
Northumbria Research Link

Citation: Huang, Pei-Qiu, Wang, Yong, Wang, Kezhi and Yang, Kun (2020) Differential
Evolution with a Variable Population Size for Deployment Optimization in a UAV-Assisted
IoT Data Collection System. IEEE Transactions on Emerging Topics in Computational
Intelligence, 4 (3). pp. 324-335. ISSN 2471-285X

Published by: IEEE

URL: https://doi.org/10.1109/tetci.2019.2939373
<https://doi.org/10.1109/tetci.2019.2939373>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/40671/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

1

Differential Evolution with a Variable Population
Size for Deployment Optimization in a UAV-

Assisted IoT Data Collection System
Pei-Qiu Huang, Yong Wang, Senior Member, IEEE, Kezhi Wang, Member, IEEE,

and Kun Yang, Senior Member, IEEE

Abstract—This paper studies an unmanned aerial vehicle
(UAV)-assisted Internet of Things (IoT) data collection system,
where a UAV is employed as a data collection platform for
a group of ground IoT devices. Our objective is to minimize
the energy consumption of this system by optimizing the UAV’s
deployment, including the number and locations of stop points of
the UAV. When using evolutionary algorithms to solve this UAV’s
deployment problem, each individual usually represents an entire
deployment. Since the number of stop points is unknown a priori,
the length of each individual in the population should be varied
during the optimization process. Under this condition, the UAV’s
deployment is a variable-length optimization problem and the
traditional fixed-length mutation and crossover operators should
be modified. In this paper, we propose a differential evolution
algorithm with a variable population size, called DEVIPS, for
optimizing the UAV’s deployment. In DEVIPS, the location of
each stop point is encoded into an individual, and thus the whole
population represents an entire deployment. Over the course of
evolution, differential evolution is employed to produce offspring.
Afterward, we design a strategy to adjust the population size
according to the performance improvement. By this strategy,
the number of stop points can be increased, reduced, or kept
unchanged adaptively. In DEVIPS, since each individual has
a fixed length, the UAV’s deployment becomes a fixed-length
optimization problem and the traditional fixed-length mutation
and crossover operators can be used directly. The performance
of DEVIPS is compared with that of five algorithms on a set of
instances. The experimental studies demonstrate its effectiveness.

Index Terms—Deployment optimization; UAV; encoding; vari-
able population size; differential evolution.

I. INTRODUCTION

Internet of Things (IoT) aims at enabling a massive number
of limited-power devices to be connected into a large-scale
interconnected network [1], [2]. In recent years, IoT has
been successfully applied to various fields such as intelligent

This work was supported in part by the Innovation-Driven Plan in Central
South University under Grant 2018CX010, in part by the National Natural
Science Foundation of China under Grants 61673397, 61976225, 61572389,
and 61620106011, and in part by the Beijing Advanced Innovation Center
for Intelligent Robots and Systems under Grant 2018IRS06. (Corresponding
author: Yong Wang and Kezhi Wang).

P.-Q. Huang and Y. Wang are with the School of Automation, Central
South University, Changsha 410083, China (Email: pqhuang@csu.edu.cn;
ywang@csu.edu.cn)

K. Wang is with the Department of Computer and Information
Sciences, Northumbria University, Newcastle NE1 8ST, UK. (Email:
kezhi.wang@northumbria.ac.uk)

K. Yang is with the School of Computer Science and Electronic En-
gineering, University of Essex, Colchester CO4 3SQ, U.K. (Email: kun-
yang@essex.ac.uk)

transportation [3], healthcare [4], smart cities [5], and smart
grids [6]. However, IoT devices are generally incapable of
transmitting over a long distance due to their energy limita-
tions. For example, in areas where terrestrial wireless networks
are poorly covered, limited-power IoT devices may not be
able to transmit their data to a remote base station. Therefore,
it is a challenging task to efficiently collect data from IoT
devices [7].

Making use of unmanned aerial vehicles (UAVs) as emerg-
ing data collection platforms has received wide attention [8]–
[10]. Compared with terrestrial data collection platforms,
UAV-assisted platforms can bring several advantages: 1) Due
to their agility and mobility, UAVs can fly flexibly toward
target devices; 2) UAVs have a high possibility of establishing
line-of-sight links to target devices; and 3) UAVs can provide
emergency services to target devices in unexpected or tempo-
rary events. Hence, the use of UAVs is expected to provide a
promising way to collect data from IoT devices.

In order to efficiently employ a UAV, the UAV’s deployment
must be optimized. If deployed properly, a UAV should be
able to provide a reliable and energy-efficient data collection
solution for IoT devices [11]. In fact, the UAV’s deploy-
ment optimization has been studied before. For example,
He et al. [12] investigated the joint altitude and beamwidth
optimization problem in the case of downlink multicasting,
downlink broadcasting, or uplink multiple access. Alzenad
et al. [13] optimized the UAV’s deployment with the aim of
using minimum transmission power to cover the maximum
number of ground users. They then researched deployment op-
timization with different quality of service requirements [14].
Fan et al. [15] studied UAV deployment for a UAV-assisted
relay system, where a UAV is utilized as a relay for the
data transmission between source nodes and destination nodes.
Mozaffari et al. [9] designed the optimal deployment of multi-
ple UAVs for data collection from IoT devices. Du et al. [16]
studied the UAV’s deployment in a downlink communication
converge scenario. It is worth noting that the number of stop
points is preset in these papers, which means that these papers
only optimize the locations of stop points. However, if the
preset number is not optimal, it is very likely to result in a
sub-optimal deployment.

Unlike existing works, in this paper, we optimize the num-
ber and locations of stop points simultaneously for the UAV’s
deployment. Due to the fact that the number of stop points is
unknown a priori, it should be variable during the optimization

2

process, which poses a great challenge to traditional gradient-
based approaches as there is no explicit definition of a gradient
vector. Thanks to the gradient-free nature of evolutionary
algorithms (EAs), they have the potential to address this
issue. EAs work with a population of individuals and each
individual usually represents a candidate solution (i.e., an
entire deployment). Because of the variable number of stop
points in this paper, the length of each individual in the
population is not fixed. As pointed out in [17], under this
condition, it is necessary to modify the traditional fixed-
length mutation and crossover operators in EAs, such as the
n-point (most commonly, one-point or two-point) crossover
operator1 in genetic algorithm (GA) and the mutation operator
“DE/rand/1” in differential evolution (DE). To this end, two
kinds of attempts have been made in previous studies:

� Designing special mutation and crossover operators: One
representative is the cut-and-splice operator. It is similar
to the commonly used n-point crossover operator, but
the locations of crossover points of two individuals do
not have to be the same [17]. So far, this operator has
been applied in wireless transmitter placement [18], long
term evolution network planning [19], the carpool service
problem [20], and pixel classification [21]. The spatial
crossover operator is another representative, which works
in the phenotypic space. In [22], a square area is divided
into two halves along one of the dimensions, and then
two halves from two individuals are stitched into a new
square area. In [23], a circular area is drawn from a square
area, and then two circular areas from two individuals
are exchanged. In addition, two new mutation operators
are presented. The former inserts a randomly generated
variable behind a random position of an individual, and
the latter removes randomly chosen variables from an
individual [17]. Note, however, that this kind of approach
faces variable-dimension search spaces, which will guide
the search in a messy way since the search spaces with
different dimensions have different optimal solutions.

� Transforming variable-length individuals into fixed-
length individuals using auxiliary variables: In this kind
of approach, the length of each individual in the popula-
tion is fixed, but a set of auxiliary variables is introduced
to control the activation of original variables. In general,
the auxiliary variables can be divided into two categories:
continuous auxiliary variables and binary auxiliary vari-
ables. The original variables are activated when the values
of the corresponding continuous auxiliary variables are
greater than a predefined threshold or the values of the
corresponding binary auxiliary variables are equal to 1.
This kind of approach has been applied to many fields
such as network planning [24], [25], data clustering [26],
architecture optimization of deep convolutional neural
networks [27], the vehicle routing problem [28], and
satellite orbit reconfiguration [29]. However, the intro-
duction of auxiliary variables increases the length of
individuals. As a result, this kind of approach may suffer

1In the n-point crossover operator, the locations of crossover points in two
individuals are generally the same [17].

IoT device...

UAV
(Xj, Yj, H)

The location of the
jth stop point

1
2

3

4n

The location of the
ith IoT device

(xi, yi, 0)
i...

Fig. 1. A UAV-assisted IoT data collection system with a rotary-wing UAV
and a set of n ground IoT devices. In this scenario, the 1st, 2nd, and 3rd IoT
devices send data to the UAV at the jth stop point.

from the curse of dimensionality.

To avoid the aforementioned issues, we propose a DE
algorithm with a variable population size, called DEVIPS,
for optimizing the UAV’s deployment. In DEVIPS, we design
a new encoding mechanism, in which an individual in the
population represents the location of a stop point, rather than
an entire deployment as in existing approaches. As a result,
the whole population represents an entire deployment and the
population size is equal to the number of stop points. The
main contributions of this work are summarized as follows:

� A UAV-assisted IoT data collection system is studied in
this paper. In this system, we optimize the number and
locations of stop points simultaneously for the UAV’s
deployment, which can serve more IoT devices and
achieve more energy-effective data collection.

� We propose a new algorithm named DEVIPS to optimize
the UAV’s deployment. Since the length of each individ-
ual in the population is fixed, it is free from the use of
special mutation and crossover operators. In addition, the
length of each individual is reduced to two. Therefore, the
population searches for the optimal number and locations
of stop points in a two-dimensional search space.

� We design a new strategy to adjust the population size
(i.e., the number of stop points) adaptively. Specifically,
the number of stop points can be increased, reduced,
or kept unchanged according to the performance im-
provement in each update. By doing this, an important
parameter (i.e., the population size) has been eliminated.
In addition, DE serves as the search engine to optimize
the locations of stop points.

� Extensive experiments have been carried out on seven
instances to investigate the effectiveness of DEVIPS.
Compared with five other algorithms, DEVIPS shows
better performance.

The rest of this paper is organized as follows. Section II
introduces the system model and problem formulation of the
UAV’s deployment. Section III provides a brief introduction
of DE. Section IV describes the proposed DEVIPS. The

3

experimental setup is given in Section V, followed by the
experimental results and discussion in Section VI. Finally,
Section VII concludes this paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a UAV-assisted IoT data
collection system involving a rotary-wing UAV and a set of n
ground IoT devices, denoted as N = f1; 2; : : : ; ng. The UAV
is employed as a flying data collection platform to collect the
data from these ground IoT devices. Due to its agility and
mobility, the UAV can change the locations of stop points
multiple times, leading to greater coverage and lower energy
consumption. Herein, we assume that the number of stop
points is k and is unknown a priori, and then the set of stop
points can be denoted as K = f1; 2; : : : ; kg.

We consider that the coordinate of the ith (i 2 N) IoT
device is known and fixed at (xi; yi; 0), where xi and yi denote
the values in the x-axis and y-axis of the location of the ith IoT
device, respectively. Furthermore, we assume that the UAV is
flying horizontally at a constant altitude H and the location
of the jth (j 2 K) stop point is represented by (Xj ; Yj ; H),
where Xj and Yj denote the values in the x-axis and y-axis
of the location of the jth stop point, respectively. Afterward,
the distance between the ith IoT device and the jth stop point
is expressed as

dij =
q

(Xj � xi)2 + (Yj � yi)2 +H2; 8i 2 N ; j 2 K:
(1)

The association between the ith IoT device and the UAV
at the jth stop point is denoted as binary variable aij .
Specifically, aij is equal to 1 if the ith IoT device sends data
to the UAV at the jth stop point; otherwise, aij is equal to 0.
To save transmission energy, each IoT device always chooses
the nearest stop point to send data; thus, aij is given by

C1 : aij =

8<:1; if j = arg min
j2K

dij ;

0; otherwise:
(2)

Also, one has

C2 :

kX
j=1

aij = 1; 8i 2 N : (3)

which means that each IoT device chooses only one stop point
to send its data.

In addition, considering the system bandwidth limitation,
the UAV at each stop point can accept at most M IoT devices
to send data simultaneously. Thus, one can obtain

C3 :

nX
i=1

aij �M; 8j 2 K: (4)

In order to ensure that all IoT devices can be serviced, the
following condition should be satisfied:

C4 :

nX
i=1

kX
j=1

aij = n: (5)

In our model, the channel gain between the UAV at the jth
stop point and the ith IoT device is given by [30], [31],

hij = h0d
�2
ij =

h0

(Xj � xi)2 + (Yj � yi)2 +H2
;

8i 2 N ; j 2 K:
(6)

Therefore, if the ith IoT device sends data to the UAV at the
jth stop point, the data rate is given by [32]

rij = Blog2

�
1 +

pihij

�2

�
;

= Blog2

�
1 +

pih0

�2((Xj � xi)2 + (Yj � yi)2 +H2)

�
;

8i 2 N ; j 2 K;
(7)

where pi is the transmitting power from the ith IoT device to
the UAV; h0 denotes the channel power gain at the reference
distance d0 = 1m; �2 is the white Gaussian noise power; and
B is the system bandwidth.

We assume that the ith IoT device has Di amount of data
sent to the UAV. The time to send the data from the ith IoT
device to the UAV at the jth stop point is given by [33], [34]

Tij =
Di

rij
; 8i 2 N ; j 2 K; (8)

and the energy consumption is computed as

Eij = piTij =
piDi

rij
; 8i 2 N ; j 2 K: (9)

Then, the energy consumption of all IoT devices can be given
by

Eiot =

nX
i=1

kX
j=1

aijEij : (10)

Actually, the UAV will hover at each stop point for some
time. It will not move to another stop point until all data
sent from IoT devices to this stop point have been collected.
Therefore, the hover time of the UAV at the jth stop point is
given by

Th
j = max

i2N
faijTijg; 8j 2 K: (11)

Furthermore, the hover energy consumption of the UAV at the
jth stop point is expressed as

Eh
j = phTh

j ; 8j 2 K; (12)

where ph denotes the hover power of the UAV.
Then, the whole energy consumption of the UAV can be

written as

Euav =

kX
j=1

Eh
j : (13)

Herein, we ignore the flight energy consumption of the UAV.
The energy consumption of the system is composed of the

energy consumption of the UAV and all IoT devices. Thus,

4

this problem can be formulated as

min
fXj ;Yjg;k

Euav + �Eiot

s.t. C1 : aij 2 f0; 1g; 8i 2 N ; j 2 K;

C2 :

kX
j=1

aij = 1; 8i 2 N ;

C3 :

nX
i=1

aij �M; 8j 2 K;

C4 :

nX
i=1

kX
j=1

aij = n;

C5 : Xmin � Xj � Xmax; 8j 2 K;
C6 : Ymin � Yj � Ymax; 8j 2 K;
C7 : kmin � k � kmax;

(14)

where � � 0 is the weight between the energy consumption of
the UAV and that of all IoT devices; Xmin and Xmax are the
lower and upper bounds of Xj , respectively; Ymin and Ymax

are the lower and upper bounds of Yj , respectively; and kmin

and kmax are the lower and upper bounds of k, respectively.
Since the UAV serves at most M IoT devices and at least
one IoT device at each stop point, kmin and kmax are equal
to b n

M c and n, respectively, where b�c denotes the rounding
down operator.

In this paper, our goal is to optimize the UAV’s deployment,
including the number and locations of stop points of the UAV,
to achieve the minimum energy consumption of the system
under all constraints. Specifically, we aim to optimize k and
the corresponding (X1; Y1; : : : ; Xk; Yk) to achieve minimum
(Euav + �Eiot) while satisfying C1 � C7. It is clear that
(X1; Y1; : : : ; Xk; Yk) represents an entire deployment.

Remark: In this paper, the flight altitude of the UAV is
considered as a constant. Next, we would like to give a
remark about the flight altitude of the UAV. According to (7),
the transmission rate decreases as the flight altitude of the
UAV increases; therefore, the transmission time and energy
consumption of IoT devices increases accordingly. In contrast,
if the flight altitude of the UAV decreases, the probability
of the line-of-sight links becomes smaller, which results in
a decrease in the transmission rate and an increase in the
transmission time and energy consumption of IoT devices. The
flight altitude of the UAV will be optimized in our future work.

III. DIFFERENTIAL EVOLUTION (DE)

DE, proposed by Storn and Price [35], is a class of simple
yet efficient EAs. DE has been applied to solve a variety of
optimization problems from diverse fields, such as electromag-
netic design [36], order scheduling [37], uniform design [38],
and big data optimization [39]. First, DE randomly generates
an initial population, in which each individual is called a target
vector:

P = fxi = (xi;1; xi;2; : : : ; xi;D); i = 1; 2; : : : ; NPg; (15)

xi;j = xmin;j + rand � (xmax;j � xmin;j); j 2 f1; 2; : : : ; Dg;
(16)

XNP,1 YNP,1

X2,1 Y2,1A population
(NP entire

deployments)

An individual
(An entire

deployment)
22,kX

22,kY

, NPNP kX , NPNP kY

C1,1 X1,1

original variablesauxiliary variables
An individual

(An entire
deployment)

A population
(NP entire

deployments)

1, maxkX 1, maxkYY1,11, maxkC

C2,1 2, maxkX 2, maxkY2, maxkC X2,1 Y2,1

CNP,1 , maxNP kX , maxNP kY, maxNP kC XNP,1 YNP,1

Xk,1 Yk,1

X2,1 Y2,1

An individual
(The location of

a stop point)
A population

(An entire
deployment)

(a) The encoding mechanism in the approaches with special mutation and crossover operators

(b) The encoding mechanism in the approaches with auxiliary variables

X1,1 Y1,1

(c) The proposed encoding mechanism in this paper

11,kX
11,kY

X1,1 Y1,1

Fig. 2. Encoding mechanism in the approaches with special mutation and
crossover operators, encoding mechanism in the approaches with auxiliary
variables, and the proposed encoding mechanism in this paper, where Xi;j

and Yi;j denote the values in the x-axis and y-axis of the location of the jth
stop point in the ith individual, respectively; Ci;j denotes the jth auxiliary
variable in the ith individual; and kmax is the maximum number of stop
points as defined in (14).

where NP is the population size; D is the number of variables;
xmin;j and xmax;j represent the lower and upper bounds of
the jth variable, respectively; and rand is a random number
uniformly distributed over [0; 1].

After initialization, a mutation operator is executed on
each target vector xi to generate a mutant vector vi =
(vi;1; vi;2; : : : ; vi;D); i 2 f1; 2; : : : ; NPg. Then, a trial vector
ui = (ui;1; ui;2; : : : ; ui;D); i 2 f1; 2; : : : ; NPg is obtained
by implementing a crossover operator on vi and xi. Finally,
a selection operator chooses the better one between ui and xi

to survive into the next generation.
Next, we introduce the mutation, crossover, and selection

operators [40], [41].
1) Mutation: The commonly used mutation operators in the

literature are
� DE/rand/1

vi = xr1 + F � (xr2 � xr3); (17)

� DE/rand/2

vi = xr1 +F � (xr2� xr3) +F � (xr4� xr5); (18)

� DE/current-to-rand/1

vi = xi + F � (xr1 � xi) + F � (xr2 � xr3); (19)

� DE/current-to-best/1

vi = xi + F � (xbest � xi) + F � (xr1 � xr2); (20)

5

where r1, r2, r3, r4, and r5 are five distinct integers
randomly selected from [1; NP] and are also different
from i; xbest denotes the best target vector in the current
population; and F is the scaling factor.

2) Crossover: The binomial crossover is given as follows:

ui;j =

(
vi;j ; if randj � CR or j = jrand;

xi;j ; otherwise;
(21)

where jrand is a random integer selected from [1; D] to
make sure that ui is different from xi in at least one
dimension; randj denotes a uniformly distributed random
number over [0; 1] for each j, and CR is the crossover
control parameter.

3) Selection: For a minimization problem, the selection
operator is implemented as:

xi =

(
ui; if f(ui) � f(xi);

xi; otherwise:
(22)

IV. PROPOSED APPROACH

A. Motivation

In this subsection, we first analyze the drawbacks of the
existing approaches introduced in Section I for the UAV’s
deployment optimization.
� For the approaches with special mutation and crossover

operators [18], [23], as shown in Fig. 2(a)2, each indi-
vidual in the population of size NP represents an entire
deployment, which consists of the locations of a set of
stop points. Then the population represents NP entire
deployments. In this kind of approach, the length of
each individual is not fixed. For example, the lengths of
the three individuals with k1, k2, and kNP stop points
in Fig. 2(a) are 2k1, 2k2, and 2kNP , respectively. As
already stated, since the length of each individual in
the population is not fixed, the special mutation and
crossover operators need to be adopted in this kind of
approach [17]. It is clear that the dimension of the search
space may change from generation to generation for each
individual, thus causing confused search.

� As shown in Fig. 2(b), with respect to the approaches
with auxiliary variables [24], the individual and the
population are also encoded into an entire deployment
and NP entire deployments, respectively. In this kind
of approach, the length of each individual in the popu-
lation is 3kmax, consisting of kmax auxiliary variables
(i.e., Ci;1; : : : ; Ci;kmax

; i 2 f1; 2; : : : ; NPg) and 2kmax

original variables (i.e., Xi;1; Yi;1; : : : ; Xi;kmax
; Yi;kmax

).
Note that kmax is defined in (14). The auxiliary variables
are used to control the activation of the corresponding
original variables. Specifically, Ci;j controls the acti-
vation of the original variables Xi;j and Yi;j . Due to
the fact that each individual has the same length, the
traditional fixed-length mutation and crossover operators

2Note that the value of the flying height H of the UAV is a constant in
this paper. Therefore, we only show the values in the x-axis and y-axis of
the location of each stop point.

can be used directly. However, the length of each indi-
vidual will drastically increase due to the introduction
of auxiliary variables, thus leading to a high-dimensional
search space.

It is interesting to observe that although the number of
stop points that the UAV needs to visit is variable during the
evolution, the dimension of the location of each stop point is
fixed. Since the flying height H of the UAV is a constant in
this paper, the dimension of the location of each stop point can
be considered as two (i.e., the x-axis and y-axis). Moreover,
the values of the locations of all stop points in the x-axis and
y-axis have the same lower and upper bounds as introduced
in (14) (i.e., Xmin and Xmax in the x-axis, and Ymin and
Ymax in the y-axis, respectively). Under this condition, if each
individual represents the location of a stop point, the length of
each individual in the population is the same (i.e., two). More
importantly, the auxiliary variables are unnecessary.

Inspired by this observation, we have designed a new
encoding mechanism as shown in Fig. 2(c): the location of
each stop point is encoded into an individual; thus, the whole
population represents an entire deployment and the population
size is equal to the number of stop points. The advantages
of the proposed encoding mechanism over other encoding
mechanisms can be summarized as follows:
� For the encoding mechanisms in both the approaches

with special mutation and crossover operators and the
approaches with auxiliary variables, the population in-
cludes NP entire deployments. Note that NP is a preset
parameter and cannot be changed during the evolution. As
pointed out in [42], NP has a significant effect on the
performance of an algorithm. In contrast, in the proposed
encoding mechanism, the population size is equal to the
number of stop points, which is optimized during the
evolution. Therefore, this parameter has been eliminated.

� Regarding the encoding mechanism in the approaches
with special mutation and crossover operators, according
to C7 in (14), the number of stop points ranges from
kmin to kmax; therefore, the length of each individual in
the population varies from 2kmin to 2kmax. The variable-
length individuals pose significant challenges to EAs [17].
However, the length of each individual in the proposed
encoding mechanism is always fixed. In this manner, the
special mutation and crossover operators are not required.

� With respect to the encoding mechanism in the approach-
es with auxiliary variables, the length of each individual
in the population is 3kmax. But for the proposed encoding
mechanism, the length of each individual in the popula-
tion is equal to two. Consequently, the dimension of the
search space can be remarkably reduced.

Based on the proposed encoding mechanism, a new al-
gorithm named DEVIPS is proposed to optimize the UAV’s
deployment.

B. DEVIPS

1) General Framework: The general framework of
DEVIPS is presented in Algorithm 1. First, an initial pop-
ulation P is randomly generated in the search space. During

6

Algorithm 1 General Framework of DEVIPS
1: F Es = 0; // F Es denotes the number of fitness evaluations
2: Initialize P according to Algorithm 2;
3: while F Es �MaxF Es do
4: Q = ;;
5: for i = 1 to jPj do
6: Implement “DE/rand/1” in (17) and the binomial crossover in (21)

on xi in P to generate ui;
7: Q = Q

S
ui;

8: end for
9: Update P according to Algorithm 3;

10: end while

Algorithm 2 Initialization of P
1: Randomly generate the locations of kmax stop points, which form an

initial P and represent an initial UAV deployment;
2: Check the feasibility of P via the constraints in (14);
3: F Es = F Es + 1; // since P presents an entire deployment, the number

of fitness evaluations for checking the feasibility of P is 1.
4: while P is infeasible and F Es �MaxF Es do
5: Regenerate the locations of kmax stop points randomly, which form

another initial P and represents another initial UAV deployment;
6: Check the feasibility of P via the constraints in (14);
7: F Es = F Es + 1; // since P presents an entire deployment, the

number of fitness evaluations for checking the feasibility of P is 1.
8: end while
9: return P

the evolution, DEVIPS performs the mutation and crossover
operators of DE to produce the offspring population Q. In this
paper, “DE/rand/1” in (17) and the binomial crossover in (21)
are employed. Afterward, P is updated for the next generation.
This procedure continues until the stopping criterion is met
(i.e., the maximum number of fitness evaluations MaxFEs
is reached). In the following, the initialization of P and the
updating of P in DEVIPS are introduced in detail.

2) Initialization of P: In the initialization, the locations
of kmax (kmax = n as introduced in Section II) stop points3

are randomly generated, which form an initial population P .
Note that P represents an initial UAV deployment. Then,
we check if P is feasible (i.e., if all constraints in (14) are
satisfied). If P is feasible, the initial UAV deployment is
successfully generated; otherwise, the locations of kmax stop
points are regenerated and the feasibility of P is rechecked
until P is feasible or FEs � MaxFEs. Algorithm 2
describes the initialization of P . Note that P presents an
entire deployment; thus, the number of fitness evaluations for
checking the feasibility of P is one.

3) Updating of P: In DEVIPS, the population size of P
is equal to the number of stop points. In order to optimize
the number of stop points, the population size of P should
be variable. In this paper, we consider that the following two
aspects are crucial toward the change of the population size:
� The population size can be increased, reduced, or kept

unchanged since we do not know the optimal number of
stop points.

� The population size should not be changed drastically
since drastic changes may lead to an unstable search.

In this paper, we propose a simple and adaptive strategy
to accomplish these two aspects. Our main idea is to update

3Since a greater number of stop points make it easier to form a feasible
population, the locations of kmax stop points are generated.

Algorithm 3 Updating of P
1: for i = 1 to jQj do
2: P1 insert the ith individual in Q to P;
3: P2 utilize the ith individual in Q to replace a randomly selected

individual in P;
4: P3 delete a randomly selected individual in P;
5: Check the feasibilities of P1, P2, and P3;
6: if there exists at least one feasible population among P1, P2, and P3

then
7: Evaluate the fitness value(s) of the feasible population(s);
8: if there exists performance improvement against P then
9: the feasible population with the greatest performance improve-

ment is used to replace P;
10: else
11: if the feasible fitness value of P3 is equal to that of P then
12: P3 is used to replace P;
13: end if
14: end if
15: end if
16: F Es = F Es + 3; // since each of P1, P2, and P3 represents an

entire deployment, the number of fitness evaluations for checking the
feasibility and evaluating the fitness value of each of them is one.

17: end for
18: return P

at most one individual in P in each update, which not only
changes the population size dynamically, but also maintains a
stable search.

After the offspring population Q is generated, the first
individual in Q is used to generate two new populations:
� It is incorporated into P to generate a new population
P1.

� It replaces a randomly selected individual in P to produce
another new population P2.

In addition, a third new population P3 is produced after an
individual randomly selected from P is removed.

Subsequently, the feasibilities of P1, P2, and P3 are
checked. If there exists at least one feasible population among
them, the fitness value(s) of the feasible population(s) is/are
evaluated. Then, the feasible population with the greatest
performance improvement against P is used to replace P . Note
that if no performance improvement occurs but the feasible
fitness value of P3 is equal to that of P , then P will be
replaced by P3. It means that the individual removed from
P has no effect on the performance; therefore, this individual
is redundant. The remaining individuals in Q experience this
process one by one. Algorithm 3 describes the updating
of P . Note that each of P1, P2, and P3 represents an
entire deployment; thus, the number of fitness evaluations for
checking the feasibility and evaluating the fitness value of each
of them is one. Moreover, in the updating of P , the selection
operator adopted in this paper is different from the original
selection operator in (22) since our operator selects a better
population rather than a better individual.

The population size of P is denoted as jPj. Then, the
population sizes of P1, P2, and P3 are (jPj + 1), jPj, and
(jPj � 1), respectively. When P1, P2, or P3 is selected to
update P , the population size of P is increased, kept un-
changed, or reduced, respectively, which results in an adaptive
change of the population size. In fact, only one individual
(i.e., the location of one stop point) in P is different from
P1, P2, and P3, which suggests that at most one individual

7

(i.e., the location of one stop point) is updated in each loop
of Algorithm 3. Therefore, P is updated in a stable way.
In addition, since the feasible population with the greatest
performance improvement among P1, P2, and P3 is selected
to update P , it is beneficial to accelerate the convergence.

C. Discussion

In the following, we discuss the major characteristics of
DEVIPS.
� This paper aims at optimizing the number and locations of

stop points in the UAV’s deployment jointly. In principle,
DEVIPS achieves the optimization of the number of stop
points by adaptively updating the population size. In
addition, DEVIPS optimizes the locations of stop points
by DE.

� DEVIPS treats the whole population as an entire deploy-
ment (i.e., a solution) and changes the location of one
stop point at most in each update. Therefore, DEVIPS is
similar to the local search. It is worth noting that the local
search typically changes the location of one stop point
randomly or based on the locations of nearby stop points.
However, in DEVIPS, the location of the new stop point
is generated by the crossover and mutation operators of
DE, which makes it possible to utilize the information of
the locations of all other stop points. As a result, DEVIPS
has a better global search capability than the local search.
But the global search capability of DEVIPS might still
be limited due to the fact that a single deployment is
optimized during the evolution. Fortunately, the search
capability of DEVIPS can meet our requirements since
the search space is only two-dimensional, which has been
verified in the experimental studies later.

� DEVIPS has the following advantages: 1) its implemen-
tation is simple; 2) it does not introduce any additional
parameters; 3) it eliminates an important parameter (i.e.,
the population size); 4) it searches for the optimal number
and locations of stop points in a two-dimensional search
space; and 5) it does not add any complex operators and
its computational complexity is the same as the classical
DE.

V. EXPERIMENTAL SETUP

This section introduces the experimental setup for investi-
gating the performance of DEVIPS. First, we briefly describe
five algorithms used for comparison. Then, the parameter
settings in our experimental studies are provided.

A. Algorithms for Comparison

In order to evaluate the performance of DEVIPS, the
following five algorithms were considered to be the peer
algorithms.
� VLGA [18] adopts a commonly used crossover operator

(i.e., uniform crossover) and a special crossover operator
(i.e., cut-and-splice crossover) to produce offspring.

� fGA [23] works in the phenotypic space, in which two
circular areas with the same size are selected from two

TABLE I
PARAMETER SETTINGS OF THE SIX COMPARED ALGORITHMS.

Algorithm Parameter Settings
VLGA NP = 100; pc = 0:9; pm = 1=individual length
fGA NP = 100; pc = 0:9; pm = 0:1

JGGA NP = 100; pc = 0:8; pm = 0:04; pj = 0:01; Tr = 3
JADE NP = 100
DEEM F = 0:9; CR = 0:9

DEVIPS F = 0:6; CR = 0:5

square areas for exchange, and then two new square areas
are generated.

� JGGA [24] introduces auxiliary variables to control the
expression of original variables. In addition, for improv-
ing search ability, a jumping-gene transposition strategy
is designed.

� JADE [43] implements the mutation operator
“DE/current-to-pbest” with optional archive and
tunes parameters adaptively. Note that in JADE, since
the number of stop points cannot be changed during the
evolution, it should be preset.

� DEEM [44] uses the encoding mechanism similar to
DEVIPS, where the population, rather than an individ-
ual, represents an entire deployment. Like JADE, when
addressing the UAV’s deployment, it also requires a preset
number of stop points.

Overall, VLGA and fGA are two approaches with special
mutation and crossover operators, JGGA is an approach with
auxiliary variables, and JADE and DEEM are two approaches
with a preset number of stop points. Therefore, by comparing
DEVIPS with these approaches, we can provide multi-facet
performance comparisons.

B. Parameter Settings
The parameter settings of the five peer algorithms and

DEVIPS are presented in Table I. Note that the parameter
settings of the five peer algorithms were kept the same as in
their original papers.
� Population size: The population size of DEEM was

the same with the preset number of stop points. The
population size of DEVIPS was adaptively varied during
the evolution. For other algorithms, the population size
was set to 100.

� Parameters for crossover and mutation: For VLGA, fGA,
and JGGA, the crossover probability pc was set to 0.9,
0.9, and 0.8, respectively, and the mutation probability
pm was set to the reciprocal of the individual length,
0.1, and 0.04, respectively. For DEEM and DEVIPS, the
scaling factor F was set to 0.9 and 0.6, respectively, and
the crossover control parameter CR was set to 0.9 and
0.5, respectively. For JADE, F and CR were updated in
an adaptive manner.

� Specific parameters: For JGGA, the jumping probability
pj was set to 0.01 and the number of transposons Tr was
set to 3.

� Stopping criterion and number of independent runs: Each
algorithm terminated at 100,000 fitness evolutions (i.e.,
MaxFEs = 100; 000). Each algorithm was independent-
ly run 30 times for each instance.

8

0 20000 40000 60000 80000 100000
FEs

1.2

1.3

1.4

1.5

1.6

1.7
A

ve
ra

ge
 E

C
 (

J)
106

VLGA
fGA
DEVIPS

(a) n = 100

0 20000 40000 60000 80000 100000
FEs

2.4

2.6

2.8

3

3.2

A
ve

ra
ge

 E
C

 (
J)

106

VLGA
fGA
DEVIPS

(b) n = 200

0 20000 40000 60000 80000 100000
FEs

3.4

3.6

3.8

4

4.2

4.4

4.6

A
ve

ra
ge

 E
C

 (
J)

106

VLGA
fGA
DEVIPS

(c) n = 300

0 20000 40000 60000 80000 100000
FEs

5

5.5

6

6.5

A
ve

ra
ge

 E
C

 (
J)

106

VLGA
fGA
DEVIPS

(d) n = 400

0 20000 40000 60000 80000 100000
FEs

6

6.5

7

7.5

8

A
ve

ra
ge

 E
C

 (
J)

106

VLGA
fGA
DEVIPS

(e) n = 500

0 20000 40000 60000 80000 100000
FEs

7.5

8

8.5

9

9.5

A
ve

ra
ge

 E
C

 (
J)

106

VLGA
fGA
DEVIPS

(f) n = 600

0 20000 40000 60000 80000 100000
FEs

8.5

9

9.5

10

10.5

11

A
ve

ra
ge

 E
C

 (
J)

106

VLGA
fGA
DEVIPS

(g) n = 700

Fig. 3. Evolution of the average EC (J) obtained by DEVIPS and two approaches with special mutation and crossover operators (VLGA and fGA).

� Significance test: To test the statistical significance be-
tween DEVIPS and each of the peer algorithms, the
Wilcoxon rank sum test at a 0.05 significance level
was carried out. In the experimental results, we used
“+”, “�”, and “�” to indicate that DEVIPS performed
better than, worse than, and similar to its competitor,
respectively.

The parameters of the UAV-assisted IoT data collection
system were set as follows. We assumed that all IoT devices
were randomly distributed in a 1000m�1000m square area
and the flight altitude of the UAV was 200m. Additionally,
Di(i 2 N) was randomly distributed within [1, 103]MB,
M was set to 5, pi(i 2 N) was 0.1W, and h0 and �2

were set to -30dB and �250dBm, respectively. In addition,
B was set to 1MHz, ph was set to 1000W, and � was set
to 10000. Seven instances with different numbers of IoT
devices were used to evaluate the performance of DEVIPS:
n = f100; 200; 300; 400; 500; 600; 700g.

VI. EXPERIMENTAL RESULTS AND DISCUSSION

A. Comparison with Two Approaches with Special Mutation
and Crossover Operators (VLGA and fGA)

First, we compared the performance of DEVIPS with that of
two approaches with special mutation and crossover operators:
VLGA and fGA. The results are reported in Table II. In
Table II, “Mean” and “Std Dev” indicate the average and
standard deviation of the energy consumption (EC) of the
UAV-assisted IoT data collection system over 30 runs, and
percentages in the square brackets indicate the performance
improvement of DEVIPS against VLGA and fGA. In addition,
the statistical test results between DEVIPS and each of VLGA
and fGA are summarized at the bottom of Table II.

From Table II, it can be seen that DEVIPS is better than
VLGA and fGA on each instance in terms of the average

TABLE II
EXPERIMENTAL RESULTS OF DEVIPS AND TWO APPROACHES WITH

SPECIAL MUTATION AND CROSSOVER OPERATORS (VLGA AND FGA).

n
VLGA

Mean(Std Dev) (J)
fGA

Mean(Std Dev) (J)
DEVIPS

Mean(Std Dev) (J)

100 1.3745E+6(6.9440E+3)+
[8.88%]

1.3892E+6(1.3665E+4)+
[9.84%] 1.2525E+6(6.7254E+3)

200 2.8353E+6(1.6711E+4)+
[11.67%]

2.7981E+6(3.0339E+4)+
[10.49%] 2.5045E+6(7.1329E+3)

300 4.1110E+6(3.4598E+4)+
[12.89%]

4.0074E+6(3.1828E+4)+
[10.64%] 3.5809E+6(1.4834E+4)

400 5.8096E+6(5.9486E+4)+
[13.91%]

5.6204E+6(4.2352E+4)+
[11.01%] 5.0016E+6(1.8278E+4)

500 7.2640E+6(9.7987E+4)+
[15.68%]

6.8893E+6(4.1229E+4)+
[11.10%] 6.1248E+6(1.8445E+4)

600 9.1286E+6(8.6089E+4)+
[17.15%]

8.5612E+6(5.2589E+4)+
[11.66%] 7.5628E+6(2.0203E+4)

700 1.0381E+7(4.1259E+4)+
[17.44%]

9.7484E+6(5.7165E+4)+
[12.09%] 8.5702E+6(3.5668E+4)

+ 7 7
– 0 0
� 0 0

EC. By observing the performance improvement, we can see
that DEVIPS provides an increasing advantage over other
algorithms as the number of IoT devices grows. Specifically,
when the number of IoT devices is 100, the performance im-
provement of DEVIPS is 8.88% and 9.84% against VLGA and
fGA, respectively. When the number of IoT devices increases
to 700, the performance improvement of DEVIPS against
VLGA and fGA reaches 17.44% and 12.09%, respectively.
In addition, DEVIPS shows significantly better statistical test
results on all instances.

This phenomenon can be explained as follows. For VLGA
and fGA, due to the fact that the population searches for the
optimal solution in the search space with variable dimensions,
the changing range of the dimension of the search space
drastically expands as the number of IoT devices increases. For
example, when n = 700, the dimension of the search space
ranges from 280 to 1400. In contrast, because the dimension
of the search space is always fixed and very low in DEVIPS,
it has the capability of obtaining better results.

Fig. 3 presents the evolution of the average EC obtained by

9

0 20000 40000 60000 80000 100000
FEs

1.2

1.3

1.4

1.5

1.6

1.7
A

ve
ra

ge
 E

C
 (

J)
106

JGGA
DEVIPS

(a) n = 100

0 20000 40000 60000 80000 100000
FEs

2.4

2.6

2.8

3

3.2

A
ve

ra
ge

 E
C

 (
J)

106

JGGA
DEVIPS

(b) n = 200

0 20000 40000 60000 80000 100000
FEs

3.4

3.6

3.8

4

4.2

4.4

4.6

A
ve

ra
ge

 E
C

 (
J)

106

JGGA
DEVIPS

(c) n = 300

0 20000 40000 60000 80000 100000
FEs

5

5.5

6

6.5

A
ve

ra
ge

 E
C

 (
J)

106

JGGA
DEVIPS

(d) n = 400

0 20000 40000 60000 80000 100000
FEs

6

6.5

7

7.5

8

A
ve

ra
ge

 E
C

 (
J)

106

JGGA
DEVIPS

(e) n = 500

0 20000 40000 60000 80000 100000
FEs

7.5

8

8.5

9

9.5

A
ve

ra
ge

 E
C

 (
J)

106

JGGA
DEVIPS

(f) n = 600

0 20000 40000 60000 80000 100000
FEs

8.5

9

9.5

10

10.5

11

A
ve

ra
ge

 E
C

 (
J)

106

JGGA
DEVIPS

(g) n = 700

Fig. 4. Evolution of the average EC (J) obtained by DEVIPS and an approach with auxiliary variables (JGGA).

DEVIPS, VLGA, and fGA. It is clear that DEVIPS converges
faster than VLGA and fGA in the early stage and maintains
the best performance during the evolution. Note that, when
the number of IoT devices is large, Fig. 3 does not show
the average EC provided by VLGA and fGA in the early
stage. This is because VLGA and fGA cannot produce any
feasible solution under this condition. In the initialization,
for VLGA and fGA, the number of stop points in each
individual is randomly selected between kmin and kmax (i.e.,
b n

M c and n), which is less than that of DEVIPS (DEVIPS
randomly generates the locations of kmax stop points in the
initialization). Therefore, it is very possible that VLGA and
fGA cannot provide enough number of stop points for IoT
devices, thus leading to infeasible solutions.

B. Comparison with an Approach with Auxiliary Variables
(JGGA)

Subsequently, DEVIPS was compared with an approach
with auxiliary variables: JGGA. Table III presents the aver-
age and standard deviation of EC over 30 runs, as well as
the performance improvement and the statistical test results
between DEVIPS and JGGA.

From Table III, DEVIPS provides better average EC and
is statistically better than JGGA on each instance. In terms
of the performance improvement, the superiority of DEVIPS
against JGGA increases with an increase in the number of IoT
devices. To be specific, when the number of IoT devices is 100,
the performance improvement of DEVIPS is 4.21%. When the
number of IoT devices reaches 700, DEVIPS achieves 13.26%
performance improvement. The reason is straightforward: the
dimension of the search space of DEVIPS is significantly
smaller than that of JGGA. For example, when the number
of IoT devices increases to 700, the dimension of the search
space of JGGA is up to 2100, compared with two in DEVIPS.

Fig. 4 plots the evolution of the average EC derived from
DEVIPS and JGGA. Similar to Fig. 3, DEVIPS has faster

TABLE III
EXPERIMENTAL RESULTS OF DEVIPS AND AN APPROACH WITH

AUXILIARY VARIABLES (JGGA).

n
JGGA

Mean(Std Dev) (J)
DEVIPS

Mean(Std Dev) (J)

100 1.3075E+6(7.9167E+3)+
[4.21%] 1.2525E+6(6.7254E+3)

200 2.7298E+6(1.0189E+4)+
[8.25%] 2.5045E+6(7.1329E+3)

300 3.9862E+6(1.0855E+4)+
[10.17%] 3.5809E+6(1.4834E+4)

400 5.6737E+6(1.5983E+4)+
[11.85%] 5.0016E+6(1.8278E+4)

500 6.9905E+6(1.8433E+4)+
[12.38%] 6.1248E+6(1.8445E+4)

600 8.6865E+6(2.6654E+4)+
[12.94%] 7.5628E+6(2.0203E+4)

700 9.8807E+6(2.8966E+4)+
[13.26%] 8.5702E+6(3.5668E+4)

+ / – / � 7 / 0 / 0

convergence speed in the early stage and maintains better
performance during the evolution.

C. Comparison with Two Approaches with a Preset Number
of Stop Points (JADE and DEEM)

We compared DEVIPS with two approaches with a preset
number of stop points: JADE and DEEM. For JADE and
DEEM, we tested three fixed numbers of stop points: kmin,
kmax, and (kmin + kmax)=2 (i.e., b n

M c, n, and b (M+1)n
2M c).

The number of stop points in DEVIPS was variable during
the optimization process as previously mentioned. Table IV
gives the average and standard deviation of EC derived from
the three compared algorithms over 30 runs. In addition, the
performance improvement and the statistical test results of
DEVIPS against each of JADE and DEEM are presented. Note
that, if some IoT devices could not be served in one run, the
run is considered to be infeasible. Under this condition, we
only give the feasible rate in Table IV.

As shown in Table IV, JADE with kmin stop points and

10

TABLE IV
EXPERIMENTAL RESULTS OF DEVIPS AND TWO APPROACHES WITH A PRESET NUMBER OF STOP POINTS (JADE AND DEEM).

n
JADE

Mean(Std Dev) (J)
DEEM

Mean(Std Dev) (J)
DEVIPS

Mean(Std Dev) (J)
kmin (kmin + kmax)=2 kmax kmin (kmin + kmax)=2 kmax

100 0%+ 1.4043E+6(8.1711E+3)+
[10.81%]

1.4837E+6(6.5274E+3)+
[15.58%] 0%+ 1.2917E+6(1.2002E+4)+

[3.03%]
1.3507E+6(1.6116E+4)+

[7.27%] 1.2525E+6(6.7254E+3)

200 0%+ 2.8508E+6(1.2649E+4)+
[12.15%]

2.9912E+6(1.4947E+4)+
[16.27%] 0%+ 2.5698E+6(1.6770E+4)+

[2.54%]
2.7035E+6(2.2978E+4)+

[7.36%] 2.5045E+6(7.1329E+3)

300 0%+ 4.1088E+6(1.5469E+4)+
[12.85%]

4.3166E+6(1.3839E+4)+
[17.04%] 0%+ 3.6821E+6(2.1229E+4)+

[2.75%]
3.8755E+6(2.7542E+4)+

[7.60%] 3.5809E+6(1.4834E+4)

400 0%+ 5.7990E+6(2.2978E+4)+
[13.75%]

6.0787E+6(1.6834E+4)+
[17.72%] 0%+ 5.1451E+6(2.7631E+4)+

[2.79%]
5.3782E+6(3.0406E+4)+

[7.00%] 5.0016E+6(1.8278E+4)

500 0%+ 7.1617E+6(3.5852E+4)+
[14.48%]

7.4686E+6(1.4416E+4)+
[17.99%] 0%+ 6.2840E+6(2.9284E+4)+

[2.53%]
6.5991E+6(3.4363E+4)+

[7.19%] 6.1248E+6(1.8445E+4)

600 0%+ 33%+ 9.2240E+6(1.9429E+4)+
[18.01%] 0%+ 30%+ 8.0769E+6(5.5218E+4)+

[6.37%] 7.5628E+6(2.0203E+4)

700 0%+ 3%+ 1.0434E+7(2.5772E+4)+
[17.86%] 0%+ 0%+ 9.1732E+6(4.0661E+4)+

[6.57%] 8.5702E+6(3.5668E+4)

+ 7 7 7 7 7 7
– 0 0 0 0 0 0
� 0 0 0 0 0 0

0 20000 40000 60000 80000 100000

FEs

20

40

60

80

100

A
ve

ra
ge

 N
um

be
r

of
 S

to
p

P
oi

nt
s VLGA

fGA
JGGA
DEVIPS

Fig. 5. Evolution of the average number of stop points provided by VLGA,
fGA, JGGA, and DEVIPS over 30 independent runs when n = 100.

DEEM with kmin stop points failed to produce any feasible
run. In addition, in the case of n = 100, 200, 300, 400,
and 500, the average EC resulting from JADE with kmax

stop points and DEEM with kmax stop points is consistently
worse than that provided by JADE with (kmin + kmax)=2
stop points and DEEM with (kmin +kmax)=2 stop points, re-
spectively. However, when n = 600 and 700, both JADE with
(kmin+kmax)=2 stop points and DEEM with (kmin+kmax)=2
stop points cannot provide a 100% feasible rate. The poor
performance of JADE and DEEM with a fixed number of stop
points signifies that it is not a good choice to set a fixed number
of stop points in advance. It is clear that DEVIPS outperforms
JADE and DEEM on all instances according to the Wilcoxon’s
rank sum test at a 0.05 significance level. Moreover, DEVIPS
achieves a 100% feasible rate on all instances. The superior
performance of DEVIPS not only suggests that optimizing the
number and locations of stop points simultaneously can serve
more IoT devices and achieve cost-effective data collection,
but also demonstrates the effectiveness of the adaptive adjust-
ment of stop points.

