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Key Findings 

1. Ice penetrating radar reveals basal sediment reflectors in the West Antarctic Ice Sheet 

2. Basal thermal regimes promote sediment entrainment  

3. Once entrained, basal sediments are transported by regional ice flow 

 

Abstract  

Structural glaci-geological processes can entrain basal sediment into ice, leading to its transportation 

and deposition downstream. Sediments potentially rich in essential nutrients, like silica and iron, can 

thus be transferred from continental sources to the ocean, where deposition could enhance marine 

primary productivity. However, a lack of data has limited our knowledge of sediment entrainment, 

transfer and distribution in Antarctica, until now. We use ice-penetrating radar to examine englacial 

sediments in the Weddell Sea sector of the West Antarctic Ice Sheet. Radargrams reveal englacial 

reflectors on the lee side of nunataks and subglacial highlands, where Mie scattering analysis of the 

reflectors suggests particle sizes consistent with surface moraine sediments. We hypothesize that these 

sediments are entrained at the thermal boundary between cold and warm-based ice. Conservative 

estimates of >130 x109 kg of englacial sediment in Horseshoe Valley alone suggest that the ice sheet 

has significant entrainment potential unappreciated previously.  

 

Plain Language Summary  

Glaciers can acquire and transport sediments rich in essential nutrients, like silica and iron, from the 

land to the ocean, where deposition may enhance biological productivity. Our ability to detect and 

map sediment-rich ice in Antarctica has been hindered by technical limitations of geophysical 

equipment and data availability, until now. In this paper ice-penetrating radar is used to detect 

sediments in the Weddell Sea sector of the West Antarctic Ice Sheet. We identify sediment near the 

glacial surface, and further down the ice column, along partially buried mountain ranges and bedrock 

hills beneath the ice. Our conservative estimates reveal >130 million metric tonnes of englacial 

sediment in a single valley. These sediments are entrained at the ice/bed interface and transported to 

mountain fronts and the coast by local and regional ice flow.    
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1. Introduction 

Once entrained in glacier ice, sediments, including those rich in essential nutrients like silica and iron, 

can be transferred from continental sources to the ocean by ice flow, and then iceberg production and 

transport (Nicholls et al., 2012; Death et al., 2014; Hawkings et al., 2014, 2018). This can create 

layers of ice-rafted debris in deep-sea deposits (Leventer et al., 2006; Pierce et al., 2011), such as the 

North Atlantic Heinrich layers (Heinrich, 1988). In Antarctica, these offshore deposits are used to 

reconstruct inland sediment sources, and assess past changes in the locus of glacial erosion (Licht & 

Hemming, 2017; Wilson et al., 2018). Offshore sediments have also been used to examine glacially 

derived bio-available iron concentrations (Shoenfelt et al., 2018), which can impact primary 

productivity and CO2 drawdown in the Southern Ocean (Death et al., 2014; Hawkings et al., 2014, 

2018). Whilst the significance of sediment entrainment, transfer and deposition are understood, 

observations of englacial sediment in large ice sheets, that can corroborate interpretations of marine 

sedimentary records, are rare. This is a function of both ice penetrating radar (IPR) resolution and data 

availability. Recent improvements in the collection and processing of IPR data allow us to investigate 

mechanisms of sediment entrainment and transfer in the Weddell Sea sector of the West Antarctic Ice 

Sheet (WAIS). 

 

2. Study Area 

We analyse englacial reflectors, recorded by both regional airborne radio-echo sounding (RES) and 

local ground-based IPR, in and around Horseshoe Valley (80°018’S, 81°122’W), which is in the 

southern Heritage Range of West Antarctica (Figure 1). These mountains separate the ~20 km wide 

and >2000 m thick Horseshoe Glacier (Winter et al., 2015), which flows at 8-12 m a-1 (Rignot et al., 

2017), from neighbouring ice flow, and channelize ice in Horseshoe Valley towards the Filchner-

Ronne Ice Shelf, ~45 km away at Hercules Inlet. Sharp peaks, ridges and bedrock spurs constrain 

topographic embayments on the leeward slopes of the Liberty, Marble, Independence and Patriot Hills 

of Horseshoe Valley (Figure 1) where enhanced sublimation by katabatic winds cause ice and basal 

debris to flow towards the mountain front, forming extensive blue ice areas and associated blue ice 

moraines (Fogwill et al., 2012; Hein et al., 2016; Sugden et al., 2017) (Figure 2). These glacial and 
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atmospheric processes cause previously horizontal englacial layers to flow up towards the mountain 

front (Winter et al., 2016), exhuming glacially entrained sediment clasts that often exhibit glacial 

abrasion, in the form of sub-angular to sub-rounded shapes and mm-scale striations (Figure 2b, 2c) 

and exposing inclined isochrone sequences at the glacial surface  (Turney et al., 2013). The existence 

of subglacially-transported clasts and exotic lithologies in Horseshoe Valley blue ice moraines and 

historical interpretation of moraine sediment in local IPR transects (Doake, 1981), make Horseshoe 

Valley well suited for investigation of basal sediment entrainment and transfer processes in 

Antarctica. 

 

3. Methods 

3.1 Ground based ice-penetrating radar 

A sledge-mounted PulseEkko 1000 system, operating at 200 MHz was used to acquire high resolution 

IPR data from Horseshoe Valley at 0.1 m intervals in the austral summer of 2012/2013 (Winter et al., 

2016). IPR survey antenna were co-polarized and orientated perpendicular to the survey lines, with 

their broadsides parallel to each other. Differential GPS (DGPS) was collected to enable topographic 

correction to decimetre accuracy. Reflexw radar processing software (version 6.1.1) (Sandmeier 

Scientific Software, 2012) was used to process IPR data using standard processing steps (Welch and 

Jacobel, 2005; Woodward and King, 2009; King, 2011), including time zero correction; bandpass 

filtering and application of an energy decay gain. As point reflectors are more apparent in unmigrated 

data, migration was not applied. To convert travel time to ice thickness a standard electromagnetic 

wave propagation speed in ice of 0.168 m ns-1 was applied. 

 

3.2 Airborne radio-echo sounding 

The British Antarctic Survey (BAS) Polarimetric-radar Airborne Science Instrument (PASIN) ice-

sounding radar system (Jeofry et al., 2018) was used to collect RES data in and around Horseshoe 

Valley in the austral summer of 2010/2011 for the BAS Institute Möller Antarctic Funding Initiative 

(IMAFI) survey (https://doi:10.5285/8a975b9e-f18c-4c51-9bdb-b00b82da52b8). PASIN operates at a 

frequency of 150 MHz, using a pulse-coded waveform acquisition rate of 312.5 Hz and bandwidth of 
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12 MHz. Aircraft position was obtained from DGPS, whilst terrain-clearance was measured using 

radar/laser altimeters. Removal of radar-scattering hyperbolae in the along-track direction was 

achieved through 2D focussed Doppler (SAR) processing. This technique also enhanced basal 

features. As a function of this processing, the uppermost 200 samples (~150-200 m) of SAR-

processed radargrams are often poorly resolved, so non-2D SAR pulse data were used to investigate 

near surface reflections (RES lines 1-3, Figure 2d). An electromagnetic wave propagation speed of 

0.168 m ns-1 and a 10 m firn correction was applied to all RES transects (Ross et al., 2012). Technical 

details of the PASIN system, and additional details on the acquisition and processing of the IMAFI 

RES data are available in Jeofry et al. (2018), and references therein. 

 

3.3 Mie scattering analysis 

To assess the likelihood that englacial reflectors in RES data are entrained sediments, we apply Mie 

theory (Aglyamov et al., 2017) to quantify the sediment grain sizes required to produce the observed 

echo powers and compare these estimates to surface sediment grain sizes from Patriot Hills, recorded 

by Westoby et al. (2015). Under this model, entrained sediment is treated as a random collection of 

spherical particles of some mean radius occupying some fraction of the ice volume. The total power 

received by the radar is then the sum of the power backscattered by every particle in the illuminated 

volume (Ulaby and Long, 2014). Knowing the echo power, radar system parameters and flight 

geometry, we set the fractional volume and solve the volumetric radar equation (Ulaby and Long, 

2014) for the Mie backscatter coefficient, a function of particle size and material. An open source Mie 

solver (Mätzler, 2002) was used to invert for the estimated particle radius. Further details of these 

methods, particularly the radiometric calibration of the radargrams and associated uncertainties, are 

described in Supporting Information.    
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4. Results 

Our geophysical observations reveal steeply dipping englacial reflectors, extending from the ice/bed 

interface up to blue ice moraine complexes in the foreground of exposed bedrock along the margins of 

the southern Heritage Range (Figure 2). Similar reflectors are recorded in Horseshoe Valley Glacier 

beneath >1.4 km of ice (Figure 3). These reflectors are explored in the following paragraphs. 

 

4.1. Englacial reflectors 

In the lee of Independence Hills, englacial reflectors are recorded in several airborne RES transects, 

beneath expansive blue ice moraines (Figure 2). RES flights 1-3 (Figure 2d) record reflectors which 

extend through the ice column (spanning 400 – 1000 m), from the ice/bed interface, to surface 

sediment deposits. The detail and complexity of these reflectors are recorded by IPR. An IPR transect 

across Independence Hills blue ice moraine (Figure 2e) reveals numerous hyperbolic returns beneath 

the sediment-strewn surface, each representing point features imaged by the radar at different angles 

(Daniels, 2004). The steepened limbs and crests of stacked hyperbolic returns help to reveal seven 

linear features within the ice in Figure 2e.  

 

Airborne RES transects also reveal steeply dipping englacial reflectors in the main flow of Horseshoe 

Glacier, along the subglacial extension of Patriot Hills (Figure 3a). In transects 4-6 englacial features 

extend from the ice/bed interface, towards the centre of Horseshoe Valley, beneath >1.4 km of ice 

(~50 m below sea level) (Figure 3a). Although reflectors in transects 4 and 5 are connected to the 

basal substrate, the dipping reflectors in transect 6 are completely surrounded by ice. In this last 

transect (transect 6), two distinct packages of reflectors are recorded, ~100 m and 240 m away from 

the valley side wall. These reflectors extend towards the centre of Horseshoe Valley at a reduced 

inclination to those highlighted in transects 4 and 5.  

 

Airborne RES transects 7-9 (Figure 3c), collected just outside the confines of Horseshoe Valley 

(Figure 1) (where ice flows from Horseshoe Valley’s neighboring Independence Trough, towards the 

Institute Ice Stream and the Filchner Ronne Ice Shelf (Winter et al., 2015)), reveal similar englacial 
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reflectors to those recorded in RES transects 4-6 (Figure 3b). In Figure 3c inclined reflectors are 

recorded along the edge of a subglacial highland, where the englacial features extend up, and into the 

ice flow at angles of ~55° to 63° (from vertical). In transects 7 and 8, these reflectors extend from the 

raised basal substrate beneath buckled and disrupted englacial stratigraphic layers. Sequential 

radargrams show how the spatial amplitude and frequency of these englacial layers decrease down 

flow, until largely straight and parallel layers are recorded in transect 9, where the bed elevation is 

lower. In this final radargram dipping englacial reflectors are present near the ice/bed interface but 

they are not connected to the bed. 

 

The steeply dipping reflectors we highlight in airborne RES transects are recorded in a variety of 

radargrams, which have been collected along flight paths of varying orientation. In these radargrams, 

reflector shape, size and reflectivity vary with depth through the ice column, and with increasing 

distance down flow. We therefore interpret these reflectors as arising from sediment entrained within 

the basal layers of the WAIS. This hypothesis is supported by basal clasts in local blue ice moraine 

sequences (Figure 2b, 2c) and the occurrence of hyperbolically defined point-like features in an IPR 

transect (Figure 2e). We reject alternative interpretations that the reflectors could represent offline 

reflectors from valley side walls (e.g. Holt et al., 2006) or changes in the crystal fabric of the ice (e.g. 

Eisen et al., 2007) because sequential ice-penetrating radargrams reveal reflectors at different depths, 

angles and distances from the mountain front. These two processes also fail to account for the 

occurrence of sub-angular and sub-rounded clasts with mm-scale striations in local blue ice moraine 

sediments (Figure 2b, 2c). 

 

Mie scattering analysis allows us to explore deep subsurface echoes mathematically. Analysis 

produces physically plausible particle sizes, in the region of 3-10 cm in RES transects 5, 6, 8 and 9, 

when we assume an ice/debris ratio of 90:10 (Figure 4, Supporting Information), which is consistent 

with observed sediment concentrations in Antarctic ice cores of 0.3-3.4% (Tison et al., 1993) and 12-

15% (Gow et al., 1979)). These particle sizes correlate with measured grain sizes within the Patriot 

Hills blue ice moraine (Westoby et al., 2015). We repeat Mie scattering analysis for a range of 
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attenuation values to account for the uncertainty in radiometric calibration and find that estimated 

particle sizes remain comparable with measured sediment grain sizes as long as the ice/debris ratio is 

equal to or greater than 90:10 (see Supporting Information for further description of methods and 

results). This analysis supports our interpretation that these deep reflectors are indicative of entrained 

sediments. 

 

4.2. Englacial debris volume 

To estimate the area, volume and mass of englacial debris in and around Horseshoe Valley, polygons 

are used to define the extent of debris reflector bands within zones of offline reflectors and hyperbolic 

radar returns in the nine airborne RES transects we examine. Approximate area calculations are 

provided in Table 1. To convert area to volume, known distances between RES flight lines were fed 

into equation 1, which denotes a standard equation, developed to calculate the volume of a frustum 

(Vf) from two given areas (A1, A2). 

 

Vf = (distance between transects/3) * (A1+A2 + √(A1* A2))                                    (1) 

 

This calculation yields estimates of ~506 million m3 of debris-rich ice between airborne RES transects 

(which cover <10% of Horseshoe Valley Glacier). Assuming a standard high limestone density of 

2560 kg/m3 (Ingham, 2010), which reflects regional lithology (Sugden et al., 2017), these 

approximations suggest conservative estimates of >130 million metric tonnes of englacial sediment in 

and around Horseshoe Valley (using an ice/debris ratio of 90:10). In context, this estimate equates to a 

sediment yield of ~75 kg m2 were this mass to be distributed across the surface of Horseshoe Glacier.  

 

5. Discussion 

Basal thermal regimes control subsurface erosion, meltwater production, basal slip and sediment 

entrainment in glacial systems (Weertman, 1961, 1966; Boulton, 1972). In areas where bed 

topography favours convergent ice flow, ice velocities will increase and produce more heat by internal 
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deformation and/or basal sliding (Sugden, 1978). These two fundamental concepts govern sediment 

entrainment and sediment transport in large ice sheets.  

 

5.1 Sediment entrainment and transfer in blue ice areas 

We propose that basal sediments in Horseshoe Valley are entrained within glacial ice through 

repeated melting and freezing processes at the glacial bed, characteristic of warm-based ice (Hubbard 

and Sharp, 1993; Alley et al., 1997). When clasts are englacially entrained along the margins of 

Horseshoe Valley, ice flow will transfer these sediments upwards, with ice flow, towards blue ice 

surfaces. On the leeward side of Independence Hills, this flow trajectory is evidenced by stacked 

hyperbolic reflectors and sheets of englacial sediments. We hypothesise that these reflectors represent 

planes of concentrated sediment in the ice, formed in response to the compression imposed by ice 

flow towards the mountain front.  

 

5.2 Sediment entrainment and transfer at depth 

Regions of freeze on and melt in Antarctica will change spatially and temporally as the local glacial 

thermal boundary reacts to ice flow across varied and complex topography and glacial-to-interglacial 

changes in ice thickness. The impact of varying relief is apparent in transects 4 and 5 (Figure 3a) 

where sediments are entrained through regelation processes along the subglacial extension of Patriot 

Hills. We hypothesise that entrainment occurs at the thermal boundary between warm and cold based 

ice. When subglacial topography changes in transect 6, and conditions for entrainment are no longer 

met (when the local thermal boundary is likely to be elevated with respect to the lower subglacial 

topography) sediments cannot be incorporated into the glacier. These processes are shown 

schematically in Figure 3b. This figure demonstrates sediment entrainment along the margins of 

Horseshoe Valley when the local thermal boundary intersects the ice/bed interface, and passive 

transportation of previously entrained debris-rich ice when conditions for entrainment are no longer 

met. During this passive phase, previously entrained sediment is ‘smeared out’ in the direction of flow 

(Stokes and Clark, 2002). This down-flow attenuation eventually lowers the thickness of englacial 

sediment layers beyond the resolution of current radar systems, which accounts for the reduction and 
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eventual loss of sediment derived reflectors in airborne RES transects collected further down flow, at 

ever-increasing distances from sediment sources. 

 

Similar methods of entrainment and transfer are recorded in RES transects 7-9 when englacial 

reflectors are imaged along the side of a topographic upland (Figure 3c), situated just outside the 

confines of Horseshoe Valley. In these radargrams, reflectors with radar scattering indicative of 

sediment particles in the range of 3-10 cm (see Figure 4 and Supporting Information), are recorded 

beneath buckled englacial stratigraphic layers. These layers develop as a result of compression due to 

ice flow around the bedrock obstacle, which initiates and maintains a local thermal boundary between 

slow (colder) flow around the bedrock obstacle, and faster (warmer) ice flow above the obstacle 

(Boulton, 1979; Stokes and Clark, 2002; Hindmarsh and Stokes, 2008). Sediment is entrained along 

this interface through melting and freeze-on. Just like sediment entrainment and transfer in marginal 

blue ice areas, the presence of sediment particles in the flow field of the wider ice sheet show that 

sediment is still available for entrainment, and that sediments continue to be excavated, entrained and 

transported in West Antarctica. However, as sediment entrainment and transportation processes will 

vary spatially and temporally as a result of subglacial topography, sediment availability, ice flow and 

ice temperature, changing conditions (for example, in ice thickness) will alter sediment abundance 

and distribution in Antarctica, impacting Southern Ocean sediment delivery. 

 

6. Conclusions 

Steeply dipping englacial reflectors in regional airborne radio-echo sounding surveys (RES) and 

hyperbolic reflectors in local ground based ice-penetrating radar (IPR) transects are evidence of 

debris-rich ice in the West Antarctic Ice Sheet (WAIS). In Horseshoe Valley katabatic winds promote 

and maintain extensive blue ice areas in the lee of nunataks, where basal sediments are entrained at 

the ice/bed interface by repeated melting and refreezing of warm-based ice. These sediments are 

transported through the ice column to the glacial surface by compressive ice flow, enabling basal 

sediment exhumation in debris bands and blue ice moraines. Glacial thermal regimes also facilitate 

sediment entrainment through regelation at greater depths (beneath >1.4 km of ice), at the junction 
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between warm and cold based ice. Combined, these englacial sediment reflectors yield conservative 

estimates of 130 x109 kg of sediment in ice flowing in and around Horseshoe Valley. Given similar 

glaciological settings in the Weddell Sea Sector, and elsewhere in the WAIS, these findings suggest 

that the ice sheet has a significant entrainment potential unappreciated previously. 
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Figure 1. Horseshoe Valley, West Antarctica. (a) Landsat Image Mosaic of Antarctica (LIMA) 

(USGS: http://lima.usgs.gov/) contextualising the Patriot and Independence Hills in Horseshoe Valley 

(marked on the inset map of Antarctica) and the location of airborne radio-echo sounding (RES) 

transects 1-9. Note that airborne RES transect 2 is marked in red, to differentiate its reduced length in 

Figure 2d from the whole flight line (transect 4) used in Figure 3a. (b) Bed elevation plot (Fretwell et 

al., 2013) superimposed over RADARSAT (Liu et al., 2001) to show the relief of Horseshoe Valley, 

its delimiting mountains and the neighboring Independence Trough.   
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Figure 2. Characterization of Independence Hills Blue Ice Moraine. (a) Sediment emerging from blue 

ice in Horseshoe Valley. (b) sediment clast with sub-rounded shape and straight, parallel striations. (c) 

sediment clast with sub-angular shape and multiple striations, in a variety of orientations. (d) airborne 

RES transects across a valley glacier and Independence Hills (shown in photograph f), reveal 

englacial reflectors which extend from the ice/bed interface to Blue Ice Moraine (BIM) deposits in the 

lee of Independence Hills. (e) hyperbolic reflectors in an IPR transect (collected across the BIM 

sequence at the base of Independence Hills) reveal seven linear features beneath the sediment-strewn 

surface (shown in photograph f). 
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Figure 3. Englacial reflectors in Horseshoe Valley, detected more than 1.4 km below the ice sheet 

surface. (a) Airborne RES flights 4-6 record reflectors, thought to have derived from debris rich ice. 

Reflectors extend from the subglacial mountain side to the centre of Horseshoe Glacier. Note that the 

uppermost 200 samples (~500 m) of the ice column are poorly resolved as a function of 2-D synthetic 

aperture radar (SAR) processing (see methods). (b) A schematic representation of (a), highlighting 

sediment entrainment along the local thermal boundary (and in compressive BIAs where katabatic 

winds sublimate the ice surface). When subglacial topography changes and sediments are no longer 

available for entrainment at the elevation of the local thermal boundary (e.g. RES transect 6), regional 

ice flow will passively transport glacially entrained clasts down flow, towards the local grounding 

line. (c) Radargrams 7-9 reveal similar englacial reflectors that extend from a subglacial highland 

region. We hypothesise that these reflectors evidence basal sediments entrained beneath buckled 

englacial layers in RES transects 7-8. When the subsurface topography changes down flow in RES 

line 9 these englacial sediments are detached from the basal substrate and passively transported down 

flow.   
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Figure 4. Sediment sizes required to produce the recorded power from deep reflectors in various 

airborne RES transects as a function of the englacial attenuation rate at a 10% fractional volume of 

sediment. The blue dashed line is the mean modelled attenuation rate (Matsuoka et al., 2012). Black 

squares show the optimal estimate of sediment size for each deep reflector and error bars give the 

variation in particle size for fractional volumes from 3-20%. The white rectangle highlights the range 

of physically plausible sediment grain sizes and attenuation rates. Even considering uncertainty in 

attenuation and fractional volume, the observed echo powers in transects 5, 6, 8 and 9 are consistent 

with scattering from entrained sediments (and observed sediment sizes in local blue ice moraine 

deposits).   
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Table 1. Approximate debris calculations from sediment reflectors in 9 airborne RES transects 

*Estimated distance due to lack of 3D data 

Mass of debris = total volume of debris*2560 (representing the density of limestone in kg/m3 

(Ingham, 2010))  

Mass 100% assumes 100% debris block, Mass 10% approximates 90% ice and 10% debris etc.  

 

   

RES flight 

number 
 

 

Area 

(x103 m2) 

 

Distance 

between RES 

transects (m) 

 

Debris 

volume  

(x106 m3) 

 

Mass 100% 

(x109 kg) 

 

Mass 10% 

(x109 kg) 

 

Mass 20%  

(x109 kg) 

       

1 92 - - - - - 

2 55 1,690 123 315 32 62 

3 21 1,596 59 150 15 30 

4 8 - - - - - 

5 8 3,426 27 70 7 14 

6 (Reflector 1) 15 12,611 143 365 37 74 

6 (Reflector 2) 26 6,000* 97 248 25 50  

 

7 23 - - - - - 

8 30 1,104 29 75 7 14 

9 12 1,396 28 73 7 14 
       
 

 
  

Total: 

 

 
    

 290 x103 m2 
 

 

 
 

506 x106 m3  

 

 

 
   

1296 x109 kg  

 

 

 
   

130 x109 kg  

 

 

    

258 x109 kg 


