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ABSTRACT

Quasi-periodic pulsations (QPPs) appear to be a common feature observed in the light curves of
both solar and stellar 
ares. However, their quasi-periodic nature, along with the facts that they can
be small in amplitude and short-lived, make QPPs di�cult to unequivocally detect. In this paper,
we test the strengths and limitations of state-of-the-art methods for detecting QPPs using a series
of hare-and-hounds exercises. The hare simulated a set of 
ares, both with and without QPPs of a
variety of forms, while the hounds attempted to detect QPPs in blind tests. We use the results of
these exercises to create a blueprint for anyone who wishes to detect QPPs in real solar and stellar
data. We present eight, clear recommendations to be kept in mind for future QPP detections, with the
plethora of solar and stellar 
are data from new and future satellites. These recommendations address
the key pitfalls in QPP detection, including detrending, trimming data, accounting for coloured noise,
detecting stationary-period QPPs, detecting QPP with non-stationary periods, and ensuring detections
are robust and false detections are minimized. We �nd that QPPs can be detected reliably and robustly
by a variety of methods, which are clearly identi�ed and described, if the appropriate care and due
diligence is taken.

Keywords: methods: data analysis | methods: statistical { stars: 
are | Sun: 
ares

1. INTRODUCTION

Solar 
ares are multi-wavelength, powerful, impulsive energy releases on the Sun. Flares are subject to intensive
studies in the context of space weather, as a driver of extreme events in the heliosphere, and also of fundamental plasma
astrophysics, allowing for high-resolution observations of basic plasma physics processes such as magnetic reconnection,
charged particle acceleration, turbulence and the generation of electromagnetic radiation. The appearance of a 
are
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at di�erent wavelengths, which is associated with di�erent emission mechanisms occurring in di�erent phases of the
phenomenon, is rather di�erent. Light curves of 
ares, measured in di�erent observational bands could be considered
as a superposition of a rather smooth, often asymmetric trend, and variations with a characteristic time scale shorter
than the characteristic times of the trend. Such a short-time variability is a common feature detected in all phases
of a 
are, at all wavelengths, from radio to gamma-rays (e.g. Dolla et al. 2012; Huang et al. 2014; Inglis et al. 2016;
Pugh et al. 2017b; Kumar et al. 2017). The short-time variations occur in di�erent parameters of the emission: its
intensity, polarisation, spectrum, spatial characteristics, etc. Often, such variations are seen in a form of apparently
quasi-periodic patterns which are called quasi-periodic pulsations (QPPs).

The �rst observational detection of QPPs in solar 
ares, as a well-pronounced sixteen second periodic modulation of
the hard X-ray emission generated by a 
are, was reported �fty years ago (Parks & Winckler 1969). Since this discovery,
QPPs have been a subject to a number of observational case studies and theoretical models (see, e.g. Aschwanden
1987; Nakariakov et al. 2010; Nakariakov & Melnikov 2009; Van Doorsselaere et al. 2016; McLaughlin et al. 2018;
Nakariakov et al. 2019, for comprehensive reviews). QPPs have been detected in 
ares of all intensity classes, from
micro
ares (e.g. Nakariakov et al. 2018) to the most powerful 
ares (e.g. M�esz�arosov�a et al. 2006; Kolotkov et al. 2018).
The observed depth of the modulation of the trend signal ranges from a few percent to almost 100%. There have
been several attempts to assess statistically the prevalence of QPP patterns in solar 
ares, drawing a conclusion that
QPPs are a common feature of the light curves associated with both non-thermal and thermal emission (Kupriyanova
et al. 2010; Sim~oes et al. 2015; Inglis et al. 2016; Pugh et al. 2017b). In some cases, the co-existence of several QPP
patterns with di�erent periods and other properties in the same 
are has been established (e.g. Inglis & Nakariakov
2009; Srivastava et al. 2013; Kolotkov et al. 2015; Hayes et al. 2019).

Similar apparently quasi-periodic patterns have been detected in stellar 
ares too (e.g. Zaitsev et al. 2004; Math-
ioudakis et al. 2003; Mitra-Kraev et al. 2005; Balona et al. 2015; Pugh et al. 2016), including super- and mega
ares
(e.g. An�nogentov et al. 2013; Maehara et al. 2015; Jackman et al. 2019). Moreover, properties of QPPs in solar and
stellar 
ares have been found to show interesting similarities (Pugh et al. 2015; Cho et al. 2016), which may indicate
similarities in the background physical processes.

Typical periods of QPPs range from a fraction of a second to several tens of minutes. This range coincides with
the range of the predicted and observed periods of magnetohydrodynamic (MHD) oscillations in the plasma non-
uniformities in the vicinity of the 
aring active region (e.g. Nakariakov et al. 2016, for a recent review). Because of
that, QPPs are often considered as a manifestation of various MHD oscillatory modes. There are a number of speci�c
mechanisms that could be responsible for the modulation of 
aring emission by MHD oscillations, either pre-existing
or even inducing the 
are, or being excited by the 
are itself. Mechanisms for the excitation of QPPs can be roughly
divided into three main groups: direct modulation of the emitting plasma or kinematics of non-thermal particles;
periodically induced magnetic reconnection; and self-oscillations (e.g. Van Doorsselaere et al. 2016; McLaughlin et al.
2018, for recent reviews). In addition, numerical simulations demonstrate spontaneous repetitive regimes of magnetic
reconnection (e.g. Kliem et al. 2000; Murray et al. 2009; McLaughlin et al. 2009, 2012; Thurgood et al. 2017; Santamaria
& Van Doorsselaere 2018), i.e., the magnetic dripping mechanism (Nakariakov et al. 2010). On the other hand, there are
numerical simulations that show that the process of magnetic reconnection is essentially non-steady or even turbulent,
but without a built-in characteristic time or spatial scale (e.g. B�arta et al. 2011). In particular, parameters of shedded
plasmoids were shown to obey a power law relationship with a negative slope (e.g. Loureiro et al. 2012), which could
result in a red-noise-like spectrum in the frequency domain. When the shedded plasmoids impact the underlying
post-
are arcade, they trigger transverse oscillations (Jel��nek et al. 2017).

Mechanisms of QPPs in 
ares remain a subject of intensive theoretical studies (McLaughlin et al. 2018). If QPPs are
a prevalent feature of the solar and stellar 
are phenomenon, theoretical models of 
ares, summarised in, e.g. Shibata
& Magara (2011), must include QPPs as one of its key ingredients,as is attempted by, for example, Takasao
& Shibata (2016) . QPPs o�er a promising tool for the seismological probing of the plasma in the 
are site and its
vicinity. In addition, a comparative study of QPPs in solar and stellar 
ares opens up interesting perspectives for the
exploitation of the solar-stellar analogy.

In di�erent case studies, as well as in statistical studies, QPPs have been detected with di�erent methods. These
include direct best-�tting by a guessed oscillatory function, Fourier transform methods, Wigner-Ville method, wavelet
transforms with di�erent mother functions, and the Empirical Mode Decomposition technique. Through use of these
methods, di�erent false-alarm estimation techniques are implemented, di�erent models for the noise are assumed,
and di�erent detection criteria are often used. Moreover, some authors have routinely made use of signal smoothing
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(�ltering or detrending), or work with the time derivatives of the analysed signal or its auto-correlation function. In
some studies, the detection technique is applied directly to the raw signal. This variety of analytical techniques and
methods used by authors is caused by several intrinsic features of QPPs in 
ares. The quasi-periodic signal often
occurs on top of a time-varying trend. The QPP signal is often very di�erent from the underlying monochromatic
signal, and almost always has a pronounced amplitude and period modulation, i.e. QPP signals could be referred to
as non-stationary oscillations. QPP signals are often essentially anharmonic, i.e. its shape is visibly di�erent from a
sinusoid. The QPP quality-factor, which is the duration of the QPPs measured in terms of the number of oscillation
cycles, is often low, as it is limited by the duration of the 
are itself and also by signal damping or a wave-train-like
signature.

Thus, in the research community there is an urgent need for a uni�cation of the QPP-detection criteria, understanding
advantages and shortcomings of di�erent QPP-detection techniques (along with associated artefacts), and working out
recommended recipes and practical guides for QPP detection, based on best-practice examples. In this paper, we
perform a series of hare-and-hounds exercises where the `hare' produced a set of simulated 
ares, which are described
in Section 2, for the `hounds' to analyse. The hounds were aiming to produce reliable and robust detections of QPPs,
and the methods they used are described in Section 4. The results of the hare-and-hounds exercises are given in Section
5, which includes discussion of the false alarm rates of each methodology, along with the precision of the detected QPP
periods. In Section 6 we draw together our conclusions from these results, making a series of recommendations for
anyone attempting to detect QPPs in 
are time series. Finally, in Section 7 we look to new and future observational
data, yet to be explored in a QPP framework.

2. SIMULATIONS OF QPP FLARES

In this paper we will discuss three hare-and-hounds exercises that aimed to test methods for detection of QPPs. The
�rst hare-and-hounds exercise, HH1, contained 101 
ares simulated by the `hare' (Broomhall - AMB) and these were
analysed for QPPs by the `hounds' (Davenport - JRAD; Hayes - LAH; Inglis - ARI; McLaughlin - JAM; Kolotkov &
Mehta - DK & TM; Pascoe - DJP; Pugh - CEP; Van Doorsselaere - TVD). The HH1 sample was the only completely
blind test performed, where the hounds did not know how any of the simulated 
ares had been produced. Following
the initial analysis of the results of HH1 it was deemed necessary to perform further hare-and-hounds exercises to
investigate issues not covered by the HH1 sample. Accordingly, two further sets of simulated 
ares were produced:
HH2 contained 100 
ares and HH3 contained 18. Flares for all exercises were simulated using the methodology
described in this section and, in fact, were produced prior to the hounds' analysis of HH1. Before the hounds received
HH2 and HH3 they were informed of how the simulated 
ares had been produced but were not aware of which of the
components described below were present in each individual 
are, i.e. the tests were still semi-blind.

Each simulated 
are was assigned a randomly-selected ID number to make sure the di�erent types of simulated QPP

ares could not be identi�ed prior to analysis. All simulated time series contained 300 data points and a synthetic

are. Each 
are was initially simulated to be 20 time units in length and was heavily oversampled (with a time step
of 0.001 �ducial time units) to prevent resolution issues upon rescaling. Once simulated, the length of the 
are was
rescaled to equal a length randomly chosen from a uniform distribution,L 
are , and further details are given in Table
1. The respective lengths of the rise and decay phases relative toL 
are are described below. The 
are was then
interpolated onto a regular grid where data points were separated by one time unit. The simulated 
are was inserted
into a null array of length 300 such that the timing of the peak, tpeak , was determined by a value randomly selected
from a uniform distribution (See Table 1).

The synthetic 
are shapes took two forms: The �rst shape was based on the results of Davenport et al. (2014), who
produced a 
are template using 885 
ares observed on the active M4 star GJ 1243, which was observed by theKepler
satellite (Borucki et al. 2010). The 
are template includes a polynomial rise phase and a two-stage exponential decay.
A limitation of this template is that it produces a very sharp peak. This is likely to arise in the 
ares observed by
Davenport et al. (2014) because of the limited time cadence of theKepler data. In better resolved data, a smoother
turnover at the peak is often observed (e.g. Jackman et al. 2019). To better replicate this, a 
are shape consisting of
two half-Gaussian curves was created, whereby the �rst half-Gaussian was used to simulate the rising phase and had
smaller width than the second half-Gaussian, used to simulate the decay phase. The widths of the rising and decay
Gaussian curves were determined by the standard deviations,� rise and � decay respectively, which were selected from
uniform distributions as detailed in Table 1. For both 
are shapes the amplitude of the 
are, A 
are , was allowed to
vary randomly, as determined by a normal distribution centred on 10, with a hard boundary at zero. A random o�set
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was also added to the data, which was selected from a uniform distribution (see Table 1). Examples of each simulated

are shape can be found in the top panels of Figure 1.

Table 1. Details of simulated 
are parameters and noise, where U indicates values were taken from a uniform distribution, N
indicates values were taken from a normal distribution and n/a indicates \not applicable" .

Parameters Exponential Gaussian

L 
are U(100; 200) U(100; 200)
tpeak U(30; 300� L 
are ) U(0:4L 
are ; 300� L 
are )
A 
are 10 + N (0; 4) 10 + N (0; 4)
� rise n/a U(0:1; 3)

� decay n/a U(5; 20)
O�set U(0; 100) U(0; 100)

White S/N i 2 Z : i 2 [1; 5] i 2 Z : i 2 [1; 5]
r U (0:81; 0:99) U(0:81; 0:99)

Red S/N 17 + N (0; 1) 17 + N (0; 1)

2.1. Synthetic QPPs

While some of the 
ares were left in their basic forms, as described above, various QPP-like signals were added to
others and we now give details of these modi�cations.

2.1.1. Single exponential-decaying sinusoidal QPPs

The simplest form of QPP signal was based on an exponentially-decaying periodic function. Such a signal has been
used to model QPPs observed in both solar and stellar 
ares (e.g. An�nogentov et al. 2013; Pugh et al. 2015, 2016;
Cho et al. 2016). Here, the QPP signal as a function of time,I (t), (as measured in, for example, 
ux or intensity) is
given by

I (t) = Aqpp exp
�

�
t
te

�
cos

�
2�t
P

+ �
�

; (1)

where Aqpp is the amplitude of the QPP signal, te is the decay time of the QPP, P is the QPP period and � is the
phase. Aqpp was varied systematically with respect to the amplitude of the simulated 
are, P was varied systematically
with respect to the length of the 
are, L 
are , and te was varied systematically with respect toP. Details can be found
in Table 2. For each simulated 
are, � was chosen randomly from a uniform distribution in the range [0; 2� ]. Examples
of the QPP signals added to two simulated 
ares can be seen in the middle panels of Figure 1.

2.1.2. Two exponentially-decaying sinusoidal QPPs

A second QPP signal was added to a number of the simulated 
ares. This took the same form as the �rst QPP
and so can also be described by equation 1. The amplitude of the second QPP,Aqpp2 , was scaled systematically with
respect to the amplitude of the �rst QPP, Aqpp , such that Aqpp2 < A qpp (see Table 2). Similarly, the period and
decay time of the second QPP were scaled systematically relative to the period of the �rst QPP. Recall that the decay
time of the original QPP, te, was scaled relative to the period of the original QPP,P, so the decay time of the second
QPP, te2, was also varied systematically relative tote. The phase was again selected from a uniform distribution in
the range [0; 2� ].

2.1.3. Non-stationary sinusoidal QPPs

In real 
ares the physical conditions in the 
aring region evolve and change substantially during the event and so
non-stationary QPP signals are observed regularly (e.g. Nakariakov et al. 2019). To take this into account, some of the
input synthetic QPP signals were non-stationary, and speci�cally had non-stationary periods. Here, we concentrate
on varying the period with time but a future study could, for example, examine the impact of a varying phase or
amplitude on the ability of the hounds' methods to detect QPPs. The non-stationary signal was based upon equation
1, however, the frequency of the sinusoid was varied as a function of time such that

f = f 0

�
f 1

f 0

� t=t 1

; (2)
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Figure 1. Top, left: Example of a simulated 
are based upon the 
are template of Davenport et al. (2014), with L 
are = 145:1,
tpeak = 129:3, and A 
are = 11 :5. Top, right: Example of a simulated 
are constructed from two half-Gaussians with L 
are =
133:3, tpeak = 157:8, A 
are = 10 :3, � rise = 2 :3, and � decay = 6 :3. Middle, left: Example of a 
are (blue, solid) with a simple QPP
signal (red, dashed), described by equation 1, with P = 14 :5, te = 58 :1, Aqpp = 2 :3, and � = 0 :5 rad. Middle, right: Example
of a 
are (blue, solid) with a simple QPP signal (red, dashed), described by equation 1, with P = 6 :7, te = 13 :3, Aqpp = 3 :1,
and � = 0 :3 rad. Bottom, left: Simulated 
are including noise where the signal-to-noise of the 
are was 5.0. Bottom, right:
Simulated 
are including noise where the signal-to-noise of the 
are was 5.0.
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Table 2. Details of QPP signals of simulated 
ares. We note that in the 
ares containing two QPPs, non-stationary QPPs and
linear and quadratic background trends, the parameters P , Aqpp , te and � were de�ned in the same manner as for the \Single
QPP" 
ares, i.e. randomly or systematically varied as described in this table.

Type Number in HH1 Number in HH2 Parameters Variation
Exponential Gaussian Exponential Gaussian

Single QPP 25 25 16 16

L 
are =P [10; 20; 30]
Aqpp =A
are [0:1; 0:2; 0:3]

te=L 
are [ 1
30 ; 1

20 ; 1
15 ; 1

10 ; 2
15 ; 1

5 ; 2
5 ]

� U [0; 2� ]

Two QPPs 2 2 0 0

P2=P U(0:45; 0:55)
Aqpp2 =Aqpp U(0:5; 0:8)

te2=te U(0:45; 0:55)
� 2 U[0; 2� ]

Non-stationary QPPs 2 2 0 0
� 1 0:001� 0

t1 100

Linear background 1 2 0 0 C1 A 
are U(� 1; 1)

Quadratic background 2 1 0 0
C1 A 
are U(� 1; 1)
C2 U(0; 300)

where f 0 is the frequency at time t = 0 and f 1 is the frequency at time t = t1. Here, f 0 = 1=P and, as in Section 2.1.1,
P was varied systematically with respect to L 
are . For all simulated 
ares with non-stationary QPPs, t1 = 100 and
f 1 = 1=(100P), meaning the period increased with time, as was the case for the real QPPs observed by, for example,
Kolotkov et al. (2018); Hayes et al. (2019). All other parameters were varied in the manner described in Section 2.1.1.

2.1.4. Multiple 
ares

In addition to the sinusoidal QPPs, simulations were produced where the QPPs consisted of multiple 
ares. In these
simulations either one or two additional 
ares were added to the initial 
are pro�le. The shapes of these 
ares were
the same as the original 
are.

When one additional 
are was incorporated, the timing of the secondary 
are was selected randomly from a uniform
distribution such that the peak of the secondary 
are occurred during the decay phase of the original 
are. The
amplitudes of the secondary 
ares were scaled relative to the amplitude of the initial 
are, where the ratio of the 
are
amplitudes was selected using a uniform random number generator in the range [0.3, 0.5] and the amplitude of the
second 
are was always smaller than the original (see Table 3). For the remainder of this article, simulated 
ares
containing two 
ares will be referred to as \double 
ares".

When two additional 
ares were incorporated, the amplitude of the tertiary 
are was selected to be 60% of the
amplitude of the secondary 
are. For these 
ares, the timing of the secondary 
are was restricted to the �rst half of
the 
are decay phase. Two regimes were used to determine the timing of the tertiary 
are: In the �rst regime, the
timing was selected using a uniform random number generator and was allowed to occur anywhere in the second half
of the decay phase (see Table 3). The second regime was designed to produce a periodic signal so the separation in
time between the secondary and tertiary peaks was �xed at the time separation of the primary and secondary peaks.
For the rest of this article, the �rst regime will be referred to as \non-periodic multiple 
ares", while the second regime
will be referred to as \periodic multiple 
ares".

2.2. Noise

Two types of noise were added onto each simulated 
are. Firstly, white noise was added, which was taken from a
Gaussian distribution, where the standard deviation of the Gaussian distribution was systematically varied relative
to the amplitude of the 
are. In 
ares that included a synthetic QPP signal, the amplitude of that signal was also
systematically varied with respect to the amplitude of the 
are. This ensured that the amplitude of the white noise
was, therefore, also systematically varied with respect to the QPP amplitude.

In addition to the white noise, red noise was also added onto the simulated 
ares. Red noise is a common feature of

are time series and if its presence is not properly accounted for by detection methods it can lead to false detections
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(e.g. Auch�ere et al. 2016). The added red noise,N i , can be described by the following equation

N i = rN i � 1 +
p

(1 � r 2)wi ; (3)

where i denotes theindex of the data point in the time series , r determines the correlation coe�cient between
successive data points andwi denotes a white noise component. Herer was selected using a uniform random number
generator in the range [0.81, 0.99].wi was taken from a Gaussian distribution, centered on zero and with a standard
deviation that was scaled systematically relative to the amplitude of the 
are.

In this study, the noise was added to the simulated 
are in an additive manner. In reality this is likely to be
somewhat simplistic and some multiplicative component is expected. Further studies are required to determine the
impact of the multiplicative component on the detection of QPPs.

2.3. Background trends

In real 
are data, a background trend is often observed in addition to the underlying 
are shape itself (which can
also be considered as a background trend when searching for QPPs). This is particularly true in stellar white light
observations, where the light curve can be modulated by, for example, the presence of starspots (Pugh et al. 2015,
2016) but can also be observed if the 
are containing the QPPs occurs during the decay phase of a previous 
are. To
determine the impact of this on the ability of the detection methods to identify robustly QPPs, background trends were
incorporated into some of the simulated 
ares. These backgrounds were either linear or quadratic and the coe�cients
of the background trend were all varied with respect to the amplitude of the original 
are. For the linear background
trend, a variation of

L (t) = C1t; (4)

was added to the simulated 
are time series, whereC1 was a constant chosen randomly from a uniform distribution
to be some positive or negative fraction of the 
are amplitude (A 
are U(� 1; 1)). As a constant o�set was added to all
simulated time series as standard there was no need to include an additional constant o�set in equation 4. Similarly,
the quadratic background trends were given by

Q(t) = C1t + C2t2; (5)

whereC1 was de�ned as above in the linear background trend andC2 was chosen randomly from a uniform distribution
in the range 0< C 2 < 300.

2.4. Real 
ares

In addition to the simulated 
ares, the hare-and-hounds exercises also contained a number of disguised real solar
and stellar 
ares. The real 
ares were chosen predominantly from previously published results where QPP detections
had been claimed. In addition, one 
are where no QPPs had previously been detected was included in the sample.
They were also chosen based on the number of data points within the 
are, such that they would �t the model of
the simulated 
ares, with each containing 300 data points. For each real 
are, the time stamps were removed and an
o�set, chosen randomly from a uniform distribution, was added (in the same manner as with the simulated 
ares, see
Section 2). Each 
are was then saved in the same kind of �le as the simulated 
ares and given a random ID number;
thus, these 
ares were indistinguishable from the simulated ones. To test the impact of signal-to-noise (S/N) on the
ability to detect the QPPs, additional red and white noise was added to each real 
are and these data were saved in
a separate �le and given a di�erent randomly-selected ID number.

3. HARE-AND-HOUNDS EXERCISES

The �rst hare-and-hounds exercise (HH1) concentrated on the quality of the detections. HH1 consisted of 101
simulated 
ares and numbers of each type of simulated 
are can be found in Tables 2 and 3. This sample contained
simulated 
ares of all types and of various di�erent S/N levels. The hounds were given no information about what
was in the sample prior to analysis and so the test was completely blind.

As there were only 8 
ares that did not contain QPPs in the HH1 sample (1 single 
are, 1 double 
are and 6
non-periodic multiple 
ares), HH1 is not suited to testing the false alarm rate of the hounds' methods. We therefore
set up a second hare-and-hounds exercise, HH2, which contained 100 simulated 
ares, 60 of which contained no QPP
signal, of which 41 were single 
ares. The remaining 40 simulated 
ares contained a single sinusoidal QPP, i.e. a
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single QPP signal described by equation 1. The numbers of each simulated 
are type included in HH2 can be found
in Tables 2 and 3. We note that HH2 was set up after the simulations had been described to the hounds and the
results of HH1 discussed. However, the majority of hounds did not modify their methodologies between HH1 and HH2.
The exceptions to this are JAM, who took measures to improve his methodology based on the results of HH1, and
TVD, who automated the detection code between the HH1 and HH2 exercises. A discussion of the impact of these
modi�cations are given in Sections 5.3 (for JAM) and 5.5 (for TVD).

To investigate further the impact of detrending on the detection of QPPs, a third hare-and-hounds exercise was
performed, HH3. Only TVD participated in this exercise and the aim of HH3 was to test speci�cally the smoothing
method used by TVD to detrend the 
ares. HH3 contained 18 
ares, 11 based on an exponential shape and 7 based
on the Gaussian shape. Each 
are contained a single, exponentially-decaying QPP, with 4< P < 20, 1 � te=P � 4,
and S/N of either 2 or 5.

The simulated 
ares included in HH1, HH2 and HH3 can be found at https://github.com/ambroomhall.

4. METHODS OF DETECTION

Eight methods were used to analyse the simulated 
ares and we now detail those methods. In each method we will
show an example analysis of Flare 566801, which was based on the Davenport et al. (2014) template. The 
are, which
is shown in Figure 2, had a S/N of 5.0 and contained two QPPs of periods 13.4 and 8.4. This 
are was chosen as all
hounds were successfully able to recover the primary period (of 13.4), although we note that this was only true for
JAM after modifying his methodology for HH2.

� �� ��� ��� ��� ��� ���
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���

���

	��
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Figure 2. Flare 566801, which was based upon the 
are template of Davenport et al. (2014) with L 
are = 134:1, tpeak = 73 :3,
and A 
are = 10 :3. The 
are contained two QPPs with P = 13 :4, te = 53 :6, Aqpp = 3 :1, P2 = 8 :4, te2 = 33 :4 and Aqpp2 = 2 :1.
The signal-to-noise of the 
are was 5.0. The black solid line depicts the data given to the hounds, while the red dashed line
shows the model.

4.1. Gaussian Process Regression - JRAD

Gaussian Processes (GPs) have become a popular method for generating 
exible models of astronomical light curves.
Unlike analytic models that describe the entire time series by a �xed number of parameters (e.g. polynomials or
sines), GPs are non-parametric and instead use \hyper-parameters" to de�ne a kernel (or autocorrelation) function
that describes the relationship between data-points. Splines and damped random walk models are two special cases
of GP modeling that have been used extensively in astronomy. For full details on using GPs to model astronomical
time series see Foreman-Mackey et al. (2017) and references therein.

We utilize the Celerite GP package developed for Python (Foreman-Mackey et al. 2017) due to its 
exibility in
generating kernel functions, and speed for modeling potentially large numbers of data points. In our QPP hare-and-
hounds experiment, we are interested in describing a quasi-periodic modulation that decays in amplitude (e.g. equation

https://github.com/ambroomhall
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1). Celerite comes with an ideal kernel for modeling such data: a stochastically-driven damped harmonic oscillator,
de�ned by Foreman-Mackey et al. (2017) as:

S(f ) =

r
2
�

S0 f 4
0

(f 2 � f 0
2)2 + f 0

2 f 2=Q2
; (6)

where Q is the quality factor or damping rate of the oscillator, f 0 is the characteristic oscillation frequency of the
QPPs, and S0 governs the peak amplitude of oscillation.

Since we were only interested here in identifying the QPP component, we �rst detrended any non-
are stellar
variability, and subtracted o� a smooth 
are pro�le from each event. This was accomplished by �rst subtracting a
linear �t from each candidate event. The Davenport et al. (2014) 
are polynomial model was then �t to each event
using least squares regression, and this smooth 
are was then subtracted from the data. An example of the Davenport
et al. (2014) 
are polynomial model that was �tted to Flare 566801 can be seen in Figure 3. Ideally this should leave
only the QPPs (if present) in the data to be modeled by our GP. While this approach was fast and easy to interpret,
we note abetter approach to detrending the 
are event would be to �t the underlying 
are and the GP simultaneously,
e.g. using a Markov Chain Monte Carlo sampler.

For simplicity, we �t our GP to the residual data that was left after the peak of the polynomial 
are (i.e. in
the decay phase), and only within 5 times the full-width-at-half-maximum of the 
are (i.e. 5 � t1=2). This was
done to avoid over-�tting any remaining stellar variability or complex 
are shapes that were not removed from our
simple detrending procedure. We then followed the worked tutorial included withCelerite to �t a damped harmonic
oscillator (SHOTerm) GP kernel to our residual data, using the L-BFGS-Bsampler. This provided us estimates of
the 
are QPP timescale (period), decay time, and amplitude, as well as generating a model of each 
are residual
light curve. The QPP period was determined plausible for each simulated event if it was longer than 3 data points
(well enough resolved to measure) and shorter than200 time units (well constrained by the 300 time units
simulated for each event).
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Figure 3. GP analysis performed for Flare566801. Blue is the original simulated light curve. Orange is the Davenport et al.
(2014) 
are model that was subtracted from the data. Red is the GP �t to the QPP.

