OCDMA-Based Sensor Network for Monitoring Construction Sites Affected by Vibrations

Rahimian, Farzad Pour, Seyedzadeh, Saleh and Glesk, Ivan (2019) OCDMA-Based Sensor Network for Monitoring Construction Sites Affected by Vibrations. Journal of Information Technology in Construction, 24. pp. 299-317. ISSN 1400-6529

[img]
Preview
Text
2019_16-ITcon-Rahimian.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
[img]
Preview
Text
Rahimian et al - OCDMA-Based Sensor Network for Monitoring Construction Sites Affected by Vibrations AAM.pdf - Accepted Version
Available under License Creative Commons Attribution 4.0.

Download (2MB) | Preview
Official URL: https://www.itcon.org/paper/2019/16

Abstract

Due to the progressive demand for more accurate structural health monitoring of large-scale facilities, e.g. modern high-speed railways and bridges, there is a huge uptake in the development of optical sensor networks (OSN), which can help mitigate the issues with conventional electric sensors, especially their sensitivity to electromagnetic interferences and larger sizes. The existing fibre optic infrastructures are not widely used by OSNs, due to the lack of appropriate multiplexing techniques. Aiming at addressing the implementation issues of optical sensors in urban areas, this study proposes an efficient and cost-effective system for supporting the vibration sensing of unequally distributed points. The proposed system takes the advantages of spectral amplitude encoding optical code division multiple access (SAC-OCDMA) technique, in providing differentiated services in the physical layer with varying code weights. This system utilises more wavelengths (i.e. higher power) to the farthest sensing points in order to retrieve vibration signals, properly. The mechanism of SAC for OSN is elaborated using simulation results including the impact of transmission distance and the procedure of allocating codes to different zones. These results indicate the suitability of the proposed system to be implemented in existing fibre optic infrastructures. Moreover, the numerical analysis shows a high capacity of the sensor network deploying SAC. The proposed system contributes to the construction research and practice by addressing the implementation issues of structural health monitoring of large-scale facilities in urban areas.

Item Type: Article
Uncontrolled Keywords: Structural Health Monitoring, Vibration Sensing, Optical Sensing, Optical Code Division Multiple Access, Unequally Distributed Sensor Nodes
Subjects: H900 Others in Engineering
K200 Building
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
Depositing User: Paul Burns
Date Deposited: 07 Jun 2019 10:11
Last Modified: 01 Aug 2021 11:22
URI: http://nrl.northumbria.ac.uk/id/eprint/39561

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics