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Abstract

In the current digital age where automatic controlled systems are used in many 

elds such as industrial plants, means of transports and domestic electronics applications, 

the issue of safety and reliability has become of paramount importance. With that came 

the need to develop techniques to be implemented in control systems that would allow 

monitoring those systems and detect if some malfunctions or abnormalities are occurring. 

Fault detection (FD) emerged as one of the most widely used solutions to this issue and the 

so-called model based fault detection has received a lot of attention. In this approach, a 

model of the target system is involved to estimate the expected output of the system under 

healthy condition and then a fault can be detected by comparing the actual measured 

output to the estimated healthy output. By making use of the state estimation capability 

of observers, various observer-based fault detection schemes have been proposed to estimate 

the system output for the purpose of fault detection.

However, it is worth noting that, state observers have been designed for state 

estimation and have found use in being adapted for fault detection. In order to try to answer 

the increasing requirements on systems performances, this thesis focuses on developing 

observers to be used speci�cally in FD schemes and for which a systematic way to be 

designed is proposed.

The �rst solution based on proportional integral (PI) observer, relies on integrating 

the systems output to construct an augmented model. This technique has a double e¤ect 

on achieving better fault detection performances. Indeed, disturbances e¤ect is reduced by 

using a technique based on replacing part of the model information in the observer design.
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Besides, it allows having an additional degree of freedom when optimising the observer

design to detect faults.

The second solution to the FD problem, a new type of observers, referred to as

output observer is proposed for fault detection in both linear and nonlinear systems, where

unnecessary state estimation in observer-based fault detection can be avoided. First, an

input/output system representation, upon which the output observer design is based on,

is introduced. Then, a new approach of output observer design, in which only the output

variables are estimated, is developed. The convergence of the observer with respect to

arbitrary initial conditions is proved and the fault detectability capabilities of the scheme

are established. Another bene�t of the proposed output observer design is the output

injection feature, where the measured output is directlly injected in the observer so as

to linearise the estimation error dynamics. This feature is fundamental to the solution

proposed in this thesis to deal with nonlinearities in the system�s model so that the inclusion

of those nonlinearities when tuning the observer is avoided. Furthermore, as time delays

are ubiquitous in systems, and are one of the most important sources of estimation errors,

a solution based on output injection is also proposed to set the condition that ensures the

convergence of the observer while maintaining its output estimation performances.
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Chapter 1

Introduction

Nowadays, the issue of safety is the primary concern of many industries. For this

reason, fault detection (FD) in the systems involved is one of the most important tasks

in many industrial applications. The main concern here is to identify when a fault has

occurred, evaluate the type of fault, pinpointing its location as well as taking the necessary

maintenance actions to clear the fault. As a result, fault detection is one of the most critical

aspects of control systems design.

In order to meet actual performance and safety requirement of critical systems,

various fault-tolerant control (FTC) algorithms together with the corresponding mathemat-

ical tools are developed [1]. Obviously, FD is fundamental to solving the FTC problem.

In this context, model-based FD has received much more attention since it was originally

introduced in the early of 1970s and these methods have been already remarkably developed

in the last four decades [2]. Thanks to the advent of e¢ cient computers and the advance-

ment in control theory, observer-based fault detection and fault diagnosis methods have



2

been applied in various �elds such as mechanical, electrical and chemical engineering [3].

Plenty of work has already been done in this area and some of the most known contributions

on model-based FD to the literature have been made by Paul M. Frank, Ron Patton and

Rolf Isermann [4]. Nevertheless, there is still a lot of work to be done regarding some of the

fundamentals of model-based FD. Indeed, the high-performance requirements of industrial

processes has suggested the need in �nding more appropriate methods for FD.

Because of the requirement for more e¢ cient machines, high quality products,

better pro�tability, high complexity and continuous increasing the degree of automation

of the industrial processes, the safety and reliability of systems have become increasingly

important. Today, one of the major issues surrounding the design of automatic systems is

reliability and dependability.

A traditional way to improve reliability and operation safety of systems is to

improve the quality, reliability and robustness of each component such as sensors, actuators

or controllers but despite this improvement, fault in systems remain a risk that must be

considered. Process monitoring and fault diagnosis are therefore increasingly integrated in a

modern automatic control system. In general, these are not all the faults that lead directly

to the system failure. Normally, the system is robust enough to withstand some faults and

can still provide services in degraded mode. When a fault occurs in a fault tolerant system,

a sequence of actions occurs to bring the system in a stable condition such as:

� Fault detection: To identify whether a fault happens in the system.

� Fault isolation and identi�cation: To determine the location of the fault and to

decide the nature of the fault.
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� Fault accommodation: To recon�gure control laws.

As a result, a disaster or a failure can be avoided.

One of the main issues of current model-based fault detection schemes is that the

observers employed are full-state observers. However, for the purpose of fault detection

only, these types of observers are not suitable since only a comparison between the real

output of the system and the estimated output is carried out.

So, in order to enhance fault detection capabilities of the fault detection scheme,

the identi�ed approach is to design observers speci�cally for fault detection in systems.

In those observers, the main target will be that the observer structure is optimised toward

estimating the system�s output rather than estimating unnecessary states for fault detection,

while reducing the complexity of the observer design. Thus, observer tuning for fault

detection is simpli�ed and better performances can be achieved.

Furthermore, although successive integrals cannot be avoided in observer design,

we aim to reduce the system complexity by avoiding to estimate states that are combinations

of those integrals.

1.1 Scope of the thesis

There are several methods for fault detection such as signal based, knowledge based

and model based. The scope of this thesis fall in the area of model-based fault detection

Model-based fault detection employs state estimators/observers to generate a resid-

ual signal which carries the information of the fault. The main focus of this thesis is to

redesign the observers employed for fault detection with the aim of improving e¢ ciency, the
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computation time for generating the residual and detecting the faults.

The problem of fault detection under disturbances for multi-input and multi output

linear and nonlinear systems is investigated. The considered fault detection approach relies

on the developed proportional integral and output observers. A new algorithm is proposed

to calculate the gain of the observers with the purpose of optimising the fault detection

performances. The proposed approach based on the output observer is also applied to

systems with time delay.

Application is made to a direct current (DC) motor as well as a three wheeled

robot model in order to show the performance of the proposed fault detection schemes.

1.2 Contributions

As a result, the main contributions of this thesis are:

� A PI observer theory is developed for the �rst time for MIMO systems. Then, an op-

timised PI based fault detection scheme for MIMO linear systems under disturbances

is designed.

� The output observer design methodology is developed. The basic steps towards design-

ing the observer for linear and nonlinear, SISO and MIMO systems are detailed and

the observer estimation error asymptotic convergence is proved. Then, the proposed

observer is applied to design a fault detection scheme for systems under disturbances.

Finally, the proposed observer is also applied as a solution to deal with time delay in

interconnected systems.
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1.3 Thesis structure

This thesis is divided into 7 chapters:

� Chapter 1 mainly introduces the scope of the thesis. Also, the aim, objectives, key

contributions and the structure of the thesis are presented

� Chapter 2 gives an overview of dynamical systems and model-based fault detection

schemes and presents a literature review on model-based fault detection applied to

general dynamical systems

� Chapter 3 presents PI observer development for fault detection in MIMO systems

� Chapter 4 is devoted to develop output observer design for linear and nonlinear sys-

tems

� Chapter 5 proposes a fault detection method based on output observers for SISO and

MIMO systems

� Chapter 6 is dedicated to a solution using output observer for time delays in systems

� Finally, conclusions are drawn and future works are discussed in Chapter 7.
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Chapter 2

Overview on model-based fault

detection

2.1 Introduction

Fault detection (FD) is the process of monitoring a system in order to identify a

signi�cant change that is indicative of a developing fault. The advantage of fault detection

is its ability of reducing system�s unplanned down time by detecting a fault early before the

system su¤ers severe damage and has to be shutdown. Then preventive maintenance can

be carried out and system time being out of work is considerably reduced. As a result, FD

has been playing an important role in the industrial processes that have restricted safety

requirements. In practice, the most frequently used FD method is the model based fault

detection.

The most important element model based FD is the model that is built using
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dynamical systems that describe the monitored plant. Dynamical systems are systems that

describe the evolution in time of state variables of a physical system. As such, they are used

to model various systems in diverse engineering and scienti�c �elds ranging from biology,

to economics and chemical processes, to mention a few.

This chapter will mostly concentrate on describing the mathematical proprieties

of linear and nonlinear systems that allow to study and classify dynamical systems. It will

also, introduce fault detection, and will investigate the current state of the art on observers

and fault detectors designs.

2.2 Classi�cation of dynamical systems

The purpose of this section is to classify di¤erent types of dynamical systems based

on their structure and their distinct proprieties and features as in [5], [6], [7], [8]. Dynamical

systems can be classi�ed into :

� Continuous-time dynamical systems;

� Discrete-time dynamical systems.

Several academic examples are given to illustrate various proprieties of continuous

and discrete dynamical systems .

2.2.1 Classi�cation of continuous-time dynamical systems

A continuous-time dynamical system (or simply a continuous system), as the name

implies, is a system in which the time variable, t 2 R (set of real numbers), is continuous
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and its state variables values change over time. As a result, these systems are described by

di¤erential equations of various types.

General nonlinear systems

A general nonlinear system can be described as follows:

8>><>>:
_x(t) = f(x; u)

y(t) = h((x; u)

(2.1)

where x 2 Rn denotes the n-dimensional state vector, y 2 Rp denotes the p-dimensional

output vector and u 2 Rm denotes the m-dimensional input vector. The functions f :

Rn �Rm ! Rn and h : Rn �Rm ! Rp are supposed to be smooth functions (i.e. f and h

are of class C1).

Example 1 Take an example of general systems:

8>>>>>>>>>><>>>>>>>>>>:

_x1(t) = x
2
1(t)u(t) + sin(u)x2(t)

_x2(t) = ln(x3) + x2(t)u
2(t)

_x3(t) = u(t) cos(x2)

y(t) = u(t) exp(x)

(2.2)
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Here x 2 R3, y 2 R and u 2 R with

f(x; u) =

0BBBBBB@
x21(t)u(t) + sin(u)x2(t)

ln(x3) + x2(t)u
2(t)

u(t) cos(x2)

1CCCCCCA
h(x; u) = u(t) exp(x)

(2.3)

Control A¢ ne Systems

Roughly speaking, a¢ ne means "linear". Therefore, a nonlinear system in which

the control, u, appears linearly is called control a¢ ne nonlinear system or control a¢ ne

system. So control a¢ ne systems are a particular case of the general nonlinear system as

described in Equation (2.1) and are written as follows:

8>>><>>>:
f (x; u) = f (x) +

mX
i=1

gi (x)ui(t)

h (x; u) = h (x)

(2.4)

with f and gi being smooth functions. The most commonly used form of control a¢ ne

systems is as follows: 8>><>>:
_x(t) = f (x) + g (x)u(t)

y(t) = h (x)

(2.5)
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Example 2 To be speci�c, take this simple example to represent control a¢ ne systems:

8>>>>>>>>>><>>>>>>>>>>:

_x1(t) = x
2
1(t)u1(t) + x2(t) + 3u2(t)

_x2(t) = sin(x1(t) + x2(t)) + u2(t) cos(x1(t))

y1(t) = x1(t)

y2(t) = x
2
1(t) + x2(t)

(2.6)

Here x 2 R2, y 2 R2 and u 2 R2 with

f(x) =

0BB@ x2(t)

sin(x1(t) + x2(t))

1CCA
g(x) =

0BB@ x21(t) 3

0 cos(x1(t))

1CCA
h(x) =

0BB@ x1(t)

x21(t) + x2(t)

1CCA

(2.7)

State a¢ ne systems

State a¢ ne systems as the name implies are systems in which the state, x, appears

linearly. They are a particular case of the general nonlinear systems (2.1) whereby:

8>><>>:
f (x; u) = F (u; y)x(t) + g (u; y)

h (x; u) = H (u; y)x(t)

(2.8)
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The system described above can be re-written in a commonly used form as follows:

8>><>>:
_x(t) = A(u; y)x(t) + g (u; y)

y(t) = C (u)x(t)

(2.9)

where A and C are matrices of appropriate dimensions, and g is a smooth function in u

and y.

Example 3 Consider the following example of state a¢ ne system:

8>>>>>>>>>><>>>>>>>>>>:

_x1(t) = x1(t) cos(u) + u(t)x2(t)x3(t) + 3u
2(t)x2(t)

_x2(t) = 3x1(t) + 4u(t)x
2
2(t) + 5 sin(u)

_x3(t) = 2x2(t) + x3(t)

y(t) = u(t)x2(t)

(2.10)

which can be rewritten as:

8>>>>>>>>>><>>>>>>>>>>:

_x1(t) = x1(t) cos(u) + y(t)x3(t) + 3u(t)y(t)

_x2(t) = 3x1(t) + 4y(t)x2(t) + 5 sin (u)

_x3(t) = 2x2(t) + x3(t)

y(t) = u(t)x2(t)

(2.11)
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where

A(u; y) =

0BBBBBB@
cos(u) 0 y(t)

3 4y(t) 0

0 2 1

1CCCCCCA

g(u; y) =

0BBBBBB@
3u(t)y(t)

5 sin (u)

0

1CCCCCCA
C (u) =

�
0 u(t) 0

�

(2.12)

Bilinear Systems

Bilinear systems are special case of state a¢ ne system (2.9) where:

8>>>>>><>>>>>>:

A(u; y) = A+ u(t)B

g (u; y) = D

C (u) = C

(2.13)

More precisely,

8>><>>:
_x(t) = Ax(t) + u(t)Bx(t) +Du(t)

y(t) = Cx(t)

(2.14)

where A, B, D and C are the matrices of the system�s parameters with appropriate dimen-

sions.
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Example 4 An example of bilinear system is given by

8>>>>>>>>>><>>>>>>>>>>:

_x1(t) = �2x1(t)� x2(t) + 2x1(t)u(t) + u(t)

_x2(t) = �3x2(t) + 5x2(t)u(t) + 3u(t)

y1(t) = x1(t)� 6x2(t)

y2(t) = x1(t) + 2x2(t)

(2.15)

where x 2 R2, y 2 R2, u 2 R,

A =

0BB@ �2 �1

0 �3

1CCA B =

0BB@ 2 0

0 5

1CCA
D =

0BB@ 1

3

1CCA C =

0BB@ 1 �6

1 2

1CCA
(2.16)

Linear time invariant (LTI) systems

Linear time invariant systems are a particular case of bilinear systems expressed

as follows: 8>><>>:
_x (t) = Ax (t) +Bu (t)

y (t) = Cx (t)

(2.17)

where A, B and C are the matrices of the system parameters of appropriate dimensions.
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Example 5 The following is an example of a 2nd order LTI system:

8>>>>>>>>>><>>>>>>>>>>:

0BB@ _x1 (t)

_x2 (t)

1CCA =

0BB@ 0 1

2 �2

1CCA
0BB@ x1 (t)

x2 (t)

1CCA+
0BB@ 1

�3

1CCAu (t)

y(t) =

�
1 0

�0BB@ x1 (t)

x2 (t)

1CCA
(2.18)

Linear time varying (LTV) systems

When the matrices in (2.17) varies with time, the following linear time varying

system is obtained: 8>><>>:
_x (t) = A(t)x (t) +B(t)u (t)

y (t) = C(t)x (t)

(2.19)

Example 6 The following gives and example of a time varying system:

8>>>>>>><>>>>>>>:

0BB@ _x1 (t)

_x2 (t)

1CCA =

0BB@ e�t 2t

sin (t) �t2

1CCA
0BB@ x1 (t)

x2 (t)

1CCA+
0BB@ t

�3t

1CCAu (t)
y (t) =

�
cos (t) t

�
x (t)

(2.20)

Remark

In all the above equations, the issue of delays was not considered. In practice,

there may be delay in every part of the system, either in the state or in the input or output

of the system. For example, the following is an example of a linear delayed system in the
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state: 8>><>>:
_x (t) = A1x (t) +A2x (t� �) +Bu (t)

y (t) = Cx (t)

(2.21)

2.2.2 Classi�cation of discrete-time dynamical systems

Discrete-time dynamical system (or simply a discrete system) as its name implies

are systems in which the time variable is discrete and is generally denoted by k 2 Z (set

of integers). As a result, the evolution of the state of a discrete time system is described

by a di¤erence equation. In what follows, a brief classi�cation of discrete-time dynamical

systems is given. Basically, all the above continuous-time dynamical systems can be written

in a discrete setting.

General discrete nonlinear systems

General discrete-time systems described as follow:

8>><>>:
x[k + 1] = f(x[k]; u[k])

y[k] = h(x[k]; u[k])

(2.22)

where k 2 Z; x 2 Rn; y 2 Rpand u 2 Rm with f and h being smooth functions.

Control a¢ ne discrete systems

Likewise control a¢ ne continuous systems, a control a¢ ne discrete system is de-

scribed as follows: 8>><>>:
x[k + 1] = f (x[k]) + g (x[k])u[k]

y[k] = h (x[k])

(2.23)
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State a¢ ne discrete systems

In the discrete case, state a¢ ne systems are generally expressed as follows:

8>><>>:
x[k + 1] = A(u[k]; y[k])x[k] + g (u[k]; y[k])

y[k] = C (u[k]; y[k])x[k]

(2.24)

where A and C are matrices of system�s parameters with appropriate dimensions, and g is

a smooth function in u and y.

Bilinear Systems

Discrete bilinear systems expressed as follows:

8>><>>:
x[k + 1] = Ax[k] +Bu[k]x[k] +Du[k]

y[k] = Cx[k]

(2.25)

where A, B, C and D are the matrices of system�s parameters with appropriate dimensions.

Linear time invariant discrete systems

In the discrete case, linear systems can be represented by the following di¤erence

equation: 8>><>>:
x[k + 1] = Ax[k] +Bu[k]

y[k] = Cx[k]

(2.26)

where A, B and C are the matrices of the system�s parameters with appropriate dimensions.
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Linear time varying (LTV) discrete systems

Discrete time LTV systems can be described by the following equation:

8>><>>:
x[k + 1] = A[k]x[k] +B[k]u[k]

y[k] = C[k]x[k]

(2.27)

Remark

As for continuous systems, time delays in discrete systems may occur in all parts

of the discrete time systems described above. So Equation (2.21) can written in a discrete

time case as follows: 8>><>>:
x [k + 1] = �Ax [k] +B0�uk + �Bu [k]

y [k] = Cx [k]

(2.28)

where

�A = eA(tk+1�tk)

B0 =

Z tk+�(k)

tk

eA(t��(tk))d�B

B1 =

Z tk+1

tk+�(k)
eA(t��(tk))d�B (2.29)

�B = B0 +B1

�uk = u [k � 1]� u [k]

each sampling k occurs at time tk and � (k) represents the delay value associated

to it.

Note, that for sake of simplicity, no delay has been considered on the output, but
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the same procedure can be applied to include it in Equation (2.28). Moreover, as it will be

discussed in Chapter 6, a total delay which represents the sum of the delay on the input

and the output can be considered.

2.3 Overview of fault-detection in systems

Fault detection is naturally the �rst step of fault diagnosis and also the most

important element in fault tolerant systems (FTS). FTS are systems that can operate to a

certain extent under considered faults scenarios. In most fault detection methods, the idea

is to generate an information redundancy in order to evaluate the health of the system.

Generally, information redundancy can be classi�ed into two categories:

� Physical redundancy. A traditional approach is physical redundancy based fault di-

agnosis. The idea of this scheme is to generate information redundancy using at least

two redundant physical devices and a typical example is that a suspension bridge�s

numerous cables are a form of physical redundancy. The main advantage of this ap-

proach is its high degree of reliability, but it faces, on the other hand, the problem of

extra hardware costs and additional weight and space.

� Analytical redundancy. This method uses a mathematical model to describe the

actual system�s behavior. The model is the mathematical replicate of the physical

model and is supposed to generate the same data as the actual system. In practice,

unmodelled dynamics/modelling inaccuracies and initial conditions di¤erences result

in a di¤erence between the system measured and the model estimated outputs, thus,

the challenge that faces analytical redundancy fault detection is to distinguish between
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these di¤erences and those induced by a fault occurring in the system.

Despite of extra hardware costs and additional weight and space, the physical

redundancy is still applied in some �elds such as nuclear power station, aircraft and safety-

critical systems in general. In these methods, redundant physical devices are usually sensors,

actuators or critical components. The fault detection is accomplished by a majority voting

among redundant hardware. For example, �y-by-wire and hydraulic systems in aircraft

and redundant emergency electrical systems in nuclear plant. Physical redundancy fault

detection scheme have already possessed di¤erent mature technologies. However, in presence

of its constraint, physical redundancy is di¢ cult to implement in certain systems (For

example, in micro-robots and some components of aircrafts).

In contrast to physical redundancy, analytical redundancy has its own advantages.

One of these advantages is no additional redundant hardware. However, the analytical

redundancy fault detection scheme is not yet a mature technology and there are still many

open research topics in this area. Furthermore, several performances of fault detection

system have to be improved like: sensitivity, robustness and rapidity of detection. As a

result, more innovative methods are needed to meet the actual requirement.

2.3.1 Faults in dynamical systems

In the following, the de�nition, the categories and the nature of faults in dynamical

systems are given.
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De�nition of fault

The term fault in the area of fault detection and diagnosis is generally de�ned as

a departure from an acceptable range of an observed variable or a calculated parameter

associated with a process [9].

Categories of faults

When developing a fault detection algorithm, it is important to know what kind

of fault appears in the system and what are its possible e¤ects on the system. Generally,

fault can be classi�ed into two categories [10]:

� Abrupt fault is fault whereby a system�s component undergoes a sudden change in its

value from normal into abnormal [11].

� An incipient fault is a slow growing fault which might eventually lead to a catastrophic

situation in the system [12], [13], [14], [15], [16] and [17].

As it is well-known, the methods designed for the detection of abrupt faults may

be not suitable for incipient faults, and vice versa [18]. Moreover, an abrupt fault is a

discrete event and an incipient fault is a continuous event and both types of faults can be

present at the same time.

Nature of faults

Due to the way how the faults a¤ect the dynamical systems, in general, two ways

of fault that can be dealt with are described below:
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Figure 2.1: Additive faults and disturbances sources in model based fault detection systems

� Additive faults (unknown additive inputs)

The e¤ect of additive faults can be represented as an additional unknown input

vector acting on sensors, actuators or states of system as shown in Fig 2.1. These faults are

usually due to a constant bias (positive or negative).

� Multiplicative faults (structural changes)

Multiplicative faults refer to changes in the process itself or malfunctions in the

sensors and actuators. They occur due to hard failures in components of dynamical systems.

Consequently, they often lead to changes in the parameters. It is important to note that

multiplicative faults may in�uence the system stability [19].

Based on the characteristics of faults, the complexity of dynamical system and the

performance requirements, di¤erent fault detection techniques will be applied. In the next

subsection, a simple classi�cation of fault detection approaches is given.
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2.3.2 Fault detection approaches

In order to reduce human intervention and design reliable automated systems, a

monitoring system become a crucial factor in industrial processes. Thanks to the advance-

ment of modern control theory, FD has been developed extensively in di¤erent areas. Fault

detection methodologies are mostly based on information redundancy. As mentioned above,

two main categories of information redundancy can be distinguished: Physical redundancy

and Analytical redundancy.

The traditional physical redundancy requiring the system to be equipped with

redundant physical devices su¤ers the problem of extra hardware inconveniences. Thus

analytical redundancy that uses causal relationships or mathematical relationships between

the signals to verify whether a fault occurs in the system is more adapted to most of

systems except those that require the highest degree of reliability and where extra cost and

maintenance can be a¤orded while additional space and weight margin to accommodate the

equipment is available. Analytical redundancy based FD can be classi�ed into three main

approaches:

Knowledge-based approach

The early knowledge-based fault detection systems were originally expert systems.

The methods of expert systems are used when the knowledge of the system is heuristic.

The expert system relies on its knowledge and experience. Moreover, expert system is

capable of solving speci�c issues in the same way that a human expert. Because expert

systems can manipulate a large number of non-homogeneous and independent context, this
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approach is very attractive for diagnosis. Over the last few years, the knowledge-based fault

detection systems became more complex and also more intelligent. Then, the knowledge

base of diagnosis systems became more and more sophisticated. Recently, more intelligent

algorithms have been integrated into this approach (such as machine learning, data mining

and pattern recognition etc...). Consequently, diagnosis systems not only receive knowledge

from experts but also acquire knowledge themselves by receiving data of similar experiences.

Generally, this approach is very attractive for large systems like nuclear power stations,

chemical plants and some special functions of airplanes use this method to support operators

to detect malfunctions. One of the reasons is that the model of these systems is di¢ cult to

be formalised by mathematical equations. But a large amount of historical process data is

required.

Signal-based approach

Signal based approach assumes that certain measurements contain the information

about a fault symptoms. In signal processing based fault detection approaches, some math-

ematical and statistical treatments are necessary to interpret this fault symptoms from

measurements. The prerequisites for this method is a knowledge about the relationship

between signal variations and faults. In practice, the fault e¤ects are classi�ed into two

types:

� Time domain function such as: magnitudes, means, covariances, amplitude envelope,

correlation coe¢ cients and time domain re�ectometry.

� Frequency domain function such as: spectral power densities, frequency spectral lines,
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spectrums, etc..

Signal-based approaches have been widely applied to mechanical engineering (e.g.,

vibration monitoring), electric motors, etc. The signal-based approach is mainly designed

for condition monitoring at the steady state.

Model-based approach

In this approach, a mathematical model is used to describe the behaviors of the

system. Generally, an analytical model can be classi�ed into two types: quantitative model

and qualitative model. Quantitative model describes a system�s behavior in quantitative

mathematical terms. Qualitative model describes a system�s behavior in qualitative terms

such as causalities. In the following section, quantitative model-based methods will be

investigated. The (quantitative) model-based fault detection was initialised in the early

1970s.

The basic idea of model based fault detection is to generate a residual between

the mathematical model and the real system. In this context, the residual is de�ned as

the di¤erence between the actual measurements of the system and the values estimated by

the mathematical model. Under ideal conditions, the mathematical model is assumed to

describe exactly the behavior of the real system. In the presence of a fault, the residual is

di¤erent from zero and the diagnosis system can detect the latter. However, it is unrealistic

that the residual is di¤erent from zero only when a fault occurs. Sensor noise, disturbances,

parametric variations, unmodelled dynamics and nonlinearities a¤ect the amplitude of the

residual. A lot of existing methods can reduce the impact of these e¤ects on the residual.
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Unfortunately, neither of them can give a perfect decoupling between these e¤ects and the

residual. As a result, the residual has to be compared with a threshold for decision-making.

2.4 Model based fault detection methods

In this section, a classi�cation of the existing fault detection methodologies is

given.

Four main methods have been developed in the literature:

� Parameter estimation;

� Frequency-based;

� Parity relation;

� Observer-based.

The typical works are globally summarised in the book [20] by Ding. During the

past four decades, many works of model-based fault detection have been conducted. The

representative survey papers have been written by Isermann, Patton, Frank and Ding such

as [4], [21], [18] [22]. They have given a good state-of-the-art of modern model-based fault

detection. Based on these four approaches, di¤erent papers have been published to tackle

the robustness issues. Indeed, reduction in false alarms and non-detection become a critical

issues in diagnosis schemes. The objective is to generate a residual that is robust against

disturbances and sensitive to faults. Another strategy is an adaptive threshold scheme. In

this scheme, the threshold is a time domain function and its value changes under di¤erent

situations.
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2.4.1 Parity space relation method

In the �eld of diagnostic, parity equations represent a mathematical tool for de-

tecting and locating faults. In the review of parity space [23], an equation that generates

a residual is called parity equation. The parity equation can be obtained from the model

of the system. This method uses signal analysis to check the consistency between the mea-

surements and values calculated by a model. In the literature, parity relation based residual

generators are often called open-loop structured [20], because the signal of residual does not

interfere with the residual generation.

2.4.2 Frequency-based method

Frequency domain fault detection relies on using frequency transformation meth-

ods such as Fourier transform to generate a signal in the frequency domain. Then condition

monitoring of systems can be carried out by analysing the measured output and the system�s

generated signal. This approach had a particular success in domains such as mechanical

structures by using vibrations analysis,and electrical machines rotors by analysing the sta-

tor�s current [24].

2.4.3 Parameter estimation method

The diagnosis of an industrial system can be done by monitoring the evolution of

its structural parameters. Parameter estimation-based fault detection has been applied in

di¤erent areas of science and engineering. Consider the simple case of a linear �rst order

system de�ned by its gain and its time constant. If the values of these two parameters remain

constant over time, it indicates that the input-output relationship remains unchanged. In
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this situation, the system is in normal operation. If one of the parameters changes its value,

the input-output has relationship changed. In this situation, the system has a fault. The

magnitude and variation in these parameters are the useful indication to accomplish the

diagnosis task.

When fault detection algorithm is based on the knowledge of system�s parameters,

it is necessary to calculate their values from the information of the input and the output of

the system. Identi�cation is one of the tools to acquire this knowledge.

In parameter estimation approach, there are a number of system identi�cation

techniques such as recursive Bayesian estimation, maximum likelihood estimation and least

squares. These approaches execute a data processing procedures to achieve a non biased

parameter estimation. The �rst works of parameter estimation-based fault detection were

made by R. Isermann [25]. His survey paper summarises di¤erent parameter estimation

based FD approaches. Observer-based on-line parameter identi�cation was used in [26]. In

this work, the estimation of critical parameters is done by a high-gain observer.

However, parameter estimation fault detection approach might be di¢ cult to im-

plement like an online real-time algorithm due to large amount of computations.

2.4.4 Observer-based method

One of the methods in model based FD is the observer-based fault detection, which

is also the focus of this work. The observer-based fault detection approach is based directly

on observer design and control theory. The very �rst observer is the so-called Luenberger

observer designed by D. G. Luenberger in 1966 [27]. Because of certain constraints, certain

states of system cannot be directly measured by a sensor. The observer is used as software
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sensors to estimate the unmeasured state of dynamical system. However, Luenberger ob-

server can only deal with deterministic systems. In a fault detection scheme, it is important

to note that the observer is used as output observer to reconstruct the output of a system.

In control theory community, di¤erent applications of observer in fault detection

problem have been proposed since 1980�s and a book on observer-based fault detection have

been written by Patton and Frank [28]. This book summarises globally the observer-based

fault detection techniques. For example, Luenberger observers for deterministic systems,

Kalman �lters for stochastic systems. Moreover, interval observers are used to deal with

systems under uncertainty [29]. The observer-based residual generators is also called closed-

loop structured [20], because the signal of residual is fed back to the residual generator.

In practice, the main tasks of observer-based FD are the generation of a residual

and the calculation of a threshold value. To combat these two problems, the robustness

techniques have become the main theme in the last two decades. The robustness techniques

can be classi�ed into two types such as active robustness and passive robustness. Active

robustness is to generate a desirable residual which should be robust against disturbances,

but sensitive to the faults. fault detection �lter, unknown input observer [30], signal norms

with LMI aided design [31] are usually used in active robustness scheme. Passive robustness

is to choose a suitable threshold for fault detection. The methods like fuzzy logic [32], adap-

tive control [33], [34] and neural networks [35] are used to choose the threshold. Combining

active robustness and passive robustness, the expected results are when the fault is present,

the residual is greater than the threshold. When the fault is absent, the residual is less than

the threshold.
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Most of the literature in fault detection problems is focused on the active robust-

ness. The most common method for fault detection is to treat model uncertainties as some

unknown additive inputs. The idea is to decouple them from the residual. This makes the

residual robust against unknown inputs. Eigenstructure assignment [36] and unknown input

observer [37] are principally used to decouple the residual from unknown additive inputs.

Eigenstructure assignment method parameterises the observer gain matrix and Unknown

Input Observer method searches for the disturbance decoupling matrix. It is important

to know that the non-unique solution allows the fault detection observer design in these

two methods. Due to the lack of design freedom, the condition for complete decoupling is

generally di¢ cult to be satis�ed. For this reason, di¤erent control techniques are applied

to enable the optimal fault detection observer design like: LMI, signal and system norms

and neural networks. The idea is to minimise the e¤ect of disturbances to the residual and

maximise the e¤ect of faults to the residual. Thus, the fault detection design becomes an

optimisation problem:

� Analysis of system constraints,

� Performance criterion selection,

� Optimisation techniques selection.

Nevertheless, parametric uncertainties are not resolved in the previous methods.

As a result, the interval observer is used to deal with parametric uncertainties. In this

approach, a model with parameters bounded in intervals is considered. Moreover, the

evolution of estimated states (or output) at every time will not be described by a point in
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Figure 2.2: Observer based fault detector

the state space but by a region [29]. Due to the e¤ect of the parametric uncertainties to

the residuals, a suitable threshold has to be selected.

2.5 Observer based fault detection

The basic idea of observer-based fault detection is to estimate the outputs of the

system and generate a residual as depicted in Fig 2.2. To calculate an estimated output

ŷ(t), the model uses u�(t) that is the plant actual input u(t) subject to sensor�s disturbances

du(t) and fault fu(t).and the plant measured output y(t) that is the plant actual output

y�(t) also subject to sensor�s disturbances dy(t) and fault fy(t). The plant measured output

y(t) is also used by the controller to calculate the command signal value u�(t) which makes

the system behavior meets with the setpoint value. For this, the controller needs to be

robust to controller/actuator disturbances dc(t) and fault fc(t). Finally the residual r(t)

that is the di¤erence between the measured and estimated output is generated. The residual
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should be close to zero in absence of fault and if a fault occurs, it should be detected by

the embedded evaluation algorithm.

In this approach, the process model is replaced by an observer. Using the observer

theory and mathematical optimisation tools, the designer can achieve the desired decoupling

between di¤erent signals. The residual signal should be robust against disturbances and

sensitive to faults. In practice, the residual has to be compared with a threshold for a

decision-making. In this section, some existing faulty system modelling are given and two

typical examples of observer-based fault detection are explained.

Nowadays, automatic control design possesses mainly a feedback loop. Because

of the feedback structure, the controller gives a certain level of robustness to the system.

But critical changes in the system cannot be simply covered by a controller. Consequently,

Fault Diagnosis algorithm and Fault Tolerant Control (FTC) are often embedded in auto-

matic control process. Before developing Fault Diagnosis algorithm, modelling of faults in

automatic control system is a vital issue. Choosing a way of modelling the system depends

on the signal availability. Two frameworks can be considered such as:

� Open loop fault detection

In this framework so-called open loop fault detection, the control input u and the

output y are considered to be accessible. In order to access the command u, fault diagnosis

algorithm has to be embedded locally in automatic control process. These two signals

contain all the information to accomplish the fault detection task.

� Feedback loop fault detection
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In this method, the so-called feedback loop fault detection framework, the input u

and the output y are considered to be accessible. In practice, the command u is not always

accessible. For example, if the control loop is a part of a large scaled system and located

remotely from the supervision station, where the higher level controller and FD unit are

located, the reference signal will be applied. The closed loop FD strategy is based on the

closed loop model with u and y as input and output signals respectively [20].

Observer-based fault detection is normally based on feedback loop fault detection.

It is important to note that a full state x estimation is not required in the FD case but rather

an observer to estimate the output only or simply an output observer. In the literature,

many papers on FD treat the observer-based fault detection problems by deriving a model

in which the fault enters the system as an additive unknown input with no apparent relation

with the system�s dynamics [38], [39], [30], [11], [40], [41], [42]. In e¤ect, these papers assume

that the command vector u is available and the fault detection algorithm is based on open

loop fault detection. More precisely, much of the academic research on observer-based FD

is still based on the linear case and using the following model:

8>><>>:
_x (t) = Ax (t) +Bu (t) + Edd (t) + Eff (t)

y (t) = Cx (t) +Gdd (t) +Gff (t)

(2.30)

where the vector d represents unknown inputs and the term f denotes the faults with

matrices Ed, Ef , Gd, Gf derived from system�s proprieties. Using the model as in Equa-

tion (2.30), di¤erent observer-based strategies are used to generate the residual; namely a

standard Luenberger type observer or an unknown input observer.
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2.5.1 Observability

The �rst step before designing an observer for a system is to determine wether the

system is actually observable. Indeed, all systems don�t posses the observability property

required to build an observer although a non-observable system can posses a weaker property

that is detectability if the non-observble modes of the systems are stable.

There exist many types of observabilities translating the possibility of reconstruct-

ing the entire state vector using the measured output and the system�s input.

The system is said to observable if for two initial states x(t0) = x1 and x(t0) = x2,

then their respective outputs y1(t) and y2(t), are not identical for all t.

For linear systems, the observability condition is written in a form of an algebraic

matrix rank condition.

Consider the following time invarying linear system:

8>><>>:
_x (t) = Ax (t) +Bu (t)

y (t) = Cx (t)

(2.31)

Then, the observability of the system can be determined if there exist a unique

solution to:

y (t) = CeAtx (0) + C

Z t0

0
eA(t�t0)Bu (�) d� (2.32)

which considering that C, B and u (t) are known, to �nd the necessary observability

condition, is equivalent to proving there exist a unique solution to:

y (t) = CeAtx (0) (2.33)
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which leads to the following matrix being of full order:

0BBBBBBBBBB@

C

CA

...

CAn1

1CCCCCCCCCCA
(2.34)

where n is the size of the state vector x.

For nonlinear systems, the types of observabilities can correspond to locally or

globally de�ned approaches [43], [44].

First consider the unforced general nonlinear system:

8>><>>:
_x (t) = f(t; x)

y (t) = h(t; x)

(2.35)

then the observability of the system can be determined if the following matrix is

of full order: 0BBBBBBBBBB@

h (t; x)

Lfh (t; x)

...

L
(n�1)
f h (t; x)

1CCCCCCCCCCA
(2.36)

where Lfh (t; x) is the Lie derivative of h (t; x) in the function f .

To determine the observability of the systems with an input, there exist many

methods that have been introduced either to linearise these systems as in [45], [46], [47],
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where in most cases observabilty proprieties are determined locally. Particularly, the output

injection technique to linearise nonlinear system had success and several works have been

published as in [48], [49].

2.5.2 Observers design

Observers can be considered as software sensors as they use the knowledge on the

system dynamics to estimate system�s variables. As such, they allow reducing the number

of physical sensors used on the system. The missing information due to sensors absence

is reconstructed with the remaining sensors data and the knowledge of the system. In the

following some of the observers design techniques are detailed

Sliding mode observer

Sliding mode observers have known a large success in variety of systems for their

e¢ ciency, relative ease of implementation and robustness against parameter variations [50],

[51], [52]. The sliding modes technique consists of using a discontinuous function as correc-

tion term and which value depends on sign of the estimation error.

Take a system which dynamics are de�ned by the following general nonlinear

function:

_x (t) = f(x; u) (2.37)

where f is an analytical function, x 2 Rn is the state vector and u 2 Rm is the

control input.
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The sliding modes observer is designed as follows:

8>><>>:
_̂x (t) = f(t; x̂; u) +KSign(y (t)� ŷ (t))

ŷ (t) = h(t; x̂)

where K is the gain matrix and sign is a discontinuous function in time described

by:

sign(x) =

8>>>>>><>>>>>>:

x if x > 0

�x if x < 0

Unde�ned if x = 0

(2.38)

The technique consists of discontinuous constraining of the systems dynamics to

converge towards the so called sliding surface. The attractivity and the invariance of the

sliding surface are guaranteed by the de�ned sliding conditions. If the conditions are met,

the observer convergence will be achieved. Once within the convergence surface, the systems

dynamics can be calculated by methods such as equivalent control or equivalent vector.

Unknown Input Observer

In Unknown Input Observer (UIO) scheme, the disturbances are considered as

unknown inputs so that the residual signals are decoupled from them. That means the

residual is only sensitive to the faults and insensitive to the disturbances. Based on the

model described by Equation (2.30), the residual generator whose inputs are input u and
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output y of the system can be constructed as follows:

8>><>>:
_z (t) = Nz (t) +Mu (t) +Gy (t)

r (t) = Pz (t) + Uu (t) +Ky (t)

(2.39)

The challenge is therefore to �nd the matrices N;M;L; P; U;K satisfying the fol-

lowing conditions:

� The residual generator is built so as to estimate a linear combination of the full state

(or partial state) of the system like:

z (t) = Tx (t) (2.40)

When only the partial state is rebuilt, the observer is so-called reduced order

observer (the dimension of z is then less than x). Let e be the estimation error of Tx so

that:

e (t) = Tx (t)� z (t) (2.41)

� The second objective is to decouple the residual from the disturbances and make it

sensitive to the faults. The observer should be built so that the estimation error in

Equation (2.40) is canceled in the absence of fault, but also in presence of distur-
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bances. The dynamic of the estimation error is:

8>>>>>><>>>>>>:

_e (t) = T (Ax (t) +Bu (t) + Edd (t) + Eff (t))

�(Nz (t) +Mu (t) +Gy (t))

y (t) = Cx (t) + Fdd (t) + Fff (t)

(2.42)

Combining with Equations (2.39), (2.40) and (2.41), gives:

8>>>>>><>>>>>>:

_e (t) = NTe (t) + (TA�NT �GC)x (t) + (TB �M)u (t)

+(TEd �GFd)d (t) + (TEf �GFf )f (t)

r (t) = �Pe (t) + (PT +KC)x (t) + Uu (t) +KFdd (t) +KFff (t)

(2.43)

First, the eigenvalues of N should be located in the left-half complex plan. Then

in order to satisfy the objectives, the following conditions should be met:

TA�NT �GC = 0 and PT +KC = 0 (2.44)

M = TB and U = 0 (2.45)

TEd �GFd = 0 and KFd = 0 (2.46)

TEf �GFf 6= 0 and KFf 6= 0 (2.47)

The conditions (2.44) and (2.45) ensure that the estimation error convergence to

0 in the absence of fault (f = 0) and disturbance (d = 0). The condition (2.46) ensures the

decouple of the residual r from the disturbances (unknown inputs). The condition (2.47)

makes the residual r sensitive to the faults. Finally, as all conditions (2.44), (2.45), (2.46)
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and (2.47) are satis�ed, the dynamic of the residual r becomes:

8>><>>:
_e (t) = Ne (t) + (TEf (t)�GFf )f (t)

r (t) = �Pe (t) +KFff (t)
(2.48)

Not only the transfer function between u and r is equal to 0, but also the transfer

function between d and r is equal to 0 (decouple the residual from the disturbances). The

transfer function between f and r is di¤erent from 0 (the residual is sensitive to faults).

The last step is to specify how to satisfy the conditions (2.44), (2.45), (2.46) and

(2.47), and synthesise an unknown input observer. There are several approaches in literature

such as [30].

The transfer function between f and r being di¤erent from zero is not a su¢ cient

condition to detect faults. When evaluating the residual, due to measurement noise and

modelling error, a relevant threshold has to be �xed. A disadvantage of this scheme is

that the existence conditions of UIO (matching conditions) are di¢ cult to be satis�ed in

practice.

Luenberger observer (eigenstructure assignment)

A typical Luenberger type observer for the system as described by Equation (2.30)

is as follows: 8>>>>>><>>>>>>:

:
x̂ (t) = Ax̂ (t) +Bu (t) +K(y (t)� ŷ (t))

ŷ (t) = Cx̂ (t)

r (t) = y (t)� ŷ (t)

(2.49)

where x̂ is the estimate of the state x; ŷ is the estimate of the output y, K is
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the observer gain and the residual r is the di¤erence between the real output y and the

estimated output ŷ. The estimation error is e = x� x̂. Using Equations (2.30) and (2.49)

the following error dynamic and residual functions are obtained:

8>><>>:
:
e (t) = (A�KC)e (t) + (Ed �KGd)d (t) + (Ef �KGf )f (t)

r (t) = Ce (t) +Gdd (t) +Gff (t)

(2.50)

The residual r generally takes the following form in Laplace domain:

r(s) = Hd(s)d(s) +Hf (s)f(s) (2.51)

and 8>><>>:
Hd(s) = C(sI �A+KC)�1(Ed �KGd) +Gd

Hf (s) = C(sI �A+KC)�1(Ef �KGf ) +Gf
(2.52)

WhereHd(s) gives the Laplace transfer function of disturbance d(s) to the residual,

Hf (s) denotes Laplace transfer function of faults f(s) to the residual. In this case, the

objective is to minimise the in�uences of the disturbance to the residual r (s) and maximise

the one of the faults. Consequently, if disturbance d(s) and of faults f(s) are bounded, the

observer gain has to be correctly chosen to minimised the following index:

J =
kHd(s)k
kHf (s)k

(2.53)

Where the operator k�k represents the norm function. Depending on di¤erent fault

detection strategies, Hd(s) and Hf (s) can be described by di¤erent system norms such as:
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H1 norm, H2 norm, 1 norm, 1 norm and Frobenius norm. In order to minimise the index

J , the subsequent conditions should be achieved:

� Stability: The matrix A � KC should be stable. It means that The eigenvalues of

A�KC should be located in the left-half complex plane.

� Robustness: Improve the robustness against the disturbances by minimising kHd(s)k.

� Sensitivity: Improve the sensitivity to the faults by maximising kHf (s)k.

2.6 Conclusion

In this chapter, a classi�cation of dynamical systems that are relevant to the thesis

topic has been given. Both continuous time and discrete time systems have been presented

although this research work mainly focuses on the continuous time domain. Then, model

based fault detection have been introduced and the current state of the art discussed..Also,

some techniques relevant to this thesis work have been detailed. A particular focus has been

given to the model based fault detection and particularly the observer based approach and

a attempt to highlight the bene�t and challenges of this method. In the next chapters, the

bulk of the thesis research work on observer design for fault detection will be presented.
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Chapter 3

Proportional Integral (PI) observer

gain optimisation for fault

detection with disturbance

attenuation

3.1 Introduction

One of the widely used methods in observer-based fault detection is to use the

knowledge on faults and disturbances dynamics to set a frequency based criterion. Then,

the criterion is used to �nd the observer tuning that optimises the fault detector perfor-

mances by signifying the fault impact in the residual while reducing the disturbances e¤ect.

This method has given good results although disturbances attenuation and fault signal
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ampli�cation in the residual being optimised using the same criterion requires making a

trade-o¤ regarding the e¤ectiveness of the FD scheme. Moreover, this method being based

on the frequency knowledge of faults and disturbances, one can notice that whereas fault

frequency analysis can give conclusive results considering that a FD scheme can be designed

for an identi�ed type of faults, it is more di¢ cult to be as straight-out when it comes to

disturbances analysis considering the variety of sources and its randomness over a large

frequency range.

In this work, the frequency based criterion is mainly considered for fault signal

ampli�cation in the residual. The proportional integral (PI) observer method presented in

[53], [54], [55], [56] is used for disturbances e¤ect attenuation considering the originality and

e¤ectiveness it has shown to achieve the desired purpose. The technique relies on integrating

the output signal to design an augmented model that allows having an additional degree of

freedom when designing the observer.

In the following proposed solution, a systematic approach to tune the observer

for fault detection purposes is detailed. To optimise the observer gain, an identi�ed fault

characteristic frequency is used in the criterion, while no constraints have been considered

on the disturbances.

3.2 PI observer design for fault detection

In this section, a dynamic system subject to both external disturbances and pos-

sible faults is considered and a PI observer is proposed as a fault detection mechanism in

an event of fault occurring in the system.



44

3.2.1 System model

Consider a class of linear multi input multi output (MIMO) systems under distur-

bances with sensor and/or actuator faults described by:

8>><>>:
:
�x (t) = A0�x (t) +B0u (t) + Ed0d (t) + Ef0f (t)

�y (t) = C0�x (t) +Gd0d (t) +Gf0f (t)

(3.1)

where �x(t) 2 Rn is the state vector, u(t) 2 Rm the input signal and �y(t) 2 Rp

the measured output. Signal d(t) 2 Rj denotes the unknown disturbance and f(t) 2

Rk represents the fault signal. A0, B0, Ed0, Ef0, Gd0, Gf0 are matrices of appropriate

dimensions describing the dynamics of the input and output signals in the state�s �x (t)

dynamics equation.

First, for an accurate estimation of the state, disturbance e¤ect needs to be atten-

uated in the observer. Motivated by the results that PI observer gives regarding disturbance

attenuation [54], the proposed solution for disturbance attenuation in fault detection relies

on integrating the output signal in order to build an augmented system in which better

fault detection performances can be achieved.

3.2.2 System augmentation with integral action

In [54], it has been demonstrated that some desired robustness and disturbance

attenuation performances can be achieved by augmenting the state space model. The added

component to the he state vector is proportional to the integral of the measured output

signal. In fact, the addition of an integral term also gives an additional degree of freedom
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and thus an opportunity to improve the fault detection performance. Similar to [54], an

augmented system is �rst developed to include the additional integral action into the model.

The additional state vector component x0(t) 2 Rp which represents the integration of the

measured output is introduced as follows:

x0(t) =

Z t

0
�y (�) d� (3.2)

It is worth noting that the measured output �y(t) contains the actual output under

disturbances signal, as well as possible fault occurring on the system signature.

Indeed, substituting �y (t) from (3.1) in (3.2) gives:

:
�x0(t) = C0�x(t) +Gd0d(t) +Gf0f(t) (3.3)

The additional variable x0(t) that represents the integral of noisy, and possibly

faulty, output is combined with the state variable �x(t) to form an augmented system. The

augmented state vector x(t) 2 R(n+p) is de�ned as:

x(t) =

0BB@ x0(t)

�x(t)

1CCA (3.4)

An additional output, denoted by y0(t), is also introduced into the augmented

system. The output y0(t) 2 Rp is de�ned as:

y0(t) = x0(t) (3.5)
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It can be seen that y0(t) is associated to x0(t) and it works like a �virtual�output

to re�ect the integral of the output.

Now the augmented system output y(t) 2 R2p is:

y(t) =

0BB@ y0(t)

�y(t)

1CCA (3.6)

Finally, the augmented system can be written as follows:

8>><>>:
_x(t) = Ax(t) +Bu(t) + Edd(t) + Eff(t)

y(t) = Cx(t) +Gdd(t) +Gff(t)

(3.7)

where matrices A, B, C, Ed, Ef , Gd and Gf can be derived straightforward from

the matrices in the original system state representation model (3.1), the additional state

(3.3) and output Equations (3.4) & (3.6):

A =

2664 0p�p C0

0n�p A0

3775 B =

2664 0p�m
B0

3775 C =

2664 Ip 0p�n

0p�p C0

3775
Ed =

2664 Gd0
Ed0

3775 Ef =

2664 Gf0
Ef0

3775 Gd =

2664 0p�j
Gd0

3775 Gf =

2664 0p�j
Gf0

3775
(3.8)

For the following, the pair (A,C) in the augmented system (3.7) is assumed to be

observable (see chapter 2 for observabiliy conditions).
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3.2.3 Fault detector observer design

In this section, an observer of the augmented system is designed. Since the aug-

mented system contains the integral terms of the noisy output measurements, a classic

proportional observer can be used in the proposed design, but still maintains the main fea-

ture of PI observer. Without loss of generality, the Luenberger observer is chosen for sake

of optimisation feasibility, which is bene�cial in reducing the complexity of fault detector

and tuning computation time. The proposed fault detection observer is described by:

8>><>>:
_̂x(t) = Ax̂(t) +Bu(t) +K(y(t)� ŷ(t))

ŷ(t) = Cx̂(t)

(3.9)

where _̂x(t) 2 R(n+p) is the estimated state vector and ŷ(t) 2 R2p is the estimated

output. The gain matrix K associated to the di¤erence between the actual and estimated

output

0BB@ y(t)� ŷ(t)

y0(t)� ŷ0(t)

1CCA, represents the correction term. The correction gain is selected
in a way that observer estimate x̂(t) converges to the actual system values x(t) despite the

di¤erences in initial state and the disturbances occurring in the system.

For the purpose of fault detection, a residual, which is the di¤erence between the

measured and estimated output, is used to detect the occurrence of faults. The residual is

de�ned as:

r(t) = y(t)� ŷ(t) (3.10)
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Then, the estimation error e(t) 2 R(n+p)is de�ned by:

e(t) = x(t)� x̂(t) (3.11)

Thus the dynamic of the estimation error for system (3.7) is governed by:

_e(t) = (A�KC)e(t) + (Ed �KGd)d(t) + (Ef �KGf )f(t) (3.12)

It can be seen that the residual r(t) is linked to the estimation errors as below:

r(t) = y(t)� ŷ(t) = Ce(t) +Gdd(t) +Gff(t) (3.13)

It can be seen in Equation (3.12) that the gain matrix K is associated to the error,

disturbance and fault signals. So when calculating its value, one should make sure that

the matrix (A �KC) is Hurwitz so the error is convergent. On the other hand, the fault

e¤ect can be ampli�ed in the residual through the value of the matrix (Ef �KGf ) when

the disturbance e¤ect can be reduced by minimising the value of (Edd�KGd).

3.3 Observer gain calculation for disturbance attenuation

As shown in previous section, given a dynamic system de�ned in (3.1) with state

vector x(t) 2 Rn and the output vector y(t) 2 Rp, a PI observer with an augmented state

vector x(t) 2 R(n+p) and augmented output vector y(t) 2 R2p can be designed. In the

proposed PI observer (3.9), the gain matrix K is a (n+p) by 2p matrix, i.e. K 2 R(n+p)�2p.
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Furthermore, in order to facilitate the discussion on disturbance attenuation and fault

detection, K =

�
KI Kp

�
can be expressed in a block-matrix form with four blocks as

follows:

KI =

2664 K11
K21

3775 Kp =

2664 K12
K22

3775 (3.14)

where K11 2 R, K12 2 R(p�p), K21 2 R(n�p) and K22 2 R(n�p)

K11 =

26666664
k1;1 : : : k1;p

...
. . .

...

kp;1 : : : kp;p

37777775 K12 =

26666664
k1;p+1 : : : k1;2p

...
. . .

...

kp;p+1 : : : kp;2p

37777775

K21 =

26666664
kp+1;1 : : : kp+1;p

...
. . .

...

kp+n;1 : : : kp+n;p

37777775 K12 =

26666664
kp+1;p+1 : : : kp+1;2p

...
. . .

...

kp+n;p+1 : : : kp+n;2p

37777775

(3.15)

Submitting the block-matrix (3.14) into (3.12), the dynamics of the estimation

errors can be rewritten as:

_e(t) =

0BB@ �K11 (Ip�K12)C0

�K21 A0 �K22C0

1CCA e(t)

+

0BB@ (Ip�K12)Gd0

Ed0 �K22Gd0

1CCA d (t) +
0BB@ (Ip�K12)Gf0

Ef0 �K22Gf0

1CCA f (t) (3.16)

It can be seen that the disturbance d(t) has an in�uence on the state estima-
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tion error through the gain matrix

0BB@ (Ip�K12)Gd0

Ed0 �K22Gdf0

1CCA. So setting this matrix to zero
would allow decoupling the state estimation from the disturbance or in another words, the

disturbance will be completely attenuated.

While setting (Ed0 �K22Gd0) to zero can be done by �nding an appropriate value

of K22 such that:

(Ed0 �K22Gd0) = 0 (3.17)

where Ed0 2 R(n�j), is the input disturbance matrix and Gd0 2 R(p�j) the output

disturbance matrix, respectively.

Setting (Ip �K12) to zero may result on losing the observability of the system since

the same expression can be found in the matrix

0BB@ �K11 (Ip�K12)C0

�K21 A0 �K22C0

1CCA which governs

the error dynamic. So one has to be careful when calculating the value of K12 and need to

set it such that (Ip �K12) is minimised to reduce its e¤ect on the error dynamic and while

keeping the observability property of the system.

Let H denote the solution to Equation (3.17), that is:

Ed0 = HGd0 (3.18)

So, setting K22 to H results in the disturbance d(t) being partially attenuated in
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the state estimation vector x̂(t). Therefore, K is:

K =

2664 K11 K12

K21 H

3775 (3.19)

and the error dynamics in (3.16) is now given by:

_e(t) =

0BB@ �K11 (Ip�K12)C0

�K21 A0 �HC0

1CCA e(t)

+

0BB@ (Ip�K12)Gd0

Ed0 �HGd0

1CCA d (t) +
0BB@ (Ip�K12)Gf0

Ef0 �HGf0

1CCA f (t) (3.20)

As the n+ p-dimensional state vector x(t) consists of two parts, the original state

variable x(t) and the integral output variable x0(t), respectively, setting (Ed0 �K22Gd0) to

zero, means attenuating the disturbance direct transfer in the original state x(t). On the

other hand the indirect transfer in the original state through the additional one, is reduced

in the next section by minimising the value of (Ip�K12).

3.4 Observer gain optimisation for fault detection

Since the objective of this work is to reduce the disturbance e¤ect for fault detec-

tion, and the disturbance e¤ect being already considerably reduced using the PI observer,

this section focus is on �nding appropriate values for the rest parts fK11;K12;K21g of the

observer gain matrix so that the fault detection performance of the proposed PI observer

can be optimised.



52

3.4.1 Residual analysis and eigen-decomposition

The approach used here is similar to the method developed in [57] based on [58],

[59] and [60]. It relies on using the Laplace-transform of the residual to set an optimisation

criterion. So, the Laplace-transform of (3.13) is calculated:

r(s) =Md(s)d(s) +Mf (s)f(s) (3.21)

where:

Md(s) = C(sI �A+KC)�1(Ed �KGd) +Gd (3.22)

and:

Mf (s) = C(sI �A+KC)�1(Ef �KGf ) +Gf (3.23)

As it has been shown in ([58]), ([59]) and ([60]), the observer gain matrix can be

expressed as:

K = L�1Q (3.24)

where L 2 R(n+p)�(n+p):

L =

26666664
lT1

...

lTn+p

37777775 =
26666664

qT1 C (A� �1I)
�1

...

qTn+pC (A� �n+pI)
�1

37777775 (3.25)
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and Q 2 R(n+p)�2p is the matrix of free parameters:

QT = [q1 q2 � � � qn+p] (3.26)

Then, based on this method, it has been shown in [57] that:

(sI �A+KC)�1 = R	(s)L (3.27)

where:

R = L�1 = [r1 r2 � � � rn+p] (3.28)

and 	(s) 2 R(p+n)�(p+n) is a diagonal matrix:

	(s) =

26666664
1

s��1 : : : 0

...
. . .

...

0 : : : 1
s��n+p

37777775 (3.29)

Thus (sI �A+KC)�1 can be written as:

(sI �A+KC)�1 = r1l
T
1

s� �1
+

r2l
T
2

s� �2
+ : : :+

rn+pl
T
n+p

s� �n+p
(3.30)

Using this method to calculate the gain is very interesting as not only the values of

the vector of free parameters Q can be optimised but it also can be done for the eigenvalues.
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3.4.2 Gain matrix optimisation

As shown in (3.20), residual r(t) is a¤ected by both the fault and the disturbance.

Therefore the gain matrix optimisation for fault detection is to �nd an appropriate value

of K such that the residual is sensitive to the faults, but robust (non-sensitive) to the dis-

turbance. In another words, the disturbance should be attenuated but the fault is signi�ed

in the residual [57]. Intuitively, the criterion for optimisation is two-fold to reduce the

disturbance and signify the fault in the residual.

As it has been shown in [57], the criterion is set based on the signals frequency

range analysis.

J =
kCR	(s)L(Ed � L�1QGd) +Gfk(s=jwf )
kCR	(s)L(Ed � L�1QGd) +Gfk(s=jwd)

(3.31)

where jwf j 2 [0; �] and jwdj 2 [0; �].are respectively the fault and disturbance

frequencies to be considered

It is worth noting that since K22 has already been set so that the disturbance is

attenuated, the denominator part of the criterion is added just to ensure that (Ip�K12) is

not set to a big value and thus �nding the right value of wd is less critical that for wf . So

maximising J will allow to considerably amplifying the fault and having good fault detection

sensitivity

Using this criterion, various optimisation algorithms can be used to �nd the opti-

mal gain value which allows having a stable observer i.e. the matrix (A�KC) is Hurwitz,

and optimising the fault detection in the residual.
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3.5 Simulation results

In this section, simulation of fault detection in a DC motor is presented to demon-

strate the performance of the proposed PI observer design method.

The state space model of the DC motor is as follows:

8>>>>>>><>>>>>>>:

0BB@ _x0;1(t)

_x0;2(t)

1CCA =

0BB@ �b
J

Kt
L

�Ke
L

�R
L

1CCA
0BB@ x0;1(t)

x0;2(t)

1CCA+
0BB@ 0

1
L

1CCAu(t)
y0(t) =

�
0 1

� (3.32)

where

Jw Moment of inertia of the motor
b Damping ratio
Kt Torque constant
Ke Voltage constant
R Electric resistance
L Electric inductance

The input of the system u is the voltage source and the output y0 = x0;2 is the

rotational speed of the motor shaft. x0;2 is the armature current.

The considered faults and disturbances are system and measurement faults. As

the purpose of this work is to be able to signify the fault e¤ect in the residual while reducing

the disturbances e¤ect, the considered disturbances are a¤ecting the system�s dynamic and

the measured output. The fault to noise ratio is equal to 1.

The simulated fault is an incipient fault that develops gradually in the system
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until it reaches a certain �nal value. Indeed, it can be seen that, before t = 40s the system

is fault free and the fault develops during t = 40s to 60s and maintains its value at 60s and

onward.

The fault is simulated by the function below:

f(t)

8>>>>>><>>>>>>:

0 (t < 40

0:01 t(40 � t < 60)

0:2 (t � 60))

(3.33)

The disturbance signal d(t) is set to be a Gaussian noise with mean value � = 0

variance �2 = 0:2.

In the objective function (3.31), the angular frequency wf is set to 0 to re�ect the

fact that main components of the fault signal f(t) is constant o¤set that a¤ects the system.

Solving Equation (3.17) and using the optimisation algorithm based on the de-

veloped eigenstructure optimisation method to maximise the value of J gives the following

optimised gain matrix K:

K =

26666664
7:84 0:23

�11:56 1

�95:58 �2

37777775 (3.34)

For the purpose of comparison, a traditional proportional observer (denoted by P)

is designed by using the place command in Matlab place (A00; C
0
0; [�4;�5]). A traditional PI

observer (denoted by PI) is also designed using the method used in [54]. The fault detection

scheme simulation results are depicted in Fig. 3.1.
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Figure 3.1: Residuals of Proportional (P), Proportional Integral (PI) and the Optimized
Proportional Integral (PI-Opt) observers.
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Fig. 3.1 shows that regarding disturbances attenuation, best results are given

by the traditional PI observer, when both standard Proportional and optimised PI give

acceptable results. This result was expected considering the good impact on reducing

disturbances that PI observer has showed [54]. Besides, since optimised PI observer has

been designed toward fault detection purpose it was also expected that its disturbances

attenuation performances have been reduced but are still su¢ cient for the purpose of the

FD scheme. Indeed, the deviation from zero of the residual in absence of fault is small

enough not to cause �agging false alarms. Finally, the traditional P was simulated here

for the purpose of comparison, validates its limited performances in the considered case

scenario.

Now for the main purpose of scheme that is fault ampli�cation impact in the

residual, it is clear that the optimised PI observer is the only scheme that gives results

that can be used for fault detection. Indeed, as shown in Fig. 3.1, the optimised PI

residual value deviates considerably when the fault appears at time t = 40s. Furthermore,

considering the gap between the signal in absence and in presence of fault, a threshold value

can straightforward be found. For the traditional P and PI observers, simulation results

show that it has insu¢ cient results to be used for FD as the residual value isn�t enough

distinguishable in absence and presence of fault and my raise false alarms/miss actual

alarms if used for FD.
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3.6 Conclusion

In this chapter, a proportional integral (PI) observer is proposed for model based

fault detection in systems. For the purpose of the design method, the considered MIMO

model was �rst augmented using the integral of the output . Then, an approach based

on eigenstructure optimisation to determine the PI observer gain to attenuate disturbances

impact while signifying the fault e¤ect in the residual was proposed. In particular, the

frequency signatures of faults are taken into account to simplify an objective function and

reduce the computation cost for better performances optimisation. Simulation results on a

DC motor have veri�ed the fault detection capabilities of the proposed scheme .
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Chapter 4

Output observer design and

application to nonlinear systems

4.1 Introduction

The concept of output observer design was �rst proposed in [61] for linear systems.

It was shown that the output-observer was most appropriately designed by using an input-

output model of the system rather than a state space representation of the latter. The

technique consists of modelling the system in an input/output representation by using its

input and output signals, as well as its parameters to build the link between the di¤erent

parts of the di¤erential equation that describes the system. So given that, only the input

and output signals are used in the observer while in traditional observers, all the estimated

states are required. As using less information may a¤ect the observer performances, in this

chapter it is shown that using respective integrals of the input and the output signals will



61

allow to overcome the missing information impact and guarantees the observer estimation

error convergence to zero.

Furthermore, as the majority of physical systems are nonlinear in nature, and

their analytical solution being usually complex to �nd, in this chapter, instead of trying to

�nd a solution for those systems, it will be taken advantage of using the output observer

proprieties to propose a systematic way to tune the observer and determine its performances

and stability proprieties. Indeed, the key feature of the output observer being the output

injection, it is used to deign an observer for a class of nonlinear systems in which the

estimation error dynamic will be independent from the nonlinearities. This allows the

stability analysis to be straight forward and the observer performance to be more e¤ectively

enhanced.

This chapter is organised as follows. First the input/output representation de-

velopment method is detailed. Then, the concept of output observer is introduced and its

design procedure technique is given. Finally, based on its output injection feature, output

observer technique is applied to nonlinear systems.

4.2 Output observer design for linear systems

Fig.4.1. shows, the structure of an output observer for linear systems. It can be

seen that in the proposed observer, there is no need to use additional states to model the

system. Instead, the key element of the observer here is the use of the input and output

signals, and their respective integrals to duplicate the system. The tuning of the observer

gain will then be the key to attenuate the estimation error and thus enhance its estimation
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Figure 4.1: Output observer design for linear systems

performances.

4.2.1 System model - Linear Time Invariant (LTI) systems

For the following, consider the single input single output continuous linear time

invariant systems that are described by the following input-output relationship

y(n)(t) + an�1y
(n�1)(t) + � � �+ a1 _y(t) + a0y(t)

= bmu
(m)(t) + � � �+ b1 _u(t) + b0u(t) (4.1)

where y(t) is the system�s output and u(t) the system�s input and the system its transfer

function is assumed to be proper, i.e. n � m. It is also assumed that y(0) and u(0) are

known/measured.
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The above system can be written in compact form as

y(n)(t) = �ATY (t) +BTU(t) (4.2)

where

A =

�
an�1 : : : a1 a0

�T
B =

�
bm : : : b1 b0

�T
Y (t) =

�
y(n�1)(t) : : : _y(t) y(t)

�T
U(t) =

�
u(m)(t) : : : _u(t) u(t)

�T
(4.3)

Notations: For k � 0; one shall denote by Ikff(t)g the k integrations of the

function f(t) with respect to time; that is Ikff(t)g =
Z t

0
� � �
Z t

0| {z }
k times

f(�)d�:::d� and in particular,

I0ff(t)g = f(t): Also, I�kff(t)g =
dk

dtk
f(t) and in particular I�1ff(t)g =

df(t)

dt
:

By integrating system (4.2) n � 1 times with respect to time, the following is

obtained

In�1
n
y(n)(t)

o
= �ATIn�1 fY (t)g+BTIn�1 fU(t)g (4.4)

This yields

_y(t) = �ATY(t) +BTU(t) + �0(t) + ��(t) (4.5)
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where

Y(t) = In�1 fY (t)g =
�
y(t) : : : In�2 fy(t)g In�1 fy(t)g

�T
U(t) = In�1 fU(t)g =

�
In�1�m fu(t)g : : : In�2 fu(t)g In�1 fu(t)g

�T (4.6)

The function �0(t) is a known (polynomial) function of the known initial conditions

fy(0); u(0)g, of the system, while ��(t) is an unknown (polynomial) function that is depen-

dent on the unknown initial conditions of the system with � = f _y(0); �y(0):::; _u(0); �u(0):::g.

4.2.2 Development procedure of output/input representation

In this section, the detailed procedure of developing system (4.4) is given, and in

particular, initial conditions polynomials �0(t) and ��(t) are detailed.

First, for p � k; the p-th order integration y(k)(t) can be expressed as

Ipfy(k)(t)g = y(k�p)(t)�
p�1X
i=0

y(k�p+i)(0)
ti

i!
(4.7)

where y(i) denotes the i� th derivative initial condition.

For the sake of simply notation, a polynomial Rk(t) is introduced to represent the

polynomial of initial conditions. That is

Rk(t) =
k�1X
i=0

y(i)(0)
ti

i!
(4.8)
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Now, in particular, when p = k, it is

Ipfy(k)(t)g = Ikfy(k)(t)g = y(t)�
k�1X
i=0

y(i)(0)
ti

i!
(4.9)

Hence, the k � th order integration of y(k)(t) can be written as

Ikfy(k)(t)g = y(t)�Rk(t) (4.10)

Similarly, the (k � 1)� th order integration of y(k)(t) can be written as

Ikfy(k�1)(t)g = _y(t)�Rk�1(t) (4.11)

In the scenario of p > k

Ip
n
y(k)(t)

o
= Ip�k

n
Ik
n
y(k)(t)

oo
= Ip�k fy(t)g � Ip�k fRk(t)g (4.12)

Now

In�1 fY (t)g =

0BBBBBBBBBB@

In�1
�
y(n�1)(t)

	
...

In�1 f _y(t)g

In�1 fy(t)g

1CCCCCCCCCCA
=

0BBBBBBBBBB@

y(t)�Rn�2(t)
...

In�2 fy(t)g � In�2 fR0(t)g

In�1 fy(t)g

1CCCCCCCCCCA
= Y(t)� �(t) (4.13)
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where

Y(t) =

0BBBBBB@
Y (t)

...

In�1 fY (t)g

1CCCCCCA �(t) =

0BBBBBBBBBBBBBB@

Rn�2(t)

I1 fRn�3(t)g
...

In�2 fR0(t)g

0

1CCCCCCCCCCCCCCA
(4.14)

with R�1(t) = 0:

Similarly,

In�1 fU(t)g =

0BBBBBBBBBB@

In�1
�
u(m)(t)

	
...

In�1 f _u(t)g

In�1 fu(t)g

1CCCCCCCCCCA
=

0BBBBBBBBBB@

u(t)� Sm�1(t)
...

In�2 fu(t)g � In�2 fS0(t)g

In�1 fu(t)g

1CCCCCCCCCCA
= U �� (4.15)

where

Sk(t) =

kX
i=0

u(i)(0)
ti

i!
(4.16)

with

�(t) =

0BBBBBBBBBB@

Sm�1(t)

...

In�2 fS0(t)g

0

1CCCCCCCCCCA
(4.17)
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Then, using the previously developed calculations, one can obtain the following

expression of the output dynamic:

In�1
n
y(n)(t)

o
= �ATIn�1 fY (t)g+BTIn�1 fU(t)g

:
y(t)�

n�2X
i=0

y(i+1)(0)
ti

i!
= �AT (Y � �) +BT (U ��) (4.18)

That is

:
y(t) = �AT (Y � �) +BT (U ��) +

n�2X
i=0

y(i+1)(0)
ti

i!

= �ATY +BTU + ��(t) (4.19)

where

�0(t) = A
T��BT�+

n�2X
i=0

y(i+1)(0)
ti

i!
(4.20)

is a parametrised function with the initial conditions of the input and the output,

i.e. � = (y(0); _y(0); :::; u(0); _u(0); :::):

Note that

Rk(t) =

kX
i=0

y(i)(0)
ti

i!
= y(0) + �Rk(t) (4.21)

and

Sk(t) = u(0) +
kX
i=1

u(i)(0)
ti

i!
= u(0) + �Sk(t) (4.22)
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Therefore,

��(t) = AT��BT�+
n�2X
i=0

y(i+1)(0)
ti

i!

= AT ���BT �� + ��(t)

= �0(t) + ��(t) (4.23)

where

�0(t) = A
T

0BBBBBBBBBB@

y(0)

...

In�2 fy(0)g

0

1CCCCCCCCCCA
�BT

0BBBBBBBBBB@

u(0)

...

In�2 fu(0)g

0

1CCCCCCCCCCA
(4.24)

��(t) = A
T ���BT �� +

n�2X
i=0

y(i+1)(0)
ti

i!
(4.25)

and

�� =

0BBBBBBBBBBBBBB@

�Rn�2(t)

...

In�3
�
�R1(t)

	
0

0

1CCCCCCCCCCCCCCA
�� =

0BBBBBBBBBBBBBB@

�Sm�1(t)

...

In�3
�
�S1(t)

	
0

0

1CCCCCCCCCCCCCCA
(4.26)

Thus �0(t) and �(�; t), are of a polynomial form which exact expression is known. This will

allow to �nd the �nal value of the estimation error of the observer.

The interest of this development is that it shows the procedure to follow in order
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to obtain the output of the signal dynamics as function of its n� 1 integrals, the input and

its p� 1 integrals. Thus the system can be studied using only y (t) and u (t).

4.2.3 Output observer design for LTI systems

The following result is obtained.

Theorem 1

The observer described by the following expression:

:
ŷ(t) = �AT bY(t) +BTU(t) +KT

�
Y(t)� bY(t)�+ �0(t) (4.27)

is an asymptotic observer for the system described by Equation (4.5) provided that the

gain KT =

�
kn�1 : : : k1 k0

�
is chosen such that the polynomial D(s) = sn +

n�1X
i=0

(ai + ki) s
i is stable; i.e. the roots of D(s) = 0 lie in the left-half complex plane, with

a0 + k0 6= 0.

where

bY(t) = � ŷ(n�1)(t) : : :
:
ŷ(t) ŷ(t)

�T
(4.28)

Proof

By de�ning "(t) = y(t) � ŷ(t), to represent the estimation errors of the proposed

observer, the error dynamics of the observer can be written as

_"(t) = �
�
AT +KT

� �
Y(t)� bY(t)�+ ��(t) (4.29)
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Now, by taking the Laplace transform of Equation (4.29), one obtains

s"(s)� "(0) = �
�
AT +KT

�
�(s)"(s) + ��(s) (4.30)

where "(s) and ��(s) are the Laplace transform of the functions "(t) and ��(t)

respectively and

�T (s) =

�
1 1

s � � � 1
sn�1

�
(4.31)

Consequently,

"(s) =
��(s) + "(0)

s+ (AT +KT )�(s)
(4.32)

Note that �
AT +KT

�
�(s) =

n�1X
i=0

(ai + ki)
1

sn�1�i
(4.33)

From the expression of the function ��(t) given in (4.25), it can be noticed that it

is a polynomial function of order n � 2. Hence, ��(s) is also a polynomial in 1=s of order

n� 1.

As a result,

"(s) =
sn�1��(s) + s

n�1"(0)

sn + sn�1 (AT +KT )�(s)
=
N(s)

D(s)
(4.34)
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Using the expression (4.33), the polynomial D(s) is explicitly given by

D(s) = sn + sn�1
�
AT +KT

�
�(s)

= sn +
n�1X
i=0

(ai + ki) s
i (4.35)

One must choose, K such that this polynomial is stable so �nal value theorem can

apply [62].

Finally, applying the �nal value theorem to gives

lim
s!0

s"(s) =
sn��(s) + s

n"(0)

sn +
n�1X
i=0

(ai + ki) sn

=
sn��(s) + s

n"(0)

sn +

n�1X
i=1

(ai + ki) si + (a0 + k0)

=
0

(a0 + k0)
(4.36)

As one can see, the �nal value of the residual is equal to zero if k0 is chosen such

that (a0 + k0) 6= 0. This proves that if the polynomial �0(t) is known, the proposed output

observer is asymptotically stable and its estimation error converges asymptotically to zero.

4.3 Output observer with output injection

Consider the observer described in the previous section, one can notice, since the

input/output representation of the system is being used, when duplicating the system model

in the observer, the actual system output can be used instead of using the estimated output.



72

The bene�t of such a technique is to use the actual system output in the observer

when possible which will result in reducing the estimation error. This will inevitably lead

to increase the observer performances (shorter response time, more stability margin and

lesser estimation error value). So the key di¤erence in the observer with output injection

structure is that the measured output is not only used for error estimation correction, but

also in the system duplication part. Thus, it is the estimated output that is only used for

the estimation error correction.

Theorem 2

The following system:

:
ŷ(t) = �ATY(t) +BTU(t) +KT

�
Y(t)� bY(t)�+ �0(t) (4.37)

is an asymptotic observer for system (4.5) provided that the gain K =

�
kn�1 : : : k1 k0

�T
is chosen such that the polynomial D(s) = sn+

n�1X
i=0

kis
i is stable; i.e. the roots of D(s) = 0

lie in the left-half complex plan, with k0 6= 0:

Proof

The proof follows along the same lines as that of Theorem 1. Indeed, de�ning "(t)

and "(s) as above, one can show that:

_"(t) = �KT
�
Y(t)� bY(t)�+ ��(t) (4.38)
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Similar to previous section, the following is obtained

"(s) =
��(s) + "(0)

s+KT�(s)
(4.39)

thus, applying the �nal value theorem to gives

lim
s!0

s"(s) =
sn��(s) + s

n"(0)

sn +

n�1X
i=0

(ki) sn

=
sn��(s) + s

n"(0)

sn +

n�1X
i=1

(ki) si + (k0)

=
0

k0
(4.40)

The output injection technique will remove the dependency of the observer error convergence

on the system parameters vector A provided that the roots of sn+
n�1X
i=0

(ai) s
i are stable. So

choosing K such that the roots s+KT�(s) are on the left half open plan and k0 6= 0 will

ensure that the estimation error will converge asymptotically to zero.

4.4 Output observer for a class of nonlinear systems

To deal with nonlinear systems, output observer with output injection technique

will allow to eliminate the nonlinearity in the error estimation dynamic. This means that

for the considered class of nonlinear systems, using this technique will allow to build an

observer which performances can be proved without having to deal with the nonlinearities.
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4.4.1 System model - a class of nonlinear system

Consider the following class of nonlinear systems:

_x1(t) = x2(t) + '1(y(t); u(t))

_x2(t) = x3(t) + '2(y(t); u(t))

_x3(t) = x4(t) + '3(y(t); u(t))

:::

_xn�2(t) = xn�1(t) + 'n�2(y(t); u(t))

_xn�1(t) = xn(t) + 'n�1(y(t); u(t))

_xn(t) = 'n(y(t); u(t)) (4.41)

y(t) = x1(t) (4.42)

where the nonlinear functions '1:::n(t) are expressed only in term of input and

output signals. This method can be applied to systems with strong nonlinearities where

only states that bring nonlinearities need to be measured in order to build an observer for

the nonlinear system.

In this case, for sake of simplicity, consider a single output case but knowing that

the approach developed here also applies to multiple output systems.
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Rearranging the system described by (4.41) gives

x2(t) = _x1(t)� '1(y(t); u(t))

x3(t) = �x1(t)� _'1(y(t); u(t))� '2(y(t); u(t))

x4(t) =
...
x 1(t)� �'1(y(t); u(t))� _'2(y(t); u(t))� '3(y(t); u(t))

:::

xn�1(t) = x
(n�2)
1 (t)� '(n�3)1 (y(t); u(t)� '(n�4)2 (y(t); u(t))� :::� 'n�2(y(t); u(t))

xn(t) = x
(n�1)
1 (t)� '(n�2)1 (y(t); u(t))� '(n�3)2 (y(t); u(t))� :::� 'n�1(y(t); u(t))

x
(n)
1 (t) = '

(n�1)
1 (y(t); u(t)) + '

(n�2)
2 (y(t); u(t))

+:::+ _'n�1(y(t); u(t)) + 'n(y(t); u(t)) (4.43)

which leads by using the output Equation (4.42) to the input/output representa-

tion of the system

y(n)(t) = '
(n�1)
1 (y(t); u(t)) + '

(n�2)
2 (y(t); u(t))

+:::+ _'n�1(y(t); u(t)) + 'n(y(t); u(t)) (4.44)

In order to have the output dynamic expression _y(t), it is only needed to integrate

Equation 4.44 n� 1 times

_y(t) = '1(y(t); u(t)) + I1 f�'2(y(t); u(t))g+ : : :+ In�2
�
�'n�1(y(t); u(t))

	
+In�1 f�'n(y(t); u(t))g+ ��(t) (4.45)
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It can be seen here that the output dynamic now depends only on the input and

output signals. This result is necessary as to design the output observer, no estimated states

can be used in the model.

4.4.2 Output observer design for a class of nonlinear systems

Theorem 3

The following system:

:
ŷ(t) = '1(y(t); u(t)) + I1 f�'2(y(t); u(t))g+ : : :+

In�2
�
�'n�1(y(t); u(t))

	
+ In�1 f�'n(y(t); u(t))g (4.46)

+KT
�
Y(t)� bY(t)�+ �0(t) (4.47)

is an asymptotic observer for system (4.45) provided that the gain K =

�
kn�1 : : : k1 k0

�T
with k0 6= 0 is chosen such that the polynomial D(s) = sn +

n�1X
i=0

kis
i is stable; i.e. the roots

of D(s) = 0 lie in the left-half complex plan.

Proof

By de�ning "(t) = y(t) � ŷ(t), to represent the estimation errors of the proposed

observer, the error dynamics of the observer can be written as

_"(t) = �KT
�
Y(t)� bY(t)�+ ��(t) (4.48)

It can be seen here that all the nonlinearities have been eliminated in the estimation

error dynamic, which means that the observer estimation error convergence can be proved
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in a linear form. To do so, the �nal value theorem that is used with the Laplace transform

of the error dynamic expression.

So, by taking the Laplace transform of Equation (4.48), one obtains

s"(s)� "(0) = �KT�(s)"(s) + ��(s) (4.49)

where "(s) and �(�; s) are the Laplace transform of the functions "(t) and ��(s)

respectively and

�T (s) =

�
1 1

s � � � 1
sn�1

�
(4.50)

Consequently,

"(s) =
��(s) + "(0)

s+KT�(s)
(4.51)

Note that

KT�(s) =
n�1X
i=0

ki
1

sn�1�i
(4.52)

It can be seen here that the proof procedure provided for LTI systems applies here

as the nonlinearities have been removed in the estimation error expression. Thus it can

be established that for this class of nonlinear systems, the output observer with output

injection is asymptotically stable.

4.5 Extension to general case of nonlinear systems

In this section, the case where the nonlinearity in the system will depend not only

on the measured states of the systems, but on all the states is considered.
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First, as proved in [63], provided that the system is stable, it can then be rewritten

in a way that the nonlinearities are expressed in terms of the states in a triangular form as

shown below

_x1(t) = x2(t) + '1(x1; u(t))

_x2(t) = x3(t) + '2(x1; x2; u(t))

_x3(t) = x4(t) + '3(x1; x2; x3; u(t))

:::

_xn�2(t) = xn�1(t) + 'n�2(x1; x2; :::xn�2; u(t))

_xn�1(t) = xn(t) + 'n�1(x1; x2; :::xn�1; u(t))

_xn(t) = 'n(x(t); u(t)) (4.53)

y(t) = x1(t) (4.54)
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Then system 4.53 can be developed as below

x2(t) = _x1(t)� '1(x1; u(t))

x3(t) = �x1(t)� _'1(x1; u(t))� �'2(x1; _x1(t); u(t))

x4(t) =
...
x 1(t)� �'1(x1; u(t))�

:
�'2(x1; _x1(t); u(t))� �'3(x1; _x1(t); �x1(t); u(t); _u(t))

:::

xn�1(t) = x
(n�2)
1 (t)� '(n�3)1 (x1(t); u(t))� �'(n�4)2 (x1(t); _x1(t); u(t))

��'(n�5)3 (x1(t); _x1(t); �x1(t); u(t); _u(t))

� : : :�
:
�'
(1)
n�3(x1(t); _x1(t); : : : ; x

(n�4)
1 (t); u(t); : : : ; u(t)(n�5))

��'n�2(x1(t); _x1(t); : : : ; x
(n�3)
1 (t); u(t); : : : ; u(t)(n�4))

xn(t) = x
(n�1)
1 (t)� '(n�2)1 (x1(t); u(t))� �'(n�3)2 (x1(t); _x1(t); u(t))

��'(n�4)3 (x1(t); _x1(t); �x1(t); u(t); _u(t))

� : : :�
:
�'n�2(x1(t); _x1(t); : : : ; x

(n�3)
1 (t); u(t); : : : ; u(t)(n�4))

�'n�1((x1(t); _x1(t); : : : ; x
(n�2)
1 (t); u(t); : : : ; u(t)(n�3))

x
(n)
1 (t) = '

(n�1)
1 (x1(t); u(t)) + �'

(n�2)
2 (x1(t); _x1(t); u(t))

+�'
(n�3)
3 (x1(t); _x1(t); �x1(t); u(t); _u(t))

+ : : :+
:
�'n�1((x1(t); _x1(t); : : : ; x

(n�2)
1 (t); u(t); u(t); : : : ; u(t)(n�3))

+�'n((x1(t); _x1(t); : : : ; x
(n�1)
1 (t); u(t); u(t); : : : ; u(t)(n�2)) (4.55)
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And using the same procedure than in previous subsections gives

y(n) (t) = '
(n�1)
1 (x1(t); u(t)) + �'

(n�2)
2 (x1(t); _x1(t); u(t))

+�'
(n�3)
3 (x1(t); _x1(t); �x1(t); u(t); _u(t)) + : : :+

:
�'n�1((x1(t); _x1(t); : : : ; x

(n�2)
1 (t); u(t); u(t); : : : ; u(t)(n�3))

+�'n((x1(t); _x1(t); : : : ; x
(n�1)
1 (t); u(t); u(t); : : : ; u(t)(n�2)) (4.56)

Finally, integrating the above equation n� 1 times gives

_y (t) = '1(y(t); u(t)) + I1 f�'2(y(t); _y(t); u(t))g

+I2 f�'3(y(t); _y(t); �y(t); u(t); _u(t))g

+ : : :+ In�2
n :
�'n�1((y(t); _y(t); : : : ; y

(n�2)(t); u(t); : : : ; u(t)(n�3))
o

+In�1
n
�'n((y(t); _y(t); : : : ; y

(n�1)(t); u(t); : : : ; u(t)(n�2))
o
+ ��(s) (4.57)

Now, as one can see, the nonlinearities contain derivatives of the input and the

output which can not be considered in the observer. For this, since the degree of integration

associated to every nonlinear functions �'1:::n is equal or greater to the degree of derivation of

the input and the output it depends on, are considered only the class of nonlinear functions

where after solving those integration functions, the nonlinear functions will not depend on

the derivatives of the input and the output anymore.

Provided that, an observer for the above system using the output injection tech-
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nique is designed:

:
ŷ (t) = '1(y(t); u(t)) + I1 f�'2(ŷ(t); _y(t); u(t))g

+I2 f�'3(ŷ(t); _y(t); �y(t); u(t); _u(t))g+ : : :+

In�2
n :
�'n�1((ŷ(t); _y(t); : : : ; y

(n�2)(t); u(t); : : : ; u(t)(n�3))
o

+In�1
n
�'n((ŷ(t); _y(t); : : : ; y

(n�1)(t); u(t); : : : ; u(t)(n�2))
o

+Kn�1In�1 fe(�)d�g+ �0(s) (4.58)

So, the error dynamics is given by:

_e(t) = ���(t)� : : :�Kn�1In�1 fe(�)d�g (4.59)

Then using the same procedure than in previous subsection, the observer conver-

gence can be proved.

This shows that for general class of nonlinear functions which fall under the as-

sumption considered here, the proposed output observer design calculation is feasible and

its convergence proven without having to deal with the nonlinearities.

4.6 Conclusion

In this chapter, a design of the output observer was proposed and its stability

conditions proved, �rst for a special class of nonlinear systems then for general class of non-

linear systems in which a constraint was considered. It was showed its bene�ts to deal with
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a special class of nonlinear systems and general nonlinear systems under a given assumption.

Indeed, in this approach, using the output injection technique, it was possible to eliminate

the nonlinearity from the residual then using the proof that was developed for output ob-

server for LTI systems, it was showed that its stability can be proved. Consequently, the

observer gain calculation can be done toward observer performances in a systematic given

way.
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Chapter 5

Robust output observer for fault

detection

5.1 Introduction

Model based fault detection relies on using a mathematical model that describes

the behavior of the system. The basic idea is to generate a residual in order to make a

diagnosis of the system. The residual is the di¤erence between the actual measurements

of the monitored system and the values estimated using the mathematical model based

observer. Under healthy conditions, the mathematical model matches the real system and

the residual will be small enough (i.e. close to zero) to be ignorable. In the presence of

fault, the residual of a well-designed fault detector should be apparently di¤erent from zero,

thus a fault detection alarm can be raised. One can make the observation that as far as

fault-detection is concerned, it is unnecessary to estimate all the states variables as long as
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an estimation of the output is obtained. Consequently, rather than a using a state observer,

an output observer is su¢ cient.

Further, the performance criterion of fault detection system includes robustness.

Indeed, in practice, even in healthy conditions, the residual deviates from zero and it is

impossible to have a perfect zero residual, because the residual is not only determined by

the faults, but also a¤ected by measurement noise, disturbances, parametric variations,

unmodelled dynamics and nonlinearities presented to the system. A non-zero residual will

easily lead to false alarms. A lot of existing methods can reduce the impact of these e¤ects

on the residual and avoid false alarms. Unfortunately, neither of them can give a perfect

decoupling between these e¤ects and the residual. Furthermore, the residual has to be

compared with a threshold for decision-making. In model based fault detection, one of the

main challenges is the generation of a residual that is as small as possible under healthy

conditions and the calculation of threshold value that avoid raising false alarms or missing

faults occurring in the system.

In this chapter, the previously developed output observer technique is applied to

fault detection in LTI systems. It will be �rst applied it to single-output systems, then

the approach will be extended to multi-output systems. Also, a solution to robust fault-

detection issue is proposed and a systematic method to calculate the observer gain based

on an optimisation method is introduced.
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5.2 Output observer for fault detection

In Chapter 4, it was proved that under the assumed constraints, using the output

observer approach for nonlinear leads to dealing with a residual that nonlinearities free.

Thus, the attention in this chapter is focused on linear systems. First, the output observer

approach is applied to LTI systems subject to faults.

Consider the model of a faulty system, where fault dynamics parameters are

known, and described as follows

y(n)(t) + � � �+ a1 _y(t) + a0y(t) =
h
bmu

(m)(t) + � � �+ b1 _u(t) + b0u(t)
i

+
h
gqf

(q)(t) + � � �+ g1 _f(t) + g0f(t)
i

(5.1)

where f(t) represents the signal of the fault acting on the system through the

fault input parameters
�
gq : : : g1 g0

�
. Similar to the compact form of the fault-free

system model, the system subject to fault f(t) can be rewritten as

y(n)(t) = �ATY (t) +BTU(t) +GTF (t) (5.2)

Denoting Y T and UT as in (4.6). GT =
�
gq : : : g1 g0

�
is a q-th order input

vector and F T =
�
f (q)(t) : : : _f(t) f(t)

�
is the vector of fault derivatives. For sake of

simplicity, it is assumed that the system is free of fault at t = 0. That is f(0) = _f(0) =

: : : = f (q)(0) = 0.

As previously done, by integrating system (5.2), n� 1 times with respect to time,
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one obtains

_y(t) = �ATY +BTU +GTF + �0(t) + ��(t) (5.3)

where

FT = In�1 fF (t)g =
�
In�q�1 ff(t)g : : : In�2 ff(t)g In�1 ff(t)g

�
(5.4)

The output observer design for fault detection relies on using the same approach

used for the free system. Only, in the case of faulty systems, in addition to estimation

error convergence despite initial conditions deviations, we will prove that under certain

conditions, the fault can be detected with minimal conditions on the gain value.

Theorem 4

Consider the system described by (5.3) and its following observer

:
ŷ(t) = �AT bY +BTU +KT

�
Y � bY�+ �0(t) (5.5)

where KT =

�
kn�1 : : : k1 k0

�
with a0 + k0 6= 0 is chosen such that the

polynomial D(s) = sn+
n�1X
i=0

(ai + ki) s
i is stable. Let the fault f(t) be a polynomial of order

at most equal to q � 1.

Then,

lim
t!1

(y(t)� ŷ(t)) 6= 0 (5.6)

where f is the identi�ed parameter index and cf is a constant.

Proof
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Setting "(t) = y(t)� ŷ(t); the error dynamics can be written as

_"(t) = �
�
AT +KT

� �
Y � bY�+GTF + ��(t)) (5.7)

Then, by taking the Laplace transform of Equation (5.7)

s"(s)� "(0) = �
�
AT +KT

�
�(s)"(s) +GT�(s)f(s) + ��(s) (5.8)

where f(s) is the Laplace transform of f(t).

�(s) is de�ned as in (4.31) and

�(s)T =

�
1

sn�q�1 : : : 1
sn�2

1
sn�1

�
(5.9)

Consequently,

"(s) =
GT�(s)f(s)

s+ (AT +KT )�(s)
+

��(s) + "(0)

s+ (AT +KT )�(s)

=
sn�1GT�(s)f(s)

sn + sn�1 (AT +KT )�(s)
+

sn�1��(s) + s
n�1"(0)

sn + sn�1 (AT +KT )�(s)

=
sn�1GT�(s)f(s)

D(s)
+
N(s)

D(s)
(5.10)

where N(s) and D(s) are de�ned as in (4.34).

Using the �nal value theorem one obtains

lim
s!0

s"(s) = lim
s!0

�
snGT�(s)f(s)

D(s)
+
sN(s)

D(s)

�
(5.11)
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In chapter 4, it was proved that lims!0
�
sN(s)
D(s)

�
= 0

a0+k0
. So in this chapter, the

focus will be on proving that the value of lims!0
snGT�(s)f(s)

D(s) allows the error estimation

error to converge while the condition established in chapter 4 are still ful�lled so the results

are still valid.

First, note that:

snGT�(s)f(s) =

�
sngq
sn�q�1

+ � � �+ sng1
sn�2

+
sng0
sn�1

�
f(s)

= s (gqs
q + � � �+ g1s+ g0) f(s) (5.12)

Therefore,

lim
s!0

snGT�(s)f(s)

D(s)
= lim
s!0

0BBBBB@
�
gqs

q + � � �+ g1s2 + g0
�
sf(s)

sn +
n�1X
i=1

(ai + ki) si + (a0 + k0)

1CCCCCA (5.13)

If f(t) is approximated by a polynomial of order l � q then the fault detectability

condition can be set following the �rst non-zero element of the fault dynamics input matrix

G. Indeed, if for instance g0 6= 0 then lim
s!0

s"(t) 6= 0, which means that all type of faults

can be detected. When if g0 = 0 and g1 6= 0 then lim
s!0

s"(t) 6= 0 if f(t) is at least of order

1. Thus, constant type fault signals are not detectable while detection of ramp type and

higher order faults signals is achievable. Following this logic, if the �rst non zero element

of G is gf then the fault signal type that can be detected has to be at least of order f .

Thus, the fault detectability condition depends on both the dynamics brought by the fault

and the fault signal.
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Now, assuming that the fault type and signal ful�ll the fault detectability condi-

tion, and setting k0 such that a0 + k0 6= 0 then the residual will always contain a fault

signature i.e. lims!0 s"(s) 6= 0.

The above result shows that only k0 is needed to insure that the fault signature

will be present and furthermore signi�ed in the residual steady state. Indeed k0 value should

be calculated such that the fault signal to residual ratio is high enough so a fault occurrence

can be distinguished in the residual.

5.3 Observer gain optimisation for robust fault detector de-

sign

In this section is considered the system model used in previous section to which is

added disturbances dynamics

y(n)(t) + � � �+ a1 _y(t) + a0y(t) =
h
bmu

(m)(t) + � � �+ b1 _u(t) + b0u(t)
i

+
h
gqf

(q)(t) + � � �+ g1 _f(t) + g0f(t)
i

+
h
epd

(p)(t) + � � �+ e1 _d(t) + e0d(t)
i

(5.14)

where e(t) represents the considered disturbance acting on the system through its

disturbance input parameters
�
eq : : : e1 e0

�
.

Note that the general form of dynamics brought by disturbances that can e¤ect

the system, the actuator or the sensor is used here. For instance,in the case of a Gaussian

noise, the successive derivatives of the disturbance will not be needed thus only e0 will be
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nonzero.

First, Equation (5.14) is rewritten as

y(n)(t) = �ATY +BTU +GTF + ETD (5.15)

where

ET =

�
ep ep�1 : : : e1 e0

�
DT =

�
d(p) d(p�1) : : : _d d

� (5.16)

Following the same steps than in previous section, the output dynamic expression

is

_y(t) = �ATY +BTU +GTF + ETD (t) + ��0(t) + ���(t) (5.17)

denote

DT (t) = In�1 fD(t)g =
�
In�p�1 fd(t)g : : : In�2 fd(t)g In�1 fd(t)g

�
(5.18)

and ��0(t) is the term containing the known initial conditions of y(t), u(t) and d(t)

while ���(t) is a unknown (polynomial) function that is dependent on the unknown initial

conditions of the system with � =
n
_y(0):::; _u(0):::; d(0); _d(0):::

o
.

Then, the observer is de�ned by

:
ŷ(t) = �AT bY +BTU +KT

�
Y � bY�+ ��0(t) (5.19)
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Now, the residual dynamic expression is calculated as

_"(t) = �
�
AT +KT

� �
Y � bY�+GTF + ETD (t) + ���(t) (5.20)

Applying Laplace Transform to (5.20) gives

s"(s)� "(0) = �
�
AT +KT

�
�(s)"(s) +GT�(s)f(s) + ET�(s) d (s) + ���(s) (5.21)

where d (s) is the Laplace transform of d(t) and

�(s)T =

�
1

sn�p�1 : : : 1
sn�2

1
sn�1

�
(5.22)

Finally, one obtains

"(s) =
sn�1GT�(s)f(s)

D(s)
+
sn�1ET�(s) d (s)

D(s)
+
N(s)

D(s)
(5.23)

It is already known from previous results that lim
s!0

�
sN(s)
D(s)

�
= 0

(a0+k0)
and lim

s!0

�
snGT�(s)f(s)

D(s)

�
6=

0. Now, one needs to attenuate the disturbance contribution in the residual brought by

snGT�(s)f(s)
D(s) :

The method used here is based on �nding the gain K value that minimises the

disturbance to residual dynamic ET�(s)d(s)
s+(AT+KT )�(s)

while the latter remains sensitive to the

faults.

As shown in previous section, only kf needs to be used to achieve good fault

detection performances, so in this section, an optimisation method will be used to calculate
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the gain K 0 =

�
kn�1 : : : kf+1 kf�1 : : : k0

�T
value toward disturbance attenuation

while kf remains �xed as set in previous section.

The gain optimisation method used for �nding the optimal K 0 for disturbances at-

tenuation was proposed in [64] where a criterion to be minimised to reduce the disturbances

e¤ect in the residual is set. Indeed, the criterion is de�ned as min
K0




 ET�(s)d(s)
s+(AT+KT )�(s)





s=jwd

with wd = 2�fd and fd is the identi�ed frequency of the disturbance. For a white Gaussian,

as the noise is spread equally over the range of frequency, one can use the in�nity norm

min
K0




 ET�(s)d(s)
s+(AT+KT )�(s)





1
instead of using and identi�ed �xed value.

5.3.1 Extension to the multi-output case

The above output observer design can be extended to the multi-output case for

systems of the form. Indeed, consider the system as described in (5.24)

AnY
(n)(t) = �An�1Y (n�1)(t)� � � � �A0Y (t) +BmU (m)(t) + � � �+B0U(t)

+GlF
(l)(t) + � � �+G0F (t) (5.24)

where

Y =

0BBBBBB@
y1

...

yp

1CCCCCCA , U =
0BBBBBB@
u1

...

uq

1CCCCCCA and F =

0BBBBBB@
f1

...

fr

1CCCCCCA (5.25)

where Ai 2 Rp�p; Bi 2 Rp�q and Gi 2 Rp�r.
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By integrating system (5.24) n� 1 times with respect to time, one obtains

An _Y (t) =

�
�An�1 : : : �A0

�
0BBBBBB@

Y (t)

...

In�1 fY (t)g

1CCCCCCA

+

�
Bm : : : B0

�
0BBBBBB@
In�m�1 fU(t)g

...

In�1 fU(t)g

1CCCCCCA

+

�
Gl : : : G0

�
0BBBBBB@
In�m�1 fF (t)g

...

In�1 fF (t)g

1CCCCCCA+ �0 (t) + 
(�; t) (5.26)

where �(t; �) and 
(�; t) are polynomials functions containing respectively the

known and unknown initial conditions, .

Then, the output observer can be designed similarly to the approach used for SISO
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systems as follows

An

:

Ŷ (t) =

�
�An�1 : : : �A0

�
0BBBBBB@

Y (t)

...

In�1 fY (t)g

1CCCCCCA

+

�
Bm : : : B0

�
0BBBBBB@
In�m�1 fU(t)g

...

In�1 fU(t)g

1CCCCCCA

+

�
Kn : : : K0

�
0BBBBBB@
In�m�1

n
Y (t)� Ŷ (t)

o
...

In�1
n
Y (t)� Ŷ (t)

o

1CCCCCCA+ �0 (t) (5.27)

In order to evaluate the observer performances, the estimation error " (t) is set

de�ned by " (t) = Y (t)� Ŷ (t); and thus the error dynamic is calculated as

An _" (t) =

�
�An�1 �Kn�1 : : : �A0 �K0

�
0BBBBBB@

" (t)

...

In�1 f" (t)g

1CCCCCCA

+

�
Gl : : : G0

�
0BBBBBB@
In�m�1 fF (t)g

...

In�1 fF (t)g

1CCCCCCA+
(�; t) (5.28)
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Now, calculating the Laplace transform of the error dynamic gives

Ans" (s) =

�
�An�1 �Kn�1 : : : �A0 �K0

�
0BBBBBB@

" (s)

...

1
sn�1 f" (s)g

1CCCCCCA

+

�
Gl : : : G0

�
0BBBBBB@

1
sn�m�1 fF (s)g

...

1
sn�1 fF (s)g

1CCCCCCA+
(�; s) (5.29)

thus

" (s)

�
An An�1 +Kn�1 : : : A0 +K0

�
0BBBBBBBBBB@

sIn

In

...

1
sn�1 In

1CCCCCCCCCCA
" (s)

=

�
Gl : : : G0

�
0BBBBBB@

1
sn�m�1 fF (s)g

...

1
sn�1 fF (s)g

1CCCCCCA+
(�; s) (5.30)

where Ip 2 Rn�n is the n-dimensional identity matrix.
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Finally, is obtained

s" (s) =

0BBBBBBBBBB@
�
An An�1 +Kn�1 : : : A0 +K0

�
0BBBBBBBBBB@

sIn

In

...

1
sn�1 In

1CCCCCCCCCCA

1CCCCCCCCCCA

�1

�

0BBBBBB@
�
Gl : : : G0

�
0BBBBBB@

1
sn�m�1 fF (s)g

...

1
sn�1 fF (s)g

1CCCCCCA+ �1(t; �)
1CCCCCCA (5.31)

The same approach used for the single output case can be used to determine the

gains matrix values for fault detection as instead of dealing with simple fractions, it requires

handling matrices. It is worth noting though that in order to continue the analysis of the

fault detection scheme and calculating the gain matrix to achieve good fault detection

performances, the admissible values of the gain matrix
�
Kn : : : K0

�
are those that

make the following matrix
�
An An�1 +Kn�1 : : : A0 +K0

�
of full order so it is indeed

invertible. This method can also be extended to systems under disturbances as in previous

section.

5.4 Modelling of three wheeled robot model

A three wheeled robot model has been built to validate the fault detection scheme

performances. In the modelled robot, the rear axle which connected to two wheels is driven

by two DC motors connected to each wheel. The system input is thus, a two dimensioned
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Figure 5.1: Three wheeled robot model

vector that contains both the motors voltages vl and vr. The system output is also a two

dimensional vector which contains each of the rear axle wheels positions yl and yr.

The simpli�ed mechanical model of the three wheeled robot is shown in Fig. 5.1.

The system generalised dynamics are given by

�
(2m+M)R2 +mR2 + 2n2Jm

�
�� =

�

2
(vl + vr)� (� + fw) _� (5.32)

"
1

2
mW 2 +

M
�
W 2 + L2

�
12

+
W 2

2R2
�
Jw + n

2Jm
�#
��

=
R

W
� (vl � vr)�

�
� +

W

R
fw

�
_� (5.33)

where � is the robot translational motion and � is the robot yaw angle
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M Body mass Jw Wheel inertia moment
m Wheel mass n Gear ratio
R Wheel radius fw Wheel/road friction coe¢ cient
W Body width �; � Electrical motor coe¢ cients
L Body length Jm Electrical motor inertia

Now, consider a fault occurring in the system and which is a¤ecting the robot mass

such that: M !M +�M and a disturbance d acting on the system. Equations (5.32) and

(5.33) become

�
(2m+M)R2 +mR2 + 2n2Jm

�
�� +�MR2��

=
�

2
(vl + vr)� (� + fw) _� + d; (5.34)

"
1

2
mW 2 +

M
�
W 2 + L2

�
12

+
W 2

2R2
�
Jw + n

2Jm
�#
��+

�M
�
W 2 + L2

�
12

��

=
R

W
� (vl � vr)�

�
� +

W

R
fw

�
_�+ d (5.35)

The output equations are

yr =
180

�

�
� � W

2R
�

�
(5.36)

yl =
180

�

�
� +

W

2R
�

�
(5.37)
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By solving simultaneously (5.37) and (5.36), one gets

8>><>>:
� = �

360 (yl + yr)

� = �R
180W (yl � yr)

(5.38)

Consequently

c1 (�yl + �yr)
�

360
=

�

2
(vl + vr)�

�

360
(� + fw) ( _yl + _yr)�R2 �f� (5.39)

c2 (�yl � �yr)
�R

180W
=

R

W
� (vl � vr)�

�R

180W

�
� +

W

R
fw

�
( _yl � _yr)

�
�
W 2 + L2

�
12

�f� (5.40)

where

c1 = (2m+M)R2 +mR2 + 2n2Jm; (5.41)

c2 =

"
1

2
mW 2 +

M
�
W 2 +D2

�
12

+
W 2

2R2
�
Jw + n

2Jm
�#

(5.42)

Now, by setting the fault signals

8>><>>:
f� = �M�

f� = �M�

(5.43)
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the system is written in the following input/output representation

0BB@ c1
�
360 c1

�
360

c2
�R
180W �c2 �R

180W

1CCA
0BB@ �yl

�yr

1CCA

=

0BB@ � �
360 (� + fw) � �

360 (� + fw)

� �R
180W

�
� + W

R fw
�

�R
180W

�
� + W

R fw
�
1CCA
0BB@ _yl

_yr

1CCA

+

0BB@ �
2

�
2

R
W � � R

W �

1CCA
0BB@ vl

vr

1CCA

+

0BB@ �R2 0

0
�(W 2+D2)

12

1CCA
0BB@ �f�

�f�

1CCA+
0BB@ 1

1

1CCA d (5.44)

and �nally, is obtained

0BB@ �yl

�yr

1CCA

=

0BB@ � 1
2c1
(� + fw)� 1

2c2

�
� + 1

RWfw
�
� 1
2c1
(� + fw) +

1
2c2

�
� + 1

RWfw
�

� 1
2c1
(� + fw) +

1
2c2

�
� + 1

RWfw
�
� 1
2c1
(� + fw)� 1

2c2

�
� + 1

RWfw
�
1CCA
0BB@ _yl

_yr

1CCA

+

0BB@ 90
�
�
c1
+ 90

�
�
c2

90
�
�
c1
� 90

�
�
c2

90
�
�
c1
� 90

�
�
c2

90
�
�
c1
+ 90

�
�
c2

1CCA
0BB@ vl

vr

1CCA

+

0BB@ �180
�
R2

c1
90
�R

W
c2

�
� 1
12L

2 � 1
12W

2
�

�180
�
R2

c1
� 90
�R

W
c2

�
� 1
12L

2 � 1
12W

2
�
1CCA
0BB@ �f�

�f�

1CCA+
0BB@ 180

�c1
+ 90

�R
W
c2

180
�c1

� 90
�R

W
c2

1CCA d (5.45)
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Finally replacing the systems parameters by their numerical values give

0BB@ �yl

�yr

1CCA =

0BB@ �18:6448 �3:0418

�3:0418 �18:6448

1CCA
0BB@ _yl

_yr

1CCA

+

0BB@ 2076:6 338:8

338:8 2076:6

1CCA
0BB@ vl

vr

1CCA

+

0BB@ 75:1420 106:1828

75:1420 106:1828

1CCA
0BB@ �f�

�f�

1CCA+
0BB@ 77:581

77:581

1CCA d (5.46)

It can be seen here that by considering a mass fault in the system, both wheel

rotational angle and yaw rate are a¤ected. Thus, a fault can be detected if there is motion

following one of these axes so that fault detectability conditions are ful�lled.

5.5 Simulation results

To validate the fault detection scheme, for sake of simplicity, the case where the

robot moves following a straight line path (i.e. turning angle equal to zero) is considered.

In this case as the yaw angles is always equal to zero, only f� can be detected which is

su¢ cient for the purpose of this work.

First the observer simulations in absence of fault are carried out to validate the

performances of the observer. Fig.5.2. shows that the system desired and achieved output

(robot wheels speed) fairly match. Indeed, the observer 5% response time (i.e. output

within 5% of the �nal value) is less than 10s, the system response overshoot is about 10

% and the static error is close to zero. As the purpose of this work is to evaluate FD
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Figure 5.2: Three robot wheels desired and achieved speed

performances, these results are su¢ cient to proceed with simulation analysis.

The fault considered here is a system fault (change of robot�s mass) that is set to

10% less than the original. The value of the fault over time is described by the following

formula

f (t) =

8>>>>>><>>>>>>:

0

0:1t

1

(t < 30)

(30 � t < 40)

t � 40

(5.47)

and the disturbance signal d (t) set to be a Gaussian noise with mean value � = 0

and variance �2 = 1. This means that the disturbances and the faults are in the same range.

It is then, up to the fault detection scheme to show the robust fault detection performances.

Now, using simulations results, the spectrum analysis of the residual is given, in
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Figure 5.3: Residual power spectrum - Fault free system

absence of fault Fig. 5.3 and in presence of fault Fig. 5.4.

By analysing the residual spectrums, it can be seen that a signi�cant di¤erence

between the fault free and the fault free cases lies between 0 and 1Hz. Thus, it can be

concluded that the fault contribution in the residual is mainly among low frequencies.. So,

the frequency to be used in the optimisation criterion is set as ff = 0:2Hz.

To validate the performance of the FD scheme, it can be seen in simulation results

of the residual in absence of fault as shown in Fig. 5.5 and, in presence of fault as shown in

Fig. 5.6, that when the fault occurs at time 30s, the residual value deviates considerably

from zero. Indeed, the fault signal is signi�ed and a threshold value can be chosen such

that false alarms triggering is avoided. Besides, the residual is di¤erent from zero for a long
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period after the �rst occurs in the systems, which means that the fault can be detected over

a long period of time although its value can not maintained at such high value and may

start decreasing after 180s due to the observer compensating for the estimation error.

5.6 Conclusion

In this chapter, the fault detection technique using the output observer has been

presented and its application to fault detection in systems under disturbances has been

shown. Indeed, a systematic method to calculate the observer gain, using an optimisation

criterion, that ensures having best performances for both attenuating the disturbance and

signifying the fault signature in the residual is proposed. This approach is also extended

to the MIMO case. Simulations results using a three wheeled robot, which model has been

built in a MIMO form, have been presented to validate the proposed method performances.
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Chapter 6

Output observer for time delayed

systems

6.1 Introduction

Time delay is a challenge that needs to be considered when studying controlled

dynamical systems, where it mainly occurs due to actuation, measurement, data processing

and transfer delays, and may jeopardize the stability of the system.

Furthermore when working on fault detectors design, delays occurring in the sys-

tem need to be considered as their e¤ect can disturb the behavior of the system. If not

included in the fault detector design, its e¤ect may result in increasing the estimation error

which could result in rising false alarms.

As delays can occur in several parts of the systems (actuator, plant, sensor, con-

troller...), an e¢ cient way to deal with such di¤eret sources of delays is to �x a time reference
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point in the system at which the delay will be assumed to be the sum of all the delays oc-

curring in the system. This allows to consider the delay only once in the system�s model

which will help simplifying the model expression. In the considered case, the reference point

is chosen to be the moment the measurement is received from the sensors.

In this chapter and for sake of simplicity, in the model expression, faults nor

disturbances occurring in the system are considered. Indeed, considering that it is believed

that these two topics have been thoroughly studied in previous chapters and that it is

straight forward to combine the previously proposed techniques with the one proposed here

for time delays in systems.

6.2 System representation

In Fig. 6.1. the system considered in this work, is displayed. Two parts of the

systems can be distinguished, one being the controller/observer side, and the other one

being the physical system which is composed of the actuator, plant and the sensors. The

two parts exchange information through a communication network.

As it is believed that the main source of delays is the time it takes the data to

travel through the communication network, the two delays that are considered are the input

delay which is the time it takes to the information to travel from the controller/observer to

the physical system and the output delay which is the time for the measurements to arrive

to the controller/observer.

So the controller calculated input is subject to a delay �a which results on the

actuator using the delayed input. Similarly, the measured output is subject to a delay � s.
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Figure 6.1: Time delay in control systems

As it is chosen to set the time reference point to be the moment the measurement arrives

to the controller/observer, the total delay � considered in the system model will be the sum

of the two delays � = �a + � s.

6.2.1 Model in absence of delay

The proposed model to be used in this section in absence of delay for the considered

nonlinear system is

dy(t)

dt
= g(u; y; �In�1(y; u)) + f(w; t) (6.1)

where, similarly to the previously developed input/output representation,

�In�1(y; u) = (I1(y); I1(u); :::; In�1(y); In�1(u)) and f(w; t) = wT v with w =

(y(1)(0); :::; y(n�1)(0)) 2 Rn�1 is a vector of unknown initial conditions and vT =
�
1; t; :::; tn�1

(n�1)!

�
:

this means, f(w; t) is a polynomial of order n� 1 in t with coe¢ cients y(i)(0): Ikfy(t)g and
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i 2 f0; 1; :::; n� 1g denotes the k th integrations of the function y(t) with respect to time;

that is Ikfy(t)g =
R t
0 � � �
k times

R t
0 y(�)d� :::d� for k � 0: In particular, I0fy(t)g = y(t):

In Chapter 5, a fault detection scheme has been discussed thus the proof also

applies for the system considered in this chapter. So here, it is chosen to rather focus

on dealing with the di¢ culties that considering time delay in the system brings. In other

words, a solution where the delay will be dealt with in a way that the observer built in

Chapter 4 still works, is proposed. In order to achieve this goal, the stability analysis will

be needed to be take further than previously.

6.2.2 System model with delay

As mentioned above, it is chosen to use only one delay in the model which is

� = �a+� s. To show the proposed solution for delay in systems, the delay in the previously

proposed model is introduced as follows:

8>><>>:
dy(t)
dt = f(w; t) + g(u; y; �In�1(y; u))

ym(t) = y(t� �)
(6.2)

where ym(t) is the measured output and � is the measurement delay.

6.3 Delay e¤ect attenuation techniques

In the following, two cases of delays are considered. First a simpler case where the

delay is a priori known/estimated is considered, then a solution for a general case where

the delay is unknown will be is proposed.
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6.3.1 Case i): known delay

Consider the case where the delay is known and can be included in the observer

design. This case is possible whether the delay information is already available in the system

or can be estimated using a separate tool.

So, rewriting the output observer for the above system gives:

dŷ(t)

dt
= f(ŵ; t) + g(u; y; �In�1(y; u)) +K

T
�
Ym(t)� bY(t� �)�

= f(ŵ; t) + g(u; y; �In�1(y; u)) +K
T
�
Y(t� �)� bY(t� �)� (6.3)

In this case the error dynamics is given by:

d"(t)

dt
= f(w; t)� f(ŵ; t)�KT

�
Y(t� �)� bY(t� �)�

=
�
wT � ŵT

�
v(t)�KT

�
Y(t� �)� bY(t� �)� (6.4)

As the error expression here is the same as in Chapter 4 with the di¤erence that

both measured and estimated output are delayed, thus the same proof using output injection

will apply. So in the following, it will be proceeded by following the same steps.

Taking the Laplace transform of (6.4), gives

sE(s)� "(0) =
�
wT � ŵT

�
Lfv(t)g �K0E(s)e��s

�1
s
K1E(s)e

��s + : : :+
1

sn�1
Kn�1E(s)e

��s (6.5)
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In other words,

�
s+ e��sK1 +

1

s
K2e

��s + : : :+
1

sn�1
Kn�1E(s)e

��s
�
E(s)

= "(0) +
�
wT � ŵT

�
Lfv(t)g (6.6)

Hence,

�
s+ e��sK1 +

1

s
K2e

��s + : : :+
1

sn�1
Kn�1E(s)e

��s
�
E(s)

= "(0) +
nX
i=1

�
y(i)(0)� ŷ(i)(0)

� 1
si

(6.7)

That is,

E(s) =

s"(0) + s
nX
i=1

�
y(i)(0)� ŷ(i)(0)

�
1
si�

s+ e��sK1 +
1
sK2e

��s + : : :+ 1
sn�1Kn�1E(s)e

��s
� (6.8)

Using the �nal value theorem, is obtained

lim
t!+1

"(t) = lim
s!0

fsE(s)g

=

s2"(0) + s2
nX
i=1

�
y(i)(0)� ŷ(i)(0)

�
1
si�

s+ e��sK1 +
1
sK2e

��s + : : :+ 1
sn�1Kn�1E(s)e

��s
�

=
0

k0
(6.9)

It can be seen that when the delay is known, its e¤ect can be attenuated and the

system stability is proved. Furthermore, it can be considered that the delay is not exactly
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known, thus the di¤erence between the estimated and actual delay will result on having an

additional term in the expression of the error dynamic that will be treated as a disturbance.

Thus using the approach presented in chapter 5 for systems under disturbances, its e¤ect

can be attenuated.

6.3.2 Case ii): unknown delay

The general way to deal with delays is to assume that it is unknown so no con-

straining assumption is made. This is di¤erent from the previous section in the sense that

the delay is considered too random to be estimated with delay estimation error being con-

sidered as a disturbance.

In the previous section, assuming the delay to be known simpli�es the expression

of the residual as the delay is used in the observer which allows the solution to be straight

forward. But when dealing with an unknown delay, that is not possible which means that

as the delay will be present in the residual expression, when calculating the observer gain,

the delay impact should be reduced.

The following observer for the considered system is proposed:

dŷ(t)

dt
= f(ŵ; t) + g(u; y; �In�1(y; u))

+K0(ym(t)� ŷ(t)) +K1
Z t

0
(ym(�)� ŷ(�))d�

= f(ŵ; t) + g(u; y; �In�1(y; u)) (6.10)

+K0(y(t� �)� ŷ(t)) +K1
Z t

0
(y(t� �)� ŷ(�))d�

To rewrite the above equation in a way that will help in calculating the gain K0;1,
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it is reformulated using "(t) = y(t)� ŷ(t); that is, ŷ(t) = y(t)� "(t); so one has

dŷ(t)

dt
= f(ŵ; t) + g(u; y; �In�1(y; u))

+K0(y(t� �)� y(t) + "(t)) +K1
Z t

0
(y(�� �)� y(�) + "(�))d�

= f(ŵ; t) + g(u; y; �In�1(y; u)) +K0"(t) +K1

Z t

0
"(�)d�

+K0(y(t� �)� y(t)) +K1
Z t

0
(y(�� �)� y(�))d� (6.11)

When dealing with the equation above, the challenge is to rewrite it in a way that

the delay can be extracted from the expression of y(t � �) so that the gains K0;1 can be

calculated to enhance the performances of the observer. To do so, it is chosen to use the

mean value theorem, as it allows to extract the delay without using any approximation.

To use this method, y(t) must be continuous within the segment [t; t � � ] which is a fair

assumption to make if it is considered that for the considered continuous time discrete

measurement system, the delay is not bigger than the sampling time.

Thus, the following is obtained,

y(t)� y(t� �) = dy

dt
(
)� (6.12)

for some (unknown) 
 inside the segment [t; t�� ]: The delay is now extracted from

the expression y(t� �) and is multiplied by dy
dt (
) which is a constant value that represents

the evaluation of the derivative of y(t) at 
.
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Then,

dŷ(t)

dt
= f(ŵ; t) + g(u; y; �In�1(y; u))

+K0"(t) +K1

Z t

0
"(�)d�

+K1
dy

dt
(
)� +K2

dy

dt
(
)�

Z t

0
�d�

= f(ŵ; t) + g(u; y; �In�1(y; u))

+K0"(t) +K1

Z t

0
"(�)d�

+K0
dy

dt
(
)� +K1

dy

dt
(
)�t (6.13)

Now, the error dynamic d"(t)
dt expression can be given by:

d"(t)

dt
=

�
wT � ŵT

�
v(t)�K0"(t)�K1

Z t

0
"(�)d�

�K0
dy

dt
(
)� �K1

dy

dt
(
)�t (6.14)

In the following, a methodology to reduce the delay e¤ect in the residual as well

as proving the observer stability will be presented.

First, one must make the assumption that the output signal is Lipshitz which

means that there exists some constant M such that
���dydt (
)��� < M:

Then by setting �(t) =
R t
0 e(t) ,it gives

8>><>>:
_� = e

_e =
�
wT � ŵT

�
v(t)� k0e� k1� �K1 dydt (
)� �K2

dy
dt (
)�t

(6.15)
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which can be rewritten as

0BB@ _�

_e

1CCA =

0BB@ 0 1

k1 k0

1CCA
0BB@ �

e

1CCA+
0BB@ 0

'

1CCA (6.16)

where ' =
�
wT � ŵT

�
v(t)�K0 dydt (
)� �

1
2K1

dy
dt (
)�t is a polynomial in (t; �)

Set k0 = �2�, k1 = ��2 where � > 0 is some constant and de�ne �� as:

�� =

0BB@ 1
� 0

0 1
�2

1CCA (6.17)

then, let de�ne � as

� = �" (6.18)

Then, system described by Equation (6.15) is transformed into:

_� =

0BB@
:
��

:
�e

1CCA =

0BB@ 1
� 0

0 1
�2

1CCA
0BB@ 0 1

��2 �2�

1CCA
0BB@ � 0

0 �2

1CCA
0BB@ ��

�e

1CCA

+

0BB@ 1
� 0

0 1
�2

1CCA
0BB@ 0

'

1CCA

= �

0BB@ 0 1

�1 �2

1CCA
0BB@ ��

�e

1CCA+
0BB@ 0

1
�2
'

1CCA

= �F

0BB@ ��

�e

1CCA+
0BB@ 0

1
�2
'

1CCA = �F�+

0BB@ 0

1
�2
'

1CCA (6.19)
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In the new system, the eigenvalue is �� of order 2. which means that by choosing

� > 0 the free systems will be stable. But as ' is a polynomial in (t; �), the stability analysis

needs to be studied by including '.

A key feature of the proposed observer though, is as its can be noticed, ' being

multiplied by 1
�2
. This means that considering a high gain observer case, the bigger � is

chosen, the more it will bring the free system toward a more stable state as ' is lowered to

power two.

Now consider the Lyapunov function V = �TP�, then since F is stable there exists

a positive de�nite symmetric matrix P such that

PF + F TP = �I (6.20)

Derivating Equation (6.20) with respect to time gives

_V = 2�TP _� (6.21)
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then replacing � by its expression as in Equation (6.14) gives

_V = 2�TP

0BB@�F�+
0BB@ 0

1
�2
'

1CCA
1CCA

= 2��TPF�+ 2�TP

0BB@ 0

1
�2
'

1CCA

= ���T �+ 2�TP

0BB@ 0

1
�2
'

1CCA (6.22)

Finally

_V = ���T �+ 2�TP

0BB@ 0

1
�2
'

1CCA
= �� k�k2 + 2 1

�2
k�k kPk j'j (6.23)

So the condition for the system to be stable, i.e. _V < 0; is that � is chosen such

that

k�k > 2

�3
kPk j'jwhen k�k 6= 0: (6.24)

In plain words, this result means that the amplitude contribution in the resid-

ual brought by the initial conditions and the delay multiplied by 2
�3
, knowing that in the

considered case � is chosen to be of high value, is less than the error value.

With the proposed observer, it is proved that the system stability is met if the

observer gain value insures that the condition (6.24) set here is ful�lled. more importantly,
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as the purpose of this work is to deal with delay in the system, it was showed that using

this observer, its e¤ect can e¤ectively be reduced.

Finally, it was showed that with this approach, it can be managed to get the

observer design working on the direction that works best to increase the observer perfor-

mances. Indeed, the high gain value desirable to improve the systems stability, also allows

to attenuate the undesirable e¤ects of delay best.

6.4 Conclusion

In this chapter a technique to attenuate known and unknown time delay impact

in nonlinear systems has been proposed. It relays on considering all the delays occurring in

the system at one reference point, chosen here to be the measurement moment. Then using

the output observer with output injection, it was showed that for known delays, the solution

is straight forward as the delay e¤ect can be removed in the residual and thus the observer

performance analysis can be done without dealing with delay. For unknown time delays,

the same solution is proposed in which the observer performances analysis uses mean value

theorem and relies on choosing a Lyapunov function to prove the e¢ ciency of the output

observer design, while establishing the stability proprieties of the system.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The main motivation of this research work has been to explore model based fault

detection techniques and strategies for linear and nonlinear dynamical systems. In e¤ect,

the thesis focus has been on developing novel observers design techniques for fault detec-

tion purposes. For this purpose, several observer design methodologies has been proposed

whereby each of them has speci�c features and properties.

First, a proportional integral observer has been proposed which allows to attenu-

ate disturbances with respect to faults occurring in the systems. This has the advantage of

reducing false alarms triggering. The proposed proportional integral observer based fault

detection scheme relies on using an augmented state vector that is the result of integrating

the original system output. Then, the disturbance e¤ect has been reduced using the distur-

bances input gain matrix directly in the observer gain, and which, at the same time, allows

to have more freedom in the observer gain optimisation process. The optimisation process
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uses a frequency based criterion that has the property of increasing the faults sensitivity

while reducing that of the distrurbance.

Next, an output observer design has been proposed for the purpose of reducing

computation time as well as for the ease of implementation. The output observer solu-

tion relies on using an input/output representation of the system. This representation is

shown to be more adapted for output estimation than using state space representation for

dynamical systems, since only an output estimation is needed for fault detection. The con-

sidered output observer fault detection scheme design method have been detailed and its

performances proved for linear and general nonlinear systems under disturbances. Indeed

output observer output injection technique feature helped simplifying the study process of

nonlinear systems by eliminating the nonlinearities in the residual. Finally, output observer

technique has been proposed in a solution to deal with time delay impact in systems. In the

proposed solution, the observer performances have been proved using Lyapunov function

which showed the e¤ectiveness of the proposed method. The novelty this work consist on

developing observers designs for fault detection rather than adapting existing estimation

techniques to the fault detection case.
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7.2 Future work

The main task that remains to be done regarding this thesis work is concerned

with the practical implementation of the results obtained. Indeed, as the focus of the thesis

was on developing the theory and validating results with simulation only, the focus next is

to implement it in the modelled three wheeled robot. In order to do so, the research work

carried out during the PhD studies needs to be adapted to discrete time systems.

Regarding the output observer development, another focus should be to design

reduced order output observers so as to further reduce the observer estimation computation

time. Also, as the observer have been developed for a general class of nonlinear systems,

its adaptation to speci�c classes such state a¢ ne and control a¢ ne systems may result

in performances enhancement. Another topic of interest can be output observer design

for hybrid dynamical systems since these types of systems are omnipresent in many

applications.

Finally, only time delay was considered among possible challenges in intercon-

nected systems. Thus, more challenges such as packet dropout in networked systems, limited

communication bandwidth and non-uniform sampling, need to be addressed.
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