at a later age, and participate in a diverse 

range of sports during their childhood (Côté et al., 2009; Moesch et al., 2011). Young athletes who 

adopt an early-diversification, late-specialisation approach to their development have fewer injuries, 

are at less risk of overtraining, and play sports longer than those who specialise in one sport before 

puberty (Brenner, 2016; DiFiori et al., 2014).  
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Figure 2.9 shows the youth athlete development models for males (a) and females (b), which suggests 

that training during childhood and adolescence should prioritise the development of rudimentary 

motor skills and muscular strength (Lloyd et al., 2016; Lloyd and Oliver, 2012). The emphasis on 

ST activities throughout an athlete’s development is thought to maximise adaptations to 

neuromuscular coordination, motor unit recruitment and motor control, during a period when 

neuroplasticity is high (Blimkie, 1992; Myer et al., 2013). The model suggests that a wide range of 

physical activities and training modalities should be utilised through a child’s development, however 

neuromuscular training that aims to enhance strength qualities and motor skills should be prioritised 

(Lloyd and Oliver, 2012). Improvements in muscular strength and motor control during this period 

have also been shown to improve physical performance (Behringer et al., 2011; Lesinski et al., 2016) 

and lower the risk of sustaining an injury (Myer et al., 2011; Steib et al., 2017; Valovich McLeod et 

al., 2011). It is recommended that endurance training (and metabolic conditioning) is not emphasised, 

relative to other biomotor abilities, until late-adolescence (Lloyd and Oliver, 2012), as typically this 

type of training is associated with high volumes of work, which may lead to overtraining (Baxter-

Jones and Helms, 1996; Matos and Winsley, 2007). Moreover, pre-pubertal children have tended to 

show smaller changes (<10%) in aerobic measures following endurance training interventions 

compared to post-pubertal adolescents and adults (Matos and Winsley, 2007; McNarry and Jones, 

2014). A recent study also showed that pre-pubertal boys (10.5 years) were metabolically comparable 

to well-trained endurance athletes and experienced less fatigue during high-intensity exercise 

compared to untrained adults (Birat et al., 2018). It was suggested that pre-pubertal children avoid 

specific training to develop aerobic metabolic qualities and shift priority during post-pubertal years 

once movement technique and mechanical efficiency have been developed (Birat et al., 2018). For 

the young distance runner who chooses to specialise in the sport during late-adolescence, it would 

therefore be interesting to identify whether ST offers a means of improving the performance-related 

factors that have been investigated so extensively in adult distance runners. 

Recommendations associated with timing of single sport-specialisation and long-term athlete 

development were therefore applied to the present thesis, by ensuring that only post-pubertal 

participants ≥ 15 years old were recruited. Due to the risks associated with early-specialisation, it 

was considered that adolescent athletes younger than this age should not have specialised in a single-

sport such as distance running, but should be participating in a number of other sports and physical 

activities. Participation in other sports would also be an important confounding factor that may 

potentially influence results of studies, therefore this inclusion criteria reduces this possibility and 

permits the participants to be defined as middle- and long-distance runners. It is also likely that post-

pubertal adolescents are more likely to respond to endurance training in a similar manner to that of 

adult performers compared to pre-pubertal or circa-pubertal athletes (McNarry and Jones, 2014). 

Therefore the chronic impact of additional ST exercise can be evaluated in a more valid manner. 
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(a) 

          

(b) 

          

Figure 2.9a and 2.9b. The youth physical development model for males (a) and females (b) 

(Lloyd and Oliver, 2012). The size of the font reflects relative importance. Intensity of colour in 

the boxes refers to pre-adolsecent periods of devlopment (lighter) and adolescent periods of 

adaptation (darker). FMS = fundamental movement skills; MC = metabolic conditioning; PHV 

= peak height velocity; SSS = sport-specific skills. 
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2.7.2 Effects of Strength Training on Performance-Related Outcomes  

A plethora of literature exists that demonstrates ST activities are a safe and effective way of 

enhancing proxy measures of athletic performance in children and adolescents of both sexes 

(Behringer et al., 2011; Harries et al., 2012; Lesinski et al., 2016; Lloyd et al., 2014). Specifically, in 

post-pubertal adolescents, compared to sport-only training, various forms of ST augment 

improvements in: muscular strength, explosive power, muscular endurance, sprint speed, agility test 

time, tennis serve velocity, kicking velocity, throwing velocity, and general motor skills (Behringer 

et al., 2011; Behringer et al., 2013; Behringer et al., 2010; Granacher et al., 2016; Harries et al., 2012; 

Legerlotz et al., 2016; Lesinski et al., 2016; Rumpf et al., 2012).  

The safety of RT in young athletes has previously been questioned with concerns centred around 

epiphyseal plate injury and growth abnormalities the most commonly cited (Benton, 1982; Gumbs 

et al., 1982; Legwold and Kummant, 1982). However, any isolated observations associated with 

damage to growth cartilage appear to be related to poor lifting technique or inappropriate training 

volumes. Providing training is supervised and prescribed by a qualified practitioner, the current 

consensus in the field indicates that ST is not inherently harmful and does not pose a risk to 

epiphyseal plates or normal growth (Lloyd et al., 2014; Milone et al., 2013; Myers et al., 2017). 

Indeed, prospective investigations that have included appropriate levels of supervision and coaching 

have demonstrated no increased incidence of physeal-related injury (Ramsay et al., 1990) and overall 

low injury rates (Lillegard et al., 1997), even for programmes involving regular HRT (Faigenbaum 

et al., 2003).   

Research investigating the impact of ST techniques on performance-related measures in young 

athletes has tended to use participants from field-based sports, martial arts, court sports, aquatic 

sports, gymnastics and strength-based sports (Granacher et al., 2016; Legerlotz et al., 2016; Lesinski 

et al., 2016; Rumpf et al., 2012). As part of the systematic review (Section 2.5) process, two studies 

were identified that used middle- or long-distance running participants under the age of 18 years. 

Mikkola et al. (2007) took a group of trained male and female distance runners (17.3 years, V̇O2max: 

62.5 mL.kg-1.min-1) and following eight weeks of HRT and EST observed improvements in anaerobic 

capabilities (sMART and 30 m sprint). The study by Bluett and associates (2015) did not meet the 

inclusion criteria for the review, however ten weeks of concurrent aerobic and ST provided no 

strength advantage in 10-13 year old competitive runners compared to running only. The authors 

speculated that excessive fatigue resulting from the concurrent training regimen may have 

compromised both strength and endurance adaptations (Bluett et al., 2015). Interestingly, the 

blunting of strength adaptation which is often observed in adult performers when both strength- and 

endurance-training are included in the same training session (Wilson et al., 2012b) appears not to 

occur in children (Marta et al., 2013) and adolescents (Santos et al., 2011; Santos et al., 2012). As 

the interference phenomeon is mediated by training volume and recovery from sessions (Baar, 2006), 

it seems likely that the volumes of each training modality included in the aforementioned studies 
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were insufficient to negatively impact upon strength-related adaptation. Indeed, in elite youth 

football players (17.3 years) who utilise higher workloads compared to younger performers, small 

but clinically meaningful differences were noted following different sequencing of strength- and 

sport specific endurance-training over five weeks, in favour of a strength-training first order (Enright 

et al., 2015). 

 

 2.7.2.1 Prescription of Strength Training for Adolescent Athletes 

Recent reviews and meta-analytical studies examining the effects of ST on youth populations have 

provided recommendations regarding the most appropriate prescription of ST activities (Behringer 

et al., 2010; Granacher et al., 2016; Lesinski et al., 2016; Lloyd et al., 2014; Zwolski et al., 2017). It 

is important to highlight that evidenced-based guidelines should be adapted to the specific needs of 

individual athletes, which account for differences in ability, goals and movement competency.  Pre-

pubertal years (or the initial weeks for those with low RT skill competency) should be spent 

developing sound technique across a broad range of ST skills (1-2 sets x 8-15 repetitions at 30-60% 

1RM, 1 min inter-set recovery), which can subsequently be loaded (2-4 sets x 6-12 repetitions at ≤ 

80% 1RM, 2-3 min inter-set recovery) on 2-3 occasions per week (Behm et al., 2008; Faigenbaum 

et al., 2016; Lloyd et al., 2014). Dose-response relationships for key RT variables in post-pubertal 

youth athletes suggest that training intensity is the primary moderator of strength- and performance-

related improvement (Behringer et al., 2011; Lesinski et al., 2016). Therefore, assuming skill 

competency is sufficiently high, RT programmes that utilise a low repetition range (6-8 repetitions 

per set) and heavier loads (80-89% 1RM) with a 3-4 min rest between sets are most effective 

(Faigenbaum et al., 2016; Lesinski et al., 2016). Free weights (barbells and dumbbells), which permit 

multi-planar movement, demand higher levels of balance, stability and motor control, thus have a 

greater transfer across to athletic performance tasks and should be the equipment of choice 

(Granacher et al., 2016; Lloyd et al., 2014). Other loading strategies have also been used successfully 

as part of RT programmes to elicit strength-related adaptation, including bodyweight, resistance 

machines, elastic resistance bands and medicine balls (Lloyd et al., 2014). These modalities are 

particularly suitable for those with low strength levels and/or RT skill competency.    

The optimal approach to athlete development and to maximise performance-related outcomes 

involves a multi-modal approach to ST (Behm et al., 2008; Granacher et al., 2016). RT exercise 

should therefore be included alongside fundamental movement skills training, sports-specific 

training (e.g. SpT and running drills), PT, balance exercises and core stability training to provide a 

well-rounded approach to the development of neuromuscular-related qualities (Granacher et al., 

2016; Lloyd et al., 2016; Steib et al., 2017). It is recommended that PT should commence with low-

intensity bilateral exercises (e.g. low box/mini hurdle jumps), which focus on achieving proper 

landing technique and progress gradually in terms of volume (total foot contacts), intensity (eccentric 
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demand) and skill complexity (limb support) (Behm et al., 2008; Ramírez-Campillo et al., 2015a; 

Ramírez-Campillo et al., 2015b). Total foot contacts for a session should start around 50 (1 set x 6-

10 repetitions per exercise, 1-2 min inter-set recovery) and may progress up to 150 contacts (with an 

inter-set recovery of 2-3 min) for a youth athlete, depending upon biological age, skill level and 

intensity of the exercises (Lloyd et al., 2011). Alongside improvements of strength-related qualities, 

‘neuromuscular training’ encompasses development of capacities associated with dynamic stability, 

movement co-ordination, speed and agility, and muscular endurance, which should also form part of 

the non-sport-specific training performed routinely by adolescent athletes (Fort-Vanmeerhaeghe et 

al., 2016; Myer et al., 2011; Steib et al., 2017). In conjuction with the ST principles associated with 

an improvement in distance running performance (Sections 2.5.4.10-2.5.4.12), these 

recommendations should be applied to the ST prescription of adolescent distance runners as part of 

a training intervention. 

 

2.7.3 Effects of Strength Training on Endurance-Related Measures 

A number of intervention studies that have investigated the effect of ST on adolescent athletes have 

included a measure related to endurance performance in their battery of tests (Bluett et al., 2015; 

Ferrete et al., 2014; Gorostiaga et al., 1999; Klusemann et al., 2012; Makhlouf et al., 2016; Mikkola 

et al., 2007; Potdevin et al., 2011; Ramírez-Campillo et al., 2015a; Ramírez-Campillo et al., 2015b; 

Ramírez-Campillo et al., 2015c; Ramírez-Campillo et al., 2014; Wong et al., 2010). In post-pubertal 

distance runners, Mikkola and colleagues (2007) noted a small but significant difference in RE at 14 

km.h-1 (2.7%, ES=0.32, p<0.05) compared to a running-only group, and improvements in BL at 12 

km.h-1 (12%, p<0.05) and 14 km.h-1 (11%, p<0.05) were also detected. However, in a younger cohort 

of distance runners, Bluett et al. (2015) observed no change in 3 km TT performance.  

Other investigations that have studied young athletes from other sports specialisms have tended to 

use a combination of ST modalities. The inclusion of twice weekly onfield RT and ERT in the pre-

season training (12 weeks) of under-14 year old male soccer players provided a moderate 

improvement (ES=0.94, 19.5%) in Yo-Yo intermittent endurance run performance and a small 

enhancement (ES=0.44, 5.1%) in RE, compared to soccer-only training (Wong et al., 2010). It should 

be noted however, that the CG possessed significantly lower V̇O2max and Yo-Yo scores at baseline 

compared to the experimental group. Using the identical ST intervention as Wong et al. (2010), a 

similar finding was observed for Yo-Yo test performance in another group of male soccer players 

(13.7 years) who included concurrent strength- and endurance-training within the same session or on 

separate days (Makhlouf et al., 2016).  Large improvements were found for a group who utilised the 

endurance-strength session structure (79%), strength-endurance session order (59%), and alternate 

day format (55%), which were all superior to the change seen in a CG (42%). Ferrete and colleagues 

(2014) also found large (50%, ES: 1.39) improvements in Yo-Yo test distance after ST 
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(HRT/ERT/SpT) was added to soccer training for 26 weeks in pre-pubertal players (8-9 years old). 

Conversely, Gorostiaga and co-authors (2004) failed to find any change in BL concentration and HR 

during a three-stage submaximal discontinous running test in a group of post-pubertal (17.2 years) 

soccer players, following the addition of two explosive ST sessions (ERT/PT) to a weekly 

programme of soccer training for 11 weeks. The lack of effect may be because the physiological 

measures selected were insufficiently sensitive to detect a difference between groups. Small 

improvements compared to a CG were also noted for Yo-Yo test result in a group of male and female 

basketball players (14-15 years), who added bodyweight movement training (twice weekly) to their 

programme of training for six weeks (Klusemann et al., 2012). It is likely that the overload provided 

during this short intervention was insufficient to elicit the physiological adaptations required to 

enhance performance, which was also confirmed by the small-moderate changes observed in 

strength-related tests.   

Investigations that have added PT sessions to normal sports training have generally found only a 

small impact on endurance-related field tests. Potdevin et al. (2011) studied the effect of adding two 

PT sessions per week to a group of 13-15 year old male and female swimmers for six weeks. The 

intervention produced a trivial (4.3%, ES: 0.15) but significant (p<0.01) improvement in 400 m front 

crawl time compared to a swimming-only CG. A series of studies by Ramirez-Campillo and 

colleagues (2014; 2015a; 2015b; 2015c) experimented with adding bi-weekly PT sessions in various 

volume and intensity combinations for 6-7 weeks periods in circa-pubertal and post-pubertal (10-16 

years) male academy soccer players. In most scenarios the PT interventions produced small (ES: 

0.26-0.41) improvements in Yo-Yo test distance (Ramírez-Campillo et al., 2015a; Ramírez-Campillo 

et al., 2015b; Ramírez-Campillo et al., 2015c) or 2.4 km TT performance (Ramírez-Campillo et al., 

2014), however the changes observed were not significantly greater than a CG in each case. The only 

scenario that provided a significantly greater enhancement (15.3%, ES: 0.31) in Yo-Yo test 

performance, compared to a CG, utilised a PT regimen with progressively increasing volume (60 to 

120 foot contacts) over a six week period (Ramírez-Campillo et al., 2015c). However, this finding is 

likely due to the very small change seen in the CG (2.7%, ES: 0.07), because similar volumes of PT 

were also utilised in the other studies and the standardised change was similar to the effect observed 

in previous investigations (Ramírez-Campillo et al., 2015a; Ramírez-Campillo et al., 2015b). 
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2.8 Summary of Literature Review and Perspective 

Long-distance running performance is underpinned by several important physiological variables, 

which are identified in the classical model as V̇O2max, RE and fractional utilisation (Bassett and 

Howley, 2000). In the late 1990’s, following a series of studies by Paavolainen and associates (1999a, 

1999b, 1999c), anaerobic and neuromuscular factors were added to a deterministic model of 

performance, as it was recognised that these parameters underpin RE and are related to long-distance 

running performance. Performance in middle-distance running events is strongly influenced by 

aerobic parameters, however owing to the higher running speeds observed compared to long-distance 

races, anaerobic capabilities and neuromuscular factors are known to make a significant contribution.  

Other physiological measures have also been highlighted as important determinants of middle- and 

long-distance performance, including sV̇O2max, critical speed and V̇O2 kinetics.  

Although V̇O2max is widely recognised as the gold standard physiological measure in distance runners, 

it is apparent that all runners possess an upper limit of improvement in this parameter. Other 

physiological determinants display large inter-individual differences, even in groups of runners with 

similar performance characteristics. RE in particular is influenced by a number of intrinsic and 

extrinsic factors, including neural and musculotendinous related qualities, which can be improved 

with non-running training strategies, such as ST activities. Specifically, ST brings about increases in 

motor unit recruitment, firing frequency and musculotendinous stiffness, which are thought to 

optimise the length-tension and force-velocity relationships of active skeletal muscle, thus reducing 

metabolic cost (Fletcher and Macintosh, 2017). 

There are a number of biomechanical variables that also appear to be important for maximising RE. 

In particular, energy cost of running is minimised with low horizontal braking forces, small vertical 

oscillation of the centre of mass and less extended leg positions at toe-off. Gait re-training studies 

have demonstrated success in increasing stride frequency and improving foot strike position relative 

to centre of mass, however the impact of these interventions on RE and performance is unclear. ST 

may offer a means of enhancing some important kinematic variables via improvements in the ability 

to attenuate forces at ground contact, thus reducing the range of motion the joints of the lower limb 

move through, which reduces the contribution of active muscle to propulsion. 

Relating to the first aim of this thesis, a systematic review was undertaken to comprehensively 

explore the efficacy of ST on the physiological determinants of middle- and long-distance running 

performance. The 26 studies reviewed met the following criteria: used participants with >6 months 

running experience, applied a ST intervention (≥ 4 weeks) consisting of HRT, ERT or PT, included 

a running-only CG and measured one or more physiological parameter relating to performance. The 

research reviewed suggested that supplementing the training of a distance runner with ST is likely to 

provide improvements to RE, TT performance and anaerobic parameters such as maximal sprint 

speed. Improvements in RE in the absence of changes in V̇O2max, BL and body composition 
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parameters suggests that the underlying mechanisms predominantly relate to alterations in intra-

muscular co-ordination and increases in tendon stiffness that contribute to optimising force-length-

velocity properties of muscle. Nevertheless, it is clear that the inclusion of ST does not adversely 

affect V̇O2max or BL markers. The addition of 2 or 3 supervised ST sessions per week is likely to 

provide a sufficient stimulus to augment parameters within a 6-14 week period, and benefits are 

likely to be larger for interventions of a longer duration. A variety of ST modalities can be used to 

achieve similar outcomes assuming runners are of a non-strength trained status, however to maximise 

long-term adaptations, it is suggested that a periodised approach is adopted with HRT prioritised 

initially. Although changes in fat-free mass were not observed in the majority of studies, a targeted 

RT programme, which aims to increase muscle mass specifically around the proximal region of the 

lower limb may enhance biomechanical and physiological factors which positively influence RE.  

Despite the abundance of literature in this area showing a likely benefit to performance across a wide 

range of competitive levels, little is known about the extent to which the distance running community 

are engaging in purposeful ST exercise. It was also noted that very few investigations have examined 

the effect of ST on specific populations of runners such as young competitors (Mikkola et al., 2007), 

therefore this thesis will attempt to address this dearth in literature. 

A number of methodological issues are likely to have contributed towards the discrepancies in results 

and will be acknowledged in the studies conducted as part of this thesis. In particular, the 

measurement of RE should be quantified as an energy cost (rather than oxygen cost) and a variety of 

speeds assessed that are relative to the maximum steady state of each participant. Furthermore, when 

quantifying RE and V̇O2max, differences in body size should be accounted for by using scaling 

exponents which are appropriate for the cohort under investigation. Measurement error has 

previously not been quantified for RE expressed as energy cost and V̇O2max in adolescent distance 

runners after values are scaled appropriately for body mass. The nature of the running training 

undertaken by participants and ST history potentially confounds the outcomes of studies in this area, 

therefore attempts should also be made to control these variables as much as possible.  

Warm-ups are commonplace in the pre-performance routine of middle- and long-distance athletes 

with the majority of research focussing on the V̇O2 kinetic response to various priming protocols. 

Over a decade ago, authors speculated that a PAP response evoked by a LCA included within an 

endurance athlete’s warm-up routine would provide a benefit to performance (Hamada et al., 2000; 

Sale, 2004). This was based upon the argument that PAP has its greatest effect during activities that 

require motor units to fire at relatively low force frequencies. However, despite an abundance of 

literature investigating the acute effects of a LCA on subsequent ballistic performance tasks, only 

recently have studies emerged that have investigated the PAP phenomenon in middle- and long-

distance athletes. Despite the limited number of studies that have been conducted in this area to date, 

the tentative conclusion is that well-trained middle- and long-distance athletes are likely to obtain 
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some benefit, particularly during the early stages of a performance, by including a LCA in their 

warm-up routine. 

It is recommended that middle- and long-distance athletes experiment with a warm-up protocol 

(Figure 2.8) that involves a 5-10 min self-paced warm-up at a low intensity (~60% maximum HR or 

40-60% peak power output) followed 5-10 min later by a LCA. It is likely that a short bout of high-

load resistance exercise (4-6 sets x 5RM), plyometric exercise (1-6 sets x 3-5 repetitions), or series 

of sprint efforts (4-6 sets x ~10 s with the addition of a light-moderate load) will elicit a PAP 

response, however this is yet to be fully determined experimentally in middle- and long-distance 

runners. A recovery of 5-10 min should be permitted following the LCA to ensure fatigue has 

dissipated sufficiently to realise a benefit to performance. A young group of high-performing middle-

distance athletes represent an intriguing group to investigate, as it is likely they would possess a 

higher proportion of type II fibres compared to their more experienced senior counterparts (Wilson 

et al., 2012a). 

It is well-established that ST is a safe and effective training modality for young athletes. Moreover, 

age-appropriate ST should form an integral part of a well-rounded approach to the long-term physical 

development of all young sports performers.  Despite the importance of engaging in a thoughtful and 

supervised programme of ST during adolescence, there is virtually no research which has 

investigated the potential for ST to benefit distance running performance in this population. Findings 

from studies using young athletes from other sports suggest a biweekly multi-modal approach to ST 

for periods of ≥ 8 weeks provides moderate-large benefits to field-based measures of endurance 

performance, compared to sport-only training. The physiological limitations to middle- and long-

distance running performance are similar in this age-group to those identified for adult distance 

runners. Therefore, it would be interesting to observe whether a strength-based exercise intervention 

provides an acute and chronic benefit to physiological parameters relating to performance in post-

pubertal adolescent runners.  
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3.1 Introduction 

This chapter will provide a brief overview of how the aims of the thesis will be addressed and 

describe the protocols that will be used to measure key variables across the thesis. Specific methods 

relating to individual experiments will be outlined as part of Chapters corresponding to each research 

aim. 

 

3.2 Overview of Thesis Method 

The overriding objective of this thesis was to further our understanding surrounding the use of ST 

activities in competitive distance runners. This was achieved by investigating current practices and 

examining the acute and chronic efficacy of ST exercise on physiological determinants, with a focus 

on adolescent runners. Specifically, five aims were identified in Section 1.1 and a visual 

representation of the experimental studies is provided in Figure 3.1.  

As part of a wider literature review, the research that has examined the effect of various ST modalities 

on the physiological determinants and performance of middle- and long-distance runners was 

reviewed systematically (Study 1; see Section 2.5). Despite the fairly large body of literature in this 

area, it is currently unknown what proportion of competitive distance runners actually include these 

activities in their training regimen. A survey, to capture a large cross-section of the distance running 

community was therefore designed, with the aim of describing the current S&C habits in this 

population of athletes and the characteristics of those who participate in various activities (Study 2; 

see Chapter 3). This information would potentially be valuable to ascertain the extent to which 

findings from scientific research are being applied to training practices, and to help inform future 

research in this area.   

Middle- and long-distance running performance is primarily limited by physiological factors, many 

of which can be assessed with a high degree of validity in a laboratory-based setting. Prior to the 

interpretation of any physiological data that is collected before and after a training intervention, it is 

important to ascertain the within-participant variability in measurements for the specific population 

under investigation. An initial test-retest reliability study was therefore conducted to identify TE 

values for the dependent variables that were subsequently used in other studies (Study 3; see Chapter 

4). These values could also be applied by other scientists and practitioners conducting testing on the 

specific population recruited for this project. 

Although it appears that the addition of ST sessions benefits RE, TT performance and anaerobic 

factors in adult runners, few investigations have examined whether a similar response is observed in 

specific populations of runners such as young (Mikkola et al., 2007), female (Johnston et al., 1997; 

Vikmoen et al., 2016; Vikmoen et al., 2017), and masters age (Piacentini et al., 2013) competitors. 

Specialisation in the sport of distance running should occur during the late-adolescence years, and 



 
 

113 
 

thereafter, training is likely to become more structured and performance outcome-orientated (Lloyd 

et al., 2016; Lloyd and Oliver, 2012). This period of a young runner’s development is therefore 

crucial, with ST strongly encouraged for health and performance benefits (Faigenbaum, 2017; 

Granacher et al., 2016). The dearth in literature in this population compared to research on adult 

runners, pre-pubertal children, and adolescent performers from other sports, precludes accurate 

recommendations being drawn. The cornerstone study of this thesis therefore examined the effect of 

a ST intervention on the physiological determinants of performance in post-pubertal adolescent 

distance runners (Study 4; see Chapter 5). 

Manipulation of pre-performance routines to gain subtle performance advantages is a highly topical 

area of research (Kilduff et al., 2013; Maloney et al., 2014; Seitz and Haff, 2016) and potentially of 

considerable interest to practitioners preparing runners for training and competition. The theoretical 

and evidence-based rationale for including strength-based exercise 5-10 min prior to a middle- or 

long distance performance was discussed as part of the Literature Review (see Section 2.6). Despite 

the absence of a large number of experimental studies in distance runners, there appears to be a 

performance benefit to including a LCA in a warm-up routine. A group of high-performing junior 

middle-distance runners are likely to possess the physiological characteristics that would enable a 

potentiation response to be realised during a running performance. The acute impact of a LCA on 

physiological determinants and TTE was therefore assessed experimentally in a group of post-

pubertal male distance runners (Study 5; see Chapter 6).  

 

Figure 3.1. Schematic showing an overview of the research studies in this thesis. Arrows indicate 

information flow to inform study rationale, design and interpretation of results. ST = strength 

training. 
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3.3 Ethical Clearance  

All four original research studies (studies 2, 3, 4 and 5) were conducted in accordance with the 

Helsinki declaration and received University level ethical approval (see Appendix A). All testing 

was conducted in the physiology laboratory, biomechanics laboratory and indoor Tennis centre at St 

Mary’s University, Twickenham. 

 

3.4 Participants  

To be eligible to take part in any of the experimental studies (studies 3, 4 and 5), participants were 

required to meet the following inclusion criteria, which were identified through personal 

communication with the individual or a parent/guardian, and a pre-participation questionnaire 

(Appendix B): 

 Aged between 15 - 18 years old (inclusive) 

 Competed regularly at county, regional, national or international level in middle- (0.8 – 3 

km) or long-distance (5 – 10 km and cross-country) running  

 No formal ST experience 

 Free from injury in the month preceding the study 

Prior to commencing each study, participants were informed of the purpose, procedure and risks of 

the experiment and thereafter a parent/guardian (or if >18 years the participant themselves) provided 

signed consent to participate (see Appendix C). Participants also completed a Physical Activity 

Readiness Questionnaire (see Appendix D) to identify any medical conditions, musculoskeletal 

injuries or ailments that would preclude their participation in the research. The pre-participation 

questionnaire (Appendix B) also provided information on each participant’s competitive history, 

strength training experience (if any), event specialism and current performance level. Participants 

performed each testing session in a hydrated state, at least 2 h post-prandial. Participants wore similar 

clothes and the same running trainers for each trial and were instructed to follow a similar pattern of 

exercise and diet in the 48 h prior to each trial, which included no strenuous exercise in the 24 h 

before trials.  

 

3.5 Physiological Testing Protocols  

Participants completed laboratory based testing sessions involving a discontinuous submaximal 

incremental running assessment to establish the response of BL, HR and pulmonary gas variables to 

increasing running speed, followed by a V̇O2max test. A visual representation of the protocols is shown 

in Figure 3.2. Figure 3.3 shows photographs of the testing environment for two participants (with 
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permission). Appendix E shows the data recording sheet used for the protocols described in this 

section. 

 

3.5.1 Laboratory Environment 

Trials were conducted at the same time of day (±1 h) for each participant to avoid any influence that 

diurnal variation may cause. All testing took place under standardised environmental conditions 

(temperature, 16-20 oC; relative humidity, 29-54%; barometric pressure, 746-773 mmHg) in the same 

laboratory.  

 

Figure 3.2. Visual representation of the timeline for physiology testing. In this example, six stages 

are shown for the sub-maximal running assessment, and the maximal test that was terminated at 7 

min. 

 

3.5.2 Submaximal Running Assessment 

Physiological responses to submaximal running were assessed in accordance with the 

recommendations for the valid measurement of RE (Shaw et al., 2014) and exercise testing in elite 

young athletes (Barker and Armstrong, 2011). Following a 5 min warm-up at a speed 2 km.h-1 slower 

than the start speed for the assessment, participants completed a discontinuous incremental test 

involving 5-7 three minute stages on a motorised treadmill (HP Cosmos Pulsar 4.0, Cosmos Sports 

& Medical GmbH, Munich, Germany). Each stage was interspersed with a 30 s rest for extraction of 

a capillary blood sample. A judgment of the most appropriate speed for the first stage of the test was 

made based upon the participant’s best race times and published recommendations (Jones, 2009) and 
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provide at least four speeds before LTP. Thereafter, speed was increased by 1 km.h-1 every stage until 

LTP had been surpassed. LTP has been defined as the running speed before the observation of a 

sudden and sustained increase in BL, occurring between 2-5 mMol.L-1 (Midgley et al., 2006a; Smith 

and Jones, 2001). To avoid the subjectivity associated with identification of LTP via visual inspection 

of the BL-speed curve, LTP was defined as the speed before a rise of >1 mMol.L-1 compared to the 

subsequent stage. This is consistent with definitions used by other authors (Fletcher and MacIntosh, 

2018; Fletcher et al., 2009; Shaw et al., 2013; Thoden, 1991). The gradient of the treadmill was kept 

at a constant 1% to mimic the effects of outdoor running (Jones and Doust, 1996). 

 

 

Figure 3.3. Photographs showing examples of physiological testing. 
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3.5.3 Maximal Running Assessment 

Upon completion of the submaximal test, participants dismounted the treadmill and rested passively 

for 5 min. Participants then completed a continuous incremental test to determine V̇O2max in line with 

recommended protocol (Barker and Armstrong, 2011; Poole and Jones, 2017). The treadmill speed 

was set to their sLTP and gradient initially set to 1%. At the end of each minute the gradient increased 

by 1% until volitional exhaustion was reached, which typically took 6-8 min.  

 

3.6 Physiological Measurements 

 3.6.1 Anthropometry 

Anthropometric measurements were taken according to the International Standards for 

Anthropometric Assessment (ISAK, 2001). Prior to each running trial, participant’s body mass was 

measured digitally to the nearest 0.1 kg (MPMS-230, Marsden Weighing Group, Oxfordshire, UK). 

Stature and sitting height were measured with a stadiometer to the nearest 1 cm (SECA GmbH & 

Co., Hamburg, Germany). Maturity offset was calculated for each participant from age, stature and 

sitting height values using published formulae (Moore et al., 2015). The sum of skinfolds at four sites 

(biceps, triceps, subscapula, supra-iliac) was assessed with calipers (Harpenden, Baty International, 

West Sussex, UK). 

 

3.6.2 Running Economy 

Expired air was monitored throughout the sub-maximal and maximal tests via an open circuit 

metabolic cart (Oxycon Pro, Enrich Jaeger GmbH, Hoechberg, Germany).  The automated system 

measured atmospheric gas concentrations and breath-by-breath gas exchange, thus enabling 

calculation of pulmonary ventilation, V̇O2, carbon dioxide production (V̇CO2) and the respiratory 

exchange ratio (RER). Participants breathed through a mask with low-dead space (99 or 125 ml) into 

a two-way valve with a dual gas sensor. Prior to every test, both gas analysers were calibrated with 

known concentrations of standard calibration gas (16% O2; 5% CO2), and the ventilation 

measurement unit with a 3 L syringe. 

Breath-by-breath data were initially filtered by excluding any breaths which fell outside four standard 

deviations of the local mean (Lamarra et al., 1987). Filtering was conducted to remove any errant 

breaths that do not reflect the underlying physiological response. V̇O2, V̇CO2 and RER values were 

obtained by averaging the final 60 s of each submaximal stage and values for sLTP and the two 

speeds prior (sLTP-1 km.h-1, sLTP-2 km.h-1), were used in subsequent analysis. A 60 s collection 

period was deemed the longest duration where participants were operating at a steady-state during 

each stage. To verify whether a steady-state had been achieved during the final minute of each 
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submaximal stage, the difference between the first 30 s of the final minute and the last 30 s was 

calculated. A difference smaller than the minimal detectable change (MDC), calculated as TE of the 

mean x 1.96 x √2, confirmed a plateau had been achieved. Energy cost of running was estimated 

from updated non-protein quotient equations (Peronnet and Massicotte, 1991) and the RER values. 

These values were then added and multiplied by 4.182 to determine total energy cost in kJ. As sLTP 

varied across participants, RE was expressed as the energy cost of running per km. 

The speed(s) at which RE were assessed is important to gain an accurate representation of a runner’s 

rate of energy usage. Although it may seem intuitive to assess a runner at their race pace, for young 

middle- and long-distance runners these speeds are likely to be above their LTP and therefore a V̇O2 

slow component would exist. The presence of a V̇O2 slow component precludes a steady state being 

attained, thus invalidating measurement of RE (Fletcher et al., 2009; Fletcher and MacIntosh, 2017; 

Shaw et al., 2014). It is recommended that a range of sub-maximal running speeds are used that are 

similar to those habitually performed during training (Jones, 2006b).  

 

 3.6.3 Blood Lactate 

A 20 µl sample of capillary blood was taken from the earlobe at the end of each 3 min stage during 

the submaximal assessment and upon completion of the maximal test. Each sample was hemolysed 

and subsequently analysed for BL concentration (Biosen C-Line, EKF Diagnostic, Barleben, 

Germany). The analyser was calibrated before all trials with a known concentration of BL and in 

accordance with the manufacturer’s instructions. Speed at a fixed BL concentration (sFBLC) was 

estimated from the speed-lactate curve for 2, 3 and 4 mMol.L-1 using published software (Newell et 

al., 2007). 

 

3.6.4 Heart Rate and Rating of Perceived Exertion 

HR was recorded continuously throughout the test (Polar RS400, Polar Electro Oy, Kempele, 

Finland). Following visual inspection for specious values, data were averaged for the final one 

minute of each stage and used in subsequent analysis. HR at FBLC was also predicted using a freely 

available validated spreadsheet (Newell et al., 2007). A rating of perceived exertion (RPE; 6-20 

scale) was also taken during the final 30 s of each sub-maximal running stage (Borg, 1982).  

 

  3.6.5 Maximal Measures 

A participant’s V̇O2max was defined as the highest V̇O2 achieved in a 30 s period on the maximal test 

(after data filtering). Verification that a plateau in V̇O2 had been achieved was identified using the 

procedure described by Midgley and colleagues (2009). Briefly, a least squared linear regression line 
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was obtained for the V̇O2 data for the period +2 min after commencement of the test to -2 min prior 

to exhaustion. This period was selected to ensure only the linear portion of the V̇O2 response was 

captured, avoiding any non-linearity caused by the V̇O2 kinetic response during early stages of 

exercise and the plateau associated with late stages of a test to exhaustion. V̇O2max was then predicted 

from this relationship and a plateau was confirmed if the difference between the predicted and actual 

V̇O2max values was greater than 50% of the regression gradient (Midgley et al., 2009). sV̇O2max was 

calculated by extrapolating the V̇O2-speed relationship from the sub-maximal running assessment via 

linear regression. Time to volitional exhaustion was recorded to the nearest second. 

 

3.7 Speed and Biomechanical Testing Protocols and Measurements 

Maximal speed and strength-related testing took place in an indoor Tennis hall and biomechanics 

laboratory respectively. Strength testing consisted of jump-squat testing and an isometric quarter 

squat to determine dynamic and maximal strength capabilities. A visual representation of the timeline 

for speed and strength testing is shown in Figure 3.4. Appendix E shows the data recording sheet 

used for the protocols described in this section. Due to the lack of familiarity with several of the 

movement patterns used to assess strength capabilities, all participants who were assessed completed 

a familiarisation session prior to the first data collection trial.  

 

Figure 3.4. Visual representation of the timeline for speed and biomechanics testing. Prior to each 

test, two warm-up repetitions were permitted, one instructed to be performed at three-quarters of 

maximum effort, and one at close to maximum intent. Three maximal attempts were performed on 

each test. 
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3.7.1 Maximal Speed 

Following a self-paced 3 min warm-up run, participants performed two sub-maximal 20 m sprints 

from a rolling start, followed by three maximal timed sprints (Brower Timing Systems, Utah, USA). 

Each sprint was interspersed by a 2 min walk recovery. Participants were instructed to initiate their 

sprint with a sufficiently long approach to enable maximal speed to be reached by the first set of 

timing gates. The best score over the three attempts was used in subsequent analysis for each test. 

 

3.7.2 Squat Jump 

To assess dynamic strength capabilities, participants performed three squat jumps for maximum 

height on a fixed force plate sampling at 1000 Hz (Kistler 9287BA, Kistler Instruments Ltd, 

Hampshire, UK). Following two warm-up repetitions, each attempt was separated by a 90 s passive 

recovery. Participants were instructed to place their hands on their hips and squat down to a half-

squat position (90o knee flexion) determined from visual inspection, hold this position for 3 s, and 

on a signal provided by the tester, jump as high as possible. If there was an indication on the force 

trace that a counter-movement had been used prior to initiation of the jump, the attempt was repeated. 

Peak displacement of the centre of mass was estimated using the velocity at take-off method (Moir, 

2008). In brief, velocity at each time point (0.001 s) was calculated (Microsoft Excel, 2013) using 

the equation: (net force/body mass) x time, where net force equals the difference between the absolute 

force reading and body weight (N), and time equals 0.001 s. RFD was calculated for every time point 

of the jump as (force value – last force value) / 0.001. Peak vertical ground reaction force (vGRFjump) 

and peak RFD were recorded as the highest values produced during the concentric phase of the jump, 

identified visually on the force-time graph. The highest jump, vGRFjump  and peak RFD values from 

the three attempts were used in subsequent analysis. 

 

 3.7.3 Isometric Quarter Squat 

MVC was assessed in a custom built adjustable back-squat rig (Figure 3.5). Participants gripped a 

fixed bar, positioned across their upper back, and adopted a quarter-squat position with knees flexed 

at 140o. This position was determined during the familiarisation session using a goniometer (Jamar 

7514, Patterson Medical, Nottinghamshire, UK), thus an identical set-up was used in subsequent 

trials. Participants stood on a force plate (PASPORT PS2141, PASCO, Roseville, CA, USA) 

measuring at 1000 Hz and were instructed to push against the bar as hard as possible for 3-4 s. Two 

warm-up repetitions preceded three recorded attempts in which strong verbal encouragement was 

provided. Attempts were each separated by 90 s of rest. MVC was defined as the highest force value 

produced during the contraction. The best score over the three attempts was taken forward and used 

in later analysis.  
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Figure 3.5. Equipment set-up for isometric quarter squat test.  

 

3.8 Statistical Analysis 

Data are displayed as mean ± SD and significance was accepted at p<0.05. The parametric properties 

of data and all hypothesis-based testing was carried out in SPSS Statistics (version 22, IBM, New 

York, USA). 

MDC values can be used for practical interpretation of the change required in measurements to have 

95% certainty that real change has occurred. MDC confidence intervals (MDC95) were calculated for 

each variable as TE x 1.96 x √2 (Weir, 2005). TE, MDC and ES values were all calculated in 

Microsoft Excel 2013. Effect sizes are interpreted as trivial <0.20; small 0.20-0.59; moderate 0.60-

1.19; and large ≥ 1.2 (Batterham and Hopkins, 2006).  

To facilitate more widespread use of findings in applied settings, magnitude based inference (MBI) 

terms were identified where appropriate, to provide a more qualitative interpretation of the extent to 

which differences or changes observed were meaningful. MDC95, values were entered along with 

corresponding p-values and the mean difference between groups into a published spreadsheet 

(Batterham, 2003) to obtain the likelihood that the intervention was beneficial (or indeed harmful) to 

the population. The spreadsheet was used to convert the p-value into a confidence interval for the 

mean difference, which provided an inference of the true value of the effect observed. The MDC95 

represents the magnitude required for a change in score to be considered practically meaningful, and 

therefore provided a robust threshold to judge the efficacy of an intervention. The resulting values 

were translated into descriptors using the modified thresholds proposed in the literature (Batterham 
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and Hopkins, 2006): 0-0.5% most unlikely; 0.5-5% very unlikely; 5-25% unlikely; 25-75% possibly; 

75-95% likely; 95-99.5% very likely; and >99.5% most likely. 

Inter-individual responses to an intervention were considered by calculating the true individual 

difference in response using the following formula: 

 √𝑆𝐷𝐼𝑛𝑡
2 −  𝑆𝐷𝐶

2   

Where SDInt and SDC represents the SD of the change score for the intervention and control condition 

(or CG) respectively (Atkinson and Batterham, 2015).  
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MIDDLE- AND LONG-DISTANCE RUNNERS 
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4.1 Introduction 

Middle- and long-distance runners typically utilise long slow distance, threshold tempo, and interval 

running to train the physiological variables that underpin their performance (Seiler, 2010). Although 

it is well-established that these methods of training will provide an improvement in performance 

(Midgley et al., 2007a), there is also evidence that bi-weekly ST sessions can enhance TT 

performance and several important physiological parameters (Beattie et al., 2014). In particular, RE 

has shown improvement following 6-8 weeks of ST for a range of ages and training levels (Denadai 

et al., 2017). For well-trained distance runners, RE tends to predict performance more accurately 

than V̇O2max (Conley and Krahenbuhl, 1980), and requires lengthy periods of endurance training to 

generate improvements (Midgley et al., 2007). ST therefore potentially offers a time efficient strategy 

to improve RE in this sub-population. 

S&C should also form part of a well-rounded approach to the long-term development of adolescent 

athletes (Bergeron et al., 2015), and is recommended for young distance runners (Mikkola et al., 

2007). Equally, older athletes benefit from RT (Tayrose et al., 2015), and improvements in RE have 

been observed following a period of ST in masters marathon runners (Piacentini et al., 2013). Despite 

these findings, it is uncertain what proportion of runners currently engage with ST, and whether 

runners of a specific age and competitive status are more likely to participate. 

It is estimated that up to 70% of competitive runners sustain an injury, which prevents them training 

for at least one week, each year (Hreljac, 2004). Risk factors for injury in runners, such as reduced 

flexibility (Yagi et al., 2013), muscular weakness and asymmetry (Fredericson, 1996; Mucha et al., 

2017; Niemuth et al., 2005), and neuromuscular control (Franettovich et al., 2014) can potentially be 

addressed with a targeted programme of S&C. It is currently unknown whether endurance runners 

participate in training activities to enhance these qualities in the belief that injury risk could be 

reduced. Other injury prevention and recovery strategies such as core stability exercises, stretching, 

and foam rolling are also popular with athletes (Cheatham et al., 2015; Leppänen et al., 2014; Murray 

et al., 2017; Wirth et al., 2017), however the degree to which these modalities are used by distance 

runners is also uncertain.    

A number of studies have documented the training practices of distance runners (Bale et al., 1985; 

Hewson and Hopkins, 1995; Karp, 2007; Knechtle et al., 2011; Voight et al., 2011; Young and 

Salmela, 2010), however only three papers mention the runners engagement with S&C related 

activities (Karp, 2007; Voight et al., 2011; Young and Salmela, 2010). In a cohort of 50 non-elite 

marathon runners, it was reported that 24% included weight lifting as part of their marathon 

preparation, increasing to 40% in the month after the event (Voight et al., 2011). Similarly, in a group 

of 93 marathon runners, just over half included ST in their programs (Karp, 2007). It is unclear 

whether the same trends in participation exist for runners who compete over shorter distances. A 

retrospective questionnaire in 48 middle-distance runners showed that runners of a higher 
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qualification (national standard) accrued greater cumulative minutes of ‘endurance-weights’ 

compared to lower standard (provincial and club standard) runners after three, five and seven years, 

with the gap widening as time progressed (Young and Salmela, 2010). Interestingly, differences 

between groups were not evident prior to the start of the runner’s careers and no differences were 

noted between groups for total training time.  

 

4.1.1 Study Aims 

This thesis has established the effect of ST on performance and important physiological determinants 

in distance runners (Study 1). There are currently no studies that have specifically investigated the 

S&C practices of distance runners. Such information could be used to understand the impact of the 

current scientific knowledge, support the rationale for other studies in this thesis and influence the 

development of professional coaching courses and programmes of education for the coaches of 

athletes. Therefore, the primary aim of this study was to identify the extent to which distance runners 

engage with S&C and the characteristics of those who participate in various activities. This 

specifically relates to the second objective of this thesis. The study also aimed to examine whether 

reported injury rates relate to the training behaviours of runners.  

 

4.2 Methods 

4.2.1 Study Design 

A four-part, 16-question survey (see Appendix F) was administered to a convenience sample of 

distance runners (0.8 km – ultra-distance) to anonymously identify their typical running behaviour 

and S&C practices. The survey was designed in collaboration with two S&C coaches, a running 

coach, an exercise physiologist, and an academic who specialises in survey design. Following 

targeted pilot testing with ten runners of varying age and competitive level, there was further 

refinement of questions.  

Questions that are partly understood or misinterpreted by participants due to low literacy levels are 

likely to generate invalid and unreliable data (Paz et al., 2009). It is therefore recommended that 

surveys intended for distribution to the general public do not include questions that require >8 years 

of formal schooling (Calderón and Beltrán, 2004), and have a Flesch readability score of >60 

(equivalent to a Flesch-Kincaid score of 7.0). As this survey intended to target participants aged ≥ 

15 years, the readability was adjusted to ensure comprehension by a wide audience. The readability 

of the survey was assessed prior to use and deemed appropriate for individuals aged over 12 years 

(Flesch reading ability score: 71.2). The survey was available online via the Bristol Online Survey 

platform for a period of 12 months (April 2016 to March 2017).  
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4.2.2 Participants 

In addition to institution level ethical clearance, approval was also obtained from the parkrun 

research project board to advertise the survey via their newsletter. The survey was open to any 

distance runners age 15 years old and above. The title page of the survey included information on 

the purpose of the study and a statement of consent, which participants were required to agree to in 

order to progress to the questions. A parent/guardian of participants under the age of 18 provided a 

statement of consent, which was sent via email to the author. Participants were also recruited via 

running pages on social networking websites and emails sent to coaches, clubs and runners 

worldwide through the contacts acquired by the author. 

 

4.2.3 Procedures  

The survey was split into four sections and contained fixed-response questions, which generated 

categorical and ordinal data. Section one of the survey identified participant demographics and 

section two contained a series of questions concerning their typical running habits. The third section 

of the survey required participants to detail their typical S&C practices. Items relating to how 

participants learned about the most appropriate techniques was also included (section four).  

 

4.2.4 Statistical Analysis 

Training behaviour questions were cross-tabulated with participant characteristics and injury 

frequency using Chi-squared (χ²) tests of independence. Fishers exact statistic was used if the 

expected response count was <5. Where significance was detected, follow-up post-hoc tests were 

performed using a Bonferroni Correction via the adjusted standardised residuals. Multinomial 

logistic regression was used to model the predictive capacity of training behaviours on injury 

frequency and calculate adjusted odds ratios with associated 95% confidence interval (CI). Binary 

logistic regression (forward method) was applied for questions relating to participation in S&C 

activities, as responses were dichotomous. 
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4.3 Results 

4.3.1 Characteristics of Respondents  

A total of 1883 surveys were completed. To filter those respondents who were not competitive 

distance runners, and therefore potentially perform S&C for other sports or recreational reasons, 

participants who answered ‘I only participate and don’t compete’ to a competitive level question 

were excluded from analysis. The competitive level and age-distribution of the remaining 667 

runners (male n=383; female n=284) are presented in Table 4.1 and Figure 4.1 respectively. The 

majority (67.3%) of runners surveyed competed at longer distance events (5 km – half-marathon), 

however under-20 and under-17 runners were mainly middle-distance (0.8 - 3 km) specialists 

(76.5%). More than 75% of the respondents typically ran ≤ 64 km per week (Figure 4.2). However, 

there was a significant difference between competitive level and average reported running volume 

(χ2 (20)=188.8, p<0.001), with local club runners tending to run ≤ 64 km per week (p<0.001), national 

standard runners 65-96 km per week (p<0.001) and international runners > 129 km per week 

(p<0.001). Seventy percent of runners performed high-intensity running (interval training and tempo 

running) 1-2 times per week and a further 20% performed 3-4 sessions per week of this nature. 

 

Table 4.1. Competitive level of male and female respondents (n=667). 

 Local club County Regional National International 

Male 271 (70.8%) 28 (7.3%) 33 (8.6%) 30 (7.8%) 21 (5.5%) 

Female 200 (70.4%) 27 (9.5%) 14 (4.9%) 28 (9.9%) 15 (5.3%) 

Total 471 (70.6%) 55 (8.2%) 47 (7.0%) 58 (8.7%) 36 (5.4%) 
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Figure 4.1. Age distribution of competitive runners (n=667).  

 

 

 

Figure 4.2. Typical weekly running volume of competitive runners (n=667). 
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Figure 4.3. Reasons that runners include S&C activities as part of their training (multi-response 

question). 

 

4.3.2 Engagement with Strength and Conditioning 

The reasons that runners included S&C activities in their training routines are presented in Figure 

4.3. Across all ages and competitive levels, runners typically performed S&C activities to improve 

their performance (53.8%) and lower their risk of sustaining an injury (63.1%).    

Table 4.2 shows the engagement with S&C activities, and for those who included each activity, the 

typical prescription they adopted. The most commonly used S&C activities were stretching (86.2%) 

and core stability exercises (70.2%). For those who included each activity, there were no differences 

in the frequency, duration or timing of the activities across age groups or competitive levels (p>0.05). 

A runners sex did not discriminate whether they participated in RT or PT, but more females than 

males included circuit training (38.0% vs 19.0%, p<0.001), stretching (90.1% vs 83.3%, p=0.011) 

and core stability (74.7% vs 66.8%, p=0.029) in their programmes. 

Only 35.1% of runners utilised PT as part of their training. A disproportionately high number of 

under-17 (p=0.01) and under-20 (p<0.001) runners and a lower number of masters 50-59 and 60+ 

years (p<0.05) incorporated this activity (χ2(6)=34.40, p<0.001) as illustrated in Figure 4.4. A 

significant difference was also detected for the standard of runner who utilised PT (χ2(4)=34.56, 

p<0.001, Figure 4.5), with significantly fewer local club standard runners using this modality 

(p<0.001) and significantly more regional, national and international runners taking part in the 

activity (p<0.001). A logistic regression model was statistically significant, (χ2(3)=38.77, p<0.001), 



 
 

130 
 

but age category, competitive distance and level and could only explain 7.8% (Nagelkerke R2) of the 

variance in whether runners performed PT or not. The model correctly classified 62.5% of cases, 

with under-20 runners associated with a low likelihood of not participating (odds ratio (OR): 0.35, 

95%CI: 0.15-0.83, p=0.017). An international runner was 3.13 times (95%CI: 1.24-7.92, p=0.016) 

more likely to include PT than a county standard runner. 

Approximately 60% of runners used RT, and cross-tabulation analysis detected a significant 

difference for those who utilised RT and the standard of runners (χ2(4)=16.43, p=0.002, Figure 4.5). 

Post-hoc analysis revealed a significantly small proportion of local club runners took part in RT 

(p<0.001), but a high number of national (p<0.05) and international (p<0.05) runners participated. A 

logistic regression model was statistically significant, (χ2(3)=16.90, p=0.001), for age, race distance 

and competitive level as explanatory factors for whether runners participated in RT. Age group and 

race distance had poor predictive power (p>0.05) but competitive level alone classified 62.5% of 

cases correctly. An international runner was 3.37 times (95%CI: 1.27-8.92, p=0.014) more likely to 

take part in RT compared to a local club runner. 

Fundamental movement skills were used by only 27.7% of the runners surveyed, however 47.2% of 

the international runners made use of this activity, which represented a higher proportion than other 

competitive levels (p<0.01). Running technique drills were used by half (50.4%) of the runners 

surveyed with under-17 and under-20 runners using them more than older age groups (p<0.001), and 

higher standard (regional, national and international) runners using them more than lower standard 

(p<0.002). Logistic regression showed an international runner was 3.59 times (95%CI: 1.69-7.60, 

p=0.001) more likely to perform running drills compared to a local club runner. Bodyweight 

exercises were used by 60.4% of runners with senior runners using them more so than other age 

categories (p=0.002). Circuit training was used by a small number of runners (27.1%) but a high 

proportion of junior (under-17 and under-20) runners used this technique compared to older age 

groups (p<0.001). 

Stretching was included in the programmes of most runners (86.2%) of all age and ability. Runners 

typically stretched for <15 min, after running sessions at a higher frequency than other S&C 

activities. Core stability exercises were also widely used (70.2%) across all age categories but tended 

to be less used by local club runners (p=0.004) compared to other standards of runners. An 

international runner was 3.07 times (95%CI: 1.17–8.05, p=0.023) more likely to use core stability 

exercises than a local club runner. Few runners use barefoot exercises in their training routine 

(14.8%).  

For many S&C activities (RT, PT, running drills, circuit training and barefoot exercises) engagement 

was significantly higher in those who competed in middle-distance (0.8 - 3 km) events compared to 

long-distance (5 km-half marathon) runners (p<0.001). For example, middle-distance specialists 

were 2.67 times more likely to participate in RT compared to a long-distance runner, and 6.68 times 
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more likely than an ultra-distance runner. Similarly, middle-distance runners were 3.53 times more 

likely to perform PT and 4.26 times more likely to include running drills compared to those in the 

long-distance category. 

 

4.3.3 Injury 

Overall, 67.4% of runners had suffered at least one injury in the last year. Cross-tabulation revealed 

a positive association between number of injuries and both typical mileage (χ2(25)=44.7, p<0.001) 

and running frequency (χ2(25)=41.0, p<0.001). A significant difference was detected between injury 

rate and runners participation in RT (χ2(5)=15.2, p=0.010), bodyweight exercises (χ2(5)=21.3, 

p=0.001), stretching (χ2(5) = 18.9, p=0.002), foam rolling (χ2(5)=29.8, p<0.001) and core stability 

exercises (χ2(5)=13.5, p=0.019). Specifically, post-hoc analysis showed that of those who had not 

sustained any injuries in the last year, a small number participated in each of these activities 

(p<0.001). A multinomial logistical regression for typical mileage, running frequency and 

participation in these five S&C activities could explain 20.2% (Nagelkerke R2) of the variance in 

response to injury rates, however no factors in their own right were able to predict any level of injury 

incidence. 
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Table 4.2. Frequency of respondents who use strength and conditioning (S&C) activities and the typical prescription of each activity. Percentages identified are 

based upon only those who use each activity. 

Activity Number who 

participate 

Frequency 

(per week) 

Duration of activity 

per session 

Positioning of activity in training routine 

Stretching 575 (86.2%) 1-4 (66.2%) <15 min (64.5%) After running (56.9%) 

Core stability 468 (70.2%) 1-2 (68.9%) <30 min (80.8%) Independent session (45.9%) or part of S&C session (41.2%) 

Resistance training 417 (62.5%) 1-2 (81.0%) <30 min (56.6%) Independent session (44.3%) or part of S&C session (42.3%) 

Bodyweight exercises 403 (60.4%) 1-2 (70.6%) <30 min (75%) Independent session (46.5%) or part of S&C session (36.8%) 

Foam rolling 365 (54.7%) 1-2 (74.5%) <15 min (74.5%) Independent session (46.6%) or after running (43%) 

Running drills 336 (50.4%) 1-2 (77.4%) <15 min (61.3%) Warm-up (68%) 

Plyometric training 234 (35.1%) 1-2 (89.3%) <15 min (66.7%) Part of S&C session (35.8%) or warm-up (34.9%) 

Balance training 211 (31.6%) 1-2 (81.6%) <15 min (70.1%) Part of S&C session (45.6%) or independent session (39.4%) 

Fundamental movement skills 185 (27.7%) 1-2 (69.1%) <15 min (55.6%) Warm-up (40.2%) or part of S&C session (32.2%) 

Circuit training 181 (27.1%) 1-2 (87.4%) 15-45 min (58.9%) Independent session (58.6%) 

Barefoot exercises 99 (14.8%) 1-2 (76.1%) <15 min (73%) Independent session (34.4%) or part of S&C session (34.4%) 
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Figure 4.4. Percentage of respondents in each age category who participate in resistance training 

(RT) and plyometric training (PT). a significantly higher participation than the Chi-squared expected 

frequency (p≤ 0.01), b significantly lower participation than the Chi-squared expected frequency 

(p<0.05). 

 

Figure 4.5. Percentage of respondents in each competitive category who participate in resistance 

training (RT) and plyometric training (PT). a significantly lower participation than the Chi-squared 

expected frequency (p<0.001), b significantly higher participation than the Chi-squared expected 

frequency (p<0.001), c significantly higher participation than the Chi-squared expected frequency 

(p<0.05). 
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4.4 Discussion 

This is the first study to document the S&C practices of competitive distance runners. Runners who 

engaged in S&C activities were mainly motivated by improving their performance and lowering their 

risk of injury. Stretching and core stability were the most popular activities, however almost two-

thirds of runners perform regular RT, including a high proportion of junior (under-20) runners. 

Middle-distance specialists and runners who compete at a higher level were most likely to perform 

S&C activities. Participation in S&C does not seem to be associated with lower injury rates but higher 

running training volumes appear to be related to the number of injuries runners experienced. 

Stretching and core stability exercises were used by a high proportion of runners (86.2% and 70.2% 

respectively) despite a lack of evidence showing these strategies are effective at reducing injury risk 

(Baxter et al., 2017; Huxel Bliven and Anderson, 2013; Leppänen et al., 2014; Small et al., 2008), 

enhancing recovery (Baxter et al., 2017) and improving performance (Baxter et al., 2017; Wirth et 

al., 2017). Foam rolling was also used by 54.7% of runners mainly after training sessions or as an 

independent session, which can be effective for enhancing recovery and improving range of motion 

(Cheatham et al., 2015). In a group of 112 elite adolescent athletes, 68% and 38% of respondents 

included stretching and foam rolling as a recovery modality respectively, which is lower than the 

participation reported here for both the whole cohort of competitive runners and juniors only (Murray 

et al., 2017).  

Over half (53.8%) of those surveyed perform S&C activities with the goal of improving performance, 

and 76.9% of those runners include ST (RT and/or PT) in their programmes. Although extensive 

research supports the benefits of ST on several determinants of distance running performance 

(Beattie et al., 2014; Denadai et al., 2017), few studies have reported the extent to which runners 

engage with these activities. Of the competitive runners surveyed, 62.5% included RT in their 

programmes and 35.1% used PT. Depending upon the exercise selected and training-status of the 

runner, bodyweight exercises (60.4% participation rate) may also provide sufficient overload in non-

strength trained individuals to induce neuromuscular adaptation and thus improve strength qualities.  

Evidence suggests a training frequency of two ST sessions per week is required to obtain benefits 

(Beattie et al., 2014; Denadai et al., 2017), however one session per week has also shown positive 

outcomes if high-intensity exercises are used (Berryman et al., 2010; Ferrauti et al., 2010). The ST 

performed appears to be in-line with this recommendation as most runners reported they typically 

perform both RT and PT 1-2 times per week as independent sessions or as part of an S&C session. 

This volume of work is also the same as previously reported for a group of well-trained Spanish 

runners (Esteve-lanao et al., 2005).  

S&C activities are recommended for adolescent athletes to develop a wide-range of physical 

competencies, improve neuromuscular co-ordination and enhance performance (Lloyd et al., 2014). 

The engagement within the under-17 and under-20 age groups across all S&C modalities was 
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significantly higher compared to the overall participation rate for each activity, and for PT (Figure 

4.4), running drills and circuit training, participation was significantly greater than for older age 

groups. There is currently a lack of literature which directly examines the impact of ST on young 

distance runners specifically, however sprint performance (5-40 m) has been shown to be positively 

affected in males (Rumpf et al., 2012). 

The competitive level of participants was linked to engagement with RT, PT (Figure 4.5) and 

fundamental movement skills, which is in agreement with findings from others (Karp, 2007; Young 

and Salmela, 2010) who observed that national/international male runners performed more ST than 

those competing at a lower standard. Benefits of ST activities have been reported for runners of all 

abilities (Denadai et al., 2017), however the barriers to participation amongst lower standard runners 

are not known. Time-constraints, fatigue, a lack of knowledge and the cost associated with facility 

access have been cited as reasons for non-participation in physical activity (Trost et al., 2002), 

therefore if these same barriers exist for ST in runners, practitioners should devote time to educating 

their athletes and finding innovative strategies to improve engagement.  

There was a tendency for middle-distance runners to participate in S&C activities to a greater degree 

than runners who compete over longer-distances. Shorter events require a greater contribution from 

anaerobic energy sources (Houmard et al., 1991), therefore middle-distance specialists are perhaps 

more likely to include ST in their programmes, which has been shown to enhance speed (Mikkola et 

al., 2007; Ramírez-Campillo et al., 2014) and anaerobic parameters in runners (Paavolainen et al., 

1999). Nevertheless, RE is an important factor for any middle- (Brandon, 1995) or long-distance 

runner (Sparling, 1984) and has consistently been shown to improve following a period of ST 

(Denadai et al., 2017). Therefore all distance runners should consider including ST modalities in a 

well-rounded training regimen, regardless of event specialism.  

Runners mainly chose to include S&C in their programme in the belief it lowers the risk of injury 

(63.1%). The mechanisms of injury are multi-faceted and complex, however several modifiable risk 

factors have been identified for common overuse injuries in runners, including gluteal weakness 

(Mucha et al., 2017; Niemuth et al., 2005), neuromuscular control (Franettovich et al., 2014), 

asymmetry (Fredericson, 1996) and low bone mineral density (Warden et al., 2014). RT, particularly 

for musculature around the hips, has been shown to be effective at minimising the risk of some types 

of overuse injury (Willy and Davis, 2011). Studies conducted on injury prevention approaches using 

athletes from other sports have also shown balance training and warm-ups that utilise neuromuscular 

control exercises to be effective at reducing certain injuries (Leppänen et al., 2014; Myer et al., 2011; 

Steib et al., 2017). Less than a third (31.6%) of runners included balance training in their 

programmes, and a similar number indicated they include neuromuscular control type activities 

(fundamental movement skills and PT) in their warm-up routine, however it is unknown whether 

these activities specifically are reducing injury risk in runners.  
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A greater weekly mileage and training frequency were associated with higher rates of injury, which 

is in agreement with risk factors identified by others (van Gent et al., 2007). Of the runners who 

reported no injuries, a low proportion participated in some S&C activities (RT, bodyweight exercises, 

stretching, foam rolling, core stability). There was also a significant link between those who reported 

running the highest volume and participation in these S&C activities. When S&C participation and 

running volume variables were entered into a logistical regression model, they could only explain a 

small proportion of the variance in injury rates reported by runners (20.2%). This suggests that 

although a link may exist between injury rates and each factor, they are likely to be independent of 

one another. 

 

4.4.1 Limitations 

A number of limitations are important to acknowledge for a study of this nature. Survey response 

data provides meaningful information on the association between specific characteristics of 

respondents and participation in S&C activities, however this does not imply causality. Therefore 

the data can only be used to determine patterns in participation and whether this aligns to 

recommendations from scientific literature. Similarly, the study cannot ascertain the reasons a runner 

does not participate in S&C activities, which would be useful information to aid coaches with 

increasing engagement. Although a relatively large sample size was obtained for this study, this 

doesn’t completely eliminate the potential for bias created by convenience sampling. It is also 

possible that despite our best efforts to maximise the readability of the survey, some questions may 

have been misinterpreted, thus producing inaccurate data. Similarly, there is also the potential that 

some recall bias may exist within the responses to retrospective self-reporting questions. Finally, 

non-competitive participants were excluded from data analysis to reduce the likelihood that they 

performed S&C activities for other sports or reasons, however this possibility cannot be completely 

eliminated.  

 

4.4.2 Conclusions 

Competitive distance runners who include S&C activities in their training routine are mainly 

motivated by lowering risk of injury (63.1%), and improving performance (53.8%). The most 

common activities utilised were stretching (86.2%) and core stability exercises (70.2%), whilst RT 

and PT were used by 62.5% and 35.1% of runners respectively. Junior (under-20) runners include 

PT, running drills and circuit training more so than masters runners, and international standard 

runners participate in RT, PT and fundamental movement skills training to a greater extent than 

competitive club runners. Middle-distance specialists were more likely to include RT, PT, running 

drills, circuit training and barefoot exercises in their programme than longer-distance runners. Injury 
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frequency was associated with typical weekly running volume and run frequency, but S&C did not 

appear to confer a protection against the number of injuries runners experienced. 

 

4.5 Perspective 

This thesis aims to investigate the engagement with, and efficacy of, strength-based exercise in 

distance runners, with a focus on adolescent performers. A comprehensive systematic review (Study 

1, Section 2.5) provided evidence for the benefits of ST in middle- and long-distance runners. 

However, despite this collection of scientific research, which spans almost 20 years, it was unknown 

what types of distance runner (if any) were participating in ST activities. The results of this study 

have therefore contributed to addressing the overall objective of this thesis by describing the nature 

of engagement with S&C activities in a large cross-section of the competitive distance running 

community (n=667, ≥ 15 years old) based upon the responses to an online survey. The findings of 

this study have presented a number of avenues for novel research enquiry (see Section 8.4) and 

provide further rationale for the subsequent agenda of studies proposed in this thesis. 

Junior (under-20) runners participate in ST activities more so than older age-groups, despite the lack 

of literature that has specifically investigated this sub-population. This indicates that time invested 

in original research in this age-group would be valuable. Moreover, the late-adolescence period, 

where young athletes typically elect to specialise in a single sport has been highlighted as being 

crucial (Lloyd et al., 2016; Lloyd and Oliver, 2012; Myer et al., 2016). Complementing running-

based training with ST activities may therefore assist young distance runners in maximising their 

potential during this period of their development. 

Interestingly, of those distance runners that include PT in their training routine, a similar percentage 

perform their exercises as part of an S&C session (35.8%) as a warm-up (34.9%) before a running 

session. It is perhaps likely that these PT exercises are not high-intensity in nature, but their inclusion 

has the potential to provide a potentiation response if prescribed appropriately for middle-distance 

runners who possess specific characteristics (see Section 2.6). This finding contributes further to the 

rationale for Study 5, which aims to investigate the acute effect of a LCA on RE and TTE in 

adolescent male distance runners. 

Based upon the literature reviewed (Chapter 2) and findings of this study, it is speculated that 

strength-based exercise will provide chronic and acute benefits to performance-related outcomes in 

adolescent post-pubertal distance runners. To address the aims of studies 4 and 5 in a robust manner, 

any physiological and biomechanical data collected must be valid and reliable. It is therefore 

necessary to conduct a reliability study in the population under investigation, which addresses 

previous issues associated with accurate quantification of physiological and biomechanical 

parameters, to ascertain the TE of measurement. 
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CHAPTER 5  

 

RELIABILITY OF PHYSIOLOGICAL- AND STRENGTH-

RELATED PARAMETERS IN ADOLESCENT DISTANCE 

RUNNERS FOLLOWING ALLOMETRIC SCALING  

(Study 3) 
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5.1 Introduction 

To have a reasonable degree of confidence that an observed change in a physiological or 

biomechanical measure is meaningful following exposure to an intervention, it is important to 

determine the systematic and biological error associated with that measure, and hence what should 

be considered real change (Atkinson and Nevill, 1998). Practitioners also rely on data acquired from 

physiological and biomechanical testing to individualise athlete training load and make inferences 

concerning fatigue status and readiness to perform (Halson, 2014). Providing accurate 

recommendations to athletes and their coaches can be problematic unless the reliability of the 

measurement tools has been established, which is particularly important when confounding factors 

such as lifestyle and diet are not well-controlled.  

Competitive adolescent distance runners are likely to undertake relatively high-volumes of training 

for their age (Solomon et al., 2017; Wilson et al., 1999) and are potentially exposed to a variety of 

non-training stressors such as school work and expectations imposed by significant others (Winsley 

and Matos, 2011). It is likely that this stress will impact physiological status via hormonal and 

chemical imbalances (Meeusen et al., 2013), therefore determining day-to-day variability in 

measurements is crucial. The tempo and timing of biological maturation is highly variable in 

adolescents and periods of accelerated physical development have been associated with disruptions 

to motor coordination (Beunen and Malina, 1988). Therefore maturational status has the potential to 

influence the short-term stability of physical performance measures in young athletes compared to 

adult runners.  

Substantial variability in patterns of growth and maturation in young athletes mean that using a 

conventional ratio scaling approach to partitioning body mass is theoretically and statistically 

inappropriate (Eisenmann et al., 2001). Therefore, a factor that may influence the reliability metrics 

reported in previous studies relates to the method that is employed to scale for variations in body 

mass amongst participants. 

 

 5.1.1 Physiological Measurements 

Distance running performance is determined by several important physiological qualities including 

V̇O2max, RE and speed at various points on a lactate curve (Bassett and Howley, 2000; Sparling, 

1984). Well-established treadmill testing protocols are used to evaluate the efficacy of training 

interventions on these physiological variables (Barker and Armstrong, 2011; Winter et al., 2006).  

The results of reliability studies conducted on moderately- and well-trained adult distance runners 

generally show a good-level of reproducibility (TE <5%) for variables relating to V̇O2 (Brisswalter 

and Legros, 1994; Midgley et al., 2007b; Pereira and Freedson, 1997). Oxygen cost used as a measure 



 
 

140 
 

of RE, has a day-to-day TE of 2.4-4.7% despite showing pronounced inter-individuals differences in 

well-trained runners (Brisswalter and Legros, 1994; Morgan et al., 1991; Saunders et al., 2004b). 

Quantification of RE using the energy cost method takes account of the RER value, thus recognising 

that the energy expended for any given sub-maximal running speed is influenced by both V̇O2 and 

substrate utilisation (Fletcher et al., 2009). It has therefore been suggested that energy cost may 

provide a more valid (Shaw et al., 2014) and reliable (Shaw et al., 2013) measure than oxygen cost 

for RE, however the reproducibility of this parameter is largely untested. In addition, current 

guidelines suggest a test-retest TE of ~10% should be expected for measurements of BL at any given 

speed or work rate (Winter et al., 2006), and HR will fluctuate 2-8 beats.min-1 for the same intensity 

on different days (Achten and Jeukendrup, 2003; Lambert et al., 1998). It is currently unknown 

whether test-retest reliability is similar for physiological parameters in junior distance runners.  

High intra-class correlation coefficient (ICC) values (r=0.81-0.97) have previously been reported for 

V̇O2max scores obtained during test-retest scenarios in children (Paterson et al., 1981; Pivarnik et al., 

1996) and trained adolescents (Rivera-Brown and Frontera, 1998; Rivera-Brown et al., 1995), 

however these studies used outdated and questionable methods to scale for differences in body mass 

and define attainment of V̇O2peak/V̇O2max in participants. Utilising allometrically adjusted values to 

determine V̇O2max and RE for the population under investigation is likely to provide a more valid and 

accurate assessment of reliability in these measures.  

 

2.3.2 Speed and Biomechanical Measurements 

To evaluate the efficacy of a ST intervention, a number of testing protocols have been recommended 

to measure force-related capabilities (Faigenbaum et al., 2003; Jaric, 2002; Lloyd et al., 2014). For 

non-strength trained individuals, such as adolescents, an isometric assessment of strength is preferred 

to a dynamic 1RM test for reasons relating to time efficiency, task complexity, and safety 

(Faigenbaum et al., 2003; Lloyd et al., 2014). The isometric quarter-squat is widely used as a valid 

means of assessing lower-limb MVC (McMaster et al., 2014). A previous study found the isometric 

half-squat produced excellent reliability (ICC: 0.95) in healthy male adults (Blazevich et al., 2002) 

and the isometric mid-thigh pull test has also shown high reliability (ICC 0.92) for peak force values 

in resistance-trained participants (De Witt et al., 2018). However, it appears that no studies have been 

conducted which have examined the reliability of an isometric quarter-squat in adolescents. 

Studies have reported excellent inter-day reliability for SJ height (ICC: 0.94) and CMJ height (ICC: 

0.95) in children (Fernandez-Santos et al., 2015), and 10-40 m sprint (ICC: 0.88-0.98, TE: 0.8-2.1%) 

in 8-18 year olds (Rumpf et al., 2011). High levels of reliability (ICC: 0.97-0.99) have also been 

shown for 10-yard (Mann et al., 2016) and 40-yard (Mann et al., 2015) sprint time in Collegiate male 

football players (20 years old). Similarly, excellent reliability has been reported in adolescent rugby 

players (14-17 years) for 10 m (ICC: 0.95, TE: 1.8%), 20 m (ICC: 0.97, TE: 1.3%) and 40 m (ICC: 
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0.97, TE: 1.2%) sprints from a standing start (Gabbett et al., 2008). There is currently no literature 

which has specifically assessed the variability of these measures in a group of young distance runners. 

Normalisation of strength-related metrics to body size using allometric scaling is recommended 

(Folland et al., 2008a; Jaric, 2002). However, this is rarely performed within the literature on 

adolescent distance runners (Cole et al., 2006; Dellagrana et al., 2015; Mikkola et al., 2007) and may 

have influenced the conclusions which were drawn in these studies (Crewther et al., 2009). 

 

5.1.3 Study Aims 

Prior to conducting an experiment, it is important to quantify the error associated with measurements. 

RE, sFBLC and sV̇O2max have all been shown to be important determinants of performance in 

adolescent distance runners (Almarwaey et al., 2003), however reliability of these measures remains 

unreported in this population. Valid assessments of MVC, RFD and maximal sprint speed are also 

important tools to evaluate the impact of a ST intervention, but reliability has previously not been 

quantified in post-pubertal distance runners. Previous studies have also tended to measure the 

reliability of various parameters independently, and no studies have reported the repeatability of a 

number of measures in the same group of athletes.  It is also necessary to apply a population-specific 

scaling exponent when quantifying measures that are influenced by body size, recognising that the 

standard ratio method for partitioning body mass holds less validity. Thus, the purpose of this study 

was to compare the inter-session reliability of a number of physiological and biomechanical 

parameters in a group of competitive adolescent distance runners following a process of allometric 

scaling.   

 

5.2 Methods 

To address the aims of this study, two discrete investigations were conducted using different groups 

of participants. Methods will therefore be reported separately for physiological measurements, and 

maximal speed and biomechanical variables.  

 

5.2.1 Physiological Measurements  

5.2.1.1 Study Design 

This study adopted a test-retest design whereby participants were required to attend the physiology 

laboratory for two identical trials separated by 3-7 days. 

5.2.1.2 Participants 

Sixteen (8 male, 8 female) high-performing young distance runners participated in the test-retest part 
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of this study. All participants had previously run on a motorised treadmill, possessed at least two 

years of competitive racing experience and were of national (n=12) or international standard (n=4) 

in their age-group. To calculate an appropriate power function for V̇O2 and V̇O2max to scale 

participants for differences in body size, data were pooled with a larger group (n=42) of young 

distance runners. Characteristics of the participants are shown in Table 5.1.  

 

Table 5.1. Descriptive characteristics of male (M) and female (F) study participants (data are mean 

± standard deviation). V̇O2max = maximal oxygen uptake, sLTP = speed at lactate turnpoint 

Measure  
Test-retest cohort Scaling cohort 

M (n=8) F (n=8) M (n=20) F (n=22) 

Age (y) 16.3 ± 1.2 17.0 ± 1.5 17.0 ± 1.4 17.1 ± 1.2 

Stature (cm) 176.6 ± 3.4 169.5 ± 6.3 176.9 ± 5.7 168.5 ± 6.1 

Body mass (kg) 59.8 ± 7.1 51.8 ± 7.0 62.1 ± 6.6 52.7 ± 5.8 

Sum of skinfolds 

(mm) 

23.1 ± 4.2 38.6 ± 16.5 24.4 ± 4.2 38.2 ± 13.5 

V̇O2max  

(mL.kg-1.min-1) 

 

73.3 ± 4.2 64.3 ± 5.8 69.9 ± 8.3 60.4 ± 6.3 

sLTP (km.h-1) 16.0 ± 1.1 14.5 ± 0.5 16.0 ± 1.4 14.1 ± 1.2 

 

 

5.2.1.3 Procedure  

Each trial involved anthropometric measurements followed by the sub-maximal and maximal 

treadmill running tests. Protocols are described in Section 3.5. 

 

5.2.1.4 Measurements 

Measurements are reported in accordance with the descriptions provided in Section 3.6. For 

comparative purposes, RE was expressed as both oxygen cost and energy cost of running. 
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5.2.2 Speed and Biomechanical Measurements 

5.2.2.1 Study Design 

Participants were required to attend three testing sessions, each separated by 2-5 days. The first 

session involved familiarisation with the testing procedures (see Section 3.7). Data collected during 

the second and third testing sessions was used for subsequent analysis of inter-day (test-retest) 

reliability. 

 

5.2.2.2 Participants  

Twelve (6 male, 6 female, 17.8 ±1.4 years, 59.7 ±7.5 kg) competitive junior distance runners 

participated in the reliability aspect of this study. These participants were grouped with a larger 

cohort of adolescent runners of a similar competitive standard (15 male, 18 female, 17.4 ±1.3 years, 

58.5 ±6.8 kg) to obtain appropriate allometric scaling exponents for this population. 

 

 5.2.2.3 Procedure and Measurements 

Data were conducted as per the descriptions provided in Section 3.7. 

  

5.2.3 Allometric Scaling  

To account for differences in body mass between individuals, a ratiometric index has been favoured 

in similar studies to those included in this thesis, for scaling parameters relating to V̇O2 and strength-

related variables (Barnes et al., 2015; Cole et al., 2006; Dellagrana et al., 2015; Mikkola et al., 2007; 

Wong et al., 2010). This scaling approach is only valid if the relationship between body mass and a 

physiological variable are directly proportional, which is rarely the case (Atkinson and Batterham, 

2012; Curran-Everett, 2013). To account for the confounding influence of body size, power laws 

have been suggested based upon the mathematical principles of allometry (Welsman and Armstrong, 

1996). There is however little agreement as to the most appropriate scaling exponent to employ for 

homogenous groups of individuals such as high-performing adolescent athletes (Lolli et al., 2017). 

 

5.2.3.1 Scaling Procedure  

To calculate appropriate exponents for variables requiring expression relative to body size in the 

current cohort, body mass data from the larger groups was first linearised via natural log 

transformation and homogeneity of regression was compared for males and females for each 

dependent variable via an analysis of covariance (ANCOVA). Results of the ANCOVA tests 
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revealed that the slopes of the log/log transformations did not differ for males and females. 

Relationships between log-transformed body mass and log-transformed absolute values for each 

dependent variable were first determined using a Pearson’s correlation test to confirm whether body 

mass was indeed an influencing factor. Where a significant relationship existed between body mass 

and the dependent variable, a common power function for males and females was calculated via 

linear regression on the logarithmic transformation of each data set by the formula lny = lna + b.lnx 

and used for both groups when scaling each variable. Antilogarithms of the adjusted means from the 

ANCOVA were divided by the antilogarithm of the mean body mass for all participants included in 

the analysis raised to the allometric exponent to obtain the mean power function ratio standard for 

males and females. To assess the extent of a residual size correlation, linear regression analysis was 

performed between body mass values and each physiological variable normalised by the scaling 

exponent. For exponents to be accurate, the R2 value should approach zero, indicating that any 

differences observed in the physiological variable are independent of body mass. 

 

5.2.4 Statistical Analyses 

For the large cohorts used for scaling purposes and the test-retest cohorts used in reliability analysis, 

the normality of the distributions was assessed using a Shapiro-Wilks test and visually inspected 

using Q-Q plots. The homogeneity of the variance was assessed using Levene’s test. All variables 

were found to be normally distributed (p>0.05) and satisfied the assumption of homoscedasticity.  

To determine whether a systematic bias was present between trial 1 and trial 2, a two-factor (sex x 

trial) analysis of variance (ANOVA) with repeated measures was performed. Effect sizes were also 

calculated as the absolute change in the mean scores between trials divided by the pooled SD from 

both trials. The TE value provided an absolute index of reliability that encapsulates both the random 

and systematic error associated with a measurement (Batterham and George, 2003), and was 

calculated as the SD of the difference between trial 1 and trial 2 divided by √2. MDC95 values were 

also calculated as described in Section 3.8. Two-way random (single measure) ICC’s were also 

calculated as an indicator of the relative consistency for each measure (Weir, 2005) including a 

95%CI.  

 

5.3 Results 

5.3.1 Allometric Scaling Exponents  

Statistically significant relationships (r=0.68-0.81, p<0.001) were found between log-transformed 

body mass and log-transformed absolute values for V̇O2max, V̇O2 (across all three speeds), MVC and 

vGRFjump. Peak RFD on the squat jump showed no relationship with body mass (r=0.03, p=0.870), 
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therefore this variable was not scaled to account for differences in body mass between participants.  

The characteristics of the participants used to calculate scaling exponents for whole body mass are 

shown in Table 5.2 and Table 5.3. No significant differences were found between scaling exponents 

for males and females across V̇O2 or kinetic parameters. Log-linear regression revealed scaling 

exponents which approximated two-thirds for V̇O2max and V̇O2 in males and females.  When scaling 

exponents were applied, a very weak relationship was present between body mass and each 

dependent variable (R2<0.17, p>0.05). 

 

Table 5.2a. Characteristics of male participants and scaling exponents for sub-maximal oxygen 

uptake (V̇O2) and maximal oxygen uptake (V̇O2max). sLTP = speed at lactate turnpoint 

Parameter (𝒚) n Age  

(years) 

Mass (𝒙) 

(kg) 

Mean ±SD 

(L.min-1) 
𝒚 = 𝒂𝒙𝒃 

(ml.min-1) 

V̇O2max  20 17.0 ± 1.4 62.1 ± 6.6 4.322 ± 0.577 286.5 𝑥0.66 

V̇O2 at:      

sLTP 19 17.0 ± 1.4 61.8 ± 6.7 3.726 ± 0.456 243.4 𝑥0.66 
sLTP -1 km.h-1 20 17.0 ± 1.4 62.1 ± 6.6 3.515 ± 0.411 247.7 𝑥0.64 
sLTP -2 km.h-1 15 17.1 ± 1.3 61.7 ± 6.7  3.377 ± 0.368 212.0 𝑥0.67 

 

 

Table 5.2b. Characteristics of female participants and scaling exponents for sub-maximal oxygen 

uptake (V̇O2) and maximal oxygen uptake (V̇O2max). sLTP = speed at lactate turnpoint 

Parameter (𝒚) n Age  

(years) 

Mass (𝒙) 

(kg) 

Mean ±SD 

(L.min-1) 
𝒚 = 𝒂𝒙𝒃 

(ml.min-1) 

V̇O2max  20 17.2 ± 1.3 53.0 ± 5.9 3.224 ± 0.417 237.6 𝑥0.66 

V̇O2 at:      

sLTP 19 17.2 ± 1.2 53.0 ± 5.9 2.803 ± 0.312 202.9 𝑥0.66 
sLTP -1 km.h-1 21 17.1 ± 1.2 52.4 ± 5.8 2.623 ± 0.274 206.5 𝑥0.64 
sLTP -2 km.h-1 22 17.1 ± 1.2 52.7 ± 5.8 2.462 ± 0.241 172.5 𝑥0.67 
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Table 5.3. Scaling exponents for kinetic variables in male (17.2 ±1.5 years; 63.7 ±5.4 kg) and female 

participants (17.5 ±1.1 years; 54.1 ±4.5 kg). SD = standard deviation, MVC = maximal voluntary 

contraction, vGRFjump = vertical ground reaction force during squat jump 

 Male (n=15) Female (n=18) 

Parameter (𝒚) Mean ±SD 𝒚 = 𝒂𝒙𝒃 Mean ±SD (N) 𝒚 = 𝒂𝒙𝒃 (N) 

Isometric quarter 

squat  

MVC 

 

2314 ± 263 

 

188.1 𝑥0.61 

 

1749 ± 267 

 

156.1 𝑥0.61 

Squat jump      

vGRFjump 1439 ± 149 64.1 𝑥0.76 1230 ±161 61.8 𝑥0.76 

 

 

5.3.2 Physiological Results 

5.3.2.1 Plateaus in expired gases 

The MDC values for V̇O2 in the final 60 s of each submaximal stage across both trials were <122 

mL.min-1. Values for V̇CO2 were of a similar magnitude (98-113 mL.min-1). Of the 174 samples 

analysed for the larger cohort (n=42), 11 V̇O2 samples and ten V̇CO2 samples failed to meet steady-

state criteria.  

All participants with the exception of three (two from the test-retest cohort and one from the larger 

sample) achieved the criteria for a plateau in V̇O2 at maximum. For the participants who achieved a 

plateau, at least two of the three traditional criteria for achievement of V̇O2max were also met (RER ≥ 

1.1, HR ≥ 95% of age-predicted maximum, end BL ≥ 8 mMol.L-1). The samples that failed to 

demonstrate a plateau in gas exchange (for V̇O2, V̇CO2 or V̇O2max) were excluded from subsequent 

analysis. Revised participant numbers used to generate scaling exponents and reliability statistics are 

shown within each table. 

 

5.3.2.2 Reliability  

Body mass displayed high consistency between trials (mean difference: 0.4±0.3 kg, TE: 0.34%). 

Although sFBLC demonstrated high reliability between trials (Table 5.4), variability of this measure 

across all speeds was far higher (mean difference: 0.2±0.2 mMol.L-1, 95% CI: 0.1-0.2 mMol.L-1 TE: 

6.2%). HR at FBLC was also highly reliable (Table 5.4) and displayed similar consistency across all 

speeds for each participant (mean difference: 4±4 beats.min-1, 95% CI: 4-5 beats.min-1, TE: 1.6%). 

RPE tended to display lower reliability at slower relative speeds. At sLTP -2 km.h-1, a significant 
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difference (F=17.0, p=0.001) was detected between trials (mean difference: 1±0.8, TE: 4.9%, ES: 

1.03, ICC: 0.36), whereas RPE at sLTP showed good reliability (mean difference: 0.6±0.5, TE: 2.4%, 

ES: 0.56, ICC: 0.79).   

Results of ANOVA tests for all other parameters, with the exception of end BL (F=4.76, p=0.047), 

showed no systematic bias between trial 1 and trial 2 across any parameter (p>0.05). Similarly, ES 

for test-retest differences across all measures were small (<0.6) or trivial (<0.2). Within-subject 

variability for V̇CO2 was low across assessed speeds (TE: 1.2-1.4%). As shown in Table 5.4, 

parameters relying on measurement of V̇O2 and V̇CO2 all demonstrated a high degree of reliability 

between trials (ICC: 0.82-0.98, TE: 1-2%), however it is notable that measures of energy cost 

produced lower TE values than oxygen cost at the same speeds. The MDC values are also shown in 

Table 5.4. When expressed as a percentage, MDC for energy cost was lower than oxygen cost for 

each speed. 

 

5.3.3 Speed and Biomechanical Results 

 5.3.3.1 Reliability 

Table 5.5 presents the reliability statistics for maximal speed and kinetic measures associated with 

the isometric quarter squat and squat jump tests. ANOVA values indicated that there were no 

statistically significant differences between trials for any of the variables (p>0.05). The 20 m sprint 

and squat jump displacement displayed acceptable levels of reliability (TE: <5%, ICC: >0.9, ES: 

≤0.27), however MVC (TE: 5.1%, ICC: 0.65, ES: 0.62), vGRFjump (TE: 5.7%, ICC: 0.49, ES: 0.79) 

and peak RFD (TE: 11.2%, ICC: 0.54, ES: 0.78) exhibited far lower levels of measurement 

consistency. 
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Table 5.4. Test-retest reliability of physiological variables during maximal and submaximal test. * indicates significant difference (p<0.05) compared to trial 1. 

ES = effect size, FBLC = fixed blood lactate concentration, HR = heart rate, ICC = intra-class correlation coefficient, MDC95 = 95% confidence interval for minimal 

detectable change, RPE = rating of perceived exertion (6-20 scale), sLTP = speed at lactate turnpoint, sV̇O2max = speed associated with maximal oxygen uptake, TE = 

typical error, V̇O2max = maximal oxygen uptake  

 

Parameter n Trial 1 Trial 2 ES Interpretation TE TE (%) ICC (95% CI) MDC95  MDC (%) 

Maximal running           

V̇O2max (ml.kg-0.67.min-1)  

            (L.min-1) 

14 267.2 ± 32.5 

(3.90 ± 0.80) 

268.2 ± 29.8 

(3.90 ± 0.79) 

0.17 Trivial 2.72 1.02 0.98 (0.94 – 0.99) 7.5 2.8 

sV̇O2max (km.h-1) 14 18.6 ± 1.5 18.6 ± 1.1 0.49 Small 0.34 1.83 0.82 (0.52 – 0.94) 0.9 5.1 

Time to exhaustion (s) 16 382 ± 73  371 ± 69 0.30 Small 13.7 3.64 0.92 (0.79 – 0.97) 38.0 10.1 

End lactate (mMol.L-1) 16 9.6 ± 1.8 9.0 ± 2.0* 0.51 Small 0.6 6.36 0.79 (0.47 – 0.92) 1.6 17.6 

Oxygen cost (ml.kg-0.67.km-1), absolute values are shown in brackets (L.km-1)  

sLTP  

           

15 889.6 ± 77.0 

(13.1 ± 2.2) 

891.4 ± 71.2 

(13.0 ± 2.1) 

0.39 Small 16.1 1.81 0.88 (0.68 – 0.96) 44.7 5.0 

sLTP-1 km.h-1  16 894.5 ± 74.4 

(13.1 ± 2.2) 

886.9 ± 69.2 

(13.0 ± 2.1) 

0.38 Small 18.3 1.45 0.90 (0.75 – 0.96) 35.9 4.0 

sLTP-2 km.h-1 14 896.7 ± 85.3 

(13.1 ± 2.4) 

881.3 ± 68.8 

(13.0 ± 2.1) 

0.37 Small 17.8 2.00 0.89 (0.68 – 0.96) 49.2 5.5 

Energy cost (kJ.kg-0.67.km-1), absolute values are shown in brackets (kJ.km-1)  

sLTP 13 19.3 ± 1.7 

(287.0 ± 50.2) 

19.5 ± 1.5 

(284.7 ± 47.4) 

0.33 Small 0.233 1.20 0.93 (0.79 – 0.98) 0.6 3.3 

sLTP-1 km.h-1 16 19.2 ± 1.6 

(281.3 ± 48.4) 

19.0 ± 1.5 

(278.7 ± 45.7) 

0.34 Small 0.267 1.40 0.92 (0.78 – 0.97) 0.7 3.9 

sLTP-2 km.h-1 13 19.1 ± 1.8 

(278.0 ± 52.2) 

 

18.8 ± 1.5 

(276.9 ± 47.5) 

0.28 Small 0.305 1.61 0.93 (0.79 – 0.98) 0.8 4.5 
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Speed at FBLC (km.h-1) 

2 mMol.L-1 16 14.5 ± 1.4 14.6 ± 1.4 0.12 Trivial 0.14 0.94 0.99 (0.97 – 1.00) 0.4 2.7 

3 mMol.L-1 16 15.5 ± 1.3 15.6 ± 1.3 0.09 Trivial 0.11 0.71 0.99 (0.97 – 1.00) 0.3 2.0 

4 mMol.L-1 13 16.3 ± 1.3 16.4 ± 1.2 0.11 Trivial 0.12 0.76 0.98 (0.93 – 0.99) 0.3 2.0 

HR at FBLC (b.min-1)  

2 mMol.L-1 16 179 ± 11 178 ± 11 0.41 Small 2.77 1.55 0.86 (0.65 – 0.95) 8 4.3 

3 mMol.L-1 16 186 ± 11 185 ± 11 0.34 Small 1.87 1.01 0.92 (0.78 – 0.97) 5 2.8 

4 mMol.L-1 13 189 ± 9 187 ± 10 0.37 Small 1.81 0.96 0.90 (0.70 – 0.97) 5 2.7 

RPE (6-20)           

sLTP 16 15.1 ± 1.0  14.8 ± 1.2 0.56 Small 0.36 2.42 0.79 (0.49 – 0.92) 1 6.7 

sLTP-1 km.h-1 16 13.8 ± 1.0 13.3 ± 1.7 0.87 Moderate 0.48 3.55 0.47 (0.03 – 0.77) 2 9.9 

sLTP-2 km.h-1 16 12.6 ± 1.1  11.5 ± 1.0* 1.03  Moderate 0.59 4.90 0.36 (-0.10 – 0.71) 2 13.6 

  
Table 5.4 (continued) 
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Table 5.5. Test-retest reliability of maximal speed and kinetic variables during strength tests. 

ES = effect size, ICC = intra-class correlation coefficient, MDC95 = 95% confidence interval for minimal detectable change, MVC = maximum voluntary 

contraction, RFD = rate of force development, TE = typical error, vGRFjump = vertical ground reaction force during squat jump 

 

Parameter Trial 1 Trial 2 ES Interpretation TE TE (%) ICC (95% CI) MDC95  MDC (%) 

20 m maximal sprint (s) 2.71 ± 0.29 2.70 ± 0.29 0.12 Trivial 0.01 0.34 0.99 (0.97 – 1) 0.03 1.0 

Isometric quarter squat, absolute values are shown in brackets (N) 

MVC (N.kg-0.61) 166.0 ± 22.5 

(2013 ± 340) 

170.0 ± 20.9 

(2070 ± 381) 

0.62 Moderate 8.56 5.10 0.65 (0.16 – 0.89) 23.74 14.1 

Squat jump, absolute values are shown in brackets (N) 

vGRFjump (N.kg-0.76) 62.1 ± 77.0 

(1390 ± 203) 

65.2 ± 71.2 

(1462 ± 254) 

0.79 Moderate 3.64 5.71 0.49 (0.03 – 0.82) 10.08 15.8 

Peak RFD (N.s-1) 11,372 ± 3260 12,067 ± 3003 0.78 Moderate 1317 11.2 0.54 (0 – 0.84) 3650 31.1 

Displacement (m) 0.251 ± 0.067 0.255 ± 0.072 0.27 Small 1.24 4.89 0.94 (0.80 – 0.98) 0.034 13.5 
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5.4 Discussion 

This investigation aimed to establish the reproducibility of a number of physiological and 

biomechanical variables in a group of high-performing junior distance runners. The results provide 

evidence that the majority of physiological parameters can be measured with a high-degree of 

reliability in this population, and this is the first study to present reliability data in young athletes for 

V̇O2max and RE following use of an appropriate allometric scaling exponent. In the assessment of RE, 

energy cost appears to be more reliable than using oxygen cost values, so should be the preferred 

measure for the practitioner. Other than maximal speed, kinetic variables associated with an isometric 

quarter-squat and a squat jump displayed moderate reliability, therefore the use of these testing 

methods with young non-strength trained groups requires caution. 

The MDC95 uses the TE associated with measurement consistency and the z-score from a 95% CI. 

The MDC values for each variable (see Tables 5.4 and 5.5) can be utilised to determine whether a 

‘real’ change has been observed following an intervention in high-performing junior distance 

runners. 

 

5.4.1 Physiological Variables 

Regardless of whether V̇O2max or V̇O2peak has been used to define the highest V̇O2 achieved, previous 

studies have found a high test-retest reliability (ICC=0.74-0.97) in adolescent populations (Paterson 

et al., 1981; Pivarnik et al., 1996; Rivera-Brown and Frontera, 1998; Rivera-Brown et al., 1995), 

which is in agreement with findings from this study (ICC: 0.98). This is the first study in young 

athletes to assess reliability of V̇O2max following appropriate scaling for differences in the body mass 

within the cohort. We also applied a more stringent criteria (Midgley et al., 2009) to identify V̇O2max, 

than the traditional criterion (Taylor et al., 1955) that has been applied in previous studies, and 

excluded any participants from analysis who failed to achieve a true plateau. These two factors are 

likely to explain, in-part, the high ICC value observed in this study. 

Oxygen cost is an important determinant of distance running performance and reliability indices in 

the present study (ICC: 0.88-0.90, TE: 1.81-2.00%) are similar to those reported elsewhere for well-

trained (1.3%), highly trained (1.8%) and elite (2.4%) endurance runners (Morgan et al., 1991; 

Pereira and Freedson, 1997; Saunders et al., 2004b). The between-day stability of oxygen cost has 

previously been quantified in six year old children (Keefer et al., 2000), however this is the first study 

to show high-levels of between-test reliability in adolescent runners who are engaged in intensive 

training regimens. Training status appears to be an important influence in the degree of variability 

observed in RE (Brisswalter and Legros, 1994). The mean age of the participants in this study was 

<18 years, however they were all of national or international standard in their age-groups and ratio-

scaled V̇O2max scores were similar to those attained by highly-trained adult runners (male: 73.3±4.2, 
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female: 64.3±5.8 mL.kg-1.min-1). Therefore despite the young age of the participants, results suggest 

a high level of stability in oxygen cost of running exists, which in-part may be due to the training 

status of these athletes.      

The measure of energy cost provides a potentially more robust measure of RE, mitigating against the 

potentially confounding influence of substrate utilisation when dietary and lifestyle factors are not 

controlled adequately. Similar between-test reliability has previously been shown for oxygen cost 

(TE: 2.7-3.3%) and energy cost (TE: 3.1-3.7%) in trained runners (Shaw et al., 2013). This is 

somewhat different to the findings of this study, which showed energy cost to be more reproducible 

than oxygen cost across all three speeds assessed. Reliable measurement of energy cost requires V̇O2 

and V̇CO2 to be consistent, as RER is derived using both values. It is likely that differences in within-

subject variability for V̇CO2 explain the discrepancy between this study and those of Shaw and 

colleagues (2013), who reported much higher TE (<5.94%) than the variability we measured (1.16-

1.37%). As a consequence, this meant that the RER was also more stable in the present study (TE: 

<4.35% vs <2.02%). Although the male participants in both studies possessed similar V̇O2max values 

(75.5±5.2 vs 73.3±4.2 mL.kg-1.min-1), it may also be possible that the junior runners in this 

investigation employed lower volume training regimens than the senior runners used in the Shaw et 

al. (2013) study, therefore we speculate that this would reduce the daily variability in substrate 

metabolism and thus measures of energy cost. 

sV̇O2max, which combines both RE and V̇O2max into a single variable, has been shown to explain 

differences in performance that other determinants cannot (Billat and Koralsztein, 1996). Previous 

work has shown low TE values (2.3%) for amateur male runners with near identical sV̇O2max values 

(18.6 km.h-1) to those observed in the present study (LourenÇo et al., 2011). Given that sV̇O2max was 

estimated from the linear regression equation based upon V̇O2max the speed-V̇O2 relationship, which 

has high reliability at three speeds, it is unsurprising that this parameter demonstrate high 

reproducibility using this protocol (ICC: 0.82, TE: 1.83%).   

BL measurement during sub-maximal exercise in athletes is commonplace for monitoring and 

evaluation purposes. Previous studies have shown reliability coefficients of 0.92-0.95 for velocity at 

4 mMol.L-1 and 0.81-0.93 for HR at 4 mMol.L-1 in moderately fit (Grant et al., 2002) and trained 

runners (Heitkamp et al., 1991; Weltman et al., 1990). It should be noted that the correlation 

coefficients used in these studies only describe the relationship between test and retest values. The 

ICC is a univariate statistic and provides a more robust means of determining agreement between 

two independent measurements. The reliability values for speed at 2-4 mMol.L-1 in the present study 

are also similar to those observed in a previous study on endurance-trained males, which used three 

trials and an ICC statistic (Pfitzinger and Freedson, 1998). The present study did however observe a 

far larger variability for BL measurement across absolute sub-maximal speeds (mean difference: 

0.18±0.20 mMol.L-1, 95% CI: 0.14-0.22 mMol.L-1, TE: 6.24%), therefore when interpreting within-

subject changes in lactate response to sub-maximal running, sFBLC should be the preferred marker 
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for assessing change. Similarly, a significant difference (F=4.76, p=0.047) was detected between 

trials for BL at the end of the maximal test with moderate levels of reliability (TE: 6.36%, ICC: 0.79). 

Practitioners should therefore be cautious when interpreting absolute changes in BL response, 

particularly following a maximal bout of exercise. 

Monitoring of submaximal HR provides athletes and practitioners with a low cost and non-invasive 

tool to assess changes in training status and may provide an indication of overtraining (Achten and 

Jeukendrup, 2003; Lambert et al., 1998). Under controlled conditions, HR has shown daily variability 

of 5-8 beats.min-1 at sub-maximal running speeds in physically active adults (Lamberts et al., 2004). 

The variability across all speeds in the present study is slightly lower (mean difference: 4±4 

beats.min-1, 95% CI: 3.7-5.2 beats.min-1, TE: 1.60%). However, the data supports the 

recommendation that caution should be observed when interpreting subtle changes in HR at absolute 

running speeds, as a difference of <6 beats.min-1 can be attributed to normal variability (Achten and 

Jeukendrup, 2003). The reproducibility of HR at FBLC (ICC: 0.86-0.92, TE: 0.96-1.55%) was higher 

than values found in other studies using recreational runners (ICC: 0.47-0.79, TE: 1.6-4.3%), which 

have used HR at intensities corresponding to fixed physiological thresholds (LourenÇo et al., 2011; 

Peserico et al., 2015).  Despite the age of the participants used in this study, this discrepancy is likely 

due to the training status of the athletes, as similar dietary and lifestyle constraints were applied, and 

previous work has shown lesser-trained runners show larger daily variability in HR scores (Heitkamp 

et al., 1991) compared to well-trained runners (Brisswalter and Legros, 1994). 

Borg’s 6-20 RPE scale is a tool widely used by physiologists and coaches to subjectively assess 

physical stress (Borg, 1982; Eston et al., 1987). The scale has been validated for running-based 

exercise against HR, BL and V̇O2 (Ekblom and Golobarg, 1971; Robertson, 1982) and is typically 

assumed to possess a high level of reliability (Skinner et al., 1973; Stamford, 1976; Wenos et al., 

1996). However, the reliability statistic applied in these papers were correlation coefficients, which 

only evaluates the degree of association and does not assess the level of agreement between repeat 

tests. More recent work has cast doubt over the repeatability of the RPE scale during incremental 

exercise (Grant et al., 2002; Lamb et al., 1999) using ICC’s and the 95% limits of agreement analysis 

method. Similar to the findings of this study, Lamb and colleagues (1999) observed a statistically 

significant difference (p<0.05) between trials at the lowest of four intensities they assessed and a 

similar mean difference (0.9 vs 1.1). Interestingly, the reliability of RPE improved as intensity of 

exercise increased, which is similar to the finding of Grant and associates (2002) who measured RPE 

at the speed associated with LT and speed at 4 mMol.L-1. It has been suggested that the reliability of 

RPE improves over several trials (Eston and Williams, 1988), indicating that, for lower intensities 

(LTP -2 km.h-1) at least, it may be necessary to include familiarisation sessions with adolescent 

athletes to ensure the RPE provided is reliable.  

Time of day, footwear and environmental conditions were controlled for in the present study, but 

dietary and training constraints were not strictly enforced. In an attempt to control for these 
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potentially confounding issues, most participants trials were separated by seven days. From personal 

communication with parents (and participants), this period represented a typical microcycle of 

training for these runners. It is therefore likely that a highly similar pattern of training and lifestyle 

activities preceded each trial. Requests for consistency in lifestyle and diet in the 48 h prior to trials 

were also enforced by parents/guardians who were present for most of the testing sessions. 

Familiarity with the speeds used to assess RE and adequate control of confounding factors are 

therefore likely to have contributed towards the low within-subject variability observed for 

physiological measures in this study. 

 

5.4.2 Speed and Biomechanical Variables  

In contrast to the majority of physiological parameters, the reliability of several biomechanical 

variables is questionable. The kinetic variables associated with the isometric quarter squat (MVC) 

and squat jump (vGRFjump and peak RFD) showed moderate reliability (ICC: 0.49-0.65, TE: >5%), 

whereas maximal speed and squat jump displacement both showed excellent reliability (ICC: >0.9, 

TE: <5%).  

The high level of reliability observed for the 20 m sprint test (TE: 0.34%, ICC: 0.99, ES: 0.12) is in 

agreement with other works that have used measures of linear speed in children and adolescents 

(Gabbett et al., 2008; Rumpf et al., 2011). The MDC95 value indicates that a 0.03 s (1.0%) 

improvement following an intervention would provide 95% certainty the change in maximal speed 

is genuine. A previous review found that 6-13 weeks of combined ST and SpT improved short sprint 

(0-30 m) times by -5.8% (ES: -1.3) in post-pubertal males (14.7 years), and ST alone enhanced 

performance by -1.5% (ES: -0.3) (Rumpf et al., 2012). The majority of studies reviewed utilised 

standing starts to assess sprint time, however one study registered a 10.9% (ES: -1.75) improvement 

for a flying sprint (5 m) in adolescent soccer players (17 years) following an eight week HRT 

intervention (Chelly et al., 2009). It is therefore proposed that a 20 m maximal sprint test will be a 

reliable and sensitive means of assessing changes in top speed running following a training 

intervention in a group of adolescent distance runners. 

The temporal reproducibility for squat jump height is also acceptable (TE: 4.89%, ICC: 0.94, ES: 

0.27) and the same as values observed for 6-12 year old children (Fernandez-Santos et al., 2015). 

Moreover, similar reliability (ICC: 0.93) has been recorded in 13 year old swimmers (Papadopoulos 

et al., 2000) and a group of physically active male youths (13.5 years) (Lloyd et al., 2009). The 

vertical displacement an individual achieves during a squat jump is directly proportional to the 

impulse generated under the force-time curve, once body weight has been accounted for. The same 

amount of impulse can be generated in a number of ways, which results in different force-time 

profiles that may explain the inter-trial discrepancies in the kinetic variables measured during the 

squat jump.   
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The vGRFjump displayed a low ICC value (0.49), which is in contrast to previous investigations, in 

resistance-trained participants (ICC: 0.99) (Chiu et al., 2004) and physically-active men (ICC: 0.97) 

(McLellan et al., 2011). The ICC statistic represents the proportion of variance in a data set that can 

be attributed to error (Weir, 2005), however this is sensitive to the range of values contained within 

a sample and does not account for systematic bias. Therefore an interpretation of TE is also 

recommended (Atkinson and Nevill, 1998). Over half (51%) of the observed score variance for 

vGRFjump is due to error, however the TE value (5.71%) indicates that participants were relatively 

consistent in their scores between the two trials. Moreover, although a moderate ES (0.78) was 

identified between trials, a statistically significant difference was not identified (F=2.03, p=0.185). 

The between-participant coefficient of variation was also substantially lower (6.8% vs 14.9% vs 

39.0%) than the aforementioned studies (Chiu et al., 2004; McLellan et al., 2011), indicating that the 

range of data within the sample of the present study was small. This may have also contributed to 

the low ICC result observed. 

