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Abstract – A free space optical (FSO) communications link 

performance is highly affected by the atmospheric conditions. 

This paper compares the effectiveness of employing a spherical 

concave mirror (SCM) and a convex lens at the receiver to 

compensate for the effect of fog in FSO communication links. The 

results show that, for the fog induced signal attenuation lower 

than 9.17dB there is a marginal improvement in the FSO link 

performance in terms of the Q-factor by a maximum of 8% when 

using an SCM at the receiver compared with a regular lens.  

Keywords – FSO link, spherical concave mirror, convex lens, 

SCM-lens comparison, fog. 

I.  INTRODUCTION 

In recent years, we have seen a growing interest in the use 

of free space optical (FSO) communications, which is a 

promising alternative and complementary technology to the 

radio frequency (RF) wireless systems, in a number of 

applications including the last meter and the last mile access 

networks. FSO systems use the unlicensed optical spectrum to 

offer a massive bandwidth (orders of magnitude high the RF) 

particularly to overcome the last mile bandwidth bottleneck 

problem experienced in RF based wireless technologies in the 

urban areas [1, 2]. In addition, FSO systems offer a number of 

key features including inherent security at the physical layer, 

free from RF induced electromagnetic interference and 

introducing no interference to other wireless technologies, 

lower energy consumption (i.e., a green communications 

technology), and easy to deploy in areas where laying optical 

fibres and/or copper cables is not practical and very costly. 

The FSO link ranges from a few meters for indoor 

applications as part of radio over fibre/FSO and femtocells 

(mostly in indoor environment) to a few kilometres in outdoor 

environments, for example, in multi-campus university 

networks, airports, hospitals and as a backup and disaster 

recovery link [3], [4].  

However, the FSO link performance is severely affected 

by the atmospheric phenomena such as fog, smoke, dust, 

aerosols, air pollution and turbulence, thus imposing several 

challenges for the link reliability and availability [2], [3]. 

Among these, fog is one of the biggest problem in outdoor 

FSO systems, where the link availability can be reduced from 

a few kilometres to a few meters in highly dense fog 

conditions. Based on the measurements at several locations, 

fog droplets, which are the major contributor to Mie scattering 

with size varying between 0.5 µm to 2 µm, results in severe 

attenuations of > 300 dB/km and 130 dB/km in dense 

maritime and moderate continental fog conditions, 

respectively [5], [6]. To address this problem and to ensure 

that the FSO link is fully adopted as a preferred 

communication technology in certain applications, a number 

of mitigation techniques have been proposed over the last few 

decades in order to ensure FSO link availability (i.e., 

99.999%) at all times [6 – 9]. 

The mitigation techniques include increasing the transmit 

optical power, spatial diversity [10, 11], hybrid FSO/RF 

system [7, 12], imaging receiver [13], and others. Increasing 

the transmit optical power is costly and is limited by the eye 

safety regulations. Adopting the spatial diversity schemes 

leads to increased cost and complexity of the system. The 

hybrid FSO/RF technique reduces the link throughput when 

the transmission mode is switched from FSO to the RF (i.e., 

RF operating a lower data rates). The imaging receiver-based 

FSO links employs a lens, a telescope or similar optical 

systems to focus the received optical signal onto an image 

sensor. In such systems, the electrical signal-to-noise ratio 

(SNR) at the receiver is reduced because of the spreading of 

received signal power over a larger number of pixels, each 

with its own noise contributions [14]. Since in most FSO 

links, the optical beam spot size at the receiver is larger than 

receiver aperture area due to the beam divergence, a relatively 

large aperture will also be required to capture most of the 

incoming optical beam. Beam focusing represents a simple 

method to combat the small-scale fading channel (mostly due 

to the atmospheric turbulence) by increasing the receiver 

aperture diameter compared to the coherent length of the 

atmosphere turbulence.  

This paper studies an alternative simple method to 

compensate for the fog-induced losses in a FSO link by 

adopting both a spherical concave mirror (SCM) and a lens at 

the receiver. The focal length of a lens can vary with the 

operating optical wavelength due to the chromatic aberration, 

while mirrors are truly wideband in applications. SCM has 

several advantages compared to the lens including low cost, 

low loss, no useless reflections from the glass surface and a 

focal distance that does not depend on the environment’s 

refractive index. The variation of the channel refractive index, 

caused by changes in the temperature and humidity affects the 

focal distance of a lens. This aspect can change the size of the 

focused optical beam spot on the photodetector (PD), thus 

leading to a reduced received signal amplitude. This is more 

problematic in high-speed FSO links where PDs needs to be 

small in order to ensure high-bandwidth due to low 

capacitance. We show that, there is a marginal improvement in 

the FSO link performance in terms of the Q-factor by about 



8% when using the SCM as a focusing device at the receiver 

compared to the lens. 

The rest of the paper is organized as follows: Sections II 

describes the experimental set-up of the FSO system using 

SCM and lens, while Section III presents the results and 

discussions. The conclusion is finally given in Section IV. 

II. EXPERIMENTAL SET-UP 

Figure 1 shows a schematic block diagram of the 

experimental set-up for the FSO link showing the arrangement 

of both the SCM and lens. 

 

 
 
Fig. 1. The experimental setup for assessing comparatively the FSO link 

performance with the spherical concave mirror (SCM) and lens under the fog 

condition. The red beam transmitted by TX carries the data and the green 
beam was used to measure the attenuation induced by the fog.  

 

We have used the widely adopted on and off keying (OOK) 

modulation format, which is generated using an arbitrary 

waveform generator at a data rate of 10 Mbps, for intensity 

modulate (IM) of the laser source (i.e., LASER type Beta) at a 

wavelength of 670 nm with a beam divergence < 5 mrad and a 

bore sighting of < 10 mrad. The intensity modulated laser 

beam is launched into a dedicated atmospheric chamber of 5.9 

m long. At the receiver side, the optical beam is split into two 

using a semi-reflective mirror (SRM) with 33% and 67% of 

reflectivity and transmission, respectively. We used a SCM 

with an aperture diameter 𝑑𝑆𝐶𝑀  of 33 cm and a focal length 

𝑓𝑆𝐶𝑀 of 1.22 m, as well as a lens with an aperture diameter 

𝑑𝐿𝑒𝑛𝑠 of 4.7 cm and a focal length 𝑓𝐿𝑒𝑛𝑠 of 42 cm, see Fig. 1.  

As shown in Fig. 2, under a clear channel condition the 

beam spot diameter 𝑑𝑆, which was measured on a paper screen 

placed in front of the SCM at 6.85 m from the TX, was about 

3.7 cm.  

 

 
 

 

Fig. 2. The laser beam spot at 6.85m from the TX on a paper screen placed in 

front of the SCM when the light propagates in clear environment. 

The optical beam spot diameter 𝑑𝑆  is smaller than the 

diameters of both SCM and lens, implying that with no fog 

both the SCM and lens will capture the entire received optical 

beam and focus it onto the PDs. 

At the receiver side, we have used two identical optical 

receivers (OR) (type THORLABS PDA10A-EC), where the 

laser beams were focused onto the PDS with a surface area of 

1.5 mm2 via the SCM and lens. The regenerated electrical 

signals at the output of ORs were captured using a digital 

storage oscilloscope for post signal processing in the 

MATLAB domain.  

Considering that, the SRM ratio between the transmitted 

and received optical powers is 2:1 we placed a neutral density 

filter (NDF) with a transmittance of 50% in front of the ORS 

for reducing the signal level of the beam, which is focussed by 

the SCM.   

The total noise variance in terms of the shot noise 𝜎𝑠ℎ𝑜𝑡
2 , 

thermal noise 𝜎𝑡ℎ
2  and ambient noise  𝜎𝑎𝑚

2  is given as [2]: 

 

𝜎𝑇
2  =  𝜎𝑠ℎ𝑜𝑡

2 + 𝜎𝑡ℎ
2 + 𝜎𝑎𝑚

2 .                        (1) 

Note that, 𝜎𝑎𝑚
2 = 2𝑞𝑅𝑃𝑎𝑚𝐵𝑝𝑎𝑚𝑝 , where q is the elementary 

charge, R is the PD’s responsivity (A/W) and Bpamp is the 

equivalent noise bandwidth of the preamplifier. 𝑃𝑎𝑚 ∝
 𝐵𝑠𝑘𝑦𝐴𝐵𝑟𝑥, which is the incident ambient light power Bsky is 

the spectral radiance of the skylight (W/m2·sr·nm), A is the 

PD’s surface area and Brx is the receiver bandwidth.  

      The field of view (FOV) of the receiver defined in terms 

of the PD width 𝑤PD and the focal point of a lens f is given as: 

𝐹𝑂𝑉 =  2 tan−1 (
0.5𝑤PD

𝑓
).                        (2) 

A. Fog generation 

The fog was pumped into the fog chamber using a fog 

generator. The optical attenuation due to fog along the 5.9 m 

chamber was measured using a second green laser at a 

wavelength of 543 nm (see Fig. 1). A photo of the optical 

setup showing the optical arrangement section at the receiver 

side including the SCM and the lens, as well as the semi-

reflective mirror is illustrated in Fig. 3.  

 

 
 

Fig. 3. Picture of a part of the optical setup including the semi-reflective 
mirror for beam splitting, the SCM and the sensor of the optical power meter. 

On the SCM centre is the main laser spot (LS) that carries the data.  
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The optical power sensor was located in front of the SCM 

at least 7 cm from its centre to ensure that there is no blocking 

of the red optical beam carrying the data. Note that, the green 

laser beam did not pass through the semi-reflective mirror.   

For this experiment, we assumed that the fog is 

homogeneous considering the deviation in optical power 

measurement was around the target value of ±1 dBm. For a 

qualitative estimation of the fog homogeneity. Fig. 4 presents 

a picture showing the two laser beams propagating along the 

atmospheric chamber. 

 

 
 

Fig. 4. The main beam (red) that carries the data and the secondary beam 
(green) that is used for fog attenuation measurement. 

 

Taking into account that the optical beam was split into two 

following transmission through the fog chamber and that the 

goal of this experiment was to compare the FSO link 

performance using SCM and lens, therefore knowing the exact 

value of the fog attenuation on the data carrying red laser was 

not that critical.  

B.  Fog channel characterization 

The attenuation in terms of the total received optical powers 

with fog Pfog and without fog (i.e., clear air) Pair is defined as: 

𝛼fog =  10log10(𝑃fog/𝑃air).                       (3) 

The fog induced attenuation of the optical signal can be 

predicted using simple empirical fog models, which uses the 

measured visibility V data in order to characterize the fog. 

Note that, by definition the fog is present in the real outdoor 

atmosphere environment when V < 1 km. Therefore, the link 

visibility is used to measure the attenuation due to the fog. 

Visibility can be used to determine how dense and thick the 

fog is. For instance the criteria of V > 0.5 km and V < 0.5 km 

can be used to distinguish light and dense fog, respectively. At 

a wavelength of 543 nm the relation between V and the optical 

beam attenuation coefficient λ (dB/km) is given by [8]: 

𝑉 =  16.9897/𝛽𝜆 .                                         (4) 

In practice, a green laser with a wavelength of 543 nm is used 

to measure the attenuation of the fog channel relative to the 

clear channel. λ is mathematically defined by Beer-Lambert 

law [2], which is given as: 

𝛽𝜆 = 𝛼fog/(4.343 ∙ 𝐿)                          (5) 

where L (km) denotes the FSO linkspan. Using the measured 

attenuation λ is obtained using (5) and V  is also determined 

from (4). The Q-factor parameter is simply defined as [15]: 

 𝑄 =
𝑣𝐻−𝑣𝐿

𝜎𝐻+𝜎𝐿
,                                     (6) 

where 𝑣𝐻 and 𝑣𝐿 denote the average of received high and low 

signal levels, respectively. The parameters 𝜎𝐻 and 𝜎𝐿 refer to 

the noise standard deviations for high and low levels, 

respectively. 

III. RESULTS 

The performances of the FSO link using two aperture 

averaging schemes based on SCM and lens is assessed in 

terms of the Q-factor and the bit error rate (BER). Note that, 

the Q-factor and the BER are related as given by [17]: 

𝐵𝐸𝑅 = 𝐸𝑟(𝑄)      (7) 

where 𝐸𝑟(𝑥) = (1 √2𝜋⁄ ) ∫ exp(−𝑡2 2⁄ )𝑑𝑡
∞

𝑥
. 

The signal quality was evaluated for the case without and 

with fog. The measured received optical power for the green 

laser was -5.83 dB for the case of a clear chamber reducing to 

the interval [-13 -15] dB in the presence of fog. Thus, the total 

attenuation due to the fog varied within the range of 7.17 to 

9.17 dB corresponds to the visibility ranges of 48 m and 62 m, 

respectively. 

We observed that, the optical beam size, although scattered, 

under the fog condition was considerably smaller than the 

surface areas of both SCM and the lens, thus all scattered light 

rays were collimated onto the PD.  

For qualitative evaluation of the results, we present the eye 

diagrams in Fig. 5 for the FSO link with a lens and a SCM for 

visibilities of 0.062 km and 0.080 km.  

 

(a) 

 

 
(b) 

Fig. 5 The eye diagrams of the received signals obtained when Lens or SCM 

was used at the visibilities of: (a) 0.062 km, and (b) 0.080 km. 

SCM Lens 

SCM Lens 



      Note that, for both visibilities the difference between the 

eye diagrams for SCM and Lens is insignificant showing that, 

the two focusing methods have similar performance in 

compensation of the fog effect on the propagating laser beam. 

Table I shows the calculated Q-factor and BER for the link 

with and without fog for the SCM and the lens, as well as the 

visibility for the fog condition together with the ratio 𝑄𝑆/𝑄𝐿 

between the Q-factors for SCM and lens, respectively. 

TABLE I 

SIGNAL PARAMETERS FOR LENS AND SCM 

Parameter Lens SCM QS/QL Condition V(km) 

Q-Factor 16.9 17.2 1.018 
No fog - 

BER < 10-6 < 10-6 - 

Q-Factor 14.4 15.0 1.041 
Fog 0.080 

BER < 10-6 < 10-6 - 

Q-Factor 11.2 12.1 1.08 
Fog 0.062 

BER < 10-6 < 10-6 - 

 

      The obtained measured results for the FSO link with the 

SCM and the lens show that, the Q-Factor for the SCM is 

improved by about 2% for the clear channel condition and up 

to 8% for the case of fog. These Q-factor values show a 

marginal improvement for the FSO link with SCM while with 

both SCM and lens the link BER is lower than 10-6, i.e., well 

below the standard forward error correction BER limit of 3.8 

10-3.  

IV. DISCUSSIONS AND CONCLUSIONS  

The purpose of this preliminary study was to check if SCM 

represent are more efficient then lenses in compensating the 

effects of fog on signal quality in FSO systems. In order to 

achieve this goal, we compared the FSO link employing the 

two focusing schemes of SCM and lens in the presence of fog. 

The results presented showed that the Q-factor for the link 

with SCM offered marginal improvement of 1.8% and 8% 

without and with fog, respectively. This marginal 

improvement in the FSO link performance with SCM may be 

due to the fact that SCM purely reflects the entire incoming 

beam with no losses compared to the link with a lens. Another 

observed aspect was the higher ratio between the Q-Factors 

for SCM and lens when the signal was attenuated by the fog. 

Considering that besides attenuation the fog determines the 

light beam scattering [6], [16], the signal quality improvement 

with SCM may be due to the fact that the SCM captures more 

scattered light than the lens.  

For the future research works, we intend to compare the 

performance of the SCM and the lens over longer FSO links 

and assess the link performance for a range of SCM and lens 

sizes with different focal distances. We, also, intend to 

determine the variation of the signal quality in terms of the 

SNR and BERS with the SCM diameter and to test the 

efficiency of the SCM for longer transmission distances when 

the optical spot size is considered to be bigger than the SCM 

diameter.  
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