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Abstract 

This paper investigates the nonlinear static response as well as nonlinear forced dynamics of 

a clamped-clamped beam actuated by piezoelectric patches partially covering the beam 

from both sides. This study is the first to develop a high-dimensional nonlinear model for 

such piezoelectric-beam configuration. The nonlinear dynamical resonance characteristics of 

the electromechanical system is examined under simultaneous DC and AC piezoelectric 

actuations, while highlighting the effects of modal energy transfer and internal resonances. 

A multi-physics coupled model of the beam-piezoelectric system is proposed based on the 

nonlinear beam theory of Bernoulli-Euler and the piezoelectric constitutive equations. The 

discretised model of the system is obtained with the help of the Galerkin weighted residual 

technique while retaining 32 degrees of freedom. Three-dimensional finite element analysis 

is conducted as well in the static regime to validate the developed model and numerical 

simulation. It is shown that the response of the system in the nonlinear resonant region is 

strongly affected by a three-to-one internal resonance.  
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1. Introduction 

Actuated plate and beam structures are present in many mechanical systems [1-8]. 

Among them, piezoelectric materials [9-12] are in many engineering systems and are used 

for different applications involving sensing and actuation ranging from macro systems to 

microsystems. For instance, they are utilized for active vibration control, precise position 

adjustment and control, different types of energy harvesting, and static and dynamic 

actuations. The presence of geometric nonlinearities as well as the coupled 

electromechanical nature of piezoelectric materials makes the analysis and modelling of 

these systems more challenging.  

There are many studies in the literature on the utilisation of piezoelectrics in 

actuation, control, sensing, and energy harvesting [13-21]. For instance, Lee et al. [22] 

designed an RF (radio-frequency) microelectromechanical system (MEMS) operating based 

on piezoelectric actuation. Narita et al. [23] examined the nonlinear static bending response 

of composite actuators of piezoelectric type both analytically and experimentally. The linear 

flexural response of a piezoelectrically actuated Bernoulli-Euler beam was investigated by 

Want and Quek [24]. Further investigations were conducted by Kumar and Narayanan [14], 

who employed a finite element technique to study the vibration control of a beam by 

optimising the position of the actuator and sensor of piezoelectric type. Bowen et al. [25] 

conducted finite element analysis to study the jump phenomenon in asymmetric laminates 

under piezoelectric actuation and compared it to experimental results. Ghazavi et al. [26] 

continued the investigations by analysing the stability of the transverse motion of a 

microcantilever under piezoelectric actuation. Mahmoodi et al. [27] investigated the 

subharmonic resonance vibrations of a piezoelectrically actuated microcantilever employing 
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an analytical perturbation technique along with a one-mode Galerkin discretisation. Further 

analysis was performed by Xiao et al. [28], who studied the pull-in instability of a MEMS 

device with piezoelectric layers under electrostatic actuation. All of the mentioned valuable 

investigations examined the response of the system using single-mode/low-dimensional 

models or using experimental techniques.  

This study develops a nonlinear high-dimensional electromechanical model for a 

bimorph configuration of a piezoelectrically actuated clamped-clamped beam for the first 

time and investigates the nonlinear static and dynamic responses of the system. The 

proposed nonlinear model is verified through comparison to three-dimensional nonlinear 

finite element analysis. The verified model is used to examine the nonlinear resonance 

characteristics and the nonlinear dynamical behaviour of the piezoelectrically actuated 

system while highlighting the effect of modal coupling and internal resonances. The 

numerical results are presented through constructing frequency- and force-amplitude plots, 

time histories, phase-plane diagrams, and Poincaré sections. 

 

2. Coupled electromechanical model development 

In this section, the geometrically nonlinear model of the piezoelectrically actuated 

beam is derived using the Bernoulli-Euler beam and the piezoelectric constitutive equations. 

The schematic of the system is shown in Fig. 1, with beam dimensions shown as L, b, and tb, 

for length, width, and thickness respectively. The thicknesses of the top and bottom 

piezoelectric patches are shown by tp
(1) and tp

(2), respectively. Throughout this section, the 

superscript (1) denotes dimensions or properties of the top piezoelectric patch while the 
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superscript (2) denotes those of the bottom piezoelectric patch. It is assumed that the width 

of the piezoelectric patches are the same as that of the beam and that both patches cover 

the same portion of the beam, i.e. are of same length l2-l1. A rectangular coordinate system 

is utilised to describe the motion of the system, with z and w(x,t) denoting the transverse 

direction and transverse displacement, and x and u(x,t) representing the axial direction and 

axial displacement. 

The nonzero displacement vector components for the employed beam model can be 

written as 
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in which zn denotes the distance between the centreline and the neutral axis for the portion 

of the beam covered by piezoelectric layers. 

The nonlinear axial strain for the beam and the piezoelectric patches can be expressed 

as  
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in which the nonlinear term is due to the stretching of the centreline. 

Having obtained the expression for the axial strain, the beam axial stress can be obtained as 

b b xxE  , where Eb is the beam’s Young’s modulus. 

For the piezoelectric layers, the one-dimensional form of the constitutive equations can be 

written as 

( ) ( ) ( ) ( ) ( )
11 1 31 3

( ) ( ) ( ) ( ) ( )
3 31 1 33 3
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   (4) 

in which the subscripts 1 and 3 represent the x and z directions, respectively, and the 

superscript denote the top piezoelectric patch when k=1 and the bottom one when k=2. ( )
11
kc  

stands for the piezoelectric elastic stiffness while D3
(k) and E3

(k) denote the electric 

displacement and the electric field in the z direction, respectively. Additionally, ( )
33

k  is the 

impermittivity constant. ( )
31
kh  is another piezoelectric constant. It should be noted that the 

poling direction for both piezoelectric patches is considered to be in the positive z direction. 

The variation of the strain energy can be written for the beam layer as 
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 (5) 

in which Ab denotes the beam cross-sectional area and δ denotes the variational operator. 

After some mathematical manipulations, the variation of the beam potential energy can be 

written in the following form: 
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in which Ib denotes the beam second moment of area with respect the centreline. 

Additionally,      1 2 ,G x Hv x Hv x   l l  in which Hv represents the Heaviside function. 

The strain energy of the piezoelectric patches, in variational form, can be written as 
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which can be expanded for each piezoelectric layer as 
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in which (1)
pA  and (2)

pA  denote the area of the cross section of the top and bottom 

piezoelectric layers, respectively.  

The layered system kinetic energy variation be written as  
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where ρb is the beam mass density, while (1)
p  and (2)

p  denote the mass density of the top 

and bottom piezoelectric layers, respectively. 

In the present study, an input voltage of  (1) ,V x t  is applied to the top surface of the top 

layer of piezoelectric and an input voltage of  (2) ,V x t  is applied to the bottom surface of 

the bottom layer. The resultant electrical virtual work can be formulated as  
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The virtual work of the damping can be written as 
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where b
dc , 1p

dc , and 2p
dc  are respectively the beam, top piezoelectric, and bottom 

piezoelectric layers damping coefficients. 

The equations of motion of the electromechanical system can be derived as  
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       
22

(2) (2) (2) (2) (2)
1 2 32

1
, 0.

2

w u w
h x h x x D bV t x

x x x


    
           

 (16) 

in which 
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       

   

    

 

2
3 22 (1) (1) (1) (1)

11

2
3 2(2) (2) (2) (2)

11

(1) (1) (2) (2)
11 11

1
3 3

3 2 2

1
3 3

3 2 2

,

b b
b b b b n p p n p n

b b
p p n p n

b b p p

b b n

t t
C x E I G x E A z c b t t z t z

t t
c b t t z t z

e x E A G x c A c A

f x E A z G

      
           

      

    
        

     

  

       

           

       

   

(1) (1) (1) (2) (2) (2)
11 11

(1) (1) (1) (1) (2) (2) (2) (2)
1 31 1 31

(1) (1) (1) (2) (2) (2)
2 31 2 31

(1)

1 1
,

2 2

1 1
, ,

2 2

, ,

p n b p p n b p

p b p n p b p n

p p

x c A z t t c A z t t

h x G x h A t t z h x G x h A t t z

h x G x h A h x G x h A

x G x

    
        

    

   
         

   

 

    

           

(1) (1) (2) (2) (2)
33 33

(1) (1) (2) (2)

, ,

, , , .

p pA x G x A

V t x G x V t V t x G x V t

  

   (17) 

Calculating (1)
3D  and (2)

3D  in terms of input voltage and displacements using Eqs. (15) and (16) 

and substituting into Eqs. (13) and (14) yields 

     
  
 

  
 

   

 

   

 
 

 
 

 
 

 

 

2 2(1) (2) 22
2 2

2 (1) (2)

(1) (1) (2) (2) 2
1 2 1 2

(1) (2) 2

(2) (1)
2 2(2) (1)

(2) (1)

1

2

, ,

d

h x h xu u u w
M x c x e x

t t x x x x x

h x h x h x h x w
f x

x x x x

bh x bh x
V x t V x t

x x x

 

 

 

                           

   
         


 
 

0,





 (18) 
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     
  
 

  
 

 
  
 

  
 

 
 

2 2(1) (2)2 2 2
1 1

2 2 2 (1) (2)

2 2(1) (2) 2
2 2

(1) (2)

2 (1)2
2

2 (1

1

2

1

2

d

h x h xw w w
M x c x C x

t t x x x x

h x h x w u w
e x

x x x x x x

h xw u
f x

x x x

 

 



  
        

     
  

                               

    
           

 
 

 
 

 

 
 

 

 
   

 
   

 
   

 
 

 
 

(2)
2(1) (2)

1 1) (2)

(1) (2)2
2 2(1) (2)

1 12 (1) (2)

2
(2) (2) (1) (1)
1 12 (2) (1)

(2)
2(2) (1)

(2)

, ,

, ,

h x
h x h x

x x

h x h xw w
h x h x f x

x x x x x

b b
h x V x t h x V x t

x x x

bh x bh
V t x V t x

x x



 

 



  
   

   

     
            

 
  
  


 


 

 

(1)
2

(1)
0.

x w

x x

    
           (19) 

The developed model of the doubly clamped beam under piezoelectric actuation takes 

into account the geometric nonlinearities due to centreline stretching; furthermore, both 

axial and transverse motions are modelled and accounted for. In what follows, the Galerkin 

decomposition method is used to discretise equations of motion and recast them into a 

system of ordinary differential equations (ODEs). First, the axial and transverse motions are 

approximated as a series of time-dependent generalised coordinates multiplied by assumed 

spatial shape functions. Denoting the transverse and axial generalised coordinates by q and 

r, respectively, the axial and transverse displacements are defined as  

     

     

1

1

, ,

, ,

M

k k
k

N

k k
k

u t x r t x

w t x q t x





 

 





  (20) 

where 
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  sin ,k

k x
x

L

 
   

 
  (21) 

 

       
1

cos sin cosh sinh ,

sinh sin cosh cos ,

k k k k
k k k

k k k k k

x x x x
x

L L L L

   
 

    


          
               

          

        

 (22) 

in which k  denotes the kth root of    1 cos cosh 0   . Application of the Galerkin 

method gives a set of ODEs of dimension M+N. In the present study, 16 degrees of freedom 

are considered for each longitudinal and transverse displacements, i.e. M=N= 16, yielding a 

32-DOF (degree-of-freedom) model. This high-dimensional discretised model is solved 

numerically through use of a continuation method and a time-integration technique.  

 

3. Nonlinear static and dynamic responses 

This section analyses the geometrically nonlinear electromechanical response of the system 

for two cases: (i) static piezoelectric actuations and (ii) simultaneous static and dynamic 

piezoelectric actuations. (1)( )V t  and (2)( )V t  are substituted by  (1) (1) (1)coss d pV V t  and 

 (2) (2) (2)coss d pV V t , respectively. To validate the developed theoretical model and the 

numerical simulations, a nonlinear static three-dimensional (3D) finite element analysis 

(FEA) is conducted using Abaqus. The numerical simulations are conducted for a 

piezoelectrically actuated system of dimensions tb=0.6 mm, b=5.0 mm, L=120 mm, (1)
pt = (2)

pt

=0.3 mm , l1=0.2L, and l2=0.6L. The material properties of the beam layer are: Eb=70 GPa, 

Poisson’s ratio νb=0.33, and ρb=2300 kg/m3.  
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Both piezoelectric layers are assumed to be of type PZT-5H with a mass density of 

7500 kg/m3. The piezoelectric properties are listed in Table 1. The piezoelectric constants in 

Eq. (4) are formulated as functions of the constants reported in Table 1. For the present 

study, given that both layers are of the same material, the constants in Eq. (4) can be 

calculated as 

 

 

 

1(1) (2) 2
11 11 11 31 33

1(1) (2)
31 31 31 11 33 31

1(1) (2) 2
33 33 33 31 11

649.8374 MV/m,

39.1

71.3973 GPa,

325 Mm/F.

c c s d

h h d s d

d s





  







   

     

   

  (23)  

It is important to note that since the thicknesses and material properties of both 

piezoelectric layers are the same, zn=0. 