4.2. Wavelet Analysis - LAH

Wavelet analysis is a popular tool used in many studies to analyse variations and periodic signals in solar and stellar

aring time series. A detailed description of wavelet analysis is given in Torrence & Compo (1998), but the main
points are mentioned here. The idea of wavelet analysis is to choose a wavelet function, 	(� ), that depends on a time
parameter, � , and convolve this chosen function with a time series of interest. The wavelet function must have a mean
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of zero, and be localized in both time and frequency space. The Morlet wavelet function is most often used when
studying oscillatory signals as it is de�ned as a plane wave modulated with a Gaussian,

	( � ) = � � 1=4ei! 0 � e� � 2 =2 (7)

Here, ! 0 is the non-dimensional associated frequency. The wavelet transform of an equally spaced time series,xn , can
then be de�ned as the convolution of xn with the scaled and translated wavelet function 	, given by

Wn (s) =
N � 1X

n 0=0

xn 0	 �
�

(n0 � n)�t
s

�
(8)

Here 	 � represents the complex conjugate of the wavelet function ands is the wavelet scale. By varying the scale
s and translating it along the localized time index n, an array of the complex wavelet transform can be determined.
The wavelet power spectrum is de�ned asjWn (s)j2 and informs us about the amount of power that is present at a
certain scales (or period), and can be used to determine dominant periods that are present in the time seriesxn . A
1D global wavelet spectrum can also be calculated, de�ned as

W 2(s) =
1
N

N � 1X

n =0

jWn (s)j2 (9)

In this exercise, the signi�cance of enhanced power in the wavelet spectra was tested using a red-noise background
spectrum. Following Gilman et al. (1963); Torrence & Compo (1998), this was estimated by a lag-1 autoregressive
AR(1) process given by

xn = �x n � 1 + zn (10)

where � is the lag-1 autocorrelation, x0 = 0 and zn represents white noise.
For the hare-and-hounds test samples, the 
are signals werenot detrended before employing the use of wavelet

analysis. In this way, the red-noise component can be taken into account when searching for a signi�cant period and
avoids the introduction or a bias or error in choosing a detrending window size. In some cases the input 
are series
was smoothed by 2 data points to reduce noise. To be robust in the analysis of all the 
ares in this exercise, a detected
period was de�ned as having a peak in the global power spectrum that lies above the 95% con�dence level. An example
of this wavelet analysis performed on the simulated Flare 566801 is shown in Figure 4, where a signi�cant peak in the
global spectrum is identi�ed at � 13 time units in agreement with the input period. A short-lived signal is also
seen at around 6 time units that is just above the signi�cance level. This period is slightly lower than,
but not inconsistent with, secondary signal included in Flare 566801, which had an input periodicity
of 8.4 time units.

4.3. Automated Flare Inference of Oscillations (AFINO) - ARI

The Automated Flare Inference of Oscillations code (AFINO) was designed to search for global QPP signatures in

are time series. The main feature of the method is that it examines the Fourier power spectrum of the 
are signal and
performs a model �tting and comparison approach to �nd the best representation of the data. AFINO is described
in detail in Inglis et al. (2015, 2016); here, we summarize the key steps in the method. The �rst step in AFINO is to
apodize the input time series data by normalizing by the mean and applying a Hanning window to the original time
series. The results are not very sensitive to the exact choice of window function, but windowing is necessary in order
to address the e�ects of the �nite-duration time series on the Fourier power spectrum. The normalization meanwhile
is for convenience only.

The next stage, and the key element of the AFINO procedure, is to perform a model comparison on the Fourier
power spectrum of the time series. AFINO is 
exible regarding both the choice of models describing the relation
between frequency and power, and the range of data being included in the �tting procedure. In this work, as in
Inglis et al. (2016), AFINO is implemented testing three functional forms for the Fourier power spectra; including a
single power law, a broken power law and a power law plus Gaussian enhancement. This latter model is designed to
represent a power spectrum containing a quasi-periodic signature, or QPP, while the other models represent alternative
hypotheses. These power-law models are based on the observation that power-law Fourier power spectra are a common
property of many astrophysical and solar phenomena such as active galactic nuclei, gamma-ray bursts, stellar 
ares
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Figure 4. Wavelet analysis on the simulated Flare 566801. The 
are time series is shown in the top panel and the associated
wavelet power spectrum and global wavelet spectrum is shown in the bottom panels. The normalized wavelet spectrum indicates
regions of enhanced power at certain periods with regions above the 95% con�dencelevel marked by the thin solid lines. The
shaded and hatched area is the cone of in
uence. The global wavelet spectrum is shown in the bottom right hand panel. The
black line indicates the global wavelet power from the associated wavelet power spectrum and the red dashed line indicates the
95% con�dence level above the red-noise background model. For the hare-and-hound exercise, a detected period was de�ned as
having global wavelet power above this con�dence level. In this example, a horizontal line is drawn at the peak of the global
spectrum at � 13 s.

and magnetars (Cenko et al. 2010; Gruber et al. 2011; Huppenkothen et al. 2013; Inglis et al. 2015), and that such
power laws can lead naturally to the appearance of bursty features in time series. This power law must therefore be
accounted for in Fourier spectral models to avoid a drastic overestimation of the signi�cance of localized peaks in the
power spectrum (Vaughan 2005; Gruber et al. 2011). Figure 5 shows examples of the three models �tted to the power
spectrum produces for Flare 566801.

In order to �t each model to the Fourier power spectrum, we determine the maximum likelihood L for each model
with respect to the data. For Fourier power spectra, the uncertainty in the data points is exponentially distributed
(e.g. Vaughan 2005, 2010). Hence, the likelihood function may be written as

L =
N= 2Y

j =1

1
sj

exp
�

�
i j

sj

�
; (11)

where I = ( i 1,...,i N= 2) represent the observed Fourier power at frequencyf j for a time series of lengthN , and S =
(si ,...,sN= 2) represents the model of the Fourier power spectrum. In AFINO, the maximum likelihood (or equivalently
the minimum negative log-likelihood) is determined using �tting tools provided by SciPy (Jones et al. 2001{a). Once
the �tting of each model is completed, AFINO performs a model comparison test using the Bayesian Information
Criterion (BIC) to determine which model is most appropriate given the data. The BIC is closely related to the
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Figure 5. AFINO applied to the synthetic Flare 566801. The input 
are time series is shown in the top left panel. The
remaining panels show the best �ts of three models to the Fourier power spectrum of the 
are; a single power law plus a
constant (top right), a power law with a bump representing a QPP-like signature (bottom left), and a broken power law plus
constant (bottom right). The Bayesian Information Criterion (BIC) shows that the QPP-like model is strongly preferred over
both the single power law and broken power law models. The best-�t frequency is 0.074 Hz, corresponding to a period of 13.5s,
and is shown by the vertical dashed line in the bottom left panel. The � BIC values are indicated in the top left panel, where
M 0 is the single power-law model, M 1 is the QPP model and M 2 is the broken power-law model.

maximum likelihood L , and the BIC comparison test functions similarly to a likelihood ratio test (see Arregui 2018,
for a recent review). The BIC (for large N ) is given by

BIC = � 2 ln(L ) + k ln(n) (12)

where L is the maximum likelihood described above,k is the number of free parameters andn = N=2 is the number
of data points in the power spectrum. The key concept of BIC is that there is a built-in penalty for adding complexity
to the model. Using the BIC value to compare models therefore tests whether the added complexity o�ered by the
QPP-like model is su�ciently justi�ed. This approach is intentionally conservative, with one of the primary goals of
AFINO being to have a low false-positive - or Type I error - rate. The k ln(n) term is particularly signi�cant for short
data series wheren is not very large, such as in stellar 
are lightcurves.

To compare models, we calculatedBIC = BIC j - BIC QP P , for all non-QPP models j . The BIC for each model
will be negative and, as the �tting code tries to minimise the BIC, the best �tting model will be the one
with the largest negative BIC value. Therefore, when the BIC value for the QPP-like model is lower than that
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of the other models - i.e., whendBIC is positive for all alternative models j - there is evidence for a QPP detection.
For the purposes of this work, we divide the strength of evidence into di�erent categories. WhendBIC < 0 compared
to all other models, there is no evidence of a QPP detection. If 0< dBIC < 5 compared to all other models, we
identify weak evidence for a QPP signature. For 5< dBIC < 10, we identify moderate QPP evidence. Finally, events
where dBIC > 10 compared to all other models indicate strong evidence for a QPP-like signature.For context and
to more easily compare with other methodologies, the dBIC value can be expressed in more concrete
probabilistic terms, or approximately translated to a t-statistic value (Raftery 1995; Kass & Raftery
1995). For example, a dBIC in the 6-10 range indicates approximately > 95% preference (or 2-sigma)
for one model over another, while a dBIC > 10 corresponds to a > 99% preference for the minimized
model.

For Flare 566802, when comparing a single power-law model to the QPP modeldBIC = 31:3, indicating strong
evidence for a QPP signature. Similarly, when comparing a broken power-law model to the QPP modeldBIC = 23:4,
again indicating strong evidence for a QPP signature. When comparing a broken power-law model to the single power-
law model dBIC = 7 :9, implying that the broken power law is a better representation than the single power law, but
still not as good as the QPP model. Since the QPP-like model is strongly preferred over both alternatives, this event
is recorded as a `strong' QPP 
are. The QPP model correctly identi�es the period of the QPP to within 0.1 units.

4.3.1. Relaxed AFINO - LAH in HH1

The AFINO methodology described above in Section 4.3 was also employed independently by LAH. However a
somewhat \relaxed" version was implemented. Instead of testing three functional forms of the Fourier power spectrum,
only two were considered, namely a single power law, and a power law with a Gaussian bump. These models were
both �t to the data, a model comparison between them was performed and adBIC calculated. A 
are from the HH1
sample with a dBIC > 10 was taken to have a signi�cant QPP signature.

4.4. Smoothing and periodogram, [HH1 untrimmed] vs. [HH2 trimmed + con�dence level] { JAM

Under this methodology, we investigated the robustness of a simple and straightforward approach to oscillation
detection. For each of the simulated 
ares of HH1, an overall trend for the data was generated by smoothing the 
are
light curve over a window of 50 data points. The smoothed 
are light curve was then subtracted from the original
signal to generate a residual, and then a Lomb-Scargle periodogram was generated from the residual.The Lomb-
Scargle periodogram (Lomb 1976; Scargle 1982) is an algorithm for detecting periodicities in data by
performing a Fourier-like transform to create a period-power spectrum. Although not relevant for the
simulated data considered here, it is particularly useful if the data are unevenly sampled, as is often the
case in astronomy. Further details can be found in VanderPlas (2018). The frequency with the most power
from the Fourier power spectrum was identi�ed and this single frequency was recorded for all HH1 
ares. Under this
methodology, it was straightforward to construct detrended data and obtain a dominant period from the periodogram.
In some cases, no dominant peak was apparent in the periodogram, in which case no periodicity was recorded. In HH1
(only), the decision over whether to record a periodicity was made following a by-eye inspection of the periodogram
and so was a subjective choice of the user. Figure 6 shows an example of the periodogram produced for Flare 566801.
A number of large peaks are visible at low frequencies and so none were identi�ed as detections following the by-eye
inspection. The approach was not labour intensive. However, this simplistic approach su�ered from an overall trend
skewed by data from both before and after the 
are peak, and did not implement an objective method of assessing the
signi�cance of the detections. The approach was similar to the method in Section 4.8, but the smoothing parameter,
Nsmooth , was kept �xed at 50.

The approach was improved for HH2, in which the time series,F (t), was trimmed to begin at the location of the
local maximum (dF=dt = 0). In this way, the trimmed time series only considered the decay phase of the simulated
HH2 
ares. The trimmed time series was smoothed over a window of 12 data points to generate an overall trend.
This trend was subtracted from the trimmed time series to generate a residual and a Lomb-Scargle periodogram was
constructed from the residual. The frequency with the most power from the Fourier power spectrum was identi�ed
and the signi�cance of this peak was assessed by comparing with a 95% con�dence level based on white noise. In
this way, a single frequency was recorded only for HH2 
ares where the detection was assessed to be signi�cant. The
right-hand panel of Figure 6 shows an example of a periodogram, for Flare 566801, produced using this method. A
single peak is visible above the 95% con�dence limit, at a period of 13.1, which is close to the input period of 13.4.
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Figure 6. Frequency-power spectra produced by JAM for Flare 566801. Left panel: Original method used in HH1, where the
full time series was used to generate a smoothed light curve that was then subtracted from the original time series before the
power spectrum was computed. Right panel: Modi�ed approach used for HH2, where the data were trimmed to start at the
location of the local maximum before generating the smoothed light curve. In this improved method, a false alarm probability
was used to determine the signi�cance of any peaks and the red horizontal line shows the 95% con�dence level. We note that
Flare 566801 was in HH1, not HH2, but is used here to demonstrate the HH2 method employed by JAM for consistency.

4.5. Empirical Mode Decomposition (EMD) - TM and DK

It has been established that QPPs are not exclusively stationary signals, as the periods of QPPs can be seen to drift
with time (e.g. Nakariakov et al. 2019). Many traditional methods, such as the Fast Fourier Transform, are poorly
equipped to handle non-stationary signals (see e.g. Table 1 in Huang & Wu 2008) as they attempt to �t the signal
with spurious harmonics. The technique of EMD however makes use of the power of instantaneous frequencies in a
meaningful way and, as the method is entirely empirical and relies only on its own local characteristic time scales, is
well adapted to non-stationary datasets.

EMD (developed in Huang et al. 1998) , decomposes a signal into a number of Intrinsic Mode Functions (IMFs).
These IMFs are functions such de�ned that they satisfy two conditions; �rstly that the number of
extrema and zero crossings must di�er by no more than one; and secondly the value of the mean
envelope across the IMFs entire duration is zero. IMFs can therefore exhibit frequency and amplitude
modulation, and can be non-stationary, and may be recombined to recover the input in a similar way
to Fourier harmonics . The IMF(s) with the largest instantaneous periods may be deducted from the signal as
a form of detrending. In particular, the trends found for Flare 566801 can be seen in the upper light curve of the
left-hand panel in Figure 7 and were subsequently subtracted from the signal. The detrended light curves can then
be reanalysed using EMD to give a new set of IMFs which are tested for statistical signi�cance based on con�dence
levels of 95% and 99%.The process of decomposing a signal into IMFs is known as \sifting", wherein
an iterative procedure is applied. At each step, an upper and lower envelope is constructed via cubic
spline interpolation of the local maxima and minima. A mean envelope can be obtained by averaging
out these two envelopes, which is then subtracted from the input data to produce a new `proto-IMF'-
completing the process of one sift. The new `proto-IMF' is then taken to be the new input signal and
this method is repeated until a stopping criteria is met. In this case, the stopping criteria is de�ned
by the \shift factor", which is given as the standard deviation between two consecutive sifts. Once
the standard deviation drops below this value, the computation ceases and the `proto-IMF' is taken
as an IMF. Then this IMF is deducted from the raw signal and the process restarts so that new IMFs
can be sifted out. The \shift factor", in
uences the number of IMFs extracted and their associated
periods. In general, if the value of the shift factor is too high the IMFs remain obscured by noise and
conversely if the value is too low the IMFs decompose into harmonics (a more detailed discussion can
be found in Wang et al. 2010).

A superposition of coloured and white noise was assumed to be present in the original signal, where the relationship
between Fourier spectral powerS and frequencyf can be described byS / f � � , where � is a power law index usually
described by a \colour". White noise is naturally denoted by � = 0 as spectral energy is independent of frequency, and
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can be seen to dominate at high frequencies, whilst coloured noise given by� > 0 has a greater signi�cance over lower
frequencies. By �tting a broken power law to the periodogram of the detrended signal, the value of� corresponding to
coloured noise can be found, as outlined in Section 4.7, and this value is used when calculating the con�dencelevels .

Here, the modal energy of an IMF is de�ned as sum of squares of the instantaneous amplitudes of
the mode, and its period is given as the value generating the most signi�cant peak given by the IMFs
corresponding global wavelet spectrum. The total energy E and period P of IMFs extracted with EMD from
coloured noise are related viaE / P � � 1. These two properties may be represented graphically in an EMD spectrum
(e.g. Kolotkov et al. 2018), shown in the bottom right panel of Figure 7 for Flare 566801. Each IMF is represented
by a single point corresponding to its dominant period and total energy. The probability density functions for the
energies of IMFs, obtained from pure coloured noise, follow chi-squared distributions (see Kolotkov et al. 2016), which
use the value of� estimated in the periodogram-based analysis to give con�dencelevels . It must be noted that the
chi-squared energy distribution is not a valid model for the �rst IMF (corresponding to the extracted function with the
shortest period), and so this IMF cannot be measured against the con�dencelevel and hence must be excluded from
analysis. It is expected that the IMF(s) corresponding to the trend of the light curve will be signi�cantly energetic
and correspond to a large period, seen in the EMD spectrum in Figure 7 as a green diamond, substantially above the
95% and 99% con�dencelevels , given in green and red respectively.

Figure 7. EMD analysis of Flare 566801 with an appropriate choice of shift factor. Left panel: The upper light curve gives the
entire duration of the input signal, with EMD extracted trends overlaid in blue and green, separated into pre-
are, 
aring and
post-
are regions. Below is the detrended light curve overlaid in red by the combination of two statistically signi�cant IMFs.
Top right panel: Periodogram of the detrended signal with con�dence levels of 95% (green) and 99% (red). Two signi�cant
peaks are observed at� 6.4 and 14.4. Bottom right panel: EMD spectrum of the original input signal with two signi�cant
modes, with periods 6.2 (at a con�dence level of 95 %) and 12.9 (99%), shown as red diamonds. The trend is given as a green
diamond. Blue circles correspond to noisy components with � � 0:89. The 95% and 99% con�dence levels are given by the
green and red lines, respectively, with the expected mean value shown by the dotted line.

In HH1, the time series were manually trimmed into three distinct phases; the pre-
are, 
aring and post-
are regions,
and each region was individually investigated for a QPP signature. The time at which the gradient of the lightcurve
rapidly increased was de�ned as the start time of the 
aring region which continued until the amplitude of the signal
return to its pre-
are level at which point the post-
are region began. For Flare 566801, the 
aring section showed
evidence of QPP-like behaviour and the resulting periodogram (top right panel of Figure 7) of the detrended light
curve produced two statistically signi�cant peaks above the 99% con�dence level at� 6.4 and 14.4, agreeing with
the input periods of 8.4 and 13.4. The detrended light curve was additionally decomposed into further seven IMFs of
which two modes were detected to be statistically signi�cant. The signi�cant IMFs give periods of � 6.2 and 12.9,
with con�dences of 95% and 99% respectively, which agrees well with both the periodogram-based results and input
values. Their superposition is shown in red overlay in the left-hand panel of Figure 7 and gives a reasonable visual �t
to the input signal.
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The technique of detrending the light curve using EMD, producing a periodogram from the detrended signal, and
performing EMD one further time was carried out for 26 datasets given in HH1 (total of 78 trimmed light curves
were processed with this methodology, corresponding to 3 subsets in each of 26 events). The 26 
ares analysed with
EMD were chosen following a by-eye examination of all the datasets in the sample and were selected as the 
ares most
likely to produce a positive detection. EMD was only performed on a limited number of the 
ares in HH1 due to the
time intensive nature of the technique which requires a manual input of an appropriate choice of \shift factor "for an
appropriate set of periodicities for each signal.

Figure 8. Analysis of Flare 566801 with an inappropriate choice of shift factor. The upper light curve (black) is the raw signal,
with trends extracted from EMD overlaid (blue and green). Below is the detrended light curve (black) with the statistically
signi�cant IMF overlaid in red.

Initially in HH1, due to user inexperience, insu�cient care was taken over the choice of this value, leading to poorly
selected trends and IMFs su�ering from the e�ects of mode mixing, decreasing the accuracy of recovered periodicities.
This is partially re
ected in the relatively poorer agreement between input and output periods in Section 5.2.2. An
example of this is shown in Figure 8 where too large shift factor has been chosen to appropriately determine the trend
of the 
are region. Note how the characteristic rise and exponential decrease is not seen in the trend, and how the
trends of the three regions do not join smoothly. A better �tted shift factor gives a trend which bisects the input signal
approximately through the midpoints of its apparent oscillations (seen in Figure 7), allowing for a better representation
of the QPPs once detrended. This rough choice of shift factor gave an output of a single IMF, with a period of 17.7
which has just a poor agreement with the input value. Moreover, a clear evidence of another common issue in the
EMD analysis, a so-called mode mixing problem, can be observed at� 110 in this example, where the time scale of
the oscillation dramatically changes. Such intrinsic mode leakages appeared due to a poor choice of shift factor could
adversely a�ect the estimation of the QPP time scales, and hence should be avoided.

When using EMD to detrend a 
are signal, a lower shift factor should be selected, as this increases the sensitivity of
the technique. In particular, special care must be taken in the choice of the shift factor in cases where the time scale of
the 
are (e.g. the 
are peak width measured at the half-maximum level) is comparable to that of apparent QPP, such
as in Flare 566801, providing the method with enough sensitivity to decompose the intrinsic oscillations from the 
are
trend. The value must also be selected carefully such that the extracted trend may retain a classical 
are-like shape.
Such a pro�le may introduce artifacts from rapid changes in gradient, which may be �tted with spurious harmonics,
and so an appropriate choice of shift factor acts to minimise this e�ect through manual inspection.

4.6. Forward modelling of QPP signals - DJP

This method is adapted from the Bayesian inference and Markov chain Monte Carlo (MCMC) sampling techniques
recently applied to perform coronal seismology using standing kink oscillations of coronal loops. Coronal loops are
frequently observed to oscillate in response to perturbations from solar 
ares or CMEs. Such oscillations have been
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studied intensively both observationally and theoretically and so detailed models have been developed. The strong
damping of kink oscillations is attributed to resonant absorption which may have either an exponential or Gaussian
damping pro�le depending on the loop density contrast ratio (Pascoe et al. 2013, 2019). In studies of standing kink
oscillations it is therefore natural to consider several di�erent models, such as the shape of the damping pro�le.
Pascoe et al. (2017a) also considered the presence of additional longitudinal harmonics and the change in their period
ratios due to e�ects of density strati�cation or loop expansion, a time-dependent period of oscillation, and a possible
low-amplitude decayless component.

The method is based on forward modelling the expected observational signature for given model parameters, while
MCMC sampling allows large parameter spaces to be investigated e�ciently. The bene�t of this approach over more
general signal analysis methods is that it potentially allows greater details to be extracted in the data. For example,
Pascoe et al. (2017a) demonstrated that the presence of weak higher harmonic oscillations in kink oscillations would
be recovered by a model that takes their strong damping into account, whereas they would have negligible signatures
in periodogram and wavelet analysis. The interpretation of the di�erent components of the model (e.g. background
trend and di�erent oscillatory components) is done when de�ning the forward modelling function compared with, for
example, EMD which produces several IMF which must be interpreted afterwards. The method also does not require
the signal to be detrended (if the trend is also described by the model) which avoids the choice of trend a�ecting the
results.

On the other hand, the usefulness of the method is based on the particular model being the correct one (or one of
them if several models are considered). In the case of QPPs there are several possible mechanisms which have been
proposed. Ideally each competing model could be applied to the data for an event and then compared, for example
using Bayes factors. However, models relating the observational light curve to the physical parameters currently do
not exist for some of the proposed mechanisms. For example, the mechanism of generating QPPs by the dispersive
evolution of fast wave trains has a characteristic wavelet signature but the detailed form of it is only revealed by
computationally expensive numerical simulations.

Pascoe et al. (2016a,b, 2017a) use smooth background trends based on spline interpolation. The background varying
on a timescale longer than the period of oscillation is necessary for the de�nition of a quasi-equilibrium on top of which
an oscillation occurs. However, a smooth background does not allow impulsive events with rapid, large amplitude
changes, such as 
ares, to be well-described. Pascoe et al. (2017b) considered the case of kink oscillations which have
a large shift in the equilibrium position associated with the impulsive event that triggered the oscillation. This was
done by including an additional term describing a single rapid shift in the equilibrium position of the coronal loop. In
that work the shifts only took place in one direction and so a hyperbolic tangent function was suitable to describe it.
In this paper, the large changes in light curves due to 
ares instead have both a rising and decaying phase, and so an
exponentially-modi�ed Gaussian (EMG) function is more suitable, which has the form

EMG ( x) = A
�
2

exp
�

�
2

�
2� + �� 2 � 2x

�
�

erfc
�

� + �� 2 � x
p

2�

�
(13)

where erfc (x) = 1 � erf (x) is the complementary error function, A is a constant determining the amplitude, � and
� are the mean and standard deviation of the Gaussian component, respectively, and� is the rate of the exponential
component. The EMG function has a positive skew due to the exponential component, which allows it to describe a
wide range of 
ares, having a decay phase greater than or equal to the rise phase. An example of the EMG function
�tted to Flare 566801 can be seen in Figure 9.

Figure 9 shows the results for models based on a QPP signal with a continuous amplitude modulation, with de�ned
start and decay times, and an exponentially-damped sinusoidal oscillation. (A Gaussian damping pro�le was also
tested but the Bayesian evidence supported the use of an exponential damping pro�le.) The green lines represent the
model �t based on the maximum a posteriori probability (MAP) values for the model parameters. The blue lines
correspond to the background trend component of the model and the grey lines are the detrended signals. The MCMC
sampling technique used in Pascoe et al. (2017a,b, 2018) estimates the level of noise (here assumed to be white) in
the data by comparing with the forward modelled signal. This level is indicated in the �gures by the grey dashed
horizontal lines. A simple criterion for QPP detection is to therefore require several oscillation extrema to exceed this
level. In addition to Flare 566801, shown in Figure 9, this technique was used to analyse the non-stationary QPP

ares and so will be discussed further in Section 5.4.
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Figure 9. Method of forward modelling QPP signals based on the Bayesian inference and MCMC sampling used in Pascoe
et al. (2017a). The left-hand panel shows a combination of a spline-interpolated background, Gaussian noise, a 
are described
by equation 13, and a QPP signal with a continuous amplitude modulation rather than de�ned start and decay times. The
right-hand panel shows a model �t that contains a single 
are, an exponentially decaying sinusoidal QPP (with the potential
for a non-stationary period), a spline-based background, and Gaussian noise. In each panel the black shows the simulated data
for Flare 566801, the red line shows the 
are component of the �t, based on equation 13, the blue shows a combination of the

are �t and the background, while the green shows the overall �t. We note that all the components were �tted simulatneously
and are only separated here for clarity. Grey lines correspond to the detrended signal (shifted for visibility). The grey dashed
horizontal lines denote the estimated level of (white) noise in the signal.

4.7. Periodogram-based signi�cance testing { CEP

This signi�cance testing method (CEP) is based on that described in detail in Pugh et al. (2017a), with the main
di�erence being that it does not account for data uncertainties since none exist for the synthetic data. To begin
with the simulated light curves were manually trimmed so that only the 
are time pro�le was included. A linear
interpolation between the start and end values was subtracted as a very basic form of detrending. The detrending
performed for Flare 566801 can be seen by comparing the top right and bottom left panels of Figure 10. Since the
calculation of the periodogram assumes that the data is cyclic, subtracting this straight line removes the apparent
discontinuity between the start and end values. This step will not alter the probability distribution of the noise in the
periodogram, while it will act to suppress any steep trends in the time series data, which have been shown to reduce
the signal to noise ratio of a real periodic signal in the periodogram (Pugh et al. 2017a). Lomb-Scargle periodograms
were then calculated for each of these 
are time series with a linear trend subtracted.

The presence of trends and coloured noise in time series data results in a power law dependence between the powers
and the frequencies in the periodogram. Therefore, to account for this, a broken power law model with the following
form was �tted to the periodogram:

log
h
P̂(f )

i
=

8
<

:
� � log [f ] + c if f < f break

� (� � � ) log [f break ] � � log [f ] + c if f > f break ;
(14)

where P̂(f ) is the model power as a function of frequency,f ; f break is the frequency at which the power law break
occurs;� and � are power law indices; andc is a constant. The break in the power law accounts for the fact that there
may be a combination of white and red noise in the data, and in some cases the amplitude of the red noise may fall
below that of the white noise at high frequencies. An example of the power law model �tted to Flare 566801 can be
seen in Figure 10. The noise follows a chi-squared, two degrees of freedom (d.o.f.) distribution in the periodogram, and
the noise is distributed around the broken power law (Vaughan 2005). For a pure chi-squared, two d.o.f. distributed
noise spectrum, the probability of having at least one value above a threshold,x, is given by

Pr f X > x g =
Z 1

x
e� x 0

dx0 = e� x ; (15)
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where x0 is a dummy variable representing power in the periodogram. For a given false alarm probability,� N , the
above probability can be written as:

Pr f X > x g � � N =N ; (16)

where N is the number of values in the spectrum (Chaplin et al. 2002). Hence, a detection threshold can be de�ned
by

x = ln
�

N
� N

�
: (17)

To account for the fact that the above expression is only valid when the power spectrum is correctly normalised (with
a mean equal to one), and that the noise is distributed around the broken power law, the con�dence level for the
periodogram is found from log[̂Pj ] + log[ xhI j =P̂j i ], where I j is the observed spectral power at frequencyf j . This
con�dence level gives an assessment of the likelihood that the periodogram could contain one or more peaks with a
value above a particular threshold power purely by chance, if the original time series data were just noise with no
periodic component. The con�dence level used as the detection threshold for this study was the 95% level, which
corresponds to a false alarm probability of 5% (or in other words a 5% chance that the periodogram could contain one
or more peaks above that threshold as a result of the noise). In addition, only peaks corresponding to a period greater
than four times the time cadence and less than half the duration of the trimmed time series were counted, as it is not
clear that periodic signals with periods outside of this range can be detected reliably. Although the 95% con�dence
level was used as the detection threshold for this analysis, many of the detected periodic signals had powers well above
the 95% level in the periodogram.

This method is sensitive to the choice of time interval used for the analysis (this will be discussed further in
Section 5.3), hence the start and end times of the section of light curve used for the analysis were manually re�ned
where there appeared to be a periodic signal in the data, but the corresponding peak in the periodogram was not quite
at the 95% level. This process is described in more detail in Pugh et al. (2017b). Figure 10 shows the trimmed time
series for Flare 566801 and the power spectrum. This method identi�ed a statistically signi�cant peak at 14:0 � 0:5
time units, which is in good agreement with the input period.

4.8. Smoothing and periodogram { TVD

TVD largely followed the method described in Van Doorsselaere et al. (2011). In the �rst instance, the 
are light
curve f (t) was smoothed using a window of lengthNsmooth (with the python function uniform filter , which is
part of SciPy). An initial value for the smoothing parameter was chosen manually, and later adjusted during the
procedure. The smoothed light curveI smooth (t) was considered to be the 
are light curve variation without the QPPs
and noise. The original signal and the smoothed signal are shown in the top panel of Figure 11. The maximum of
the smoothed light curve is reached att 
are = argmax t (I smooth (t)). We have �tted the smoothed light curve with
an exponentially decaying function a + bexp (� t=� ) in the interval [ t 
are ; 300]. From this �t with the exponentially
decaying function, we have selected the QPP detection interval to [t 
are ; t 
are +2 � ]. In that interval, we have computed
the residual in the detection interval by subtracting and normalising to the background and call this the QPP signal
I QPP (t) = I (t) � I smooth (t), which is shown in the middle panel of Figure 11. From this QPP light curve, we have
constructed a Lomb-Scargle periodogram (see bottom panel of Figure 11). In the periodogram, we have selected the
frequency with the most power, and have retained it as signi�cant if its false alarm probability was less than 5%. In
Figure 11 it can be seen that a peak is visible above the 95% false alarm level at 13s, in good agreement with the input
periodicity. The false alarm probability was computed with the assumption that the QPP signal was compounded
with white noise. After this procedure, the smoothing parameter Nsmooth was manually and iteratively adjusted. In
the second iteration, the smoothing parameter was taken to be roughly corresponding to the detected period in the
�rst iteration, and so on. This led to a rapid convergence, in which attention was paid to capture the impulse phase
of the 
are su�ciently well, in order not to introduce spurious oscillatory signal.

Between HH1 and HH2 TVD automated his method. This involved systematically testing di�erent smoothing
windows, Nsmooth , to remove the background trend: Smoothing windows of widths from 5 to 63 were tested where
the smoothing width was increased by two in each iteration. For each detrended time series, a periodogram was
found and the false alarm probability and frequency of the largest peak recorded. The optimal smoothing window
was deemed to be the one that produced a peak in the power spectrum with the lowest false alarm probability. While
automation makes the process less time consuming for the user there were some pitfalls and these are discussed in
Section 5.5. For some of the 
ares TVD 
agged that the results looked untrustworthy. This was often where long
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Figure 10. An illustration of the steps involved for the analysis method described in Section 4.7 (CEP). Top left: The original
simulated light curve for Flare 566801. Top right: The section of light curve that showed the best evidence of a QPP signal in
the periodogram after manual trimming. Bottom left: The trimmed section of light curve after a linear interpolation between
the �rst and last data points had been subtracted, to remove some of the background trend. Bottom right: The periodogram
corresponding to the data shown in the bottom left panel. The solid red line shows the �tted broken power law model, while
the dotted and dashed red lines show the 95% and 99% con�dence levels, respectively.

smoothing windows were selected for detrending the 
are, meaning that the underlying 
are shape
was not removed correctly, leading to spurious peaks in the resultant power spectrum that dominated
over the real QPP signal. In other instances the obtained periodicity did not match the periodicity
visible in the residual time series. Identifying these cases relied on TVD's data analysis experience.
When discussing the results of HH2 (Section 5.1) we consider both the raw results and those obtained when the results

agged as untrustworthy were removed.

5. RESULTS OF THE HARE-AND-HOUNDS EXERCISES

5.1. HH2: False alarm rates

The aim of the second hare-and-hounds exercise (HH2) was to allow the false alarm rate of the various methods to
be determined. Although analysis of the 
ares in HH2 was performed after the analysis of the HH1 
ares, we present
the results of HH2 �rst to establish how often various detection methods make false detections, before considering how
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Figure 11. Overview of the analysis method of TVD. The top panel shows the raw light curve f (t) as a function of time with
the blue, full line, and overplotted is the smoothed light curve f smooth (t) as a red, dashed line with Nsmooth in the key. The
second panel shows the relative 
ux I ( t ) � I smooth ( t )

I smooth ( t ) . The bottom panel shows the Lomb-Scargle periodogram of the signal in the
middle panel, and the peak frequency and period are indicated in the key of the middle panel. The horizontal, red, dashed line
in the bottom panel is the false-alarm level (95% level). The area shaded in green in the bottom panel is used to reconstruct the
QPP signal, which is then shown with the red, dashed line in the middle panel, overplotted on the relative signal. The length
of this reconstructed curve shows the time interval [ t 
are ; t 
are + 2 � ].

precise those detections are, using HH1. HH2, therefore, contained a roughly even split between 
ares containing no
QPP signal (60), 
ares containing a single, sinusoidal QPP (32) and periodic multiple 
ares (8; see Tables 2 and 3).

Table 4 gives the number of false detections returned by each method, which are de�ned as the number of detections
claimed for simulated 
ares that did not contain a QPP. For HH2, LAH and ARI both used the AFINO method in
exactly the same manner and so the results are identical (this was not the case for HH1). The AFINO, wavelet (LAH)
and periodogram method employed by CEP were all reliable, making low numbers of false detections. The periodogram
method employed by TVD also produced a low number of false detections, however, this comes with a caveat: TVD
detrended the data by removing a smoothed version of the timeseries before determining the periodogram, where
the width of the smoothing window was determined on a 
are-by-
are basis. In HH2, TVD automated the selection
of the optimal width for the smoothing window. The raw results from this automated method are denoted TVD1
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in Table 4. However, for some of the 
ares this width was surprisingly long, leading TVD to question the results.
These manually �ltered results are denoted TVD2 in Table 4, which indicates that the false alarm rate was far higher
before manual intervention was incorporated. The primary di�erence between the periodogram methods employed by
JAM and TVD was in the detrending: Both detrended by removing a smoothed component but JAM used the same
smoothing window for each 
are, while TVD used a 
are-speci�c smoothing window. The method employed by JAM
produces a large number of false detections, which combined with the previous discussion concerning the automation of
TVD's code, suggests that detrending needs to be done with great care. The GP method employed here also produces
a large number of false detections suggesting a better method for estimating the statistical signi�cance of the results
is required.

Table 4. Statistics of detections in HH2, where N denotes the number of 
ares detected for each category. The second column
shows the number of detections claimed in 
ares where no QPP was present. The percentage is calculated using the total
number of simulated 
ares not containing a QPP, i.e. 60. The third column shows the number of detections claimed for 
ares
where a QPP was included, which includes 
ares that either contained a single sinusoidal QPP or a periodic multiple 
are. The
percentage is calculated using the total number of QPP 
ares in HH2, i.e. 40. Precise detections are de�ned as those claimed
detections within 3 units of the input periodicity, with any claimed detection more than 3 units from the input periodicity being
classi�ed as \imprecise". The fourth column shows the total number of false detections i.e. the sum of the claimed detections
where no QPP was present and the imprecise detections. The percentage is determined using the total number of claimed
detections (i.e. the sum of columns two and three). The �fth column shows the total number of precise detections. For the
precise detections the percentage is calculated using the total number of simulated QPP 
ares i.e. 40. The �nal column gives
the percentage of claimed detections that are precise, calculated using columns �ve and two. TVD1 indicates the raw results
from TVD's automated method. TVD2 indicates results when manual �lters were employed. The �nal three columns show
True Skill Statistic (TSS) and the Heidke Skill Score (HSS), and precision, as de�ned in Section 5.1.1.

Hounds Claimed Claimed Total Number Precise % of Precise TSS HSS Precision
Detections Detections of False Detections Claimed
(No QPP) (QPP) Detections Detections
N % N % N % N %

AFINO (LAH & ARI) 0 0 8 25 1 13 7 18 88 0.18 0.20 1.00
Wavelet (LAH) 1 2 13 33 2 14 12 30 94 0.28 0.32 0.92

Periodogram (CEP) 2 3 12 30 2 14 12 30 100 0.27 0.30 0.86
Periodogram (TVD1) 18 30 28 70 33 73 13 33 46 0.03 0.03 0.42
Periodogram (TVD2) 3 5 13 33 5 31 11 28 85 0.23 0.25 0.79
Periodogram (JAM) 29 48 25 63 41 76 13 33 52 -0.16 -0.16 0.31

GP (JRAD) 23 38 29 73 43 83 9 23 31 -0.16 -0.16 0.28

Table 4 shows that the four methods (AFINO, Wavelet, CEP, TVD2) that claimed low numbers of detections in 
ares
where no QPPs were included all made relatively low numbers of detections (< 35%), however, for all four methods
those detections are precise with at least 85% of detections lying within three units of the input period. Table 4 also
gives the total number of false detections (i.e. those in 
ares where no QPPs were present and imprecise detections).
This sum constitutes a small percentage of the total number of claimed detections made by the AFINO, Wavelet and
CEP methods. In statistical hypothesis testing erroneous outcomes of statistical tests are often referred to as type I
or type II errors. A type I error is said to occur if the null hypothesis, in this case that the data contain only noise,
is wrongly rejected. In this article that would constitute claiming a detection of a QPP when no QPP was included
in the simulated 
are. Type II errors occur when the null hypothesis is wrongly accepted. Here that would mean
failing to claim a detection when a QPP was present. Type I errors are generally regarded as far more serious than
type II errors. In other words, it is far better to sacri�ce a high detection rate (i.e. make type II errors) in favour of
making false detections (type I errors), and so by adopting cautious approaches we can be con�dent in any detections
these methodologies make. Conversely, the three methods that produced a higher number of false detections (TVD1,
JAM, JRAD) also produced less precise detections: Although the methods claimed detections in over 60% of 
ares
containing QPPs, � 52% of those detections were within 3 units of the input period. In other words, approximately
half of the detections claimed by these methods were imprecise and so can be considered as false alarms or type I
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errors. This is highlighted in Figure 12, which compares the periods obtained by the various methods with the input
periods.

Figure 12. Results of HH2 analysis, where the output period from the various detection techniques are compared to the input
period. In the top, left panel a legend is included to describe the symbols, which refer to the strength of the AFINO detections
(see Section 4.3). In all other panels the black circles denote 
ares where a single sinusoidal QPP was included and the green
triangles indicate detections in simulations containing multiple periodic 
ares.
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The range of input periods for the single sinusoidal QPP simulated 
ares in HH2 was 3:3 < P < 17:8. We can see
from Figure 12 that detections were made across the entire range of input periods. The apparent gap in detections
between approximately 11< P < 15 occurs because there were few simulations included in that range.

The left panel of Figure 13 shows how the claimed detections were distributed in terms of QPP signal to noise (S/N).
For the majority of methods, there is a weak dependence on QPP S/N, however, precise detections are made even for
low S/N QPPs. In particular, the AFINO method appears to work equally well at low and high S/N. On the other
hand, the success of the wavelet technique employed by LAH appears to show a stronger dependence on S/N, with a
systematic increase in the number of precise detections obtained with increasing S/N.

Figure 13. Left: Histogram showing the distribution of S/N for the claimed detections of simple sinusoidal QPPs in HH2.
Right: Histogram showing the distribution of quality factor for the claimed detections of simple sinusoidal QPPs in HH2. In
both panels the number of claimed detections has been normalised by the total number of simulated QPPs with that S/N (or
QF) included in HH2. The pale bars with hatching include all claims, whereas the darker bars with no hatching only include
those claims within three units of the input QPP (i.e. the precise detections).

The quality factor (QF) of a signal is de�ned as the ratio of the lifetime to period. The right panel of Figure 13
shows that the various techniques were far more successful at detecting QPPs with higher QFs than lower QFs. We
note here that there were no QPPs with a quality factor of 3 in HH2. It is also interesting to note the large number
of imprecise detections (as indicated by the pale, hashed bars) with low quality factors made, in particular, by JAM
and JRAD. However, low quality factor QPPs also account for the individual imprecise detections made by AFINO,
LAH's wavelet technique, and TVD's periodogram technique. Although we note, from the left panel of Figure 13 that
these QPPs are also low S/N.

Figure 14 shows how the false detections depend on S/N. Since these 
ares do not contain QPPs the S/N refers to
the 
are itself. However, for those 
ares that do contain QPPs both the amplitude of the QPP and the noise is scaled
relative to the amplitude of the 
are itself so the measurements are equivalent. As the numbers of false detections for
AFINO, wavelet (LAH) and the periodogram methods of CEP and TVD2 are low it is hard to make any conclusions
from this. For TVD1 and JAM's methods there is no clear dependence on S/N, whereas the GP method of JRAD
appears to produce more false detections at low S/N.

5.1.1. Skill Scores

As a �nal measure of the ability of the hounds to detect QPPs we have also determined two skill scores
and the \precision". Skill scores (see e.g. Woodcock 1976) provide a quantitative measure by which
we can compare the performance of the hounds' methods. These statistics are commonly used in solar
physics for assessing the e�ectiveness of 
are forecasting methods (e.g. Barnes & Leka 2008; Bloom�eld
et al. 2012; Bobra & Couvidat 2015; Barnes et al. 2016; Domijan et al. 2019, and references therein).
In order to calculate the scores the results �rst need to be sorted into four classes: True positive (TP),
true negative (TN), false positive (FP) and false negative (FN). Here, TP would include all precise
detections of QPPs, TN would incorporate those 
ares correctly identi�ed as not containing QPPs, FP
would comprise of those 
ares that did not contain QPP but where detections were claimed and FN
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Figure 14. Histogram showing the distribution of S/N for the false detections. The number of claimed detections has been
normalised by the total number of simulated 
ares with no QPPs and that S/N included in HH2.

would contain those 
ares that contained QPPs but where no detection was claimed. We would also
contain imprecise detections in the false negative category as although QPP detections were claimed,
these did not correspond to the period of the input QPP. Although we note that in some cases the real
QPP may have been detected but that the period of that QPP was not precisely estimated because of,
for example, the limited resolution of the data or the impact of the red noise on the signal. However,
this classi�cation system means that in HH2 TP + FN = 40 , the total number of 
ares in the sample
containing QPP. Similarly, TN + FP = 60 , i.e. the total number of 
ares that did not contain QPP.
We combine these categories to give two skill scores, namely the True Skill Statistic (TSS; Hanssen &
Kuipers 1965) and the Heidke Skill Score (HSS; Heidke 1926). The TSS is given by

TSS =
TP

TP+FN
�

FP
FP+TN

: (18)

The TSS is sometimes favoured over the HSS because it is not sensitive to variations in (TP+FN) =(TN+
FP). However, since in HH2 each hound considered the same sample that is not an issue here. The
HSS compares the observed number of detections to those obtained by random. HSS is given by

HSS =
2(TP � TN � FN � FP)

(TP+FN)(FN+TN)+(TP+FP)(FP+TN)
: (19)

Values of both skill scores, which produce similar results, are given in Table 4 for each hound partici-
pating in HH2. The negative scores given to JAM and JRAD can be interpreted as showing that these
methods perform worse than if the 
ares containing QPP were selected randomly. However, AFINO,
LAH-wavelet and CEP all producing positive scores, while the improvement in the methodology be-
tween TVD1 and TVD2 is clearly highlighted. We note that while these values may be considered
low, the skill scores do not di�erentiate between type I and type II errors, and, as already mentioned,
the above methods prefer to take a cautious approach in an e�ort to minimize type I errors (false
positives), even if that means making more type II errors (false negatives). We therefore also quote
the precision, which is given by

Precision =
TP

(TP+FP)
: (20)

As can be seen in Table 4, AFINO and LAH-wavelet show very high precision, with CEP and TVD2
not far behind. The other methods show low precision.

5.2. HH1: The quality of detections

In HH1 72 (out of 101) of the input simulated 
ares contained some form of simulated QPP and over 21 (out of 101)
were real 
ares, leaving only 7 
ares with no form of QPP signal, making it di�cult to assess the false alarm rate in
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Table 5. Statistics concerning the quality of detections made in HH1. The claimed detections includes all detections reported
for 
ares that contained some form of QPP signal, and the percentage is calculated using the total number of QPP 
ares in HH1,
i.e. 72. Precise detections are de�ned as those claimed detections within three units of the input period. Here the percentage
is again calculated using a total number of simulated QPP 
ares in HH1 (i.e. 72). The �nal column gives the percentage of
claimed detections that are precise.

Hounds Claimed Detections Precise Detections % of Precise
Number % Number % Claimed Detections

AFINO (ARI) 18 25 17 24 94
AFINO (LAH) 18 25 15 21 83
Wavelet (LAH) 12 17 11 15 92

Periodogram (CEP) 24 33 24 33 100
Periodogram (TVD) * 23 61 21 55 91
Periodogram (JAM) 20 28 0 0 0

GP (JRAD) 56 78 9 13 16

� TVD only analysed 58 of the 
ares and so the percentage of claimed and precise detections is calculated using the total
number of QPP 
ares in this sample, which is 33.

HH1. We therefore concentrate on the quality of those detections made. Table 7 in Appendix A gives a breakdown
of the types of QPPs that were detected by each method. Figure 15 and Table 5 demonstrate that, for �ve detection
methods (AFINO applied by LAH and ARI, wavelet approach employed by LAH, and the periodogram methods of
CEP and TVD), when a detection is claimed it tends to be robust, with over 80% of claimed periodicities being within
3 units of the input periodicity. However, the other two methods (the combined detrending and periodogram method
used by JAM and the Gaussian processing with a least-squares minimization utilized by JRAD) are far less reliable.

Table 5 also shows that the percentage of 
ares in which detections were claimed is fairly low for four of the �ve
reliable methods (both AFINO methods, LAH's wavelet method and CEP's periodogram method). This is an example
of good practice: it is better to miss detections (type II errors or false negatives) than to wrongly claim detections
(type I errors or false positives). These methods all adopt this strategy: making a number of type II errors rather
than risking type I errors.

For the AFINO method all of the moderate and strong detections are precise, while all but one of
the weak detections is precise. The same was true for HH2 (see Figure 12 and Table 4). In theory
the moderate and strong detections correspond to those above a 95% con�dence level (see Section
4.3). However, the high precision achieved at the expense of very few type I errors, even for the weak
detections suggests that this may, in fact, be an underestimate of the con�dence level. It is possible
that alternative measures of the quality of a model, such as the Akaike information criterion (AIC),
which has a less stringent penalty for increasing the number of free parameters, may produce less type
II errors, without increasing the risk of type I errors. However, determining this would require further
testing beyond the scope of this paper.

In HH1 TVD's method was not automated and so this method was only able to analyse 58 of the 
ares. However,
this method did produce high percentage of precise detections, with over 90% of detected periodicities lying within 3
units of the input periodicity. We also note that the methodology claimed a far higher proportion of detections than
the other four reliable methods, discussed in the above paragraph (see Table 5). This, combined with the reliability of
any detections made, is important as TVD's method relies on detrending and thus these results show that if detrending
is performed in the non-automated manner described in Section 4.8 robust and reliable results can still be
obtained.

Figure 16 shows histograms of the S/N and QF for the detections made for the di�erent methods in HH1. Here
we only considered simulated 
ares in which some form of sinusoidal QPP was included but note that this covers
all forms (including two sinusoidal QPPs, non-stationary QPPs, and those with varying backgrounds). As with HH1
there is little dependence on S/N with precise detections being made at both low and high S/N. In contrast to HH1
the dependence on QF is less obvious.

5.2.1. Comparison of AFINO methods
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Figure 15. Results of HH1 analysis, where the output period from the various detection techniques are compared to the input
period. In the top two panels legends are included to describe the symbols. For the top, left panel \W" indicates the wavelet
technique was used, \A" indicates the AFINO method was used, \sine" indicates simulated 
ares where some form of sinusoidal
QPP was included and \multi" indicates a periodic multiple 
are was detected. In the top, right panel the symbols indicate the
strength of the con�dence in the detection (see Section 4.3 for details). In all other panels the black circles denote 
ares where
a sinusoidal QPP was included and the green triangles indicate detections in simulations containing multiple periodic 
ares.
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Figure 16. Left: Histogram showing the distribution of S/N for the claimed detections of simple sinusoidal QPPs in HH1.
Right: Histogram showing the distribution of quality factor for the claimed detections of sinusoidal QPPs in HH1. In both
panels the number of claimed detections has been normalised by the total number of simulated QPPs with that S/N included
in HH1. The pale bars with hatching are include all claims, whereas the darker bars with no hatching only include those claims
within three units of the input QPPs (i.e. the precise detections).

Both LAH and ARI used AFINO to detect QPPs in HH1, with LAH using a \relaxed" version. Figure 17 shows that
12 detections were made by both methods and the periods claimed are in good agreement. In addition, 14 detections
were claimed by LAH but not by ARI, including two false detections and two imprecise detections (see Figure 15 and
Table 5), while 9 detections were claimed by ARI but not by LAH (all 
ares containing simulated QPPs and all precise
claims). Overall these results indicate that, as one would expect, the full AFINO method is more robust and reliable,
and hence should be used where possible.

Figure 17. Comparison of periods claimed by the AFINO methods used by LAH and ARI.

5.2.2. Empirical Mode Decomposition results

We consider the EMD results separately as this method was only applied to 26 
ares because of the time intensive
nature of the methodology (see Section 4.5 for details). The 
ares analysed were selected from HH1 to be the most
promising candidates following a by-eye examination.

DK and TM also took a di�erent approach to many of the other hounds by splitting the simulated time series
into 3 sections: pre-
are, 
are, and post-
are. Unknown to the hounds, when simulating the 
ares the hare only
included QPPs that occurred immediately after the peak. This is somewhat restrictive: While in real 
ares QPPs are
predominantly detected during the impulsive phase of the 
are, QPPs have previously been detected during the pre-
(Tan et al. 2016) and post-
are phases. Since the number of variables involved in simulating the 
ares and QPPs was
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Table 6. Statistics of detections by EMD technique. The \Precise Flare" detections are those detections made during the
\Flare" phase that are within three units of the input QPP period.

EMD EMD-Fourier
Flares Periodicities Flares Periodicities

Pre-
are 8 9 10 10
Flare 15 17 24 30

Precise Flare 13 18
Post-
are 11 11 9 12

already relatively large the timing of the start of the QPPs was not varied with respect to the 
are itself, but this could
be the focus of a future study. In terms of this study, however, it means that any detections in the pre-
are phases can
be considered false.\EMD" claimed QPP detections in the pre-
are phase of 9 
ares and \EMD-Fourier"
claimed detections in 10 
ares (see Table 6). These false detections are most likely observed due to
the red noise that was added to the simulated data.

It is possible that, for high-QF simulated QPPs, the signal extends into the post-
are phase,meaning that any
detections in this phase may be real. However, we note that only 4 out of 11 post-
are \EMD" detections
and 3 out 11 post-
are \Fourier" detections would be considered as precise.This implies that both EMD-based
techniques are making false detections in the post-
are phase as well.

Indeed in all 
are phases EMD found IMFs to be signi�cant above a 95% con�dence level that
transpired to be artefacts of coloured noise. However, we note that a high proportion of the false pre- and
post-
are periodicities were relatively long in comparison to the length of the data. Therefore, incorporating a caveat
to ensure that, for example, at least one full cycle of a period is included in the data would substantially reduce the
number of type I errors.

In addition, many 
ares were analysed with an inappropriate choice of shift factor, leading to poor trends and
extracted IMFs where the expected periodicities were obscured. As discussed in Section 4.5, the output is extremely
sensitive to the choice of shift factor. However, given su�cient experience with the technique and a good grasp of
the physical characteristics expected from your �ttings, choosing a suitable shift factor becomes considerably more
straightforward. It is the responsibility of the user to gain enough experience to be con�dent in their results, potentially
through practice with simulated data, such as those utlized here. At the time of HH1, su�cient care was not taken
over the choices of shift factor, which likely contributed to the poorer �t between the input and output periods.

Another area where user experience is vital is in the selection of modes that are incorporated in the
background trend. We remind the reader that, detrending was carried out through manual selection
of the longest-period mode(s) and it is left to the user to incorporate as many modes as deemed
reasonable as part of the trend. Whilst this was usually restricted to the highest one or two modes, this still
remains a subjective process and raises the question of the reliability of detrending.

As described in Section 4.5 DK and TM used two methods for determining the signi�cance of the detections. Table
6 shows that the two methods claimed di�erent numbers of detections. While there was some overlap in the set of

ares in which detections were claimed, in some cases detections were claimed by the Fourier method alone and in
other cases detections were claimed by the EMD method alone. The left panel of Figure 18 compares those 
ares
where detections were claimed in the same phase by both methods. For the majority of cases the two methods produce
consistent periods but not in all cases, including one from the \
are" section. Interestingly both methods produce
consistent false detections in the \pre" and \post" 
are phases indicating that, when using EMD to detrend the data,
insisting that detections are made by both methods is not a di�nitive way of ruling out type I errors.

The right panel of Figure 18 compares the periods of claimed detections made in the 
are section with the QPP
periods input into the simulations. We note that although in some cases multiple detections were claimed the method
was not able to correctly pick out both periodicities in the two simulated 
ares examined that contained two sinusoidal
QPPs. When the EMD threshold method was used to identify signi�cant periodicities in the 
are itself 87% of claimed
detections were precise, which is slightly lower than, but still comparable to the other robust detection methods (see
Table 7, Appendix A). This suggests that, if a periodicity is present in the data, the EMD technique is a good method
of �nding it. However, when the Fourier spectrum was used to identify signi�cant periodicities only 75% of the claimed
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Figure 18. Left: Comparison of the periodicities detected by the two methods incorporating Empirical Mode Decompositions.
Right: Comparison of claimed EMD detections made in the \
are" section with the input QPP periods.

detections were precise, suggesting this method is not as robust in the search for stationary oscillatory patterns in the
signal.

5.2.3. Real Flares

In total, 21 of the simulated 
ares in HH1 were based upon real data. As described in Section 2.4, in some cases
the original data was included but in others additional white noise was added. Although the majority of the claimed
detections were in the original time series, there were some claimed detections in time series where additional noise
was added. Detections were claimed for both solar and stellar 
ares and there is no clear evidence to suggest that the
QPPs were more likely to be detected in solar 
ares than stellar 
ares or vice versa (see Table 7, Appendix A).

Figure 19. Comparison of the periods of claimed detections in real 
are data with those found in the literature, nominally by
Pugh et al. (2016) for the stellar 
ares and Pugh et al. (2017b) for the solar 
ares.

Figure 19 compares the claimed periodicities obtained by the hounds (including CEP) with those found by CEP in
Pugh et al. (2016) for the stellar 
ares and Pugh et al. (2017b) for the solar 
ares. One of the stellar 
ares included
in HH1 was not found to have any periodicities by Pugh et al. (2016) and so has been assigned a periodicity of zero
in Figure 19. Since these 
ares are based on real data, there is no way to independently know whether a QPP signal
is in fact present, or whether the results presented in this paper or the previously published literature are correct.
However, it is notable that the majority of detections presented here lie far from the 1:1 line, indicating a mismatch
with the prior literature for these events. In HH1, CEP claimed two detections of real 
ares both of which were based
upon solar data and both claimed periodicities were consistent with the original detections. Interestingly, both of these



32 Broomhall et al.

cases had additional noise added to the 
are. However, there were three HH1 
ares containing solar data that did
not have additional noise added to them and CEP claimed no detections in these 
ares. This is likely to be because
of di�erences in the choice of how to trim the 
are, highlighting the important role trimming makes in the detection
of QPPs by this method (see Section 5.3 for further discussion on this). CEP claimed no detections for the stellar

ares in HH1, however, we note that in Pugh et al. (2016) CEP employed a di�erent methodology to detect the 
ares
which involved detrending and wavelet techniques. The full AFINO method, employed by ARI in HH1, and LAH's
wavelet technique produce results that are all consistent with those found in the above mentioned literature. While
some of the other techniques do produce some claims that are consistent with the literature results, they also claim
some disparate periodicities. However, we note here again that this does not mean that the detections are incorrect.
The majority of disparate detections in Figure 19 lie well above the 1:1 line, indicating that the hounds are detecting
longer periods than CEP. This could be a result of the methodology employed by CEP, which, by trimming may focus
on short-lived, small period QPPs.

5.3. Impact of trimming

Since the exact shape of a periodogram is known to depend on the choice of interval for the time series data used to
calculate the periodogram, in this section we show how this choice of time interval can a�ect the number of detections
of periodic signals.

For the periodogram-based signi�cance testing method employed by CEP, described in Section 4.7, three di�erent
time intervals were tested for each synthetic 
are. These were a manual trim to the section of light curve within the

are that gave the most signi�cant peak in the periodogram (referred to as \manual"), a trim to include the whole

are (referred to as \
are"), and no trimming, where the entire provided light curve was used for the analysis (referred
to as \whole"). Figure 20 shows how trimming the data impacts the periodogram for Flare 629040.

For the �rst case (\manual") the same time intervals as those used with this method to obtain the results in HH1
(Section 5.2) were chosen. As mentioned above, this approach resulted in 25 
ares being identi�ed as containing a
periodic signal above the 95% con�dence level (23 sinusoidal QPP 
ares, two real 
ares and no false detections). When
the light curve was trimmed to include the whole 
are but nothing more (\
are"), only 5 detections were made above
the 95% level (all sinusoidal QPP 
ares). Finally, when no trimming was performed and the whole light curve was used
(\whole"), 6 detections were made above the 95% con�dence level, but one of these was a false detection (the other
5 were sinusoidal QPP 
ares). Figure 21 shows a comparison between the simulated (input) and detected (output)
QPP periods for the di�erent trimming methods. Only one detection lies more than 3 units from the input period.

This test was repeated for HH2. For the manually optimised time intervals used to obtain the results for this
method in Section 5.1, 14 
ares were found to contain a periodic signal above the 95% level, but two of these were
false detections. When the light curves were trimmed to contain the whole 
ares the number of detections reduced
to 2, although both were precise detections of single sinusoidal QPPs. Finally when the whole light curves were used
no detections were made.Hence this shows that the choice of time interval is an important factor when
applying this method, since the time interval can be chosen to avoid any steep changes in the light
curve that might otherwise reduce the signal to noise ratio of a periodic signal in the periodogram
(Pugh et al. 2017a).

These results imply that a) when detections are claimed they tend to be robust regardless of trimming, b) trimming
to focus on the time span containing the QPPs substantially improves the likelihood of detecting QPPs, and c) there
is no bene�t to trimming around the \
are" compared to taking the \whole" dataset. However, we note that none of
the time series simulated here are substantially longer than the 
are itself, which may not necessarily be the case in
real data.

We recall here that neither the AFINO method nor LAH's wavelet method trimmed the data when looking for
QPPs. To test the impact of trimming on these techniques the methodologies were re-run on trimmed data using the
manual-trim timings of CEP. This was done for HH1 only.

For the full AFINO method, originally employed by ARI, 18 detections of sinusoidal QPPs and no periodic multiplets
were claimed, with 17 of these detections considered to be precise. When the data were trimmed, LAH found that
the full AFINO method produced 17 sinusoidal QPPs and 1 periodic multiplet detections but only 12 of these were
precise. No false detections were made in either case. However, we note that although there was some overlap, the set
of simulated 
ares in which detections were made when the data was trimmed was not identical to the set of 
ares in
which detections were made when the whole time series was used.
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Figure 20. Demonstration of how the choice of time interval impacts the periodogram for Flare 629040. As a consequence the
signi�cance level of the peak corresponding to the QPP signal, as determined by the method described in Section 4.7 (CEP), is
changed. The light curves are shown on the left and the corresponding periodograms on the right. In each right-hand panel
the solid red line shows the �tted broken power law model, while the dotted and dashed red lines show the
94% and 99% con�dence levels respectively. Top: Using the whole simulated light curve provided (\whole"). Middle:
Trimming the light curve so that only the 
are is included (\
are"). Bottom: Trimming the light curve manually to the section
of the 
are that gives the highest signi�cance level of the peak in the periodogram corresponding to the QPP signal (\manual").
Only in the manually trimmed light curve is the QPP signal assessed to be signi�cant above the 99% level.
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Figure 21. Left: Scatter plot showing detections of QPPs made in HH1 by using the method of CEP when the data were
trimmed by di�erent amounts. Right: Same as left panel but for HH2.

When LAH's wavelet method was applied to the full time series of the simulated 
ares included in HH1, 12 detections
of sinusoidal QPPs were claimed, of which 11 were considered to be precise (no periodic multiplet detections were
claimed). This increased to 26 claimed sinusoidal QPP detections and one periodic multiplet detection when the data
were trimmed, with only 16 precise detections.

This loss of precision may indicate that the AFINO and wavelet methods work best when considering the whole
time series. It may also be an indication that the trimming applied for one method may not necessarily be the optimal
trimming for another method. Another explanation for the loss of precision could be due to the reduction in resolution
in the Fourier domain due to the reduced number of data points. For example, the lack of improvement in AFINO
when examining the trimmed data can be explained in terms of the low number of data points in the trimmed time
series: AFINO explicitly penalizes short data series (Equation 12), so this is apparently enough to counteract any
\enhancement" of the signal from trimming, at least in these cases.

Figure 22. Left: Scatter plot showing detections of QPPs made in HH1 by using the AFINO method when the data were
trimmed by di�erent amounts. \Whole" refers to the whole time series and \trim" refers to time series trimmed using the
\manual" trimming of CEP. The di�erent symbol shapes indicate the strength of the detection as discussed in Section 4.3.
Right: Scatter plot showing detections of QPPs made in HH1 by using the LAH's wavelet method when the data were trimmed
by di�erent amounts.

Figure 6 shows periodograms produced by the two methods used by JAM for HH1 and HH2 respectively. The
primary di�erence between these methods was that for HH2 the time series were trimmed to start at the location
of the local maximum i.e. the peak of the 
are. Comparison of the two panels shows that the additional trimming
performed in the HH2 methodology removes the low-frequency noise from the spectrum, leaving just the peak from
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the QPPs. With hindsight it is possible to see that this peak is also present in the periodogram produced by the HH1
methodology, however, without prior knowledge it would not be possible for a user to distinguish between the QPP
peak and the noise peaks. In both methods the background trend was removed before computing the periodogram
by subtracting a smoothed version of the light curve. The di�erence between the two periodograms is likely to occur
because sharp features, such as the impulsive rise phase of a 
are will not be su�ciently removed by subtracting a
smoothed version of the light curve. Starting the time series after the sharp rise phase means that smoothing does a
far better job of characterizing the background trend, thus reducing the low-frequency noise in the periodogram. A
cautionary note here would be that in real 
ares there is no guarantee that the QPPs will start after the impulsive

ares and so limiting your search to the decay phase could lead to missed detections. However, as already discussed,
type II errors are far less serious than type I errors and so it is better to employ this strategy than risk false positives.

5.4. Non-stationary QPPs

Four non-stationary QPPs were included in HH1 but the majority of methods were unable to make robust detec-
tions of these QPPs (LAH - W, LAH - A, ARI, and CEP all failed to detect any of these QPPs; TVD, JAM, and
JRAD claimed detections but they were imprecise, as shown in Figure 23). This is not completely surprising since
periodogram-based methods, such as those employed by AFINO, CEP, TVD and JAM are better suited to detecting
signals with stationary periods. EMD, on the other hand, makes noa priori assumptions on the stationarity (or shape)
of the periodicity. This is re
ected by the fact that TM - EMD was able to precisely detect the periodicities of the
included non-stationary QPPs (we note that TM only analysed three of the four non-stationary QPPs blind, but, once
it became clear EMD was capable of detecting non-stationary QPPs, TM analysed the fourth non-stationary QPP,
but employed the same strategy as used in the blind tests). The EMD - Fourier method for assessing the signi�cance
of the detrended signal did not detect any of the non-stationary QPPs.

Figure 23. Scatter plot showing detections of non-stationary QPPs made in HH1. The input period is 1 =� 0 using equation 2.
The ordinate range indicated by the boxes shows the variation in period from 1 =� (t = 0) = 1 =� 0 to 1=� (t = te) i.e. the period
when the amplitude of the signal has decreased by a factor of e. The abscissa range is arbitrarily chosen to be centred on 1=� 0

and of width 0.1. Di�erence colours/hatchings are used to di�erentiate between the di�erent simulated 
ares.

Figure 24 shows the results of the EMD methodology on one of the simulated 
ares, Flare 58618, which had a
non-stationary QPP included. Figure 24 also shows the Morlet wavelet spectrum of the EMD mode which was found
to be signi�cant in the 
aring section of the original signal. It clearly illustrates the increase of the oscillation period
with time from about 75 to 110, which was approximated by the functional form P(t) = P0 (P1=P0)( t � t 0 )=( t 1 � t 0 ) , with
the following parameters: P0 � 4:9, P1 � 12:7, t0 = 75, and t1 = 110. The EMD-obtained mode gave a signi�cant
mean periodicity of 10.4 s which lies within a reasonable window of the �tting. Hence this technique, although time
intensive, has clear bene�ts when used in tandem with other traditional methods to extract non-stationary signals.
Figure 25 shows the EMD analysis of the four non-stationary QPP 
ares included in HH1, including Flare 58618. It
can be seen that the IMF obtained from the EMD analysis closely matches the input signal for all 
ares and thus
demonstrates the ability of EMD to extract non-stationary QPP signals from the data.
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Figure 24. Clockwise from top-left. Panel 1: Trimmed pro�le of Flare 58618 in black with the extracted EMD mode overlaid
in red and trend in blue. Panel 2: Periodogram of the detrended signal with con�dence levels of 95% (green) and 99% (red).
Panel 3: Morlet wavelet spectrum of the statistically signi�cant IMF (shown in black). The white line shows the approximation
of the obtained period-time dependence by the chirp function (see Section 2.1.3). Panel 4: EMD spectrum of the original input
signal with the signi�cant mode shown as a green diamond. The trend is given as a red diamond. Blue circles correspond to
noisy components with � � 0:89. The 95% and 99% con�dence levels are given by the green and red lines, respectively, with
the expected mean value shown by the dotted line.

The non-stationary 
ares were also analysed by the forward modelling method of DJP. Figure 26 shows the results of
forward modelling the four non-stationary QPP 
ares based on an exponentially decaying sinusoid (with the potential
for a non-stationary period). Figure 27 shows the corresponding results for a method based on a signal with continuous
amplitude modulation rather than de�ned start and decay times. This method is motivated by the characteristic shape
of QPPs formed by dispersive evolution of fast wave trains, i.e. having both period and amplitude modulation. (This is
more general than the actual form of the QPPs used in this study which only have exponentially-decreasing amplitudes.)
As can be seen, in both Figure 26 and 27, the model appears to �t the data well. Figure 23 shows that the average
periods extracted from the method (based on Figure 26) agree well with the input periods once the variation in period
over the lifetime of the QPPs is accounted for. However, we remind the reader that reliable extraction of the QPPs
relies on correct speci�cation of the model used to �t the data. Furthermore, the false alarm rate for this method
was not tested. Although we note that the forward modelling method was able to extract the periodicity of the two
simple sinusoidal QPPs that were analysed (Flare 106440 had an input period of 12.4 and DJP found a periodicity
of 12:4+0 :6

� 0:9; Flare 220365 had an input period of 14.5 and DJP found a 14:3 � 0:2). All of these results indicate that
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Figure 25. EMD analysis of four 
ares from HH1 containing non-stationary QPPs. In each panel the upper curve (solid black)
is the raw input signal. Below the light curve is the input model with all noise removed, containing a trend and non-stationary
QPP signal, which was given to TM by the hare only following the analysis for comparative purposes (black). Overlaid onto
the input model is the statistically signi�cant IMF of the (manually selected) 
are phase, shown in red. For the cases of Flares
58618, 641968 and 754456, it was unknown to TM that the signals were of non-stationary origin and were analysed under
the same lack of assumptions of the other 
ares looked at in HH1. Flare 801580 was analysed separately in the knowledge it
contained a non-stationary signal.

MCMC is a good way of obtaining QPPs' parameters and could perhaps be implemented once detections have been
made with one of the robust methodologies (e.g. AFINO - ARI, wavelet - LAH, periodogram - CEP, TVD - manual).

5.5. HH3 and the impact of smoothing

Some of the techniques employed by the hounds (TVD & JAM) rely on detrending the data before using periodograms
to assess the signi�cance of a signal. In both cases detrending was performed by removing a smoothed component from
the data. However, as we saw with HH1, this must be done carefully,such as in the non-automated manner used
by TVD and as described in Section 4.8, to obtain robust results: When TVD manually chose an appropriate
smoothing window individually for each 
are the results were found to be robust, but, choosing a single smoothing
width for all 
ares, as done by JAM, produced a large number of false and imprecise detections (see Table 5). To
investigate this further TVD analysed a third set of 
ares, HH3, which contained 18 
ares, using a range of di�erent
smoothing widths on each 
are.

In this test TVD cycled through using di�erent smoothing windows, Nsmooth , to remove the background trend, from
5 to 63 in steps of two. For each detrended time series, a periodogram was found and the false alarm probability(or
p value) and frequency of the largest peak recorded. Examples of the recorded frequency andp value as a function
of Nsmooth for four 
ares are shown in Figure 28. Here the p value is the probability of observing a peak in
the power spectrum at least as high as that of the largest observed peak if the data contained white
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Figure 26. Method of forward modelling QPP signals based on the Bayesian inference and MCMC sampling used in Pascoe
et al. (2017a). Black lines show the simulated 
are data, green lines represent the model �t based on the MAP values of model
parameters. Blue and grey lines correspond to the background trend and detrended signal (shifted for visibility), respectively.
The grey dashed horizontal lines denote the estimated level of (white) noise in the signal.

noise only. In the method employed by TVD, as described in Section 4.8, detections were claimed if
the false alarm probability was below 5% i.e. if the minimum p value in Figure 28 was below 0.05.
The top two panels show examples where precise detections were made. In both cases a clear minimum in thep
value was observed. For Flare 806958 the observed frequency is relatively 
at once the smoothing window is above
approximately 11. This appears to account for the relatively broad range of potential smoothing windows with lowp
values . This could be related to the fact that the input period of this QPP was relatively long (16.0). There is more
variation in the frequency with the lowest p value in the analysis of Flare 851541, which had an input period of 6.5.
Here a much narrower range of smoothing windows produced lowp values . We notice also the drop in the frequency
with the lowest p value at high smoothing widths. This is a common feature of this analysis and can be seen in the
bottom two panels of Figure 28. It is possible that this drop-o� would also have been observed in Flare 806958 if the
analysis had been extended to higher smoothing widths relative to the input period. The bottom two panels of Figure
28 show examples of 
ares where detections were claimed but these detections were imprecise. TheNsmooth coinciding
with the minima in the p values correspond to frequencies beyond the drop-o�. For Flare 44430 there is a secondary
minimum in the false alarm probability that would have produced a frequency of approximately 0.1, which is close to
the input frequency of 0.09 (or a period of 11.0).

Figure 29 shows how precise the detections made by TVD in HH3 were. The data have been
separated out into \Good" where TVD was satis�ed with the extracted period and \Bad" where TVD
was unconvinced by the output. The \Good" or \Bad" assessment was based on TVD's previous
experience in analysing QPP light curves. A result was taken as \Bad" when the trend did not �t
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Figure 27. As in Figure 26 but for a model based on continuous amplitude modulation rather than a damping pro�le.

well the \visible" trend (matching the expectations from experience), or if the obtained period did not
match the \visible" period (once again as measured using experience). For example, \Bad" detections
were often highlighted when Nsmooth was su�ciently long that the background trend was not removed
properly, leading to spurious periodicities in the power spectrum that dominated over the true QPP
periodicity. These were identi�ed by visual inspection of the �gures produced for each 
are, examples
of which are shown in Figure 28, and the residual time series obtained once the smoothed time series
had been subtracted. The left-hand panel of Figure 29 supports the earlier �nding of HH2, that the automated
process for determining the appropriate smoothing window is less robust than the manual one. Precise detections
(where the di�erence in the input and output periodicities was less than three) were made in only 6 out of 12 claimed
detections, with only two of the remaining 6 imprecise detections being highlighted by TVD as unreliable. This can
be compared to 91% precise detections obtained in HH1 (see Table 5). The right-hand panel of Figure 29 shows that
precise detections tend to be made when the smoothing window is close to the periodicity that you are trying to detect.
This was found by TVD when manually selecting the best smoothing window while analysing the 
ares in HH1 (see
Section 4.8).