Peak RFD also displayed moderate reliability (ICC: 0.54), and systematic bias was also somewhat 

high (TE: 11.2%), thus MDC95 is approximately a third of the group mean score (31.1%). Although 

this degree of change may appear difficult to accomplish following a short-term (8-12 weeks) 

training intervention, changes in excess of 31% have consistently been observed in the literature for 

non-strength trained individuals following exposure to 2-3 ST sessions per week (Hernández-Davó 

and Sabido, 2014). One study in distance-runners also found a 26% improvement in peak RFD during 

a loaded squat following eight weeks of HRT (Storen et al., 2008). Previous reliability studies that 

have included a measure of peak RFD during jump testing have shown mixed results (Chiu et al., 

2004; Haff et al., 2000; McLellan et al., 2011; Moir et al., 2005). McLellan and colleagues (2011) 

reported low reliability (ICC: 0.89, TE: 14.8%) for peak RFD during the squat jump in a group of 

physically active men (23 years), which is consistent with work by Moir and associates (2005). 

Conversely, other works have shown excellent reliability (ICC: >0.9, TE: <5%) for peak RFD during 

squat jumping (Chiu et al., 2004; Haff et al., 2000). 

High levels of reliability (ICC: 0.96, TE: <5%) have previously been observed for 1RM strength tests 

in professional youth soccer players (Dos’Santos et al., 2017), 10 year old children (Faigenbaum et 

al., 1998) and resistance-trained adolescent (15.9 years) males (Faigenbaum et al., 2012). Similarly, 

high inter-session reliability values (ICC: 0.96-0.97) were also reported for MVC (peak force) in an 

isometric mid-thigh pull in youth soccer players (Dos’Santos et al., 2017) and isometric half-squat 

in athletic males aged 19-26 years (Blazevich et al., 2002). The ICC value for MVC in the present 

study (0.65) is substantially lower than those identified above, however the TE appears to be similar 

(~5%), indicating a comparable level of systematic bias exists compared to previous investigations 

(Dos’Santos et al., 2017). A wide range of scores is necessary to generate a high ICC statistic, 

therefore the differences between studies may be partly attributable to the range of values included 

in the samples. The between-participant coefficient of variation for the studies authored by 
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Faigenbaum and colleagues (1998, 2012) was ~30% compared to 5.9% in the present investigation, 

suggesting that this may be a factor in the lower ICC result recorded in the present investigation. 

The discrepancies observed between trials may be explained by factors relating to systematic bias, 

such as a learning effect or motivation, plus random variation. Random change is the consequence 

of normal biological variation and has a more pronounced effect in smaller sample sizes (Hopkins, 

2000). Some of the observed TE could be explained by random ‘noise’, however it is more likely 

that participants experienced a learning effect across the trials as an improvement was observed for 

every kinetic variable (see Table 5.5). This learning response can be explained by the training status 

of participants, as more skilled individuals are likely to produce a higher level of movement pattern 

consistency. This observation is supported by the reliability results for the 20 m sprint, which in high-

performing middle- and long-distance runners is likely to display greater consistency in movement 

execution, than the strength-tests, which were novel for all participants. Moreover, excellent inter-

session reliability (ICC: 0.97) has been found for peak force during a squat jump assessment 

performed on a supine leg press in adolescent (11-15 years) males (Meylan et al., 2015), which 

demands a lower level of skill compared to a traditional standing squat jump. It also appears that 

studies using cohorts of resistance-trained adolescent participants generally show more reliable 

outcomes (Dos’Santos et al., 2017; Faigenbaum et al., 2012). The procedure employed for this study 

included a familiarisation trial, however it is suggested that a more extensive familiarisation phase is 

included for adolescent distance runners if these variables are measured by others. 

 

5.4.3 Limitations 

This study is not without limitations. The relatively small sample sizes used to quantify a suitable 

scaling exponent for this population may have generated imprecise estimates owing to sampling 

error. A recent meta-analysis on allometric scaling of V̇O2max established exponents of 0.71 for young 

individuals, 0.71 for athletes and 0.70 for treadmill testing assessment (Lolli et al., 2017). These 

values are similar to the estimated scaling exponent calculated in the present study (b=0.67) and fall 

within the 95% CI for each moderator (Lolli et al., 2017), therefore any error that exists for the V̇O2 

related measures, is likely to be minimal. Similarly, it is widely recommended that body mass should 

be raised to the power of two-thirds when scaling measurements of muscular force (Crewther et al., 

2009; Folland et al., 2008a; Jaric, 2002; 2003; Jaric et al., 2005; McMahon, 1984), however a range 

(0.58-1.14) of other exponents have also been identified for various populations (Atkins, 2004; 

Batterham and George, 1997; Jaric, 2002; Jaric et al., 2002). The scaling factors derived in the present 

study (MVC: b=0.61, vGRFjump: b=0.76) approximate the suggested exponent of 0.67, thus providing 

confidence that these corrections for body mass are appropriate for this cohort. These findings 

emphasise that traditional ratio (per kg) expressions are unsuitable and may incur error when 

attempting to describe changes in physiological parameters following an intervention (Atkinson and 
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Batterham, 2012).  

The test-retest design of the present study provides practitioners with valuable insight into the 

reproducibility of physiological measures. However the inclusion of a third trial for both 

physiological and biomechanical investigations would provide a more accurate impression of the 

systematic error which may exist in each measure.  

 

5.4.4 Conclusions 

Practitioners and coaches can be confident that measurements of physiological parameters in junior 

distance runners are highly reproducible when external factors are appropriately constrained. The 

exception to this is RPE, particularly at low intensities of exercise. Caution should be observed when 

interpreting small changes in BL (<0.2 mMol.L-1) and HR (<6 beats.min-1) as part of an athlete 

monitoring process as it is likely this is normal variability in the criterion measure. The sFBLC 

appears to provide a more sensitive metric for reliably identifying a change in an athlete’s physiology 

compared to the BL value at a given speed. Energy cost should be the preferred measure of RE as 

this parameter accounts for day-to-day variations in substrate utilisation and demonstrates higher 

reliability than traditional oxygen cost measurement. Maximal speed and squat jump displacement 

also display excellent day-to-day consistency. Conversely, practitioners should be wary when 

interpreting kinetic measures associated with maximal and dynamic strength testing, as reliability is 

only moderate.  

 

5.5 Perspective 

The overriding objectives of this thesis are to examine current ST habits in runners, and evaluate the 

acute and chronic efficacy of ST on distance running performance, with an experimental focus on 

the post-pubertal adolescent age-group. Prior to addressing specific aims, it is important to quantify 

the reproducibility of the measures intended for use in the experimental studies (Atkinson and Nevill, 

2001). This is especially critical for testing protocols that will be unfamiliar to young distance 

runners, such as strength-related measures and RPE. If a measurement test cannot provide adequate 

reproducibility across repeated trials, then it cannot be considered a valid tool to assess the change 

which may occur as a consequence of an intervention (Batterham and George, 2003). Establishing 

TE of measurement also enables a MDC95 value to be calculated, which represents a threshold of 

high practical certainty that any observed change is real. The MDC95 can also be used alongside an 

observed effect to provide an MBI term, which is based upon the probability that an effect is 

beneficial, harmful or trivial (Deighton et al., 2017).  

The misrepresentation provided by ratio-scaling physiological- and strength-variables by whole body 

mass has previously been highlighted (Atkinson and Batterham, 2012; Curran-Everett, 2013; Jaric, 
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2003; Lolli et al., 2017), but remains common in the literature. There is disagreement surrounding 

the most appropriate scaling exponent to use for various parameters and different populations to 

render an expression that is independent of the confounding influence of body mass. Therefore, it is 

necessary to obtain an appropriate scaling factor derived from a representative sample of the 

population under investigation for each specific task (Jaric et al., 2002; Lolli et al., 2017; Shaw et 

al., 2014). This chapter has therefore contributed to the overriding aim of this thesis by clarifying the 

reliability of physiological and biomechanical markers relating to performance outcomes in 

adolescent distance runners, following a process of allometric scaling. 

The measurements selected for scrutiny in this study are based upon the detailed discussion of the 

main physiological- and neuromuscular-factors that underpin middle- and long-distance running 

performance (see Section 2.2-2.4). Despite the consensus in the literature surrounding the advantages 

of ST techniques for adult distance runners (Study 1, Section 2.5) and a high-proportion of 

engagement in junior distance runners (Study 2, Chapter 4), there is a scarcity of studies that have 

attempted to investigate the effects of ST on adolescent distance runners. This age-group has also 

been highlighted as important in terms of the timing of sport-specialisation and the necessity to 

participate in ST for long-term health and performance benefits (see Section 2.7). The following 

Chapter will therefore address this gap in the literature by studying the effects of a ten week ST 

intervention on post-pubertal adolescent distance runners.  

Based upon the literature associated with maximising the potentiating effects of a warm-up in 

endurance athletes (see Section 2.6), it is proposed that the inclusion of a strength-based exercise in 

the warm-up of young distance runners will acutely enhance performance. The final study of this 

thesis (see Chapter 7) will therefore address this question by investigating the impact of performing 

a set of DJ prior to a physiological assessment in a group of high-performing middle-distance 

runners. The reliability values identified in this study will facilitate a more rigorous statistical 

analysis process in these two experimental studies, and enable practically meaningful conclusions to 

be drawn. 
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EFFECTS OF STRENGTH TRAINING ON POST-PUBERTAL 

ADOLESCENT DISTANCE RUNNERS  

(Study 4) 
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6.1 Introduction 

Success in distance running can be attributed to a variety of physiological and biomechanical factors 

(Thompson, 2017). From a physiological perspective, energy acquired via aerobic means contributes 

a significant proportion to performance outcomes of middle- and long-distance events (Gastin, 2001). 

Indeed, several studies have demonstrated that aerobic qualities such as 𝑉̇O2max, s𝑉̇O2max, RE and 

sub-maximal lactate values have a strong relationship with distance running performance (Deason et 

al., 1991; Ingham et al., 2008; Yoshida et al., 1990). These variables have also been shown to be 

important predictors of performance in adolescent distance runners (Almarwaey et al., 2003; Cole et 

al., 2006). 

In addition to an obvious need to develop aerobic qualities, it is apparent that the neuromuscular 

system plays an important role in optimising distance running performance (Nummela et al., 2006; 

Paavolainen et al., 1999c). RE is underpinned by physiological attributes, anthropometrics and 

biomechanics (Saunders et al., 2004a); however there is also emerging evidence demonstrating that 

ST enhances RE in trained distance runners (Balsalobre-Fernandez et al., 2016; Denadai et al., 2017). 

The proposed mechanism for this improvement relates to enhancements in neuromuscular 

characteristics such as lower limb stiffness and force producing ability (Albracht and Arampatzis, 

2013). 

There is also convincing evidence that ST is safe and effective for adolescent athletes (Behringer et 

al., 2011). Current guidelines suggest that adolescents should participate in 2-3 supervised RT 

sessions per week (Lloyd et al., 2014). Studies that have investigated the effects of RT in youth 

populations have tended to focus on the development of strength-related qualities in pre-pubertal and 

peri-pubertal participants, which underpin a variety of different sports skills. RT can also positively 

influence sprint performance (5-40 m), beyond that which would be expected with maturation alone 

(Rumpf et al., 2012). Mikkola and co-authors (2007) provide the only study to investigate the impact 

of a ST intervention on markers of performance in post-pubertal runners (16-18 years). Replacing 

19% of total running volume with explosive ST exercises for eight weeks improved neuromuscular 

and anaerobic characteristics, but without any significant impact on aerobic performance markers. 

The ST activities (sprints, jumps and ERT) were performed in low frequency (each on average once 

per week), and RT primarily targeted single-joint actions. It is recommended that distance runners 

incorporate 2-3 ST sessions per week (Denadai et al., 2017), and utilise multi-joint closed-chain 

exercises, which provide a high level of mechanical specificity to the running action (Beattie et al., 

2014). Therefore the effect of a ST programme, involving multi-joint resistance exercises performed 

more than once per week by adolescent runners, on determinants of distance running performance 

remains unknown.  
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6.1.1 Study Aim 

This thesis principally aims to examine the efficacy of strength-based exercise on distance runners 

with an experimental focus on adolescent runners. Accordingly, the purpose of this study was to 

examine the effect of supplementing post-pubertal adolescent distance runners with ST on the 

physiological and strength-related indicators of performance. It was hypothesised that the addition 

of ST would result in superior improvements in RE, s𝑉̇O2max, maximal speed and strength measures 

compared to the CG.  

 

6.2 Methods 

6.2.1 Study Design  

To address the hypothesis of the study a randomised control trial (Registered identification: 

researchregistry1933) was used to investigate the effect of a ten week ST intervention on key 

performance indicators and body composition in a group of competitive adolescent distance runners. 

Following baseline testing, participants were assigned to a strength training group (STG) or a CG 

using a pre-test matched pairs approach. Participants were ranked according to their baseline RE, 

paired, and randomly allocated to either the STG or CG. This approach reduces the bias associated 

with randomisation, since it decreases the likelihood of differences between study groups at baseline 

(Atkinson and Nevill, 2001). Both groups were instructed to continue their normal running training 

throughout the study period.  The study took place during early off-season training period, therefore 

participants were predominantly performing high volume, low intensity running. Participants 

maintained training logs (see Appendix G), which detailed their daily running volume and the pace 

associated with each training session. In addition to their running training, the STG performed two 

weekly ST sessions for the duration of the study. Following the intervention period, participants in 

both groups returned for follow-up testing. 

  

6.2.2 Participants 

A sample size estimation of n=20 was calculated based upon statistical power of 80%, at a 5% 

probability threshold, and an ES of 0.67 for the primary outcome variable, RE. TE and MDC95 for 

RE were derived from the reliability study in this population (Study 2, Chapter 5). Based upon an 

anticipated 20% drop-out, 25 participants (13 female, 12 male; mean ±SD age: 17.2 ±1.2 years, 

range: 15.2-18.8 years) initially volunteered to take part.  
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6.2.3 Procedures  

Testing took place over two days before and after the intervention period. The first testing session 

involved measurements of anthropometrics, a submaximal running assessment and a maximal 

running test (see Section 3.5 for protocols). Following thirty minutes of passive recovery, participants 

were familiarised with the speed and strength tests. The second testing session took place 48-72 h 

later, and was used to test participant’s maximal speed, and force-producing capabilities under 

dynamic and isometric conditions (see Section 3.7 for protocols). Every effort was made to schedule 

testing sessions on the same days pre- and post-intervention to maximise the likelihood that 

participants would adhere to requests to adopt a similar pattern of exercise and diet in the 48 h prior. 

 

6.2.4 Measurements 

The physiological and biomechanical variables measured as part of this study are described in 

Section 3.6 and 3.7 respectively. For measures influenced by body size, the allometric scaling 

exponents obtained in the reliability study (Study 3, Chapter 5) were applied.  

 

6.2.5 Strength Training Prescription  

The STG supplemented their programme with two sessions (60-70 min duration) of ST per week, 

each separated by 2-4 days. Following a week of familiarisation with exercise technique and 

equipment, participants completed a ten week programme of progressive ST, as shown in Table 6.1. 

Recent work has indicated that 6-8 week programmes elicit relatively small changes in RE, whereas 

programmes of ten weeks or longer provides moderate-large effects (Denadai et al., 2017). Each 

session commenced with a warm-up designed to enhance movement skill and mobility. The second 

part of the session involved plyometric- and sprinting-based exercises designed to improve 

explosive- and reactive-strength. The final part of each session was dedicated to RT primarily using 

free weights (barbells and dumbbells). Exercises were selected that possessed similar kinematic 

characteristics to the running action. Every session was supervised by professionally accredited S&C 

coaches. Intensity of each exercise was moderated based upon each participant’s technical ability 

and perceived effort, with load on RT exercises typically progressing by 5-10% per week within a 

mesocycle. A selection of photographs of participants performing the ST intervention is shown in 

Figure 6.1.  
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6.2.6 Statistical Analysis 

An ANCOVA was performed on each dependent variable using baseline scores as the covariate, 

which adjusts for any chance imbalance between the STG and CG. The assumptions associated with 

ANCOVA were verified for all variables via Levene’s Test for homogeneity of variance, Shapiro-

Wilk Test for the assumption of normality, and a customised ANCOVA model to assess homogeneity 

of regression. A Multivariate Analysis of Variance with a Bonferroni post-hoc correction was used 

to compare the data from training logs between groups. Significance was accepted at the p<0.05 level 

with a 95% CI.  

Effect sizes and MBI terms were identified to provide a more qualitative interpretation of the extent 

to which changes observed were meaningful.  Effect sizes were calculated as a ratio of the difference 

between the mean change value for each group and the pooled SD at baseline for all participants. 

The process used to obtain the MBIs is described in Section 3.8. Inter-individual responses to the 

intervention were calculated using the formula identified in Section 3.8. In this instance, it is more 

appropriate to use the SD of the CG change value as the comparator variable, rather than the TE 

derived from the reliability study (Chapter 5) in this population, as within-subject biological variation 

is likely to increase over time (Hopkins, 2000). 

 

Table 6.1. Ten week programme followed by the strength training group (2 days.week-1). All 

exercises were prescribed as sets x repetitions (unless stated). Inter-set recovery duration was 90 s 

and 180 s for plyometrics and resistance training respectively. 

Mesocycle Weeks 1-3 Weeks 4-6 Weeks 7-10 

Plyometrics 

Box jump 3x6 

A-skip 3x15 m 

Hurdle jump and land 

3x6 

Single leg box jump 

3x6 

High-knees 3x15 m 

Hurdle jumps 4x6 

Depth jumps 3x6 

Sprints 3x30 m 

Hurdle jumps 4x8 

Resistance 

training 

Back squat 3x8  

Romanian deadlift 3x8  

Single leg press 2x8  

Calf raise 2x12 

Back squat 3x8  

Rack pull 3x8  

Single leg press 3x8  

Calf raise 3x12 

Back squat 3x6  

Deadlift 3x6  

Step-ups 3x8  

Calf raise 3x12 
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Figure 6.1. Photographs showing examples of exercises used in the strength training intervention.  
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6.3 Results 

6.3.1 Group Characteristics 

Based upon maturity offset values, all participants were considered post-pubertal (≥ 1.0 year), even 

when the standard error associated with the predictive equation was accounted for (Moore et al., 

2015). Seven participants withdrew during the course of the study for the following reasons: injury 

(STG n=3, CG n=1), illness (STG n=1), time commitment (CG n=1), voluntary dropout (CG n=1). 

The injuries that occurred in the STG were diagnosed as overuse type injuries that could not be 

directly attributed to the intervention. No other adverse effects were reported during the intervention 

period. The final sample consisted of nine participants in the STG (5 females, 4 males) and nine in 

the CG (5 females, 4 males). Group characteristics are shown in Table 6.2, with V̇O2max shown as a 

ratio to body mass for comparative purposes. 

 

Table 6.2. Participants characteristics for each group. sLTP = speed at lactate turnpoint  

 STG (n=9) CG (n=9) 

Age (years) 16.5 ±1.1 17.6 ±1.2 

Body mass (kg) 57.8 ±6.1 58.5 ±9.5 

Stature (cm) 170.2 ±6.8 171.6 ±6.5 

Maturity offset (years) 3.1 ±1.3 3.9 ±1.1 

1500 m time (s) 274.9 ±21.4 264.1 ±15.4 

V̇O2max. (mL.kg-1.min-1) 59.2 ±9.3 61.7 ±5.9 

sLTP (km.h-1) 14.0 ±2.4 14.9 ±1.1 

Running duration (min.wk-1) 180.6 ±84.9 195.6 ±86.9 

 

6.3.2 Training History  

Table 6.3 displays a summary of the training undertaken by participants during the intervention 

period. Participants typically undertook 2-3 extensive interval training sessions per week at sLTP or 

faster. These were performed on the same days across the cohort. The remaining volume of running 

was undertaken at speeds below sLTP, however inter-individual variation was high (135 ±74 

min.week-1). No significant differences (p>0.05) between groups were noted in total training time, 

total running duration, running at low (<sLTP) and high (>sLTP) intensities (ES: 0.17) and aerobic 

cross-training (ES: 0.01). However moderate effect sizes (0.6-0.7) were observed for the difference 

in total running duration in favour of the CG. ST time differed significantly between groups 

(F=44.96, p<0.001, ES: 1.67). Engagement with ST was high in the STG, with all participants 

completing ≥ 85% of sessions over the ten week intervention. 
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Table 6.3. Mean ± standard deviation time spent (min.week-1) performing various training activities 

during the intervention period. sLTP = speed at lactate turnpoint, STG = strength training group, CG 

= control group, ES = effect size. * indicates significantly different (p<0.05) from CG group. 

 Running 
Strength 

training 

Aerobic 

cross-

training 

Combined 

total < sLTP > sLTP Total 

STG 109 ±69 42 ±7 151 ±85 112 ±7* 10 ±16 273 ±88 

CG 160 ±73 53 ±18 213 ±88 33 ±35 10 ±18 257 ±106 

ES 

(interpretation) 

0.69  

(moderate) 

0.60 

 (moderate) 

0.69 

(moderate) 

1.67  

(very large) 

0.01  

(trivial) 

0.17  

(trivial) 

 

 

6.3.3 Body Composition and Running Measures 

ANCOVA revealed no significant differences between groups post-training for body mass (F=0.98, 

p=0.338), skinfolds (F=4.15, p=0.060), V̇O2max (F=0.48, p=0.499), sV̇O2max (F=1.11, p=0.308), RE at 

LTP (F=0.57, p=0.463), RE at LTP -1 km.h-1 (F=1.39, p=0.256), RE at LTP -2 km.h-1 (F=2.34, 

p=0.147), s2mMol.L-1 (F=0.54, p=0.474), s3mMol.L-1 (F<0.01, p=0.980), and s4mMol.L-1 (F=0.01, 

p=0.917). Table 6.4 shows changes in body composition and physiological parameters for each group 

and between group comparisons. Body mass displayed a mean increase of (95% CI) 0 to 2.4% in the 

STG group, which was ‘most likely trivial’ compared to the CG (ES: 0.08). Skinfold measures also 

exhibited minimal changes in both groups (ES: 0.24). V̇O2max displayed trivial changes (ES: 0.07) in 

both groups, and sV̇O2max improved in the STG by only a small margin (95% CI: -2.0 to 8.9%), which 

compared to the CG was ‘likely trivial’ (ES: 0.34). RE improved between 3.2-3.7%, and by a 

magnitude that approximated the MDC95 values at all three speeds in the STG group, however 

increases were relatively small (ES: 0.31-0.51) and only considered ‘possibly beneficial’. Figure 6.2 

shows the change in average RE for three speeds, which was also considered ‘possibly beneficial’ 

(ES: 0.44) compared to the CG. sFBLC improved to a small extent (3.4-5.8%) in both groups, but 

between group effects were trivial (ES: 0.09-0.10). Within-group differences were considered ‘likely 

beneficial’ or ‘very likely beneficial’ for both groups. 
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Table 6.4. Changes in anthropometrics and physiological parameters in both groups. CG = control group, CI = confidence interval, LTP = lactate turnpoint, MDC95 = 

minimal detectable change for 95% confidence interval, s𝑉̇O2max = speed associated with maximal oxygen uptake, s = speed, STG = strength training group 

 Group Pre Post % change (95% CI) 
Effect size 

(interpretation) 
MDC95 

Magnitude based 

inference 

Anthropometrics    

Body mass (kg) 
STG 57.8 ±6.1 58.5 ±5.9 0 - 2.4 

0.08 (trivial) 0.7 Most likely trivial 
CG 58.5 ±9.5 58.6 ±8.9 -1.7 - 2.1 

Skinfold (mm) 
STG 36.6 ±13.2 37.9 ±14 -2.2 – 9.3 

0.24 (small) 2.6 Most likely trivial 
CG 29.8 ±8.6 28.3 ±6.5 -13.4 – 3.7 

Maximal running   

𝑉̇O2max (L.min-1) 
STG 3.44 ± 0.76 3.44 ± 0.71     

CG 3.62 ± 0.52 3.66 ± 0.62     

𝑉̇O2max (ml.kg-0.67.min-1) 
STG 229.2 ±41.3 227.5 ±36.2 -4.8 – 3.3  

0.07 (trivial) 7.5 Most likely trivial 
CG 241.2 ±24.2 242.0 ±21.5 -7.5 – 8.3 

s𝑉̇O2max (km.h-1) 
STG 16.8 ±2.4 17.3 ±2.6 -2.0 – 8.9 

0.34 (small) 0.9 Likely trivial 
CG 17.8 ±0.8 17.8 ±1.7 -6.2 – 5.3 

Running economy (kJ.kg-0.67.km-1), absolute values are shown in brackets (kJ.km-1) 

LTP 

STG 
18.7 ±1.3 

(278.0 ± 23.6) 

18.1 ±1.4 

(271.9 ± 25.4) 

-7.5 – 1.1 

0.31 (small) 0.6 Possibly beneficial 

CG 
18.5 ±1.3 

(278.7 ± 35.9) 

18.3 ±0.9 

(276.4 ± 37.4) 

-5.4 – 3.1 

LTP -1 km.h-1 

STG 
18.8 ±1.2 

(279.9 ± 20.5) 

18.1 ±1.5 

(277.3 ± 22.2) 

-6.9 – 0.3 

0.47 (small) 0.7 Possibly beneficial 

CG 
18.6 ±1.4 

(280.0 ± 39.4) 

18.5 ±1.1 

(281.9 ± 40.2) 

-4.5 – 3.9  

LTP -2 km.h-1 

STG 
19.2 ±1.4 

(288.6 ± 23.5) 

18.5 ±1.6 

(272.8 ± 25.1) 

-7.3 – 1.1 

0.51 (small) 0.8 Possibly beneficial 

CG 
18.8 ±1.3 

(283.0 ± 39.2) 

18.7 ±1.2 

(279.9 ± 39.8) 

-4.4 – 3.1 
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Speed at fixed blood lactate concentrations     

s2mMol.L-1 (km.h-1) 
STG 13.0 ±2.6 13.6 ±2.6 1.5 – 7.7 

0.09 (trivial) 0.4 Very likely trivial 
CG 13.9 ±1.5 14.7 ±1.4 2.9 – 8.6 

s3mMol.L-1 (km.h-1) 
STG 14.1 ±2.5 14.7 ±2.6 1.4 – 7.1 

0.09 (trivial) 0.3 Unclear 
CG 15.1 ±1.2 15.7 ±1.4 2.0 – 6.6 

s4mMol.L-1 (km.h-1) 
STG 14.9 ±2.4 15.4 ±2.5 1.3 – 6.7 

0.10 (trivial) 0.3 Unclear 
CG 15.8 ±1.0 16.4 ±1.4 1.3 – 6.3 
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Table 6.5. Changes in speed and strength measures in both groups. CG = control group, CI = confidence interval, MDC95 = minimal detectable change for 95% 

confidence interval, MVC = maximal voluntary contraction, STG = strength training group, vGRFjump = vertical ground reaction force during squat jump test. * 

significantly different to CG (p<0.05) 

 

 Group Pre Post % change (95% CI) 
Effect size 

(interpretation) 
MDC95 

Magnitude based 

inference 

20 m sprint (s) 
STG 2.79 ±0.22 2.69 ±0.19* -5.4 to -1.8 

0.32 (small) 0.03 Very likely beneficial CG 2.64 ±0.24 2.62 ±0.23 -1.5 - 0 

Peak displacement (m) 
STG 0.26 ±0.03 0.27 ±0.04 0 – 7.7 

0.10 (trivial) 0.03 Unclear 
CG 0.26 ±0.05 0.27 ±0.05 -3.8 – 11.5 

vGRFjump (N.kg-0.76) 

Absolute values in brackets (N) 

STG 
58.7 ±2.3 

(1288 ±116) 

62.3 ±6.9 

(1386 ±181) 
-1.9 – 14.1 

0.93 (moderate) 10.1 Most likely trivial 

CG 
60.7 ±5.9 

(1344 ±207) 

60.2 ±9.3 

(1348 ±307) 
-11.2 – 9.2 

Peak RFD (N.s-1) 
STG 8602 ±1688* 11,150 ±3116 13.8 – 44.0 

0.55 (small) 3650 Likely trivial 
CG 10,269 ±2999 11,448 ±3097 -6.3 – 37.7 

MVC (N.kg-0.61) 

Absolute values in brackets (N) 

STG 
159.3 ±28.0 

(1905 ±391) 

183.9 ±26.5* 

(2221 ±387) 
6.3 – 24.5 

0.86 (moderate) 23.7 Possibly beneficial 

CG 

159.4 ±25.7 

(1917 ±383) 

161.5 ±37.1 

(1965 ±540) 
-9.4 – 12.5 
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Figure 6.2. Change in average running economy in strength training group (STG) and control group 

(CG). Minimal detectable change at 95% confidence (MDC95) is shown as the dashed line. Error bars 

represent the 95% confidence interval for the mean change. 

 

Figure 6.3. Change in 20 m sprint time in strength training group (STG) and control group (CG). 

Minimal detectable change at 95% confidence (MDC95) is shown as the dashed line. Error bars 

represent the 95% confidence interval for the mean change. 
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6.3.4 Speed and Strength Measures 

As shown in Figure 6.3, 20 m sprint time improved by -0.10 s (95% CI: 1.8-5.4%; ES: 0.32) in the 

STG, which generated a significantly faster time compared to the CG post-training (F=7.86, p=0.013) 

and was considered ‘very likely beneficial’. The STG also displayed significantly greater MVC at 

follow-up (F=5.07, p=0.040; ES: 0.86) compared to the CG; a change which was deemed ‘possibly 

beneficial’ (95% CI: 6.3-24.5%, Table 6.5). The magnitude of between group change in peak 

displacement was ‘most likely trivial’ (ES: 0.10) and the difference non-significant (F=0.18, 

p=0.682). vGRFjump improved to a moderate extent (95% CI: -1.9 to 14.1%) in the STG compared to 

the CG (ES: 0.93) but this change was considered ‘most likely trivial’ in the context of the MDC95 

threshold (Table 6.5). Peak RFD displayed significant differences between groups at baseline in 

favour of the CG (F=5.865, p=0.029). A small increase (95% CI: 13.8-44%; ES: 0.55) was observed 

in the STG, however this was not statistically significant compared to the CG change (F=0.371, 

p=0.552) and was qualitatively defined as a ‘likely trivial’ benefit.  

Inter-individual differences in response could mainly be explained by the within-participant 

variability in change scores, as for all but one variable (RE at sLTP), the SD for pre-to-post 

differences was larger in the CG group compared to the STG group (see Table 6.4 and Table 6.5). In 

standardised units the individual responses for RE at sLTP was 0.18, which indicates that individual 

responses were trivial between groups.  

 

6.4 Discussion 

The primary aim of this study was to investigate the physiological effects of ten weeks of ST in a 

group of competitive post-pubertal distance runners. It was anticipated that the STG would 

demonstrate superior improvements in RE, s𝑉̇O2max, sprint speed, and neuromuscular parameters 

compared to a CG. The main finding was that ST provides a small benefit (3.2-3.7%) to RE across a 

range of sub-maximal speeds, which can be considered ‘possibly beneficial’. ST is also likely to 

provide significant benefits to maximal sprint speed and isometric strength in runners of this age. 

The findings of this study are in agreement with those of a recent meta-analysis in mainly adult 

runners, which showed concurrent strength and endurance training can provide a small beneficial 

effect (3.9 ±1.2%) to RE over a 6-14 week period (Denadai et al., 2017). Our results are also similar 

to the only other study that has investigated the efficacy of ST in adolescent distance runners, which 

demonstrated small improvements (2.0-2.7%, ES: 0.26-0.40) in RE at 12 and 14 km.h-1, and trivial 

changes at 10 and 13 km.h-1 (Mikkola et al., 2007). The superior effects observed at all three speeds 

assessed (3.2-3.7%, ES: 0.31-0.51) may be due to the longer intervention period (10 vs 8 weeks), 

higher frequency of exposure to each type of ST activity (2 vs 1 day.week-1), and the choice of RT 

exercises (multi-joint vs single-joint). It is noteworthy that the intervention group in the Mikkola et 
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al. (2007) study performed almost double the volume of training compared to the STG in the present 

study (273 ±88 vs 528 ±126 min.wk-1). Moreover, the CG in the present study spent 41% more time 

running than the STG (ES: 0.69). This suggests that for the adolescent distance runner, ST may be 

more effective than increasing endurance training volume at improving RE, at least in the short-term. 

It is also possible that the moderate disparity in low intensity running volume between the groups 

was advantageous to the STG group as less running may have facilitated the recovery process 

(Houmard, 1991; Spencer and Gastin, 2001). Despite the apparent trend towards an improvement in 

RE, it is important to note that the change scores did not exceed the MDC95 for any speed or an 

average of measurements (Figure 6.2), indicating that only a possible benefit exists at specific speeds 

when TE of measurement is taken into account. A longer intervention period may therefore be 

required to provide higher certainty that ST provides a practically significant benefit. 

Neuromuscular factors, such as muscle activation and musculotendinous stiffness, play an important 

role in distance running (Lai et al., 2014; Paavolainen et al., 1999c), therefore strategies to enhance 

these qualities are likely to lead to an improvement in RE. A significant improvement in maximal 

force producing capability was observed in the STG (95% CI: 6.3-24.5%, ES: 0.86), which is in line 

with findings from previous studies in adult distance runners over a similar time frame (Damasceno 

et al., 2015; Skovgaard et al., 2014). The ST programme, which included plyometrics, sprinting and 

RT, was also shown to provide a small but ‘very likely benefit’ to maximal sprint speed (95% CI: 

1.8-5.4%; ES: 0.32); an improvement which was more than three times higher than the MDC95 value. 

Maximal speed is an important anaerobic quality required for middle-distance running (Kadono et 

al., 2007), and is also related to long-distance running performance (Nummela et al., 2006; 

Paavolainen et al., 1999c). Maximal sprinting requires higher ground reaction forces compared to 

sub-maximal running (Nilsson and Thorstensson, 1989), therefore this finding supports the view that 

ST can improve neuromuscular characteristics during a highly functional assessment of explosive 

strength in runners. Peak displacement, vGRFjump and peak RFD displayed changes which fell well 

within MDC95 limits, thus the effect of ST on these parameters was at best trivial. The specificity of 

the exercises used in the ST programme (Table 6.1) may provide an explanation for this finding, 

since very little maximal concentric-dominant jumping was included. A relatively higher volume of 

near-maximal sprinting and loaded exercises that mimic a quarter-squat position were included, 

which appears to have provided a sufficiently high transfer of training effect to enhance 20 m sprint 

and MVC. The possibility that the bodyweight movement skill exercises included in the warm-up 

routine also contributed towards the improvements observed cannot be discounted. Dynamic postural 

control exercises reduce co-activation of muscles in the lower limb, which may have enhanced 

efficiency during running via improvements in stabilisation strategy (Moore et al., 2014b).  

Despite the prediction that s𝑉̇O2max would improve to a greater extent in the STG, this was not the 

case (95% CI:-2.0 to 8.9%, ES: 0.34, ‘likely trivial benefit’). s𝑉̇O2max provides a composite measure 

of physiological performance that appears to differentiate adolescent runners with greater accuracy 
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than traditional determinants (Almarwaey et al., 2003).  Our findings are in agreement with other 

works that utilised a similar intervention duration (Giovanelli et al., 2017; Mikkola et al., 2007), but 

differ from studies which lasted ≥ 14 weeks (Beattie et al., 2017; Millet et al., 2002), suggesting 

longer time frames may be required to realise a positive effect. It is also likely that large 

improvements in constituent qualities (𝑉̇O2max, RE) are required to elicit a meaningful change in 

s𝑉̇O2max. Although RE displayed small improvements, 𝑉̇O2max   showed little alteration, implying that 

a greater stimulus may be required to influence these variables.  

Following an 11 week period of running training, it was expected that aerobic variables would exhibit 

improvements in a group of adolescent athletes. The intervention period provided a small (3.4-5.8%) 

but ‘very likely’ or ‘likely benefit’ to sFBLC in both groups, suggesting the running training caused 

metabolic adaptations (Billat et al., 2003), which were not augmented by ST (ES: 0.09-0.10). The 

lack of change in 𝑉̇O2max in both groups corroborates findings from previous investigations (Beattie 

et al., 2017; Damasceno et al., 2015; Giovanelli et al., 2017; Millet et al., 2002; Skovgaard et al., 

2014). Improvements in aerobic power are influenced by a variety of factors including initial training 

status, and the duration and nature of training conducted (Wenger and Bell, 1986). Both groups spent 

25-28% of their running training above sLTP, an intensity which is likely to have provided a strong 

stimulus for improving 𝑉̇O2max (Midgley et al., 2006b).  Therefore it appears the study duration and 

the initial fitness level of participants provide the most likely explanation for the unaltered values 

observed. Despite the absence of change in several parameters, it is notable that ST caused no 

deleterious effects in physiological predictors of performance despite the STG spending ~40% less 

time running compared to the CG.  

Increases in body mass are potentially disadvantageous to distance runners, therefore gains in muscle 

mass, which is often an inevitable consequence of RT, are unfavourable. Although the CI for the 

change in body mass in the STG did not overlap zero (95% CI: 0-2.4%), the differences between 

groups were ‘most likely trivial’ (ES: 0.08). Furthermore, any slight increase in body mass in the 

STG did not adversely affect the physiological variables that were allometrically scaled for body 

mass. Despite the association between RT and a hypertrophy response (Hakkinen, 1989), there is 

consensus that ST has little impact upon body mass in distance runners, at least in the short- to 

medium-term (Denadai et al., 2017). The interference phenomenon, which is often observed when 

endurance and ST are performed concurrently within the same programme, has been offered as one 

explanation (Baar, 2006). The impairment of muscle fibre hypertrophy is likely to occur under 

conditions of energy depletion (McBride et al., 2009), or when ST is performed alongside a high 

frequency and intensity of endurance exercise (Coffey et al., 2009). Given the relatively low volume 

of endurance training undertaken by the STG (Table 6.2), the interference effect was perhaps less 

likely. Therefore practitioners should be cognisant that gains in muscle mass may occur over longer 

periods if a low volume of running is performed.  
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6.4.1 Limitations 

This study is subject to a number of limitations. Firstly, with the exception of sprint time, the 

measures taken in this study were laboratory-based, thus it is not known what impact the training 

intervention had on middle- or long-distance performance. Secondly, the cohort of participants were 

of both sexes and mixed event specialisms and abilities, therefore had a more homogenous group 

been targeted, firmer conclusions might have been possible. Thirdly, the scaling exponents utilised 

for normalisation of body mass were derived from relatively small samples (n ≤ 42), which may have 

generated small errors during the calculation of values. Although it is unlikely that these errors are 

sufficiently large to alter the findings of this study (see Section 5.4.3), the changes observed in RE 

were equal to or slightly less than the MDC95 at each speed (Table 6.4), therefore a more accurate 

scaling factor may have provided greater confidence that the changes observed were meaningful. 

Fourth, it is noteworthy that the group difference (19.4%) between baseline values for peak RFD was 

statistically significant (p=0.029) and higher than the TE of measurement (11.2%) identified in Study 

3 (see Table 5.5). This finding was not observed for peak displacement or other strength metrics, 

therefore it is unclear why this discrepancy occurred. Nevertheless, this bias in peak RFD pre-test 

scores did not appear to influence findings, as although the STG improved by a greater amount 

compared to the CG (28.9% vs 15.7%), the change was non-significant (p>0.05) and did not exceed 

the MDC95 value (33.1%), thus was deemed a ‘likely trivial’ effect. Finally, the study was conducted 

during the off-season, which was characterised by training of a more extensive nature, known to 

cause interference with strength adaptation (Baar, 2006). It is not known what effect a ST programme 

would have on physiological parameters during a different training phase, particularly one that had 

a larger emphasis on intensive training. 

 

6.4.2 Conclusions      

In conclusion, the addition of low frequency (2 days.week-1) ST to the programme of an adolescent 

distance runner is ‘possibly beneficial’ for RE at specific speeds, and very likely to benefit maximal 

sprint speed, which are both important factors for middle- and long-distance running performance. It 

was speculated that changes in neuromuscular characteristics, such as maximal force producing 

capability, underpin the small improvements in RE observed. A ten week period of ST was 

insufficient to alter s𝑉̇O2max, therefore further studies are required to investigate the time course of 

change in this and other determinants. There appears to be little risk that ST increases body mass; 

any change over a period of 2-3 months is likely to be trivial.  
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6.5 Perspective 

Two primary aims of this thesis relate to examining the acute and chronic effect of strength-based 

exercise on determinants of distance running performance, specifically in adolescent distance 

runners. Chapter 2 presented the outcomes of ST interventions in adult distance runners (Study 1; 

Section 2.5) and the benefits of ST for adolescent athletes (Section 2.7). Despite an abundance of 

literature in these areas, there is a shortage of high quality investigation specifically on the efficacy 

of ST for adolescents, who have ambition to excel in distance running. Interestingly, it was observed 

that a high proportion of competitive junior (under-20) distance runners include ST activities in their 

training regimen compared to their more senior counterparts (Study 2; Chapter 4). This study 

therefore formed the cornerstone of the experimental work in this thesis. To quantify the error in 

measurement associated with tests for important physiological- and strength-variables, a reliability 

study was first undertaken (Study 3; Chapter 5). Results of the reliability study also allow qualitative 

inferences to be made that have real-world relevance, based upon the uncertainty in observed values 

from an experiment.  

Results from this Chapter suggest that ten weeks of ST added to the training routine of a post-pubertal 

distance runner is ‘possibly beneficial’ (ES: 0.31-0.51) for RE at several sub-maximal running 

speeds. A reduction in metabolic cost of running should theoretically allow runners to travel faster 

for the same level of effort, or expend less energy for a given submaximal speed. Either way, this is 

likely to augment physiological adaptation long-term by providing a greater overload or facilitating 

recovery due to less fatigue. Additionally, maximal sprint speed is very likely to benefit from a ST 

intervention. This finding has direct tangible benefits for high-intensity sprint interval sessions and 

middle-distance race performances in particular. 

Although the chronic responses to ST in distance runners is well-researched, surprisingly few studies 

have examined whether acute benefits can be achieved following a short bout of strength-based 

exercise (see Section 2.6.4). A large body of evidence has also explored the acute effects of various 

LCAs on explosive power performance, thus a large gap in the literature exists surrounding acute 

potentiation protocols for endurance performance. Given the mechanisms that underpin a PAP effect 

(see Section 2.6.3), a high-performing group of young middle-distance runners represent a sub-

population of endurance athletes who might be expected to generate a relatively high PAP response, 

if an appropriate LCA is prescribed. Consequently, Chapter 7 explores this hypothesis by 

investigating the acute effect of a LCA on performance-related outcomes in a group of male 

adolescent middle-distance runners.  
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CHAPTER 7 

 

ACUTE POTENTIATING EFFECT OF DEPTH JUMPS ON 

RUNNING ECONOMY AND TIME TO EXHAUSTION IN MALE 

JUNIOR DISTANCE RUNNERS  

(Study 5) 
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7.1 Introduction 

Warm-up activities are commonplace in the pre-training and competition routine of endurance 

athletes. Warm-up strategies for distance runners typically aim to achieve acute metabolic and 

cardiovascular adjustments, which enhance the V̇O2 kinetic response (Jones et al., 2003a). Distance 

running performance is underpinned by several important physiological determinants, which are 

limited by metabolic and cardiovascular factors, however neuromuscular characteristics also play an 

important role (Thompson, 2017). It is currently unknown whether high-intensity strength-based 

activities incorporated into a warm-up are capable of potentiating the neuromuscular system, thus 

providing additional benefits to the determinants of performance in distance runners. 

For short-duration athletic tasks, such as sprints and jumps, there is a large body of evidence 

demonstrating possible improvements in performance 5-12 min after completion of a ballistic 

exercise (e.g. plyometrics) or a heavy resistance exercise (>85% 1RM) (Maloney et al., 2014; Seitz 

and Haff, 2016). The PAP phenomenon is believed to be responsible for this effect, which is 

underpinned by several physiological mechanisms including phosphorylation of MLC, an increase 

in motor unit recruitment and changes in limb stiffness (Maloney et al., 2014; Tillin and Bishop, 

2009). Although, these mechanisms have been shown to facilitate a short-term improvement in 

explosive power performance there has been speculation that endurance-related outcomes may also 

benefit (Hamada et al., 2000).  

Type II muscle fibres possess a greater capacity for phosphorylation of MLC (Vandervoort et al., 

1983), therefore middle-distance runners who possess a relatively high proportion of type II muscle 

fibres compared to longer-distance specialists (Costill et al., 1976a), are most likely to benefit from 

a PAP protocol (Hamada et al., 2003). Older adults and athletes who have spent extended periods of 

time participating in endurance training are more also likely to possess a low percentage of type II 

muscle fibres (Abernethy et al., 1990; Nilwik et al., 2013). A group of high-performing younger 

distance runners therefore seem to represent a population of endurance athletes who might benefit 

from a PAP protocol.  

Improvements in RE (Balsalobre-Fernandez et al., 2016; Denadai et al., 2017) and TT performance 

(Beattie et al., 2014) have been reported following a chronic ST intervention, however only a few 

studies have reported how these methods might acutely enhance these parameters (Barnes et al., 

2015; Feros et al., 2012; Silva et al., 2014). A series of sprints (6x10 s) wearing a weighted vest prior 

to an incremental treadmill run has been shown to improve peak running speed and RE compared to 

a warm-up which included non-weighted sprints (Barnes et al., 2015). The authors attributed changes 

in leg stiffness, assessed using a repeated jump-test, to the performance improvements. High-load 

resistance exercise has also been shown to enhance 20 km TT performance in well-trained cyclists 

(Silva et al., 2014). A similar finding was observed in a group of elite rowers during a 1 km TT, with 
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power in the first 500 m displaying improvement following a series of 5x5 s isometric contractions 

on the rowing ergometer (Feros et al., 2012).  

 

7.1.1 Study Aim 

Simple strategies incorporated into warm-up routines, which have the potential to improve 

performance, are likely to be of considerable interest to athletes and their coaches. High-intensity PT 

has been shown to enhance RE and performance (Beattie et al., 2014) and plyometrics have been 

used to successfully potentiate sprint performance in athletically trained males (Bomfim Lima et al., 

2011). Importantly, plyometrics do not require specialist or cumbersome equipment and can be easily 

utilised in a field-based setting with athletes. Based on the aforementioned information, it was 

hypothesised that a simple plyometric exercise would improve RE and performance.  Consequently, 

the aim of this study was to examine the influence of performing DJ on RE and TTE in a group of 

elite junior middle-distance runners. 

 

7.2 Methods 

7.2.1 Study Design  

The study required participants to attend the laboratory on three occasions during the off-season, 

each separated by 2-7 days. The first testing session involved a discontinuous submaximal 

incremental running assessment followed by a V̇O2max test. After a 20 min active recovery consisting 

of 5-10 min jogging and slow walking, CMJ height was also assessed. On the second and third visits 

to the laboratory, participants completed two performance trials in a crossover design, one which 

included a warm-up involving a set of DJ and the other a control condition, involving unloaded 

quarter squats.  

 

7.2.2 Participants 

A power analysis for a crossover study design was performed using within-subject SD and MDC95 

from the reliability study (see Chapter 5). It was identified that ten participants were required to 

detect a treatment difference at a two-sided 0.05 significance level with a probability of 80%.  

Seventeen junior (aged 15-18 years) male middle-distance runners of national and international 

standard took part in this study. All participants were classified as post-pubertal (≥ 1 year) based 

upon a calculation of predicted maturity offset (Moore et al., 2015). The characteristics of the 

participants are shown in Table 7.1. 
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Table 7.1. Characteristics of study participants (n=17). SD = standard deviation, V̇O2max. = maximal 

oxygen uptake, sLTP = speed at lactate turnpoint, sV̇O2max. = speed associated with maximal oxygen 

uptake, CMJ = counter-movement jump. 

Characteristic Mean ± SD 

Age (years) 17.6 ± 1.2 

Body mass (kg) 63.4 ± 6.3 

Stature (m) 1.76 ± 0.06 

V̇O2max. (mL.kg-1.min-1) 70.7 ± 5.2 

sLTP (km.h-1) 16.7 ± 1.4 

sV̇O2max. (km.h-1) 21.7 ± 1.4 

CMJ (m) 0.416 ± 0.065 

 

 

7.2.3 Procedures  

The protocols used for the sub-maximal and maximal running tests are described in Section 3.5. The 

three CMJ attempts were performed, and displacement measured, as per the squat jump protocol (see 

Section 3.7.2), however participants did not pause in a half-squat position, and were simply instructed 

to jump as high as possible. Maximum CMJ height was used to individualise box height (to the 

nearest 0.01 m) for the DJ utilising rubber-topped stepping boxes (Perform Better, Warwickshire, 

UK) and squares of dense rubber matting (0.01 m thick). Participants were then familiarised with the 

exercises to be used in the two warm-up scenarios (DJ and control). For the DJ, participants were 

instructed to step off a box and rebound as high as possible whilst minimising their ground contact 

time. Figure 7.1 shows the laboratory environment and a participant about to commence a depth-

jump repetition. The control trial involved descending into a shallow squat position (~140o knee 

flexion) before slowly returning to standing. This exercise was included to mask the active effect that 

was anticipated from the DJ and minimise the likelihood of a placebo response.  

Participants completed the trials in a quasi-randomised counter-balanced order (ABBA method) to 

eliminate the possibility of bias caused by sequencing of trials. A visual timeline of the protocol used 

in the trials is shown in Figure 7.2. The two trials commenced with a warm-up at 60% V̇O2max 

followed by 5 min of running at 20%Δ below V̇O2 at LTP. The delta value was obtained by deducting 

V̇O2 at sLTP from V̇O2max. This intensity was selected as the fastest speed that participants were still 

able to maintain a steady state of V̇O2. Following a 5 min passive recovery, participants completed 

six repetitions of either DJ or the control exercise. Both protocols were followed by a further 10 min 

of passive rest to allow neuromuscular fatigue to dissipate but maximise the likelihood of a 

potentiation response being realised. Immediately prior to remounting the treadmill, participants 

were asked to provide a rating (1-10) of perceived readiness (Ingham et al., 2013). To evaluate the 
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effect of the intervention on RE, participants then ran for a further 5 min at 20%Δ below V̇O2 at LTP. 

This was followed by a 1 min rest and a run to exhaustion at sV̇O2max. Rest periods were used to 

adjust the speed of the treadmill whilst the participant stood astride the belt. Time started when the 

participant’s feet were in contact with the belt and their hands released from the hand rails. 

Participants were blinded to the duration they had been running for throughout the trial.  

 

Figure 7.1. Photograph showing the laboratory environment and set-up for DJ protocol. 

 

Figure 7.2. Schematic representation of each trial. V̇O2max = maximal oxygen uptake, LTP = lactate 

turn-point, sV̇O2max = speed at V̇O2max. 
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7.2.4 Measurements 

Anthropometric measurements were recorded as described in Section 3.6.1. At the start of each 

testing session, participant’s body mass was taken. Stature and sitting height were also measured in 

the first trial, for prediction of maturity offset. 

RE, BL, HR, RPE and maximal measures were taken in accordance with the protocols previously 

described in Chapter 3 (see Sections 3.6.2 – 3.6.5). In the main trials, V̇O2, V̇CO2 and HR were 

averaged for the final 2 min of both 5 min stages. Time to volitional exhaustion was recorded to the 

nearest second for the continuous run at sV̇O2max, and BL was taken immediately after.  

 

7.2.5 Allometric Scaling 

As this study generated a larger sample size of male only participants (n=35), compared to the 

reliability study (n=20),  an allometric scaling exponent was therefore obtained by combining 

baseline data from participants in the present study with male participants from the reliability study 

(17.3 ± 1.4 years, 62.8 ± 6.5 kg, 1.77 ± 0.06 m, 70.4 ± 7.0 mL.kg-1.min-1). Natural logarithms (In) of 

absolute V̇O2 and body mass were taken for sLTP -1 km.h-1 and linear regression was used to obtain 

values for the model lny = lna + b.lnx, where [a] is the scaling constant and [b] is the scaling exponent 

correspondent to body mass. The allometric model was identified as = 104.6 𝑥0.85 , therefore a 

scaling exponent of 0.85 (95% CI = 0.53-1.17) was used in subsequent analysis of RE. 

 

7.2.6 Statistical Analysis 

For the sample of participants used to obtain an appropriate scaling value and data sets from each 

trial, normality of distribution was confirmed visually using Q-Q plots and objectively with a 

Shapiro-Wilks statistic. Prior to scaling, the assumption of homoscedasticity was assessed using a 

scatterplot of the standardised residual and standardised predicted variables. Equality of variances 

between trials was assessed with Levene’s statistic. Homogeneity of regression was evaluated with 

a custom model ANCOVA using the trial*pre-test interaction term. Differences in pre-test values for 

RE, BL, HR and RPE were checked using an ANOVA.  

ANCOVA models allow differences between trials to be evaluated whilst correcting for variability 

in pre-test values (co-variate). It was identified that a significant difference existed between trials for 

baseline RE in favour of the control trial (F=8.872, p=0.005), therefore change scores were used in 

the ANCOVA model to avoid the potential of retaining a false null hypothesis (type II error). 

ANOVA tests were used to identify any differences that existed between trials for perceived 

readiness, TTE and end BL concentrations.   

Effect sizes for the measures taken during submaximal running were calculated as the difference 

between change scores divided by the SD of pre-test scores across both trials. For measures taken 
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during the run to exhaustion, effect sizes are presented as a ratio between the mean difference 

between trials and the between-subject SD. MBI terms were calculated using MDC95 values from the 

reliability study (Table 5.4). The intensity of the 5 min runs at 20%Δ below V̇O2 at LTP was similar 

to RE at sLTP -1 km.h-1, and BL approximated 3 mMol.L-1, therefore corresponding MDC95 values 

were used in analysis.  

As potentiation response appears to be related to strength status (Seitz and Haff, 2016), a partial 

correlation that controlled for the influence of pre-test score was performed in SPSS Statistics on the 

percentage change score for RE in the DJ trial and CMJ performance. Inter-individual responses 

were explored by calculating the true individual difference (see Section 3.8). 

 

7.3 Results 

The difference in intensity between the 5 min warm-ups that preceded both trials was negligible 

(%V̇O2max: 61.2 ± 4.4% vs 60.0 ± 4.2%, ES=0.17). Table 7.2 displays the results for measures taken 

during submaximal running before and after the DJ and control interventions. Participants perceived 

readiness to perform was significantly higher (F=4.53, p=0.041, ES: 0.62) following DJ compared 

to the control condition. Performing DJ provided a ‘possible benefit’ (-3.7%, ES: 0.67) to RE, which 

was statistically significant compared to the control trial change (F=11.39, p=0.002). The effects on 

BL, HR and RPE were trivial (ES: <0.2) and non-significant (p>0.05). The effect of DJ on TTE at 

sV̇O2max and BL response did not reach statistical significance, and in qualitative terms was 

considered ‘very likely trivial’ (ES: <0.2) compared to the control trial (Table 7.2). 

A moderate negative correlation (r=-0.55, p=0.028) was observed between the change in RE 

following DJ and CMJ height after controlling for pre-intervention RE. The true individual difference 

for change in RE in the DJ trial was calculated as 0.19 kJ.kg-0.85.km-1 (95% CI: 0.15-0.23 kJ.kg-0.85.km-

1). In standardised units (true individual difference divided by pooled pre-intervention SD), the 

individual responses were 0.42 (95% CI: 0.33-0.51) representing a small individual effect to the DJ 

intervention for RE. These individual changes in RE for the DJ trial are shown with the mean group 

change in Figure 7.3.  Individual responses in TTE were trivial (6.5 s, ES: 0.04).  
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Table 7.2. Results and qualitative inferences of measures taken during submaximal running at 20%Δ below V̇O2 at lactate turnpoint and for the run to exhaustion at 

speed associated with V̇O2max. CI = confidence interval, DJ = depth jumps, C = control trial (body weight quarter squats), RPE = rating of perceived exertion (6-20 

scale). * statistically significant difference compared to C (p<0.05) 

 

Variable Trial 
Pre-

intervention 

Post-

intervention 

Mean percentage 

change ± 95% CI  

Effect size 

(interpretation) 
Magnitude based inference 

Perceived readiness (1-10) 
DJ - 6.9 ± 0.9* 

13.3 ± 9.8 0.62 (moderate) - 
C - 6.1 ± 1.3 

Submaximal running  

Running economy  

(kJ.kg-0.85.km-1) 

 

Absolute values shown in 

brackets (kJ.km) 

DJ 
9.35 ± 0.44 

(314.0 ± 23.3) 

9.00 ± 0.42 

(304.9 ± 22.7) 
-3.7 ± 1.3* 

0.67 (moderate) Possibly beneficial 

C 
8.92 ± 0.41 

(303.1 ± 24.9) 

8.88 ± 0.41 

(301.6 ± 24.9) 
-0.5 ± 0.8 

Blood lactate (mMol.L-1) 
DJ 2.8 ± 0.9 2.4 ± 0.8 -14.3 ± 6.1 

0.15 (trivial) Very likely trivial 
C 2.6 ± 0.8 2.3 ± 0.8 -11.5 ± 6.2 

Heart rate (b.min-1) 
DJ 172 ± 10 173 ± 10 0.6 ± 0.4 

0.08 (trivial) Most likely trivial 
C 171 ± 11 173 ± 10 1.1 ± 0.6 

RPE (6-20) 
DJ 12 ± 1 13 ± 1 6.8 ± 6.2 

0.12 (trivial) Very likely trivial 
C 12 ± 2 13 ± 1 5.4 ± 3.6 

Run to exhaustion 

Time to exhaustion (s) 
DJ - 160 ± 39 

1.3 ± 6.5 0.06 (trivial) Very likely trivial  
C - 158 ± 34 

End lactate (mMol.L-1) 
DJ - 8.1 ± 2.1 

2.5 ± 7.7 0.13 (trivial) Most likely trivial 
C - 7.9 ± 1.9 
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Figure 7.3. Mean change and individual values (n=17) for running economy at 20%Δ below V̇O2 

associated with lactate turnpoint in the depth jumps trial.  

 

7.4 Discussion 

The aim of this experiment was to examine whether the inclusion of DJ in the warm-up routine of a 

group of high-performing junior middle-distance runners could acutely influence RE, and TTE at 

sV̇O2max. Findings suggest that DJ provide a significant moderate benefit (-3.7%, ES: 0.67) to RE but 

TTE was unaffected. This may, in part, be mediated by a higher subjective readiness to perform. In 

the context of MDC95 values, DJ were considered a ‘possibly beneficial’ stimulus to enhance RE. 

There were small differences in individual RE responses to DJ, and this appears partly attributable 

to an individual’s explosive strength capabilities.  

Despite a large body of evidence demonstrating positive acute effects from high-load resistance 

(Seitz and Haff, 2016) and ballistic (Maloney et al., 2014) exercise on explosive power tasks, very 

few studies have been conducted examining whether endurance-related parameters could also 

benefit. This is the first study to show significant improvements (-3.7%, ES: 0.67) in RE following 

a single set (6 repetitions) of high-intensity plyometric exercise compare to the change observed in a 

CG (p=0.002). This effect is similar in magnitude to improvements observed in RE following chronic 

periods (6-14 weeks) of ST in distance runners (Denadai et al., 2017). Using a similar protocol to the 

current study, Barnes and colleagues (2015) observed large (-6.0%, ES: 1.40) improvements in RE 
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following 6x10 s sprints with a weighted vest (20% body mass). Similarly, Feros and co-workers 

(2012) found that using isometric contractions (5x5 s) on a rowing ergometer increased mean power 

for the first half of a 1 km rowing time trial by 6.6% (ES: 0.64). Collectively, these data suggest a 

moderate-large benefit for task-specific potentiation stimuli to enhance performance-related 

outcomes.    

There were trivial differences in BL and HR during sub-maximal running between trials (ES: <0.2). 

This suggests that metabolic- or cardiovascular-related mechanisms are unlikely to be responsible 

for the change observed in RE. Acute alterations in neuromuscular characteristics, which are also 

known to underpin RE (Nummela et al., 2006), are therefore a more likely mechanism of effect. 

Indeed, acute increases in musculotendinous stiffness have previously been shown in response to a 

potentiation stimulus (Barnes et al., 2015; Comyns et al., 2007). A high-intensity plyometric exercise 

may also activate a large pool of motor units, which are then accessible during subsequent exercise 

(Hamada et al., 2000). Thus, for any given sub-maximal exercise performed shortly after, a lower 

relative intensity of activation is required, thereby reducing energy cost (Fletcher and MacIntosh, 

2017). The significant difference observed between trials in perceived readiness to perform (p=0.041, 

ES: 0.62) is similar to findings by Ingham and colleagues (2013) and indicates that a central 

mechanism of effect may also have played a role in improving RE. It may also be possible that this 

difference in perceived readiness was simply reflective of a placebo response to the DJ, and is not an 

indication of a mechanism underlying the positive change in RE. 

Although it is clear that endurance-trained athletes are capable of eliciting a PAP response (Hamada 

et al., 2000), the phenomenon is more likely to occur in stronger individuals (Seitz and Haff, 2016). 

This is partly confirmed by findings in the present study as explosive strength capability, measured 

via a CMJ, was correlated (r=-0.55, p=0.028) with change in RE following DJ. This suggests that 

distance runners with greater levels of explosive strength are more likely to benefit from a PAP 

protocol. In this study, DJ were performed from a height equal to a participants CMJ, therefore more 

explosive individuals received a higher stimulus than those who were less explosive. The possibility 

that differences in the absolute intensity of the stimulus applied explain the improvement observed 

in change in RE following DJ cannot be discounted.  

Identification of individual responses is only possible if the random within-subject variation is 

accounted for by calculating the extent to which the net mean effect of an intervention differs between 

participants. The true individual responses to DJ were small, even when uncertainty was accounted 

for (ES: 0.42, 95% CI: 0.33-0.51, Figure 4.2). The overall effect of DJ, after removing the effects of 

random variation can therefore be summarised as -0.35 ± 0.19 kJ.kg-0.85.km-1 (mean ± SD of 

individual response) or, in standardised units (ES) 0.67 ± 0.42. Thus, the positive effect typically 

ranged from small (ES: 0.25) to borderline moderate-large (ES: 1.09). 
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TTE at sV̇O2max and end BL were very similar between trials (ES: <0.2, p>0.05). Following a PAP-

inducing stimulus, potentiation and fatigue coexist (Tillin and Bishop, 2009), therefore selecting a 

recovery time that allows fatigue to dissipate, yet a state of potentiation to remain, is essential to 

ensure a benefit is realised. In the present study, RE was measured 10 min after completion of DJ. 

The run to exhaustion then started 16 min after the DJ, thus any potentiation may have dissipated by 

this point in the trial. A similar response pattern was observed in a 20 km cycle TT after heavy (5RM) 

leg pressing exercise and a 10 min recovery (Silva et al., 2014). Only the first split (0-2 km) in the 

TT was augmented, with little difference observed in the remainder of the trial compared to a control 

condition (Silva et al., 2014). It is also possible that the task itself was unsuitable for any state of 

potentiation to be realised. As RE was significantly improved, a TTE run or TT at an intensity below 

maximal lactate steady state may have produced more noticeable improvements. 

     

7.4.1 Limitations 

It is important to note that the pre-intervention values for RE between trials displayed a significant 

difference (p=0.005) of 4.8%, which is greater than the within-subject variation recorded in the 

reliability study (see Chapter 5, Table 5.4). Given the design of the study, blinding of participants to 

the intervention they were about to perform, careful calibration of equipment, and high similarity 

between inter-trial warm-up intensities, it is not obvious why this difference occurred. A difference 

of 2.9% was present in the pre-intervention V̇O2 values, which is similar to intra-individual variability 

recorded in the reliability study (2.8%). When combined with subtle differences in body mass (0.3%) 

and RER values (0.7%), both in favour of the DJ trial, this appears to have generated inflated pre-

intervention values in the DJ trial.  

The only variable measured in this study which was not replicated in the reliability study was TTE 

at sV̇O2max. To generate the MBI term, the TE of the TTE from the V̇O2max test in the reliability study 

was used, however this was obtained using an incremental gradient change, not at a continuous speed. 

Given that a trivial mean difference was noted between conditions for TTE in this study (2 ± 20 s, 

1.3 ± 6.5%, ES: 0.06), it is unlikely this inaccuracy will have affected the MBI, however it cannot be 

discounted. Due to the nature of the two different protocols, TTE was markedly different between 

this investigation (159 ± 36 s) and the reliability study (376 ± 70 s), therefore the MDC95 percentage 

(10.1%) was applied to the mean result of this study and used as the threshold of effect (16 s). One 

alternative would have been to utilise the SWC statistic (0.2 x between-participant SD), which has 

been advocated for this procedure (Batterham and Hopkins, 2006). However, the SWC does not 

account for the TE of measurement, which may be larger. The SWC statistic for TTE would be 7 s, 

which evidently is far less sensitive than using the MDC95 percentage from TTE in the reliability 

study. A study by Billat and colleagues (1994) which assessed the reproducibility of TTE at sV̇O2max 

in a group of male long-distance runners (V̇O2max: 69.5 ± 4.2 mL.kg-1.min-1, sV̇O2max: 21.25 ± 1.1 
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km.h-1) similar to those used in this study, provides further perspective. Test-retest data showed a TE 

of 5.7% (ES: 0.42), which would generate a MDC95 value of 64 s (15.8%) (Billat et al., 1994). This 

indicates that TTE at sV̇O2max may possess lower day-to-day stability compared to TTE in a V̇O2max 

test, thus the finding that DJ provided a ‘very likely trivial’ effect on TTE is plausible.  

The results of the reliability study indicated that measures of explosive strength possess only 

moderate reliability in this population (see Table 5.5). It is therefore possible that the trend for an 

improvement in jump height under test-retest conditions would also have been observed in this study 

for CMJ. If this was the case, participants in the present study would have performed their DJ from 

a box ~5% (1-3 cm) higher. It is not known whether this additional height would have provided a 

greater level of potentiation, however given the numerous other confounding variables that may also 

be influencing results by small margins, it seems unlikely.   

   

7.4.2 Conclusions 

Including six DJ, 10 min prior to a run just below LTP provides a moderate benefit to RE in high-

performing junior male middle-distance runners. Runners who display higher levels of explosive 

strength seem more likely to experience a positive response. It appears less likely that continuous 

efforts at sV̇O2max are likely to benefit, however this may have been influenced by the timing of the 

protocol in this study.  

 

7.5 Perspective  

This thesis aims to further our understanding of concurrent training for distance runners by 

investigating current ST practices, and examining the acute and chronic efficacy of ST exercise on 

physiological determinants of performance, with a specific experimental focus on adolescent runners. 

The study presented in this Chapter contributed to this aim by exploring the acute effect of a set of 

plyometric-based exercise on a range of physiological parameters associated with performance in a 

group of national and international adolescent middle-distance runners. Chapter 2 discussed the 

theoretical and evidence-based rationale for this warm-up approach in endurance-athletes and results 

from Study 2 (Chapter 4) indicated that a relatively high proportion (35%) of runners include PT 

exercises in their warm-up. RE data from Study 3 (Chapter 5) was used with values obtaining for 

participants in this study to generate an accurate allometric scaling exponent. This removes the 

confounding influence of body mass from an expression of RE. 

Findings from the present study suggest that middle-distance runners should experiment with 

incorporating a set of DJ into their warm-up routine 10 min prior to a continuous run at a speed just 

under LTP. Theoretically, an improvement in RE should allow a higher absolute speed to be attained 

for the same relative submaximal intensity, thus augmenting the training response. It is likely that 
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runners with higher levels of explosive strength will experience a greater improvement in RE. 

Therefore it may be possible that by increasing strength qualities long-term using RT may enable 

runners to achieve a greater level of potentiation that provides an advantage to performance.  
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8.1 Summary of Findings 

Middle- and long-distance running performance is constrained by several important aerobic and 

anaerobic parameters. In particular, RE displays large inter-individual variability and is influenced 

by a number of biomechanical and neuromuscular factors that can be enhanced with non-running 

based training methods. The efficacy of ST for distance runners has received considerable attention 

in the literature, however to-date the results of these studies had not been fully synthesised in a review 

on the topic. 

The first study in this thesis was a systematic review, which aimed to provide a comprehensive 

critical commentary on the current literature that has examined the effects of ST modalities on the 

physiological determinants of middle- and long-distance runners.  Electronic databases were 

searched using a variety of key words relating to ST exercise and distance running. This search was 

supplemented with citation tracking. To be eligible for inclusion, a study was required to meet the 

following criteria: participants were middle- or long-distance runners with ≥ 6 months experience, a 

ST intervention (HRT, ERT and/or PT) lasting ≥ 4 weeks was applied, a running only CG was used, 

data on one or more physiological variables was reported. Two independent assessors deemed that 

24 studies fully met the criteria for inclusion. PEDro scores, which assessed the methodological rigor 

of each study revealed internal validity of 4, 5 or 6 for the works reviewed. RE was measured in 20 

of the studies and generally showed improvements (2-8%) compared to a CG, although this was not 

always the case. TT performance (1.5 km – 10 km) and anaerobic speed qualities also tended to 

improve following ST. Other parameters such as V̇O2max, sV̇O2max, BL and body composition were 

typically unaffected by ST. It was concluded that the addition of 2-3 ST sessions per week, which 

include a variety of ST modalities are likely to provide benefits to RE, TT performance and sprint 

performance in middle- and long-distance runners. Importantly for the distance runner, body mass 

does not appear to increase following a ST intervention lasting ≤14 weeks.  

Despite the consensus surrounding the advantages of concurrent strength- and endurance-training for 

a distance runner, S&C practices of distance runners are largely unknown. The second study in this 

thesis therefore aimed to explore the S&C habits of competitive middle- and long-distance runners 

and also examined whether reported frequency of injuries were influenced by training behaviours. 

An online survey was completed by 1883 distance runners (≥ 15 years old). All runners who raced 

competitively were included in data analysis (n=667). Distance runners mainly engaged with S&C 

activities to lower risk of injury (63.1%), and improve performance (53.8%). The most common 

activities utilised were stretching (86.2%) and core stability exercises (70.2%). RT and PT were used 

by 62.5% and 35.1% of runners respectively. Junior (under-20) runners include PT, running drills 

and circuit training more so than masters runners. Significantly more international standard runners 

engaged in RT, PT and fundamental movement skills training compared to competitive club runners. 

Middle-distance (800 m-3000 m) specialists were more likely to include RT, PT, running drills, 

circuit training and barefoot exercises in their programme than longer-distance runners. Injury 
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frequency was associated with typical weekly running volume and run frequency. S&C did not 

appear to confer a protection against the number of injuries runners experienced.  

Recommendations provided by several authorities and international organisations indicate that ST 

offers a range of health and performance benefits to youth athletes (Behm et al., 2008; Bergeron et 

al., 2015; Lloyd et al., 2016; Lloyd et al., 2014). Results from the survey (Study 2) revealed a 

relatively high proportion of junior (under-17 and under-20) runners choose to include ST activities 

in their training routine. The systematic review (Study 1) also identified a lack of literature 

specifically on the post-pubertal adolescent age-group, which is typically the period that young 

athletes will elect to specialise in a sport of their choosing (Lloyd et al., 2016; Lloyd and Oliver, 

2012; Myer et al., 2016). A ST intervention with post-pubertal adolescent distance runners therefore 

formed the cornerstone of this thesis (Study 4) to address this absence of literature. 

To enable effective interpretation of data in the experimental studies of this thesis two investigations 

were carried out in young distance runners (Study 3), one which aimed to quantify the intra-

individual reliability of a number of physiological variables and the other a reliability study into 

biomechanical variables. For the physiological variables, sixteen (8 male, 8 female) participants 

(16.7±1.4 years) performed a sub-maximal incremental running assessment followed by a maximal 

running test, on two occasions separated by no more than seven days. A number of physiological 

parameters were assessed including: V̇O2max, sV̇O2max, RE, RPE, and speed and HR at FBLC. V̇O2max 

and RE were scaled for differences in body mass using a power exponent derived from a larger cohort 

of young runners (n=42). RE was expressed as oxygen cost and energy cost at the sLTP and the two 

speeds prior to sLTP. Results of ANOVA revealed an absence of systematic bias between trials 

except for BL taken immediately after the V̇O2max test, and RPE at sLTP -2 km.h-1. Reliability indices 

for V̇O2max, sV̇O2max, RE, and speed and HR at FBLC showed a high level of reproducibility across 

all parameters (TE: ≤ 2%, ICC: > 0.8, ES: < 0.6). Expressing RE as energy cost provided superior 

reliability than using oxygen cost (TE ~1.5% vs ~2%). 

To assess the reproducibility of maximal speed and strength-related variables, twelve (6 male, 6 

female) participants (17.8±1.4 years) were familiarised with a 20 m sprint test, a squat jump 

assessment and an isometric quarter squat protocol before performing two identical trials separated 

by 2-5 days. Maximal speed and squat jump displacement exhibited excellent day-to-day consistency 

(TE: <4.9%, ICC: >0.9, ES: <0.3). Conversely, vGRFjump, peak RFD during the squat jump and MVC 

during the isometric quarter squat possessed moderate levels of reliability (TE: 5-11%, ICC: 0.49-

0.65, ES: 0.62-0.79). 

Study 4 in this thesis was a randomised control trial, which aimed to examine the effect of ST on 

several important physiological and neuromuscular qualities associated with distance running 
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performance in post-pubertal adolescent distance runners. Participants (n=25, 13 female, 17.2 ±1.2 

years) were paired according to their sex and RE and randomly assigned to a ten week STG, or a CG 

who continued their regular training. The STG performed twice weekly sessions of plyometric, sprint 

and resistance training in addition to their normal running. Outcome measures included those 

assessed as part of the reliability study. Eighteen participants (STG, n=9, 16.1 ±1.1 years; CG, n=9, 

17.6 ±1.2 years) completed the study. The STG displayed small improvements (3.2-3.7%, ES: 0.31-

0.51) in RE that were inferred as ‘possibly beneficial’ across three submaximal speeds. Trivial or 

small changes were observed for body composition variables, 𝑉̇O2max and s𝑉̇O2max, however the 

training period provided likely benefits to sFBLC in both groups. ST elicited a ‘very likely benefit’ 

and a ‘possible benefit’ to sprint time (ES: 0.32) and MVC (ES: 0.86) respectively.  

In contrast to the high number of studies that have investigated the chronic effects of ST on 

parameters relating to distance running performance, there is currently a dearth of literature that has 

explored whether a potentiation response can be achieved following a short bout of strength-based 

exercise. Study 5 of this thesis examined the effect of performing a set of pre-exercise DJ on RE and 

TTE at sV̇O2max in a group of high-performing adolescent middle-distance runners. Following 

baseline testing, seventeen national- and international-standard male distance runners (17.6 ± 1.2 

years, 70.7 ± 5.2 mL.kg-1.min-1) completed two trials organised in a randomised crossover design. 

After a 5 min warm-up at 60% V̇O2max, participants performed a 5 min run at 20%Δ below the V̇O2 

corresponding with LTP to determine pre-intervention RE. Participants then completed either six DJ 

from a box height equivalent to their best CMJ or a control condition involving body weight quarter 

squats. After a 10 min passive recovery, another 5 min sub-maximal run was performed followed by 

a run to exhaustion at sV̇O2max. Compared to the control trial, DJ produced moderate significant 

improvements (-3.7%, ES: 0.67, p=0.002) in RE, which was considered ‘possibly beneficial’. 

Perceived readiness to perform was also significantly higher following DJ (13.3%, ES: 0.62, 

p=0.041). Differences in TTE and other physiological variables were ‘most likely trivial’ (ES: <0.2). 

Individual responses were small, however a partial correlation revealed a moderate relationship (r=-

0.55, p=0.028) between change in RE and CMJ height. 

In conclusion, this programme of research has added to the body of knowledge in the area of ST for 

distance runners by evaluating the evidence for its use, describing current practices, and examining 

the acute and chronic efficacy in adolescent distance runners. TT performance, RE and anaerobic 

capabilities are all likely to improve by including 2 or 3 sessions per week of ST for a 6-14 week 

period. This thesis demonstrated that it is possible that these improvements in RE and maximal sprint 

speed also extend to the post-pubertal adolescent age-group. Despite the advantages of 

supplementing a distance runners training routine with S&C, RT and PT are performed by 

approximately two-thirds and one-third of competitive distance runners respectively. It appears that 

younger runners, middle-distance specialists and runners of a higher competitive qualification are 



 
 

193 
 

more likely to participate in ST. Finally, this thesis also provided novel insight into the use of 

strength-based exercise in the warm-up routine of a distance runner by showing that an acute episode 

of high-intensity plyometrics is capable of potentiating RE and enhancing perception of readiness to 

perform.  

 

8.2 Practical Applications 

The studies that comprise this thesis have a high level of applicability to practitioners who contribute 

to optimising the physical preparation of distance runners. Based upon the results of the systematic 

review (Study 1) and the training intervention (Study 4), it is likely that the addition of 2 or 3 

supervised ST sessions per week will provide a sufficient stimulus to augment physiological 

parameters to a small extent within a ten week period. Benefits are likely to be larger for interventions 

of a longer duration and for ST programmes that are supervised by qualified practitioners. Although 

the majority of previous studies supplement a runners training with ST, there also appears to be no 

disadvantage to reducing weekly running volume to accommodate the addition of two weekly ST 

sessions. A variety of ST modalities can be used to achieve similar outcomes assuming runners are 

of a non-strength trained status, however to maximise long-term adaptations, it is suggested that a 

periodised approach is adopted with HRT prioritised initially (Beattie et al., 2017; Cormie et al., 

2010b). Although changes in fat-free mass appear to be minimal, a targeted RT programme, that 

aims to increase muscle mass specifically around the proximal region of the lower limb may enhance 

biomechanical and physiological factors, which positively influence RE (Fletcher and MacIntosh, 

2017). 

Figure 8.1 provides an overview of the session design and training units used in the intervention 

study (Study 4). A similar session deign framework has also been used in other investigations (Beattie 

et al., 2017; Giovanelli et al., 2017; Mikkola et al., 2007), therefore it is proposed that this range of 

activities is suitable for a young athlete or distance runners embarking upon a S&C programme for 

the first time. Although not investigated specifically within this thesis, the inclusion of 

‘neuromuscular training’ in the routine of distance runners is likely to reduce long-term injury risk 

(Lauersen et al., 2014; Leppänen et al., 2014; Myer et al., 2011; Steib et al., 2017), therefore it would 

be imprudent to omit this form of conditioning from these recommendations. The training 

intervention (Study 4) utilised a warm-up which included a series of bodyweight exercises designed 

to enhance movement skill and mobility. These activities form an important component of 

neuromuscular training, which should also encompass balance and dynamic stability exercises, speed 

training and strength work (Fort-Vanmeerhaeghe et al., 2016).  
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Figure 8.1. Recommended structure of a strength and conditioning session for adolescent distance 

runners, and runners new to these modalities of training. 

Low intensity plyometric-based exercise, such as skipping, low-box DJ, mini hurdle jumps and short 

range hopping tasks, offer a potent stimulus to the neuromuscular system and have independently 

been shown to enhance RE and TT performance (Berryman et al.,  2010; Pellegrino et al., 2016; 

Ramirez-Campillo et al., 2014; Spurrs et al., 2003; Turner et al., 2003). It is suggested that 30-60 

foot contacts per session are utilised initially with novice-level distance runners. SpT has also been 

used in several investigations showing enhancements in performance-related factors (Millet et al., 

2007; Paavolainen et al., 1999a; Skovgaard et al., 2014), and is likely to have contributed to the 

improvements observed in maximal sprint speed in Study 4.  

RT, which should include both ERT and HRT, increases motor unit recruitment and firing frequency, 

thus enhances a runners ability to appropriately control and express force during ground contact. 

Exercises, such as squats, deadlifts, step-ups and lunge patterns, which possess similar kinematic 

characteristics to running gait, are likely to provide the greatest transfer (Bazyler et al., 2015) and 

were utilised in many of the works reviewed in Study 1 (Beattie et al., 2017; Giovanelli et al., 2017; 

Johnston et al., 1997; Piacentini et al., 2013; Storen et al., 2008; Skovgaard et al., 2014). Loaded 

jump squats, medicine ball throwing and weightlifting exercises are examples of suitable ERT 

exercises (Bazyler et al., 2015; Beattie et al., 2017; Cormie et al., 2011; Millet et al., 2002). Upper 

limb exercises such as press-ups, rowing exercises and overhead presses, should also be incorporated 

to offset the vertical angular momentum created by the lower limbs and aid in controlling excessive 

rotation forces (Johnston et al., 1997; Piacentini et al., 2013; Schumann et al., 2015). One to three 

sets of each exercise performed in a moderate repetition range (8-15 repetitions) is likely to provide 

non-strength trained individuals with a stimulus sufficient to drive neuromuscular adaptation whilst 

developing skill in each exercise (Beattie et al., 2017; Damasceno et al., 2015; Giovanelli et al., 2017; 

Millet et al., 2002; Saunders et al., 2004). Higher loads (≥80% 1RM) and lower repetition ranges (3-
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8 repetitions) are likely to be required to provide further overload in more experienced athletes, with 

volume of work moderated via an increase in sets (Beattie et al., 2017; Mikkola et al., 2007; 

Piacentini et al., 2013; Skovgaard et al., 2014; Storen et al., 2008; Vikmoen et al., 2016).   

The results of Study 2 showed that the most common reason for participation in S&C was reduction 

in injury risk (see Figure 4.3). Injury usually occurs over multiple running sessions when structure 

specific cumulative load exceeds capacity (Bertelsen et al., 2017). Youth endurance athletes have 

been identified as a high-risk group due to the rigorous training that they undertake during a critical 

period of their physical and emotional development (Matos and Winsley, 2007; Solomon et al., 

2017). Neuromuscular training, PT and resistance-based exercises are likely to contribute towards 

lowering risk of injury via enhancements in motor control, and increases in bone mineral density and 

tissue resilience (Lauersen et al., 2014; Markovic and Mikulic, 2010; Myer et al., 2011; Warden et 

al., 2014).   Exercises designed to expose specific muscles or tissues to a high magnitude of load are 

also likely to provide benefits to tendon stiffness (Fletcher et al., 2010) and tolerance to repetitive 

stress (Baar, 2017; Bohm et al., 2015; Mucha et al., 2017; Shield and Bourne, 2017; Tenforde et al., 

2016; Warden et al., 2014). It is recommended that such exercises are positioned in final part of a 

session or performed separately as pre-fatiguing muscles in isolation is likely to be detrimental to 

performance in multi-joint tasks (Augustsson et al., 2003). Specifically for distance runners, targeted 

conditioning exercises should focus on the specific structures which are vulnerable to injury, or the 

muscles that contribute towards controlling the positioning of joints within the lower limb, such as: 

the intrinsic joints of the feet, the calf-Achilles complex, gluteal and hamstring muscles (Aderem and 

Louw, 2015; Duffey et al., 2000; Franettovich et al., 2014; McKeon and Fourchet, 2015; Messier et 

al., 1995; Mucha et al., 2017). 

The findings of Study 2 identified that the most commonly utilised S&C training activities were 

stretching and core stability despite limited evidence that use of these modalities enhance 

performance or reduce injury risk.  This underscores the need for practitioners working with distance 

runners to critically appraise the training activities they prescribe, and endeavour to educate their 

athletes on the methods which are most likely to reap the greatest benefits, such as RT and PT. 

Although the relatively high participation in some S&C activities is an encouraging finding, there 

were still many participants who lacked engagement, therefore there is a need for governing bodies 

and running organisations to improve their programmes of education and outreach efforts. The results 

of Study 2 should also be used by coaches to illustrate the extent to which elite runners engage with 

various S&C modalities, as this may have been a factor which contributed towards their success 

(Young and Salmela, 2010). Younger (under-20) runners, international competitors and middle-

distance specialists were most likely to engage in ST activities, however coaches need to be aware 

that distance runners of all ages, abilities and specialisms can also benefit from these activities.  
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Results of Study 5 show that the inclusion of a set of six DJ in the warm-up routine of a well-trained 

middle-distance runners is likely to provide a moderate improvement in RE and an improved 

perception of readiness to perform. It is therefore advised that runners experiment with plyometric-

based exercise prior to ‘tempo’ training runs, which are performed at a pace around sLTP. DJ can be 

performed in a field-based setting using a step or bench which approximates maximal CMJ height. 

Acute potentiation protocols (e.g. DJ, loaded back-squats and weighted vest sprints) are also a time 

efficient strategy to ensure ST is included in the programme of distance runners. If LCA are utilised 

in high frequency (4-6 times per week), this may also promote chronic neuromuscular adaptations, 

which may benefit RE and performance long-term. Further research is required to establish if this is 

indeed possible. 

Exercise physiologists can be confident that measurement of important physiological determinants 

of distance running performance are highly-reproducible in competitive junior runners. However 

practitioners should be more cautious when using Borg’s RPE scale and interpreting absolute 

changes in BL and HR, as these are more liable to fluctuate from day-to-day. Similarly, maximal 

speed, when assessed with a flying start over 20 m, and squat jump height both possess high levels 

of inter-session stability. Practitioners should be aware that kinetic variables associated with maximal 

strength and explosive strength are prone to higher levels of error, thus young athletes may need 

several familiarisation sessions before valid measurements can be taken.      

 

8.3 Main Limitations of Findings 

There are a number of limitations associated with each study that have been discussed within 

respective Chapters. However it is important to highlight the main limitations of the findings from 

this thesis. 

Studies 4 and 5 assessed the chronic and acute responses to a strength-based exercise intervention in 

adolescent distance runners. The laboratory measurements taken in these experiments predominantly 

assessed key physiological determinants and no direct performance-based measurements were 

utilised, thus reducing the external validity of findings. Although physiological variables such as 

V̇O2max, sFBLC and RE are capable of explaining a high proportion of inter-individual variability in 

middle- and long-distance running performance (Ingham et al., 2008; McLaughlin et al., 2010), it 

cannot be certain that an improvement in any one of these parameters will infer an improvement in 

race or TT performance. TTE at sV̇O2max, which is considered a proxy measure of performance, was 

used in Study 5, however a TTE test does not require a pacing strategy, which is an inherent 

component of real performance (Jeukendrup and Currell, 2005). It is also thought that TTE tests are 

influenced by fatigue, boredom and motivation, rendering them less reliable compared to a TT 

(Laursen et al., 2007).  
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A second practical limitation related to the strength-based exercise recommendations (Section 8.2) 

from this thesis is the assumption that distance runners are able to gain access to the equipment 

required to perform the exercises suggested. Many training activities, such as PT and bodyweight 

resistance exercises, can be performed without the need to access an S&C facility. However, the 

majority of exercises utilised in the studies reviewed (Study 1) and during the training intervention 

(Study 4) require the use of specialist equipment and qualified coaching support. 

There are several examples within this thesis where participants were required to complete self-report 

questionnaires, which were subsequently used in data analysis or reporting of participant 

characteristics: S&C habits survey (Study 2; Appendix F), training log-book (Study 4; Appendix G) 

and pre-participation questionnaire (Study 4; Appendix B). The limitations of self-reporting physical 

activity behaviours are well-documented (Matthews, 2002; Sallis and Saelens, 2000). Specifically, 

re-call bias, honesty, incorrect interpretation of questions and a misunderstanding of ambiguous 

terms are all potential sources of error. Measures were taken to minimise the likelihood of these 

issues effecting results, such as a low Flesch readability score in the survey and providing verbal 

explanations to participants prior to completion of training logs. Despite these measures, the 

possibility that data were influenced by these sources of error cannot be discounted. 

A number of measurements taken in this thesis were confounded by differences in body size, thus it 

was necessary to scale each of these variables appropriately to enable valid comparisons to be made. 

The allometric scaling values were derived from relatively small sample sizes (n=33-42) in 

homogenous groups of young distance runners, therefore this may have generated imprecise 

exponents due to sampling error. As previously discussed, the scaling exponents obtained are similar 

to estimations from previous studies (Folland et al., 2008a; Ingham et al., 2008; Jaric et al., 2002; 

Lolli et al., 2017), therefore any error which exists, is likely to be minimal. It is also recommended 

that fat-free mass is a more appropriate scaling denominator compared to whole body mass (Folland 

et al., 2008a; Lolli et al., 2017). Data were scaled to body mass in the present thesis, as fat-free-mass    

could only be estimated from a sum of skinfolds equation, which would have induced a further source 

of error. Obtaining a more valid estimation of each participants fat-free mass via bioelectrical 

impendence or air displacement plethysmography would enable a more accurate scaling factor to be 

derived.   

Finally, although the findings of this thesis have a high level of practical application, no 

measurements were taken that allow for mechanistic insight into the results obtained. The potential 

mechanisms which underlie the improvements seen in performance, RE and anaerobic factors were 

discussed briefly as part of Study 1 (Section 2.5.4.9) and are largely based upon measurements of 

tendon and leg stiffness, running kinematics and EMG. Study 4 found a small (ES: 0.31-0.51) and 

possibly beneficial effect for RE and a very likely benefit to maximal speed following ten weeks of 

ST, however the reasons for these results can only be inferred from the strength-related outcome 

measures.  Similarly, a set of DJ produced a moderate (ES: 0.67) acute benefit to RE, which was 
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accompanied by a significant increase (ES: 0.62, p<0.05) in perceived readiness. This suggests that 

the mechanism of effect, could in-part, be centrally-derived, however without more sophisticated 

mechanistic measurement, this is simply conjecture. Study 2 described trends in S&C participation 

amongst a group of competitive distance runners, however the sources of motivation and reasons for 

the behaviours reported are also largely unknown.  

 

8.4 Future Research Directions 

This results of this thesis have made a meaningful contribution to the literature surrounding the use 

of strength-based exercise for distance runners, however a number of avenues for further research 

have been identified. 

Each of the works reviewed in the systematic review (Study 1) lasted 14 weeks or less, with the 

exception of one, which was 40 weeks in duration (Beattie et al., 2017). Although ST is likely to 

provide a small-moderate benefit following a 2-3 month intervention, it is uncertain whether 

improvements in RE and performance continue to be meaningful beyond this period. It is unlikely 

that improvements would continue in a linear fashion, therefore it would be of interest to establish 

the extent to which ST could contribute towards the long-term enhancement of RE. In the study by 

Beattie and co-workers (2017), improvements in RE plateaued beyond the first 20 weeks of the 

intervention period, however this was likely due to a reduction in ST volume (2 sessions reduced to 

1 session per week). sV̇O2max did however continue to improve between 20-40 weeks, showing that 

improvements can still be made longer term, using only a single bout of ST exercise each week. This 

same finding was also observed for maximum aerobic power output in a group of well-trained 

cyclists who completed 25 weeks of ST split into a 12 week preparatory period (two weekly ST 

sessions) and 12 weeks competition (one weekly ST session) (Ronnestad et al., 2010). It is currently 

unknown what effect a twice weekly regimen of ST would produce over a period of longer than 20 

weeks.  

Although the interference phenomenon is likely to blunt strength adaptations observed in distance 

runners, the extent to which this occurs is currently uncertain due to the absence of a strength-only 

training group in the works reviewed. For longer term interventions, where improvements inevitably 

plateau, minimising attenuation of strength outcomes (and equally augmenting aerobic adaptation) 

potentially becomes more important. Therefore the organisation of ST around running training 

provides an avenue for further investigation. Similarly, it would be useful for practitioners to 

understand the optimal sequencing of ST modalities within a long-term programme in order to 

optimise training outcomes and facilitate a peaking response.  

This thesis placed a focus on young distance runners in Study 4, however very few investigations 

have examined the effect of ST on other specific populations of runners such as female only 
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(Johnston et al., 1997; Vikmoen et al., 2016; Vikmoen et al., 2017), runners with a physical 

impairment, and masters age (Piacentini et al., 2013) competitors, therefore future research should 

attempt to address this shortage in literature.  

Given the dearth of literature in the area of strength-based potentiation exercise for endurance 

athletes, there is scope for a future research to address a number of important questions concerning 

the efficacy of PAP protocols in middle- and long-distance runners (see Figure 2.8). There is good 

evidence for including high-intensity sprints to enhance V̇O2 kinetics, however a PAP-inducing LCA 

may also benefit the initial stages of performance via different mechanisms. It is unknown whether 

a combination of these approaches (priming and LCA) would augment performance to an even 

greater extent, or in fact produce excessive fatigue that attenuates performance. There is also a need 

to further explore the value of different LCA’s including heavy resistance exercise, plyometrics and 

loading of the sport-skill itself. The findings of Study 5 suggest a possible acute benefit of 

plyometric-based exercise to RE, therefore the optimal prescription to maximise this potentiation 

response should also be investigated. It also appears that a LCA may only provide a performance 

advantage during the first few minutes of exercise, however it is currently unknown whether this 

effect could be longer lasting, or whether other determinants of performance are also affected 

favourably.  

Distance runners mainly engaged with S&C activities to lower the risk of injury (63.1%), thus future 

research could consider how various S&C practices may contribute to this outcome. Addressing this 

question directly is challenging due to the complexity surrounding injury occurrence and the 

requirement for long-term prospective investigation using a large cohort. The change in maximal 

force producing capability was significantly greater (p<0.05, ES: 0.86) in the STG compared to the 

CG in the ten week ST intervention study (Study 4). Although not explored as part of this thesis, 

deficiencies in strength capabilities, particularly in the musculature around the hips, may be 

associated with risk of overuse injury in runners (Franettovich et al., 2014; Mucha et al., 2017; Peters 

and Tyson, 2013; Snyder et al., 2009; Steib et al., 2017). For young distance runners, who are likely 

to increase their training volume as they approach adulthood (Matos and Winsley, 2007), this 

potentially has more important implications than the performance-related factors studied in this 

thesis. The potential for ST to offset the risk of injury in young distance runners long-term therefore 

represents an interesting possibility for future research. 

Although the survey results highlight the importance distance runners place on remaining injury free, 

over half (53.8%) of those who include S&C activities do so to improve their performance. Stretching 

(86.2%) and core stability exercises (70.2%) were identified as the most common S&C activities 

utilised, however these modalities of training have been researched extensively, both in terms of a 

means of enhancing performance and reducing injury risk (Baxter et al., 2017; Leppänen et al., 2014; 

Small et al., 2008; Wirth et al., 2017). Despite a fairly large body of evidence indicating the value of 

ST for performance-related outcomes, less than two-thirds (62.5%) of runners include RT and 
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approximately one-third (35.1%) incorporate PT. Future research could therefore investigate the 

barriers to participation in S&C for sub-groups (club-standard and masters runners) to assist coaches 

and organisations with developing initiatives to improve engagement.  
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Pre-Participation Questionnaire 

Please complete the following personal details as accurately as possible: 

Name 
 

Date of birth 
 

Email address 
 

Telephone number 
 

Athletics club 

 

Years of competitive experience in 

athletics 

 

What strength training do you 

currently perform as part of your 

training (if any)? 

 

Main competitive track distance 
 

Personal best times and date achieved 

800m: Date (month and 

year): 

1500m: Date (month and 

year): 

3000m: Date (month and 

year): 

5000m: Date (month and 

year): 

Others (eg steeplechase): Date (month and 

year): 

Dominant hand/foot? Right  /  Left 

Any current injuries or injuries in the 

last month that may prevent you 

participating in exercise? 
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Parent/Guardian Consent Form 
 
Name of Participant (your son/daughter): _________________________________________ 
 

Title of the project:  Effect of a resistance training intervention on performance of 
adolescent endurance runners 

 
Main investigator and contact details:   Richard Blagrove; Telephone number – 0208 240 4224; 
Email – richard.blagrove@stmarys.ac.uk 

 
1. I agree to my son/daughter taking part in the above research.  I have read the Participant 
Information Sheet, which is attached to this form.  I understand what is required of my 
son/daughter during the research, and all my questions have been answered to my satisfaction. 
2. I understand that I am free to withdraw my son/daughter from the research at any time, for 
any reason and without prejudice. 
3. I have been informed that the confidentiality of the information I, and my son/daughter 
provides, will be safeguarded. 
4. I am free to ask any questions at any time before and during the study. 
5. I have been provided with a copy of this form and the Participant Information Sheet. 
 
Data Protection:  I agree to the University processing personal data, which I have supplied.  I 
agree to the processing of such data for any purposes connected with the Research Project as 
outlined to me. 
 
Name of parent/guardian (print)……………………….. Signed………………..……Date…………… 
 
 
Name of witness (print)……………………………Signed………………..…….Date………………. 
 
-------------------------------------------------------------------------------------------------------------------------- 
 
If you wish to withdraw the participant from the research, please complete the form below and 
return to the main investigator named above. 
 

Title of Project: Effect of a resistance training intervention on performance of adolescent 
endurance runners 

 
I WISH TO WITHDRAW MY SON/DAUGHTER FROM THIS STUDY 
 
Name: _________________________________________ 
 
Signed: _______________________________ Date: ___________________ 

 
 



 
 

245 
 

 

 

 

 

APPENDIX D 

 

PHYSICAL ACTIVITY READINESS QUESTIONNAIRE 

  



 
 

246 
 

SCHOOL OF SPORT, HEALTH AND APPLIED SCIENCE 

CONFIDENTIAL MEDICAL HISTORY / PHYSICAL ACTIVITY READINESS 
QUESTIONNAIRE (PAR-Q) FORM 

 

This screening form must be used in conjunction with and agreed Consent Form.  
 

Full Name:       Date of Birth:  
Height (cm):      Weight (kg):  
 

 
Have you ever suffered from any of the following medical conditions? If yes please give details: 

Yes No Details 
  

Heart Disease or attack    ______________________________________ 
High or low blood pressure    ______________________________________ 
Stroke      ______________________________________ 
Cancer      ______________________________________ 
Diabetes      ______________________________________ 
Asthma      ______________________________________ 
High cholesterol     ______________________________________ 
Epilepsy      ______________________________________ 
Allergies      ______________________________________ 
Other, please give details            ______________________________________ 

 
Do you suffer from any blood borne diseases?  If yes please give details;  
 
 
Please give details of any medication you are currently taking or have taken regularly within the last 
year: 
 
 
Please give details of any musculoskeletal injuries you have had in the past 6 months which have 
affected your capacity to exercise or caused you to take time off work or seek medical advice:  
 

 
Other Important Information 
During a typical week approximately how many hours would you spend exercising?  
 
 
If you smoke please indicate how many per day:  
 
If you drink alcohol please indicate how many units per week:  
 
Are you currently taking any supplements or medication? Please give details:  

 
 

Is there any other reason that is not prompted by the above that would prevent you from 
participating within the relevant activity? 
 

 
 
Signature (Participant):     Date:  
 
Signature (Test Coordinator*):     Date: 
 

*Test coordinator: The individual responsible for administering the test(s)/session and subsequent data 

collection 
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Data Collection Sheet - Physiology Testing Trial identification Baseline / Follow-up

Name 1. Ambient Conditions

Date and Time Barometric Pressure

DOB Temp.

Humidity

PARQ

Informed consent

Personal info sheet

2. Anthropometrics 2b. Skinfolds

Weight kg kg Tricep mm mm mm

Standing height cm cm Bicep mm mm mm

Sitting height cm cm Subscapula mm mm mm

Suprailiac mm mm mm

Lactate Profile 3 min/stage; 30s rest between stage. >4mmol/L

Warm-up speed (5 min) km/h

Stage REST 1 2 3 4 5 6

Real Time

Speed (km/h)*

HR (last 30s) 1 bpm

HR (last 30s) 2 bpm

HR (last 30s) 3 bpm

RPE (last 30s)

Lactate 1

Lactate 2

VO2max. Test Start from speed that elicits approx 4mmol/L. Increase 1% every minute to exhaustion

Start time

End time

Speed

Gradient at max

HRmax

RER

Lactate 1

Lactate 2

VO2peak

Mask 

type/size
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Data Collection Sheet - Strength Testing

Name

Date and Time

DOB

Trial identification Familiarisation / Baseline 1 / Baseline 2 / Follow-up

PARQ

Informed consent

Personal info sheet

1.  3 min jog w/u

2. 20m sprint 

Tester

Trial 1

Trial 2

Trial 3

3a. Squat jump

Tester

Files saved as

4. Isometric squat

Tester

Squat stand hole

Chain link

Files saved as
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Strength and Conditioning Habits of Runners 

Section 1: Introduction 

Thank you for agreeing to fill out our survey on the strength and conditioning (S&C) habits 

of distance runners. Lots of runners of all ages and standards are recognising the benefits 

of S&C, but little is known about how this type of training is being used. Whether you use 

S&C exercises or not, your views on this topic are important to us. The purpose of this 

survey is to find out which types of runners are using S&C and the sorts of exercises which 

are popular. We are also interested in where runners get their advice on S&C and whether 

anything can be done to improve the information that is available. 

The survey should take 10-15 minutes to complete but you can expand on any answers at 

the end of the survey. Your answers will be completely anonymous so please respond to 

the questions as accurately and honestly as possible. If you have any questions about the 

survey or S&C, please email: richard.blagrove@stmarys.ac.uk. 

Statement of consent 

By completing this survey I understand that my responses will be used for research 

purposes only and I will not be named. I am over the age of 18 and consider running to be 

my main sport or physical pastime. If I am under 18 years old I have obtained a signature 

from my parent/guardian (below) providing permission for me to complete the survey. 

(please tick one option): 

 

I agree 

I disagree (please discontinue the survey) 

 

Signature of parent/guardian (for runners aged under-18):  

 

___________________________  
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Section 2: General Information 

1. What is your sex? (tick one option only) 

 

Male 

Female 

 

2. What age group are you in? (tick one option only) 

 

Under-17 

Under-20 

Under-23 

Senior 

Veteran 40-49 

Veteran 50-59 

Veteran 60+  

 

3. What events do you usually run or compete in? (tick one option only) 

 

Middle distance (800m-3000m) 

Long-distance (5000m-Half marathon) 

Marathon 

Ultra-distance 

Fell or trail running 

 

4. What level do you currently compete at? (tick one option only) 

 

I only participate and don’t compete  

Local for club/school/University 

County 

Regional 

National 

International 
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Section 3: Running Training 

 

5. How many times do you run per week? (tick one option only) 

 

1-2 

3-4 

5-6 

7-8 

9-10 

11 or more 

 

6. How many miles do you usually run each week? (tick one option only) 

 

<20 miles (32km) 

21-40 miles (32 – 64km) 

41-60 miles (65 – 96km) 

61-80 miles (97 – 128km) 

81-100 miles (129 – 160km) 

>100 miles (160km) 

 

7. How many times per week do you usually perform interval training or high-intensity 
running (including 'tempo' runs)? (tick one option only) 

0 

1-2 

3-4 

5 or more 
 

8. How many injuries (which have stopped you from running for 5 days or more) have 
you had in the last 2 years? (tick one option only) 

0 

1 

2 

3 

4 

5 or more 
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Section 4: Strength and Conditioning 

 

9. On a scale of 1-4, how beneficial do you believe the following activities are for a 

runner? (tick one box only for each activity) 

 1 
Not 

beneficial 

2 
Slightly 

beneficial 

3 
Beneficial 

4 
Highly 

beneficial 

Resistance training (barbells, 
dumbbells, medicine balls, 
resistance machines) 

    

Plyometrics (e.g. jumping, hopping, 
bounding) 

    

Fundamental movement skills (e.g. 
squat, lunge, step-up) 

    

Running technique drills     

Bodyweight exercises (e.g. press-
ups, pull-ups, single leg squat) 

    

Circuit training     

Stretching     

Foam rolling     

Balance training (including unstable 
surface training) 

    

Core stability (abdominal exercises)     

Barefoot exercises     

 

10. Do you have any of these concerns about how strength and 
conditioning may impact your running? (tick all options that apply) 
 

I don't know the best exercises or how to do them 

I will put on unwanted muscle bulk 

It will leave my muscles feeling sore and stiff 

It will make me tired for my running sessions 

It will take up valuable training time that could be spent running 

None of the activities will benefit my running 

Some of the activities may cause an injury 

Lifting weights isn't safe or appropriate at my age 

No, I don't have any of these concerns 

Other (please specify) 

 

11. What tests (if any) do you perform when assessing your fitness? (tick all options 

that apply) 

 

I don’t perform any tests 

Movement screening 

Jump tests 

Sprint tests 

Maximum strength tests 

Muscular endurance tests 

Flexibility tests 

Other (please specify) 
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12. On a typical week, do you use the following activities in your training schedule, and 
if so how often, for how long and when do you usually do them? (tick one box only 
for each activity) 
 

 Do you use the 
following 

activities? * 
Yes/No 

If yes, how 
often do you do 

this activity 
each week? 

1-2; 3-4; 5-6; 7 
or more 

If yes, how 
long do you 

spend on the 
activity per 
session?  

Less than 15 
min; 15-30 
min; 30-45 
min; 45-60 
min; More 

than 60 min 

If yes, when do 
you usually do the 

activity? 
During a warm-up 

for a running 
session; After a 
running session; 

As an 
independent 

session; As part 
of a S&C session 

(with other 
activity/activities) 

Resistance training 
(barbells, dumbbells, 
medicine balls, resistance 
machines) 

    

Plyometrics (e.g. jumping, 
hopping, bounding) 

    

Fundamental movement 
skills (e.g. squat, lunge, 
step-up) 

    

Running technique drills     
Bodyweight exercises (e.g. 
press-ups, pull-ups, single 
leg squat) 

    

Circuit training     
Stretching     
Foam rolling     
Balance training (including 
unstable surface training) 

    

Core stability (abdominal 
exercises) 

    

Barefoot exercises     

 

13. Where do you typically perform your exercises? (tick all options that apply) 

 

At home 

Gym 

Indoor athletics track or sports hall 

Outdoor athletics track 

A park 

Other (please specify) 

 

 

 

 

 

14. If you include strength and conditioning exercises as part of your training, why is 

this? (tick all options that apply) 

Not sure 

I am told to 
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Improve my performance 

Lowers my risk of getting injured 

Rehabilitation from an injury 

Improves my running technique 

It is fun and enjoyable 

Improve my body image 

Other (please specify) 

 

Section 5: Coaching 

 

15. Where do you get information on the best exercises and correct way to do them? 

(tick all options that apply) 

A qualified strength and conditioning coach 

An unqualified strength and conditioning coach 

Personal trainer/gym instructor 

Running coach 

Physiotherapist 

Parent/guardian 

A friend/club mate 

Internet sites 

Books 

Magazines 

Journals 

Other (please specify) 

 

16. Who coaches you when you do your strength and conditioning exercises? (tick all 

options that apply) 

I don’t receive any coaching 

Strength and conditioning coach 

Personal trainer/gym instructor 

Physiotherapist 

Running coach 

Parent/guardian 

A friend/club mate 
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17. Would you like more advice on the following activities? (tick one box only for each 
activity) 

 
No 

thanks 

I have a good 
coach or know a 

lot already 

No thanks, I am 
not interested 

Maybe on some 
aspects 

Yes 

Resistance training 
(barbells, dumbbells, 
medicine balls, 
resistance machines) 

     

Plyometrics (e.g. 
jumping, hopping, 
bounding) 

     

Fundamental movement 
skills (e.g. squat, lunge, 
step-up) 

     

Running technique drills      

Bodyweight exercises 
(e.g. press-ups, pull-ups, 
single leg squat) 

     

Circuit training      

Stretching      

Foam rolling      

Balance training 
(including unstable 
surface training) 

     

Core stability (abdominal 
exercises) 

     

Barefoot exercises      

 
18. Do you know how to obtain professional advice on strength and conditioning for 

runners? (tick one option only) 
 

Yes  

If yes, where?  

No 

 

19. Do you have any other opinions about S&C or detail about your S&C programme 
which you wish to share? 
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Section 6: All done! 

Thank you for taking the time to complete our survey!  

If you have any questions about the survey or strength and conditioning for 

runners, please contact richard.blagrove@stmarys.ac.uk 

 

  

mailto:richard.blagrove@stmarys.ac.uk
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APPENDIX G 

 

TRAINING LOG FOR PARTICIPANTS IN TRAINING 

INTERVENTION (STUDY 4) 
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Training Log 
 

It is important that your daily training is logged accurately and returned each week. Please complete the following boxes each day as accurately as 
possible providing as much detail as you can. 

 
Name: ______________________________________________ 

 
Week beginning date: _____________________________ 

 

Day Training Session Time/Pace Total Distance 

On a scale of 1-10 
how hard was this 

session?  
(1 = very easy; 10 = 

exhausting) 

Other notes (including any 
injuries) 

Monday      

Tuesday      

Wednesday      

Thursday      

Friday      

Saturday      

Sunday      
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