 

3.1 Static piezoelectric actuation 

The nonlinear response of the system under static piezoelectric actuation is 

examined in this section. To this end, the dynamic AC voltage amplitudes, i.e. (1)
dV  and (2)

dV , 

are set to zero and the DC voltage amplitudes, i.e. (1)
sV  and (1)

sV , are varied as the control 

parameter. In this study it is assumed that (1) (2)
s s sV V V  .  Additionally, a 3D finite element 

analysis is conducted using Abaqus/CAE for comparison and benchmark purposes. In order 

to ensure accurate 3D finite element analysis, a 20-node 3D element is used for beam layer 

(i.e. the C3D20R element) as well as the piezoelectric layers (i.e. the C3D20RE element), 

while accounting for geometric nonlinearities. A fine mesh of 0.3 mm, as shown in Fig. 2, is 

used for beam and piezoelectric layers to ensure converged results.  



13 
 

Figure 3(a) shows the displacement in the transverse direction at x/L=0.4 as a 

function of the DC input voltage obtained via the proposed model and that obtained using 

the 3D FEA. The figure shows that the proposed beam model predictions are in excellent 

agreement with those obtained via the 3D FEA. Figure 3(b) shows the deformed state of the 

system predicted by the two models. It is seen that, the present model gives very close 

predictions to those of the 3D FEA, verifying the reliability and accuracy of the proposed 

model and the employed numerical techniques. The detailed FEA results for transverse 

displacement and electric potential variation are illustrated in Fig. 4. 

 

3.2 Simultaneous static and dynamic piezoelectric actuations 

A nonlinear resonance dynamic analysis is performed in this section for a system 

under simultaneous static and dynamic piezoelectric actuations. More specifically, it is 

assumed that (1) (2)
s s sV V V   and (1) (2)

d d dV V V   and the system is under combined DC and 

AC actuation of  coss d pV V t . In the numerical simulations, several parameters namely 

the time (t), excitation frequency (ωp), transverse natural frequencies ( ˆ
i ), and damping 

coefficient ( dc = b
dc = 1p

dc = 2p
dc ) are made dimensionless as 

4

4

4

4
*

4

,

,

ˆ   1,2,

.

b b

b b

b b
p p

b b

b b
i i

b b

d b b
d

b b b b

E I
t

A L

A L

E I

A L
i

E I

c L E I
c

E I A L








 





 

 



   (24) 
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In the numerical calculations, *
dc  is substituted by 2ζω1;  ζ denotes the damping ratio which 

is set to 0.006 in this study. 

The present study focuses on the nonlinear resonance response of the 

piezoelectrically actuated system in the proximity of a three-to-one internal resonance. To 

this end, first the variation of the system natural frequencies with the input DC voltage is 

examined and plotted in Fig. 5. It is seen in sub-figure (a) that, the first transverse natural 

frequency of the system increases with increasing Vs. This is due to the fact that as the DC 

voltage is increased, the beam deforms and the beam centreline is stretched, hence 

stiffening the beam and increasing the natural frequency. Sub-figure (b) shows the variation 

ω2/ω1 ratio as a function of Vs; it is interesting to note that ω2/ω1 ≈ 3 for Vs in the range of 

480-580 V, hinting the possibility of the existence of an internal resonance of three-to-one.  

To examine the resonance response of the system near ω2/ω1 ≈ 3, Fig. 6 is 

constructed. For this figure, Vs = 560 V resulting in ω2/ω1 = 2.98; additionally, Vd is set to 10 

V. As seen, the system shows a complicated nonlinear hardening-type resonance response, 

strongly affected by modal coupling and internal resonances. The appearance of hardening-

type nonlinearity is due to the centreline stretching in the piezoelectric-beam system. Due 

to internal modal energy transfer, four saddle-node (SD) bifurcations appear in the primary 

resonance region. Additionally, it is seen that the system displays three torus (TR) 

bifurcations with quasiperiodic motion between TR1 and TR2 as well as between TR3 and 

SD3. The details of the quasiperiodic motion at Ωp/ω1 =1.06 is shown in Fig. 9, through time 

history, phase-plane plot and Poincaré section of the transverse displacement. The system 

shows stable periodic response elsewhere. The thin dashed lines connecting SD1 and SD2, as 

well as SD3 and SD4, indicate unstable attractors.  
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The details of the periodic motion at Ωp/ω1 = 1.0172 and 1.0703 are shown in Figs. 8 

and 9, respectively, through time histories and phase-plane portraits. The transverse 

oscillations of the piezoelectrically actuated system again at Ωp/ω1 = 1.0172 and 1.0703 are 

shown in Fig. 10 for one period of oscillation. As seen, at Ωp/ω1 = 1.0172, the maximum 

transverse displacement occurs in the vicinity of x/L=0.4 while at Ωp/ω1 = 1.0703 it takes 

place around x/L=0.5. To better show the strong modal coupling and modal energy transfer 

in primary resonance region, Fig. 11 is constructed showing the resonance response of the 

first four transverse generalised coordinates of the system of Fig. 6. 

The effect of the input DC voltage Vs on the nonlinear frequency-amplitude diagrams 

of the system is shown in Fig. 12. As seen, the resonance region shifts to the right on the 

frequency axis as Vs is increased, which is in fact due to increased natural frequency. It is 

interesting to note that there are almost no signs of internal resonance when Vs =300 V and 

400 V. However, strong modal interactions are present for the case Vs = 500 V, showing both 

periodic (solid line) and quasiperiodic (thick dashed line) motions. As Vs is further increased 

to 600 V, again the modal interactions almost disappear. This figure shows the sensitivity of 

the internal resonances to the value of the DC input voltage. 

In order to examine the effect of modal coupling and internal resonances on the 

force-amplitude response of the system, Vs is set to 580 V and Ωp/ω1 is set to 1.03 and then 

Vd is varied as the control parameter; the results are plotted in Fig. 13. As seen, the effect of 

internal resonances is visible, resulting in a complex force-amplitude response with four 

saddle-node bifurcations and two torus bifurcations. Additionally, the system shows stable 

quasiperiodic motion in between the two torus bifurcations and stable periodic motion 

elsewhere (indicated by solid line); the thin dashed lines show unstable motion. The force-
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amplitude plots for the first four transverse generalised coordinates are shown in Fig. 14 to 

highlight the effect of modal internal energy transfer and internal resonances. 

Figure 15, shows the force-amplitude plots for at different excitation frequency 

ratios; Vs is set to 580 V for all cases. It is see that as Ωp/ω1 ratio is increased, the modal 

interactions become stronger. Furthermore, quasiperiodic motion (indicated by thick 

dashed line) does not appear for the system with Ωp/ω1 = 1.01; however, as seen, 

quasiperiodic motion are present for larger frequency ratios; in fact, the range of 

quasiperiodic motion increases with increasing Ωp/ω1.  
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4. Concluding remarks 

The nonlinear static and dynamic responses of a piezoelectrically actuated beam 

have been investigated numerically. A nonlinear continuous electromechanical model is 

developed describing the motion of the system under an applied input voltage. A high-

dimensional discretised model is constructed via the Galerkin method; this set is solved 

numerically employing different techniques.  

Comparing the nonlinear static behaviour of the system obtained via the proposed 

model to that obtained via nonlinear 3D FEA showed that the developed model is very 

accurate and reliable. The numerical results for the nonlinear forced resonant response of 

the beam under simultaneous DC and AC piezoelectric actuations showed complex 

resonance responses with strong modal interactions. In fact, it was shown that for a specific 

range of DC voltages, a three-to-one internal resonance exists between the first two modes, 

which alters the resonance response characteristics significantly. More specifically, the 

presence of internal resonance causes additional solution branches and extra peaks in the 

resonance region. Furthermore, due to presence of strong internal resonances, torus 

bifurcations occur in the primary resonance region giving rise to quasiperiodic motion. 

Examining the effect of the DC input voltage showed that as a result of increased Vs, the 

resonance region shifts to the right on the frequency axis. It was shown that as a result of a 

16% change in the Vs, the internal resonances almost disappear from the resonance region. 