6. BEST PRACTICE BLUEPRINT FOR THE DETECTION OF QPPS

The short-lived and often non-stationary nature of QPPs means they are di�cult to detect robustly. Therefore, when
attempting to �nd evidence for QPPs it is extremely important to minimize the number of type I errors, where the null
hypothesis is wrongly rejected. In this paper that would mean making false QPP detections. This paper demonstrates
that there is more than one way to robustly search for QPP signatures (e.g. Table 4), with the AFINO (ARI & LAH),
wavelet (LAH) and periodogram method of CEP producing particularly low numbers of false detections (by which we
mean both false claims and imprecise detections). Furthermore, these methods have already been used in a number
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Figure 28. The frequency of the highest peak in the detrended periodigram is plotted as a function of the width of the
smoothing window used to detrend the data (plotted in blue and corresponding to the left-hand ordinate). Also plotted is the
false alarm probability (or p value) as a function of the width of the smoothing window (in red and corresponding to the
right-hand ordinate). The horizontal dashed line gives the input frequency of the QPPs. Top left: Flare 806958 had an input
period period of 16.0 and a detected period of 18.0(or a frequency of 0.056) and so is an example of a precise detection. Top
right: Flare 851541 had an input period of 6.5 and a detected period of 6.4 (or a frequency of 0.156) and so is an example
of a precise detection. Bottom left: Flare 247422 had an input period of 8.8 and a detected period of 31.0 (or a frequency
of 0.032) and so is an example of an imprecise detection. This detection was not 
agged as untrustworthy by TVD. Bottom
right: Flare 44430 had an input period of 11.0 and a detected period of 32.7 (or a frequency of 0.031) and so is an example
of an imprecise detection. This detection was 
agged as untrustworthy by TVD.

of studies to detect QPPs (e.g. Hayes et al. 2016; Inglis et al. 2016; Pugh et al. 2017b) and this article demonstrates
that we can be con�dent in the detections previously made. All these methods make relatively large numbers of type
II errors, i.e. a large number of QPPs were missed (see Table 5). However, type II errors are preferential to type
I errors: It is better to use an approach with a low false alarm rate and a high precision rate, so you can be more
con�dent about what you �nd in real data where the answer is not known, even if this is at the expense of missing
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Figure 29. Left: Comparison of output and input periods obtained by TVD in HH3. The data points have been split into
\Good", where TVD was satis�ed with the results, and \Bad" where TVD was unconvinced by the output. Right: Width of
the smoothing window that produced the lowest false alarm probability, and the periodicities plotted in the right panel. The
uncertainties represent the range of values for which the false alarm probability was below 5% and within 10% of the periodicity
with the lowest false alarm probability.

detections. To further improve con�dence in detections it would be preferential to employ more than one detection
method. As an aside we note that the the AFINO method and CEP's periodogram method both make detections in
only 25-35% of 
ares containing QPPs. This detection rate is similar to that found by both authors in recent surveys
(Inglis et al. 2016; Pugh et al. 2017b), implying that the number of real 
ares containing QPPs may be substantially
higher than implied by these surveys.Recommendation 1: Minimize type I errors, using simulations to test robustness
of detection methods. AFINO (ARI & LAH), wavelet (LAH) and periodgram (CEP) methods were the most robust
methods identi�ed here.

The three methods mentioned above, which produced the lowest false alarm rates, allincorporated statistics
pertinent to red noise in their detection methods. . It is worth keeping in mind that the simulated 
ares
always included red noise, although the tests were performed blind so the hounds did not know this for de�nite when
performing their searches. Real data will contain coloured noise but it is possible that the structure of the noise could
di�er from that included here e.g. the relative contributions of red and white noise could di�er, or the correlation
between successive data points may di�er from the range prescribed here.Recommendation 2: Take red noise into
account in detection methods.

This paper also shows that care needs to be taken when detrending. Both TVD and JAM detrended by smoothing.
JAM used a constant value for the width of the smoothing window. This method produced lots of false detections in
both HH1 and HH2, despite attempts to improve the detection procedure between the two exercises (see Tables 4 and
5). TVD varied the width of the optimal smoothing window on a 
are-by-
are basis, which substantially reduced
the number of false detections. In HH2, the process by which the optimal width was determined was automated
(see Section 5.5). However, this automation detrending also led to a relatively large number of false detections (see
Table 4) and it was only through human intervention that the number of false detections was reduced. On the other
hand, in HH1, TVD manually selected the optimal smoothing window and produced a low number of false detections,
comparable with the AFINO, wavelet (LAH) and periodogram method of CEP. The non-automated detrending
method outlined in Section 4.8 is a good blueprint to follow when detrending. However, we note that
alternative methods of detrending, such as through EMD or spline-interpolation, may also produce
robust results. We, therefore advise users to test their detrending methods using simulated 
ares, as
is done here, to test reliability before use on real data. We also point the reader in the direction of
(Dominique et al. 2018), who propose a set of criteria to help identify real periodicities and discard
artefacts when detrending. These criteria include, for example, excluding periodicities inside the cone of
in
uence, and only considering detections with periods less than the smoothing window used to detrend
the data. This paper demonstrates that when performed with due care and attention and by an experienced user
detrending by removing a smooth component can produce reliable and robust results.Recommendation 3: If you are
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going to detrend, do it carefully and manually, treating each timeseries individuallyand being wary of automated
methods . Use simulations to test methods and become familiar with potential pitfalls.

The impact of trimming the data around the QPPs on the likelihood and robustness of detection was considered
in Section 5.3. Whether or not trimming is advantageous appears to depend on the detection method employed:
Trimming increased the likelihood of CEP making a detection, with no detrimental e�ect on the robustness of these
detections. However, trimming reduced the robustness of detections made with AFINO and LAH's wavelet. We
therefore recommend stringent testing of the impact of trimming on a particular method before use on real data.
Recommendation 4: Only trim the data around the QPPs if you are sure it bene�ts detection. Use simulations where
necessary to test this. Of the methods employed here CEP's periodogram bene�tted but AFINO and wavelet did not.

Although only a small sample were considered in this study, it is reasonable to conclude that the periodogram-based
methods are not ideally suited to detecting non-stationary QPPs. However, EMD and MCMC �tting were able to
produce precise detections of these QPPs. Therefore, if aiming to speci�cally detect non-stationary QPPs it would
be worth employing these methodologies. It is interesting to note that the wavelet method did not detect the non-
stationary QPPs when the whole raw time series was considered (LAH's method). This is potentially because LAH
used the statistical signi�cance of peaks in the global power spectrum to determine if a detection was signi�cant. Period
drifts are likely to broaden peaks in the global spectrum at the expense of absolute power, meaning the broad peaks are
not statistically signi�cant. Statistical tests for peaks covering multiple period bins, such as those described in Pugh
et al. (2017a), may resolve this issue. However, if detrending is performed, for example, using the EMD technique,
the non-stationary QPPs are revealed with the wavelet, including the drift in period (see Figure 24). Therefore, a
combination of EMD and wavelet techniques could also improve the robustness of the EMD detections. It is important
to stress that if EMD is employed, it is necessary that the user has a good grasp on how to make appropriate choices
for the value of the shift factor. It is possible that GPs (JRAD) could prove to be a useful analysis mechanism
for non-stationary QPPs. However, substantial work is still required to ensure robustness.Recommendation 5: For
non-stationary signals use EMD, wavelet on a detrended EMD signal and MCMC �tting.

We should note here that EMD produced a large relatively number of false detections, raising questions over the
robustness of the method. Further examination reveals that the majority of these false detections arise from the red
noise and comprise of signals of the order of, or less than, one period in length. Although in the hare & hounds exercises
performed here it is easy to distinguish between red noise and signal, in real data the distinction may not be so clear
cut. Any \red noise" observed in real data may contain interesting information about the system being observed. For
example, the underlying shape of the 
are can contribute to the red noise signal in a periodogram spectrum. This
raises the question of how we de�ne QPPs in the �rst place and demonstrates the importance of a classi�cation system
for such quasi-periodic events as suggested by Nakariakov et al. (2019).Recommendation 6: Decide a priori on your
de�nition of QPPs, including the number of periods required for detection of QPPs. For example, in these simulations,
including an a priori selection criterion that any detections contain at least three full periods would have substantially
improved the robustness of the EMD detections.

Some of the methods were far more time consuming than others and so when deciding which method to employ the
number of time series being considered should be kept in mind. AFINO, LAH's wavelet, and CEP's periodogram are
all relatively quick methods that require little user input and so are suitable for large scale statistical studies. The
requirement for user input when using smoothing to detrend the data means that TVD's method was relatively time
consuming but this method could be employed for speci�c case studies. EMD was also user intensive and therefore
better suited to case studies. The MCMC method employed by DJP is currently user intensive and better suited to case
studies. However, there is the potential for improvements in this regard. Bayesian analysis requires prior information
with reasonable boundaries to be de�ned. However, limits on the parameters in the Bayesian model could potentially
be constructed either by combining with other methods or based on the results of previous large statistical surveys.
Similarly, there are multiple models that could be tested with Bayesian analysis.A priori decisions on this, based on
theoretical models and QPP classi�cation, or potentially machine learning mechanisms could allow more automation.
It is also worth noting that MCMC statistical studies are not unprecedented in solar physics (e.g. Goddard et al.
2017). Recommendation 7: Consider the number of time series to be examined: If performing a large statistical study
(containing, for example, more than 50 time series) AFINO (ARI & LAH), wavelet (LAH) and periodogram (CEP)
are good tools. These methods can also be used to ensure robustness in studies containing fewer time series, but you
could consider also using alternative methods, such as periodogram (TVD - manual), EMD and MCMC �tting, which
may reveal di�erent features of the QPPs e.g. non-stationarity.
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Multiple harmonics were included in some of the HH1 simulated 
ares, although not enough for a statistical study.
While some of the hounds did highlight the fact that they thought there might be multiple QPPs included in certain
simulations, a detailed study was not conducted as the hounds predominantly concentrated on the most prominent
detection. Constructive interference means that multiple harmonics are di�cult to identify and a more in-depth study
is required to determine how e�ective each of the methods are at identifying multiple signals. A logical way to proceed
would be to use the robust methods to identify 
ares containing statistically signi�cant QPPs and then perform a more
detailed case study to determine how many QPPs are present.Recommendation 8: To determine whether multiple
harmonics are present, more detailed case studies are required. Ensure a time series warrants further investigation
using one of the robust methods to identify the dominant statistically signi�cant QPPs. Then look for further harmonics
with a more detailed analysis.

7. FUTURE PROSPECTS

In this study, the investigations of stellar QPPs have been based primarily on observations fromKepler data. The
TESS satellite (Ricker et al. 2014) andPLATO (Rauer et al. 2014) are now expected to bring us more stellar 
are data.
The TESS satellite, which was successfully launched in 2018 April, has 2-min time cadence mode, which is similar to
Kepler 1-min time cadence mode.

G•unther et al. (2019) recently reported 763 
aring stars, including 632 M-dwarfs, from the �rst two months of
TESS 2 minute cadence data. The amplitudes (relative 
uxes) of their detected 
ares are from 2-3� 10� 2 to 101

and durations are from 10� 1 h to 101 h. The bolometric energies of the detected 
ares are typically 1034 { 1036 erg on
FGK-dwarfs and 1032 { 1034 erg late M-dwarfs. As shown in Figure 5 of G•unther et al. (2019), the number of late-M
dwarfs is particularly increased compared with the sample from theKepler data, and their TESS magnitudes are 10-15
mag. These values suggest that we can also conduct QPP analyses with TESS data, and in particular, potential QPP
data from late M-dwarf 
ares are increased compared with the previous studies. The data of G•unther et al. (2019)
only use the �rst two months of TESS data and so the number of 
are stars increased by more than a factor of ten
after the analyses of the wholeTESS dataset (2-years and the almost whole sky).

To best examine the synergies between solar and stellar 
ares we would want to compare data that
are as similar as possible. For example, data should ideally be observed in the same waveband. Similar
to Kepler, TESS makes white light observations. QPPs have also been detected in a 
are observed by the Next
Generation Transit Survey (NGTS) (Jackman et al. 2019), which observes in white light, likeKepler and TESS but
with a much faster cadence of 10 s, which allows much shorter period QPPs to be detected. However, white light 
ares
are rarely studied in solar physics because they are di�cult to observe. This issue can be tackled in two manners:
First we can attempt to make observations of solar 
ares that are as similar to the white-light observations as possible.
These are likely to be resolved observations but may provide a hint towards the commonality of QPPs in solar and
stellar 
ares. Secondly, we can attempt to make multi-wavelength observations of stellar QPP 
ares. For example,
there are 
ares that were observed by both XMM-Newton and Kepler (Guarcello et al. 2019). The number of detected
stellar QPP 
ares is still relatively low and overlaps between Kepler, K2 and TESS and other wavelength observations
remain understudied. Such simultaneous observations may enable us to determine whether the drivers of white-light
QPPs are the same as the drivers of, for example, X-ray QPPs.

There is now evidence that QPPs are a common feature of solar 
ares (Kupriyanova et al. 2010; Sim~oes et al.
2015; Inglis et al. 2016; Pugh et al. 2017b). However, these QPPs come in many di�erent forms and so could require
several di�erent mechanisms to explain them all. Studies of solar QPP would, therefore, bene�t from a classi�cation
system, as suggested in Nakariakov et al. (2019). For the physics of each classi�cation to be distinguished, we need
to accrue enough QPPs of each classi�cation to be able to perform statistical studies on their properties. The robust
methods described in this paper should, therefore, be utilized to identify as many QPPs as possible. Finally, this
study has shown that we can now reliably detect solar and stellar QPPs with a number of di�erent methods. However,
the majority (although not all) of the methods provide only limited to no information on the properties of those
QPPs other than their period. Now we can be con�dent in our detections, we can attempt to develop techniques,
such as MCMC and forward modelling , that are capable of robustly extracting additional physical properties.
Given su�ciently detailed theoretical models, studies along these lines could potentially then be used
to distinguish between the di�erent QPP excitation mechanisms. This combined with the classi�cation of
QPPs mentioned above, which may well rely on these techniques, will enable us to take studies of QPPs to the next
level.
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APPENDIX

A. APPENDIX INFORMATION

Table 7 contains a detailed breakdown of which types of QPPs the various methods detected. The majority of
QPPs detected were single sinusoidal QPP, which is expected as the majority of methods were based on some from of
transform to the frequency domain, based on the assumption that any signals are sinusoidal in nature.
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