D. Evolution of the Average Number of Stop Points

In this subsection, we investigated the evolution of the
average number of stop points of different algorithms. We
only considered the algorithms without a preset number of stop
points (i.e., VLGA, fGA, JGGA, and DEVIPS). Fig. 5 depicts
the evolution of the average number of stop points provided by
VLGA, fGA, JGGA, and DEVIPS over 30 independent runs

TABLE V
EXPERIMENTAL RESULTS OF DEVIPS AND GAVIPS.

n
GAVIPS

Mean(Std Dev) (J)
DEVIPS

Mean(Std Dev) (J)
100 1.2550E+6(7.2343E+3)� 1.2525E+6(6.7254E+3)
200 2.5073E+6(9.8594E+3)� 2.5045E+6(7.1329E+3)
300 3.5937E+6(1.0907E+4)� 3.5809E+6(1.4834E+4)
400 5.0103E+6(1.1551E+4)� 5.0016E+6(1.8278E+4)
500 6.1314E+6(2.0702E+4)� 6.1248E+6(1.8445E+4)
600 7.5768E+6(2.6715E+4)� 7.5628E+6(2.0203E+4)
700 8.5899E+6(2.2860E+4)� 8.5702E+6(3.5668E+4)

+ / – / � 0 / 0 / 7

in the case of n = 100. Note that for VLGA, fGA, and JGGA,
in each run, we recorded the number of stop points of the best
individual in the population during the evolution. From Fig. 5,
it is clear that, overall, the average numbers of stop points
of VLGA, fGA, and DEVIPS first decrease and then remain
unchanged. Moreover, DEVIPS can quickly obtain a smaller
average number of stop points. Different from the previous
three algorithms, the average number of stop points in JGGA
increases over the course of evolution. This is because JGGA
cannot eliminate redundant stop points during the evolution.

E. Effect of the Search Engine

In this subsection, we investigated the effect of the search
engine on the performance of DEVIPS. We employed a
commonly used search engine, i.e., GA, to replace DE used
in DEVIPS. The resultant variant was named GAVIPS. It is
worth noting that particle swarm optimization (PSO) needs
to use the best individual in the population, but there is
no explicit definition of the best individual in our encoding
mechanism. Therefore, PSO was not considered. As shown
in Table V, there is no significant performance difference
between DEVIPS and GAVIPS. This is largely because the
search space is two-dimensional and both DE and GA can
effectively explore such a low-dimensional search space.

F. Effect of the Update Strategy

To study the effect of the update strategy, we tested DEVIPS
with six different update strategies in the case of n = 100.
Specifically, in each update, at most one, three, five, seven,

11

TABLE VI
EXPERIMENTAL RESULTS OF DEVIPS WITH SIX DIFFERENT UPDATE

STRATEGIES IN THE CASE OF n = 100.

Update Strategy Mean(Std Dev) (J)
1 1.2525E+6(6.7254E+3)
2 1.2731E+6(6.6975E+3)+
3 1.2841E+6(6.3535E+3)+
4 1.2894E+6(1.5840E+4)+
5 1.2981E+6(1.0731E+4)+
6 1.3171E+6(1.4000E+4)+

nine, and 11 individuals were changed in the population. The
average EC of each update strategy over 30 runs is presented
in Table VI. As shown in Table VI, the update strategy that
changes at most one individual in each update can provide
the lowest EC. In addition, this update strategy is significantly
better than the five competitors according to the Wilcoxon’s
rank sum test at a 0.05 significance level. The comparison
reveals that drastic changes of the population size may lead to
performance degradation; thus, DEVIPS only changes at most
one individual in each update.

VII. CONCLUSION

In this paper, a DE algorithm with a variable population
size, named DEVIPS, was proposed to optimize the number
and locations of stop points for the UAV’s deployment in a
UAV-assisted IoT data collection system simultaneously. The
main characteristics of DEVIPS can be summarized as follows:

1) First, we proposed a new encoding mechanism, in which
the location of each stop point is treated as an individ-
ual, meaning the whole population represents an entire
deployment.

2) After that, the dimension of the search space is equal
to two, and the population size is equal to the number
of stop points. This paper transformed the optimization
of the number of stop points into the adjustment of
the population size. Then, we proposed a strategy to
adaptively adjust the population size.

3) DE was utilized to optimize the locations of stop points
in a two-dimensional search space.

DEVIPS was applied to a set of instances with different
numbers of IoT devices and compared with two approach-
es with special mutation and crossover operators, and an
approach with auxiliary variables. The experimental results
demonstrated that DEVIPS had the best performance. Sub-
sequently, DEVIPS was compared with two approaches with
a preset number of stop points. The experimental results not
only indicated that optimizing the number and locations of
stop points simultaneously is beneficial for improving system
performance, but also verified the effectiveness of the adaptive
adjustment of stop points in DEVIPS. In addition, three
experiments were conducted to study the evolution of the
number of stop points and the effects of the search engine
and update strategy.

The source code can be downloaded from Y. Wang’s home-
page: http://www.escience.cn/people/yongwang1.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] W. Wang and M. Zhang, “Tensor deep learning model for het-
erogeneous data fusion in Internet of Things,” IEEE Transactions
on Emerging Topics in Computational Intelligence, 2018, in press,
DOI:10.1109/TETCI.2018.2876568.

[3] J. A. Guerrero-Ibanez, S. Zeadally, and J. Contreras-Castillo, “Inte-
gration challenges of intelligent transportation systems with connected
vehicle, cloud computing, and Internet of Things technologies,” IEEE
Wireless Communications, vol. 22, no. 6, pp. 122–128, 2015.

[4] E. Mezghani, E. Exposito, and K. Drira, “A model-driven method-
ology for the design of autonomic and cognitive IoT-based systems:
Application to healthcare,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 1, no. 3, pp. 224–234, 2017.

[5] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for smart cities,” IEEE Internet of Things journal, vol. 1,
no. 1, pp. 22–32, 2014.

[6] L. Zheng, S. Chen, S. Xiang, and Y. Hu, “Research of architecture and
application of Internet of Things for smart grid,” in Computer Science
& Service System (CSSS), 2012 International Conference on. IEEE,
2012, pp. 938–941.

[7] Y. Kawamoto, H. Nishiyama, Z. M. Fadlullah, and N. Kato, “Effective
data collection via satellite-routed sensor system (SRSS) to realize
global-scaled Internet of Things,” IEEE Sensors Journal, vol. 13, no. 10,
pp. 3645–3654, 2013.

[8] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile Internet of
Things: Can UAVs provide an energy-efficient mobile architecture?” in
Global Communications Conference (GLOBECOM), 2016 IEEE. IEEE,
2016, pp. 1–6.

[9] ——, “Mobile unmanned aerial vehicles (UAVs) for energy-efficient
Internet of Things communications,” IEEE Transactions on Wireless
Communications, vol. 16, no. 11, pp. 7574–7589, 2017.

[10] D.-T. Ho, E. I. Grøtli, P. Sujit, T. A. Johansen, and J. B. Sousa,
“Optimization of wireless sensor network and UAV data acquisition,”
Journal of Intelligent & Robotic Systems, vol. 78, no. 1, pp. 159–179,
2015.

[11] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A
tutorial on UAVs for wireless networks: Applications, challenges, and
open problems,” IEEE Communications Surveys & Tutorials, 2019.

[12] H. He, S. Zhang, Y. Zeng, and R. Zhang, “Joint altitude and beamwidth
optimization for UAV-enabled multiuser communications,” IEEE Com-
munications Letters, vol. 22, no. 2, pp. 344–347, 2018.

[13] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3D place-
ment of an unmanned aerial vehicle base station (UAV-BS) for energy-
efficient maximal coverage,” IEEE Wireless Communications Letters,
vol. 6, no. 4, pp. 434–437, 2017.

[14] M. Alzenad, A. El-Keyi, and H. Yanikomeroglu, “3D placement of
an unmanned aerial vehicle base station for maximum coverage of
users with different QoS requirements,” IEEE Wireless Communications
Letters, vol. 7, no. 1, pp. 38–41, 2018.

[15] R. Fan, J. Cui, S. Jin, K. Yang, and J. An, “Optimal node placement and
resource allocation for UAV relaying network,” IEEE Communications
Letters, vol. 22, no. 4, pp. 808–811, 2018.

[16] W. Du, W. Ying, P. Yang, X. Cao, G. Yan, K. Tang, and D. Wu,
“Network-based heterogeneous particle swarm optimization and its
application in uav communication coverage,” IEEE Transactions on
Emerging Topics in Computational Intelligence, 2019, in press, DOI:
10.1109/TETCI.2019.2899604.

[17] M. Ryerkerk, R. Averill, K. Deb, and E. Goodman, “A survey of
evolutionary algorithms using metameric representations,” Genetic Pro-
gramming and Evolvable Machines, pp. 1–38, 2019.

[18] C.-K. Ting, C.-N. Lee, H.-C. Chang, and J.-S. Wu, “Wireless heteroge-
neous transmitter placement using multiobjective variable-length genetic
algorithm,” IEEE Transactions on Systems, Man, and Cybernetics, Part
B (Cybernetics), vol. 39, no. 4, pp. 945–958, 2009.

[19] S. Lee, S. Lee, K. Kim, and Y. H. Kim, “Base station placement
algorithm for large-scale LTE heterogeneous networks,” PloS One,
vol. 10, no. 10, pp. 1–19, 2015.

[20] S.-C. Huang, M.-K. Jiau, and C.-H. Lin, “Optimization of the carpool
service problem via a fuzzy-controlled genetic algorithm,” IEEE Trans-
actions on Fuzzy Systems, vol. 23, no. 5, pp. 1698–1712, 2015.

[21] U. Maulik and S. Bandyopadhyay, “Fuzzy partitioning using a real-
coded variable-length genetic algorithm for pixel classification,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 41, no. 5, pp.
1075–1081, 2003.

[22] N. Weicker, G. Szabo, K. Weicker, and P. Widmayer, “Evolutionary
multiobjective optimization for base station transmitter placement with
frequency assignment,” IEEE Transactions on Evolutionary Computa-
tion, vol. 7, no. 2, pp. 189–203, 2003.

12

[23] Y.-H. Zhang, Y.-J. Gong, T.-L. Gu, Y. Li, and J. Zhang, “Flexible genetic
algorithm: A simple and generic approach to node placement problems,”
Applied Soft Computing, vol. 52, pp. 457–470, 2017.

[24] T.-M. Chan, K.-F. Man, K.-S. Tang, and S. Kwong, “A jumping-genes
paradigm for optimizing factory WLAN network,” IEEE Transactions
on Industrial Informatics, vol. 3, no. 1, pp. 33–43, 2007.

[25] Y.-J. Gong, M. Shen, J. Zhang, O. Kaynak, W.-N. Chen, and Z.-
H. Zhan, “Optimizing RFID network planning by using a particle
swarm optimization algorithm with redundant reader elimination,” IEEE
Transactions on Industrial Informatics, vol. 8, no. 4, pp. 900–912, 2012.

[26] S. Das, A. Abraham, and A. Konar, “Automatic clustering using an im-
proved differential evolution algorithm,” IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 38, no. 1, pp.
218–237, 2008.

[27] B. Wang, Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional
neural networks by variable-length particle swarm optimization for im-
age classification,” in 2018 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 2018, pp. 1–8.

[28] A. O. Adewumi and O. J. Adeleke, “A survey of recent advances in
vehicle routing problems,” International Journal of System Assurance
Engineering and Management, vol. 9, no. 1, pp. 155–172, 2018.

[29] Y. Chen, V. Mahalec, Y. Chen, X. Liu, R. He, and K. Sun, “Reconfig-
uration of satellite orbit for cooperative observation using variable-size
multi-objective differential evolution,” European Journal of Operational
Research, vol. 242, no. 1, pp. 10–20, 2015.

[30] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication
design for multi-UAV enabled wireless networks,” IEEE Transactions
on Wireless Communications, vol. 17, no. 3, pp. 2109–2121, 2018.

[31] C. Zhan, Y. Zeng, and R. Zhang, “Energy-efficient data collection in
UAV enabled wireless sensor network,” IEEE Wireless Communications
Letters, vol. 7, no. 3, pp. 328 – 331, 2018.

[32] P. Huang, Y. Wang, K. Wang, and Z. Liu, “A bilevel optimization
approach for joint offloading decision and resource allocation in co-
operative mobile edge computing,” IEEE Transactions on Cybernetics,
2019, in press, DOI:10.1109/TCYB.2019.2916728.

[33] K. Wang, K. Yang, and C. S. Magurawalage, “Joint energy minimization
and resource allocation in C-RAN with mobile cloud,” IEEE Transac-
tions on Cloud Computing, vol. 6, no. 3, pp. 760–770, 2018.

[34] K. Wang, P. Huang, K. Yang, C. Pan, and J. Wang, “Uni-
fied offloading decision making and resource allocation in me-
ran,” IEEE Transactions on Vehicular Technology, 2019, in press,
DOI:10.1109/TVT.2019.2926513.

[35] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[36] M. O. Akinsolu, B. Liu, V. Grout, P. I. Lazaridis, M. E. Mognaschi,
and P. Di Barba, “A parallel surrogate model assisted evolutionary
algorithm for electromagnetic design optimization,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 3, no. 2, pp.
93–105, 2019, in press, DOI: 10.1109/TETCI.2018.2864747.

[37] W. Du, W. Zhong, Y. Tang, W. Du, and Y. Jin, “High-dimensional robust
multi-objective optimization for order scheduling: A decision variable
classification approach,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 1, pp. 293–304, 2019.

[38] Y. Wang, B. Xu, G. Sun, and S. Yang, “A two-phase differential
evolution for uniform designs in constrained experimental domains,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 5, pp.
665–680, 2017.

[39] N. R. Sabar, J. Abawajy, and J. Yearwood, “Heterogeneous cooperative
co-evolution memetic differential evolution algorithm for big data opti-
mization problems,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 2, pp. 315–327, 2017.

[40] Z.-Z. Liu, Y. Wang, S. Yang, and K. Tang, “An adaptive framework to
tune the coordinate systems in nature-inspired optimization algorithms,”
IEEE Transactions on Cybernetics, vol. 49, no. 4, pp. 1403–1416, April
2019.

[41] Y. Wang, B.-C. Wang, H.-X. Li, and G. G. Yen, “Incorporating objective
function information into the feasibility rule for constrained evolutionary
optimization,” IEEE Transactions on Cybernetics, vol. 46, no. 12, pp.
2938–2952, 2015.

[42] Y. Wang and Z. Cai, “Combining multiobjective optimization with
differential evolution to solve constrained optimization problems,” IEEE
Transactions on Evolutionary Computation, vol. 16, no. 1, pp. 117–134,
2012.

[43] J. Zhang and A. C. Sanderson, “JADE: adaptive differential evolution
with optional external archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 5, pp. 945–958, 2009.

[44] Y. Wang, H. Liu, H. Long, Z. Zhang, and S. Yang, “Differential evolution
with a new encoding mechanism for optimizing wind farm layout,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 3, pp. 1040–1054,
2018.

Pei-Qiu Huang received the B.S. degree in au-
tomation and the M.S. degree in control theory
and control engineering both from the Northeastern
University, Shenyang, China, in 2014 and 2017, re-
spectively. He is currently pursuing the Ph.D. degree
in control science and engineering, Central South
University, Changsha, China. His current research
interests include evolutionary computation, bilevel
optimization, and mobile edge computing.

Yong Wang (M’08–SM’17) received the Ph.D. de-
gree in control science and engineering from the
Central South University, Changsha, China, in 2011.

He is a Professor with the School of Automa-
tion, Central South University, Changsha, China. His
current research interests include theory, algorithm
design, and interdisciplinary applications of compu-
tational intelligence.

Dr. Wang is an Associate Editor for the Swarm
and Evolutionary Computation. He was a Web of
Science highly cited researcher in Computer Science

in 2017 and 2018.

Kezhi Wang received the B.E. and M.E. degrees in
School of Automation from Chongqing University,
China, in 2008 and 2011, respectively. He received
the Ph.D. degree in Engineering from the University
of Warwick, U.K. in 2015. He was a senior research
officer in University of Essex, U.K. Currently he is
a Lecturer in Department of Computer and Informa-
tion Sciences at Northumbria University, U.K. His
research interests include wireless communication,
mobile edge computing and artificial intelligence.

Kun Yang received the Ph.D. degree from the
Department of Electronic & Electrical Engineering
of University College London (UCL), UK.

He is currently a Chair Professor in the School of
Computer Science and Electronic Engineering, Uni-
versity of Essex, leading the Network Convergence
Laboratory (NCL), UK. He is also an affiliated pro-
fessor at UESTC, China. His main research interests
include wireless networks and communications, data
and energy integrated networks, and computation-
communication cooperation. He manages research

projects funded by various sources such as UK EPSRC, EU FP7/H2020 and
industries. He has published 150+ journal papers.

He serves on the editorial boards of both IEEE and non-IEEE journals. He
is a Senior Member of IEEE (since 2008) and a Fellow of IET (since 2009).

	Introduction
	System Model and Problem Formulation
	Differential Evolution (DE)
	Proposed Approach