The force-amplitude plots of the system also clearly showed the strong effect of internal 

resonances, causing extra bifurcation points and giving rise to quasiperiodic motion. 
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Appendix A. Significance of discretised model’s dimension 

This section analyses the effect of the discretised model’s dimension on nonlinear 

transverse deformation of the piezoelectrically actuated beam system. To this end, Fig. 16 is 

constructed, which is a counterpart of Fig. 3(b), showing the nonlinear transverse 

deformation obtained using three discretised models of dimensions 4, 16, and 32. As seen, 

the model consisting of 4 modes gives very inaccurate predictions. The 16-mode model 

gives better prediction than the 4-mode but still does not give converged results. The 32-

mode model used in the present study, on the other hand, gives converged results. Hence, 

Fig. 16 highlights the significance of the number of modes when examining the nonlinear 

behaviour of clamped-clamped piezoelectrically actuated beams.  
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Table 1. Piezoelectric material properties (PZT-5H) 

Compliance constants (pm2/N): 
s11=16.5 
s12=-4.78 
s13=-8.45 
s33=20.7 
s44=43.5 

Piezoelectric constans (pm/V): 
d31=-274 
d33=593 
d15=741 

Relative permittivity constants (ξ0 = 8.8542 pF/m): 
ξ11/ξ0 = 3130 
ξ33/ξ0 = 3400 
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Fig.1. Schematic of a clamped-clamped beam partially covered by piezoelectric layers from both sides. 
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Fig.2. Meshed beam and piezoelectric layers. 
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(a) 

 
(b) 

 
Fig.3. (a) The nonlinear transverse deflection at x/L=0.4 and (b) the nonlinear deformed configuration of the 
system at Vs=5 kV. 
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(a) 

 
(b) 

 
Fig.4. (a) Contour plots of the deflection in the transverse direction; (b) contour plots of the electric potential.  
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(a) 

 
(b) 

 
Fig.5. Variation of the (a) fundamental natural frequency and (b) ω2/ω1 ratio as a function of the DC input 
voltage Vs. 
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(c) 

 
(d) 

 
Fig.6. Resonance frequency-amplitude plots; (a) maximum of w at x =0.48 L; (b) maximum of u at x=0.47 L; (c, 
d) the counterparts of (a, b) for minimum displacement. Vd=10.0 V. 
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(a) 
 

 
(c) 

 

(d) 

 
Fig.7. Details of the quasiperiodic motion of the system of Fig. 6 at Ωp/ω1=1.06; (a-c) time history, phase-plane, 
and Poincaré section of w. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig.8. Details of the motion of the system of Fig. 6 at Ωp/ω1=1.0172; (a, b) time histories of the transverse and 
longitudinal displacements, respectively; (c, d) phase-plane portraits of the transverse and longitudinal 
displacement, respectively. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig.9. Details of the motion of the system of Fig. 6 at Ωp/ω1=1. 0703; (a, b) time histories of the transverse and 
longitudinal displacements, respectively; (c, d) phase-plane portraits of the transverse and longitudinal 
displacement, respectively. 
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(a) 

 
(b) 

 
Fig.10. Transverse oscillation of the system of Fig. 6 in one period; (a) Ωp/ω1=1.0172; (a) Ωp/ω1=1.0703. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig.11. Resonance response of q1, q2, q3, and q4 of the system of Fig. 6. 
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(a) 

 
(b) 

 
Fig.12. Effect of the DC voltage on the frequency-amplitude diagrams; (a) maximum of w at x=0.48 L; (b) 
maximum of u at x =0.47 L; Vd=10.0 V for all cases. 
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(c) 

 
(d) 

 
Fig.13. Resonance force-amplitude plots at Ωp/ω1=1.03; (a) maximum of w at x=0.48 L; (b) maximum of u at 
x=0.47 L; (c, d) the counterparts of (a, b) for minimum displacement. Vs=580 V. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig.14. Force-amplitude plots of the generalised coordinates q1, q2, q3, and q4 of the system of Fig. 13. 
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(a) 

 
(b) 

 

 
Fig.15. Resonance force-amplitude plots at different frequency ratios; (a) maximum of w at x=0.48 L; (b) 
maximum of u at x=0.47 L. Vs = 580 V. 
 

V
d

[V]

w
/t

b

0 10 20 30 40 50 60

0.8

1

1.2

1.4

1.6


p
/

1
=1.01


p
/

1
=1.02


p
/

1
=1.03

V
d

[V]

u
/t

b

0 10 20 30 40 50 60

-0.001

0

0.001

0.002

0.003

0.004


p
/

1
=1.01


p
/

1
=1.03


p
/

1
=1.02



40 
 

 
Fig.16. Effect of number of modes in the discretised model on nonlinear transverse deformation of the 
piezoelectrically actuated beam. 
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