Transcriptional Terminators Allow Leak-Free Chromosomal Integration of Genetic Constructs in Cyanobacteria

Kelly, Ciarán, Taylor, George M., Šatkutė, Aistė, Dekker, Linda and Heap, John T. (2019) Transcriptional Terminators Allow Leak-Free Chromosomal Integration of Genetic Constructs in Cyanobacteria. Microorganisms, 7 (8). p. 263. ISSN 2076-2607

[img]
Preview
Text
microorganisms-07-00263.pdf - Published Version
Available under License Creative Commons Attribution 4.0.

Download (1MB) | Preview
Official URL: https://doi.org/10.3390/microorganisms7080263

Abstract

Cyanobacteria are promising candidates for sustainable bioproduction of chemicals from sunlight and carbon dioxide. However, the genetics and metabolism of cyanobacteria are less well understood than those of model heterotrophic organisms, and the suite of well-characterised cyanobacterial genetic tools and parts is less mature and complete. Transcriptional terminators use specific RNA structures to halt transcription and are routinely used in both natural and recombinant contexts to achieve independent control of gene expression and to ‘insulate’ genes and operons from one another. Insulating gene expression can be particularly important when heterologous or synthetic genetic constructs are inserted at genomic locations where transcriptional read-through from chromosomal promoters occurs, resulting in poor control of expression of the introduced genes. To date, few terminators have been described and characterised in cyanobacteria. In this work, nineteen heterologous, synthetic or putative native Rho-independent (intrinsic) terminators were tested in the model freshwater cyanobacterium, Synechocystis sp. PCC 6803, from which eleven strong terminators were identified. A subset of these strong terminators was then used to successfully insulate a chromosomally–integrated, rhamnose-inducible rhaBAD expression system from hypothesised ‘read-through’ from a neighbouring chromosomal promoter, resulting in greatly improved inducible control. The addition of validated strong terminators to the cyanobacterial toolkit will allow improved independent control of introduced genes.

Item Type: Article
Uncontrolled Keywords: transcriptional terminators; cyanobacteria; Synechocystis; inducible expression; synthetic biology
Subjects: C100 Biology
C400 Genetics
C500 Microbiology
Department: Faculties > Health and Life Sciences > Applied Sciences
Depositing User: Elena Carlaw
Date Deposited: 24 Sep 2019 16:32
Last Modified: 31 Jul 2021 20:33
URI: http://nrl.northumbria.ac.uk/id/eprint/40836

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics