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Abstract 

The ingestion of oral glucose has been observed to facilitate memory performance in 

both elderly individuals and in young adults. However, fewer studies have 

investigated the effect of glucose on memory in children or adolescents. In the present 

study, the ingestion of a glucose laden drink was observed to enhance verbal episodic 

memory performance in healthy adolescents under conditions of divided attention, 

relative to a placebo drink. Further analyses found that this glucose memory 

facilitation effect was observed only in adolescents exhibiting better glucoregulatory 

efficiency. These findings demonstrate that the glucose memory facilitation effect can 

be generalised to younger individuals. The importance of controlling for treatment 

order in within-subjects designs investigating the glucose memory enhancement effect 

is also discussed. 
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The brain relies upon glucose as its primary fuel (Sieber & Traystman, 1992). 

In recent years, a rich literature has developed from both human and animal studies 

indicating that increases in circulating blood glucose can facilitate cognitive 

functioning (for a review see Messier, 2004). This phenomenon has been termed the 

‘glucose memory facilitation effect’ (Foster, Lidder, & Sünram, 1998). It has been 

suggested that older individuals may benefit to a greater degree from glucose 

administration, as healthy young individuals are close to their ‘cognitive peak’ (Foster 

et al., 1998). However, glucose has also been observed to facilitate memory in healthy 

young adults (e.g. Benton, Owens, & Parker, 1994; Foster et al., 1998; Sünram-Lea, 

Foster, Durlach, & Perez, 2001; Meikle, Riby, & Stollery, 2005). A meta-analytic 

review of the glucose memory facilitation effect has supported the view that verbal 

episodic memory is the cognitive domain that is most amenable to improvement 

subsequent to glucose ingestion (Riby, 2004).  

While an abundant literature now exists suggesting that glucose ingestion can 

facilitate verbal episodic memory in healthy young adults, it has also been suggested 

that glucose only reliably facilitates memory in this group of individuals under 

conditions of divided attention at encoding (Sünram-Lea, Foster, Durlach, & Perez, 

2002). Sünram-Lea and colleagues (2002) administered either a glucose or a placebo 

drink to healthy young adult participants, before presenting them with a list of to-be-

remembered words under one of four ‘divided attention’ conditions. Glucose was 

observed to facilitate memory recall, relative to placebo, when participants performed 

a secondary motor task or key tapping task concurrently with word list encoding. 

However, the authors failed to observe the glucose memory facilitation effect when 

participants were not required to perform a secondary task, or when cognitive demand 
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was increased by asking participants to recall a longer word list, with target items 

differentiated by the speaker’s gender.. 

By contrast, other researchers have observed that manipulating cognitive load, 

but not divided attention can induce a glucose memory facilitation effect in healthy 

young adults. For example, glucose has been demonstrated to enhance performance in 

these individuals on a difficult serial subtraction task, but not on a serial subtraction 

task associated with a relatively lower cognitive load (Kennedy & Scholey, 2000; 

Scholey, Harper, & Kennedy, 2001). In addition, Meikle, Riby and Stollery (2005) 

have reported that glucose facilitation of verbal episodic memory for serial position is 

more reliably observed in younger adults when target lists are longer. 

It has been further suggested that individual differences in peripheral glucose 

regulation may alter an individual’s sensitivity to glucose enhancement of memory. 

Glucose regulation is reflected by the phenomenon whereby blood glucose 

concentration rises for approximately 30 minutes subsequent to a glucose load, 

followed by a return to baseline blood glucose concentration - typically within 

approximately two hours (Donohoe & Benton, 2000). A link between glucoregulatory 

efficiency and cognitive functioning has now been well established (Wenk, 1989; 

Awad, Gagnon, Desrochers, Tsiakas, & Messier, 2002; Messier, 2005). More 

specifically, it has been reported that glucose cognitive enhancement effects are most 

profound in older adults with poorer glucose regulation (Hall, Gonder-Frederick, 

Chewning, Silvera, & Gold, 1989; Kaplan, Greenwood, Winocur, & Wolever, 2000; 

Messier, Tsiakas, Gagnon, Desrochers, & Awad, 2003).  These findings have also 

been replicated in younger individuals: young adult males with poor glucose 

regulation have also been observed to demonstrate superior paragraph recall 

subsequent to glucose ingestion, relative to ingestion of a saccharin control drink 
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(Craft, Murphy, & Wemstrom, 1994). In addition, younger individuals with poor 

glucose regulation have been shown to exhibit inferior performance on a verbal 

episodic memory task relative to better glucoregulators - an effect that is ameliorated 

if glucose is consumed prior to memory encoding (Messier, Desrochers, & Gagnon, 

1999). It has been theorised that glucose ingestion is most likely to facilitate memory 

in younger individuals exhibiting poor glucose regulation, as only in such individuals 

does blood glucose concentration remain elevated for a sufficient time period to exert 

a memory enhancing effect (Craft et al., 1994). By contrast, it has been reported that, 

in older adults, the glucose memory facilitation effect is more pronounced in those 

individuals exhibiting relatively better glucose regulation (Craft et al., 1994; Messier, 

Gagnon, & Knott, 1997; Meikle, Riby, & Stollery, 2004; Riby, Meikle, & Glover, 

2004). 

While the effect of glucose on memory has been well investigated in younger 

and older adults, fewer studies have investigated glucose effects on memory in 

children and adolescents. Lapp (1981), reported that subsequent to ingestion of a 

carbohydrate rich meal (which elevated blood glucose concentration), healthy 

adolescents outperformed a fasted control group of adolescents on a paired-associate 

learning task. The findings of Lapp’s (1981) study may, however, reflect the negative 

effects of fasting on memory, rather than the positive effects of elevated blood 

glucose (see Doniger, Simon, & Zivotofsky, 2006). It has also been reported that 

attentional capacity benefits from ingestion of a confectionary snack in school 

children (Busch, Taylor, Kanarek, & Holocomb, 2002). Further, the consumption of 

breakfast has been associated with superior attention and memory in children 

(Wesnes, Pincock, Richardson, Helm, & Hails, 2003), an effect that is more apparent 

subsequent to the ingestion of breakfast meals associated with a slower and more 
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prolonged release of glucose into the bloodstream (Mahoney, Taylor, Kanarek, & 

Samuel, 2005; Ingwersen, Defeyter, Kennedy, Wesnes, & Scholey, 2007). However, 

the macronutrient composition of the different treatments used in these studies renders 

it difficult to infer whether glucose, or other potentially cognitive enhancing 

nutritional components of these treatments (Gibson & Green, 2002), were responsible 

for the findings. 

Therefore, the effect of pure glucose ingestion on episodic memory in healthy 

adolescents has not been well established. Adolescence is a unique period with regard 

to brain development (Giedd, Blumenthal, Jeffries, Castellanos, Liu, Zijdenbos et al., 

1999), and also a time of increased vulnerability for experiencing heightened stress 

(Byrne, Davenport, & Mazanov, 2007). This is relevant, given that stress hormones 

(i.e. cortisol) are known to impact upon glucose regulation (Plat, Byrne, Sturis, 

Polonsky, Mockel, Fery et al., 1996). While the measurement of stress hormone levels 

is beyond the scope of the present investigation, it is nevertheless important to 

establish whether glucose ingestion has a similar effect on memory in this age group 

compared with other populations in which the glucose memory facilitation effect has 

been demonstrated.  

The aim of the present study was therefore to investigate the influence of 

glucose ingestion and glucoregulatory efficiency on verbal episodic memory in 

healthy adolescents. In line with previous research conducted with healthy young 

adults, memory encoding took place under dual task conditions (Foster et al., 1998; 

Sünram-Lea et al., 2001, 2002). It was hypothesised that oral glucose ingestion would 

enhance memory for a supraspan word list in healthy adolescents, relative to a 

sweetness matched placebo. It was further hypothesised that the glucose memory 

facilitation effect would be observed only in the healthy adolescent participants with 
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poor glucose regulation, in accordance with previous findings indicating that glucose 

facilitation of memory is observed only in young adults with poor glucose regulation 

(Craft et al., 1994; Messier et al., 1999). 

  

Method 

Participants 

 A total of 32 healthy adolescents participated in the present study (12 males, 

20 females), ranging in age between 14 and 17 years (Mage = 15.6, SDage = 0.9). 

Participants were recruited from independent and government secondary schools in 

Perth, Western Australia. One participant withdrew from the study after becoming 

nauseous subsequent to consumption of the glucose drink. A further five participants 

attended only one testing session, and thus were not included in any of the analyses 

reported here. An additional participant reported being non-compliant with the fasting 

instructions of the study. This participant was also removed from the data set for all 

analyses in order to avoid any potential confounds from a ‘second meal effect’. 

Therefore, a total of 25 participants were included in the final analyses. 

Prior to testing, all participants and parents of participants were provided with a 

questionnaire in order to screen for the following exclusion criteria:  

 Diagnosis of diabetes mellitus and / or a history of hypoglycaemic or 

hyperglycaemic episodes, 

 Lactose intolerance, 

 Allergies to foods administered as part of the experimental procedure, 

 Diagnosis of phenylketonuria (PKU), 

 Needle / blood phobia or objection to having blood samples taken (e.g. for 

religious or cultural reasons), 
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 Diagnosis of an eating disorder, or 

 Having sought medical advice for a weight control issue. 

This questionnaire has been used to screen for exclusion criteria in other 

investigations of nutritional influences on psychological functioning in our laboratory 

(e.g. Foster, Smith, Woodman, Zombor, & Ashton, 2007). A ‘yes’ response by the 

participant or their parent to any of the exclusion criteria listed above renders that 

participant ineligible to participate in the study. Based on both parental and participant 

responses to the screening questionnaire, all remaining 25 participants were eligible to 

participate in the study. 

Ethics approval for the present study was obtained from the Human Research 

Ethics Committee of the University of Western Australia. 

Treatment and Design 

A within subjects design was employed. There was a single within participants 

factor (treatment), with two levels (glucose, placebo). A subsequent mixed model 

design also incorporated a single between subjects factor (treatment order), with two 

levels (glucose first, placebo first).  

In order to analyse whether individual differences in glucose regulation 

impacted upon the glucose memory facilitation effect, a median split was performed 

on the data for the area under the glucose response curve (AUC) for each participant. 

The above mixed model analysis was then repeated i) for individuals demonstrating 

relatively better glucose regulation and ii) for individuals demonstrating relatively 

poorer glucose regulation. 

The glucose treatment consisted of 25 g ‘Glucodin’ Glucose Powder (Boots 

Healthcare Australia Pty Ltd) dissolved in 300 ml water. The placebo treatment 

consisted of five ‘Equal’ tablets (10% Aspartame, The Merisant Company) dissolved 
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in 300 ml water. This quantity of aspartame was matched for sweetness with 25 g 

glucose powder when dissolved in 300 ml water (Sunram-Lea, Dewhurst, & Foster, 

2008). Participants attended two test sessions. They were administered one treatment 

(i.e. glucose or placebo) in the first session and the complementary treatment in the 

second session. Treatment order was initially counterbalanced, with 16 participants of 

the original 32 participants assigned to each test order. However, two thirds of the 25 

participants included in the final data analysis were administered the glucose 

treatment in the first testing session, as six of the seven participants whom it was 

necessary to exclude from the final analysis were to be administered the glucose 

treatment in the second testing session 

Materials 

Modified California Verbal Learning Test-II (CVLT-II). The CVLT-II (Delis, 

Kramer, Kaplan, & Ober, 2000) is a test of immediate, short delay and long delay 

episodic memory for a 16-item supraspan word list. The test comprises a standard 

form and an alternate form, which can be used for a repeat testing session. The 

reliability of the alternate form has been demonstrated, with reliability coefficients for 

immediate, short and long delayed free recall ranging between 0.72 and 0.79 across 

the different recall phases of the test (Delis et al., 2000; Strauss, Sherman, & Spreen, 

2006). In the present study, participants were administered one form in the first 

session, and the complementary form in the second session, in a counterbalanced 

order (of the 25 participants included in the analyses reported here, 13 were 

administered the standard form first, and 12 were administered the alternate form 

first). The order of CVLT-II administration was additionally counterbalanced with 

treatment order. The modified version of the CVLT-II employed in the present study 

was extended to a list length of 20 items. The lists comprise five items from each of 
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four semantic categories. The word list was recorded on audiocassette and played five 

times to the participants, with an immediate free recall trial following each 

presentation of this list (List A). Immediately subsequent to the fifth immediate free 

recall trial, an interference list (List B) was played on audiocassette to the participants, 

followed by an immediate free recall trial for List B items. The CVLT-II additionally 

comprises free recall phases and cued recall phases (in which participants are 

provided with the semantic categories from which the items are drawn, as recall cues) 

at a short and long delay. Details pertaining to the timing of the modified CVLT-II 

recall phases are included in the Procedure section, below.  

Simultaneously with encoding of the modified CVLT-II word lists, 

participants were required to perform a secondary motor task, to increase the 

difficulty of the memory task by dividing attention across the two tasks (Sünram-Lea 

et al., 2002). Participants were told that performance on the word recall task and hand 

movement task was equally important, and that they should aim to perform equally 

well on both tasks. Participants were also told that their hand movements were being 

recorded by a camcorder, so that the researchers could assess their performance at a 

later time. The camcorder was used to induce compliance with task instructions to 

perform both tasks equally well, although no such recording actually took place. Two 

different motor sequences were performed synchronously with both hands.  

Participants were required to perform a ‘fist’ – ‘chop’ – ‘slap’ motor sequence in the 

2.5 s interval between each of the first five items of the modified CVLT-II. Between 

each of the next five items of the modified CVLT-II (i.e. items six to ten), participants 

were required to perform a ‘back-slap’ – ‘chop’ – ‘fist’ motor sequence. Participants 

were then required to revert back to the first ‘fist’ – ‘chop’ – ‘slap’ sequence between 

items 11 and 15, and then back to the second ‘back-slap’ – ‘chop’ – ‘fist’ sequence for 
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items 16 to 20. Participants were not informed when to switch from one sequence to 

the other. They therefore had to keep track of when to switch from one sequence to 

the next themselves.  

Bond-Lader Questionnaire.  The Bond-Lader scale used here (Bond & Lader, 

1974) has also been employed in other studies investigating nutrition, mood and 

cognitive functioning (e.g. Wesnes et al., 2003; Foster et al., 2007).  This instrument 

requires participants to rate their level of ‘alertness’, ‘contentedness’, ‘calmness’ and 

‘satiety’ on 19 bipolar scales. Three additional items were added to the original Bond-

Lader scale for the purpose of the present study, in order to investigate self-reported 

fluctuations in satiety throughout the test session.  The ratings were made by placing a 

mark at the relevant point on a 100 mm line, with the end of each line reflecting the 

relevant extremes of the dimension being rated (e.g. ‘alert’ versus ‘drowsy’).  The 

Bond-Lader scale used in this study is considered to be a useful measure of moment-

to-moment fluctuations in mood and affect.  A higher score indicates a higher level of 

the relevant dimension.  This application of the Bond-Lader scale is consistent with 

previous work (e.g. Wesnes et al., 2003; Foster et al., 2007). 

Blood Glucose Equipment.  Blood glucose concentration was measured using 

a MediSense Optium Blood Glucose Meter, MediSense Optium Point-of Care 

Disposable Blood Glucose Test Strips and a MediSense Auto-Lancing Device with 

thin lancets (Abbott Diagnostics Division, Doncaster, Victoria, Australia).  One drop 

of capillary blood was obtained from the fingertip of each participant for each 

measurement of blood glucose using the lancing device.  The consistency and 

accuracy of MediSense Blood Glucose Meters has been reported to be very high 

(Matthews, Holman, Brown, Steenson, Watson, Hughes et al., 1987). According to 

the manufacturer’s user guide for the blood glucose test strips, the reliability of this 
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sampling procedure has been demonstrated, with the inter-assay variation for this 

sampling procedure ranging by no more than 2.9% to 5.1%. The validity of this 

procedure has also been demonstrated by the manufacturer (r = 0.96-0.98 between this 

method and the laboratory reference method).  

Procedure 

Participants attended two testing sessions. They were instructed not to 

consume any food or drink, other than water, from 10:30 pm on the evening prior to 

each of these testing sessions. Written informed consent was obtained prior to the first 

test session from participants and their parents. At this time, potential participants and 

their parents were informed that the the purpose of the study was to investigate the 

effect of glucose ingestion on memory performance. All test sessions began between 

8:00 and 9:00 am. The first test session commenced with all participants being 

weighed. Height measurements were also obtained. Participants then completed the 

modified Bond-Lader questionnaire, and baseline blood glucose concentrations were 

measured. Immediately following the measurement of blood glucose concentrations, 

participants consumed one of the two treatments. Participants were blind as to the 

contents of the drinks, told only that they comprised of a “sweet tasting liquid”. 

Participants were allowed 10 minutes to consume their designated treatment. Ten 

minutes following the completion of treatment consumption, blood glucose 

concentrations were measured and participants were administered the modified Bond-

Lader questionnaire for the second time. Participants then completed the immediate 

free-recall trials of the modified CVLT-II (trials 1-5), followed by the modified 

CVLT-II interference word list. Motor sequences were performed during encoding of 

each CVLT-II list. Participants were subsequently administered the third modified 

Bond-Lader questionnaire, and a third measurement of blood glucose concentration 
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was obtained. Following this, participants completed the short delay recall phases of 

the CVLT-II. Following a short break (10 minutes), the final measurements of blood 

glucose concentrations were recorded, and the final administration of the modified 

Bond-Lader questionnaire was given. The long delay recall phases of the CVLT-II 

were then completed. Following the completion of the testing procedure, participants 

were offered a breakfast cereal meal, before returning to normal school classes.  

A second testing session was conducted exactly one week subsequent to the 

first testing session. The second testing session was identical to the first testing 

session except that measurements of height and weight were not obtained. Participants 

were also administered the complementary treatment (glucose or aspartame) and 

version of the modified CVLT-II (standard form or alternate form) to that 

administered in the first testing session.  

 

Results 

Blood Glucose Concentration 

A significant treatment x time interaction effect was observed, F(3, 22) = 

31.73, p < .001, with a large effect size (partial η
2
 = .81). Post-hoc pairwise t-tests 

revealed that, as anticipated, blood glucose concentrations were significantly higher 

for the glucose condition, relative to the placebo condition, 10 minutes, t(24) = 6.81, p 

< .001, 40 minutes,  t(24) = 8.35, p < .001, and 60 minutes, t(24) = 3.16, p < .01, post-

treatment delivery. Blood glucose concentrations between the glucose and placebo 

conditions did not differ at baseline, t(24) = -0.90, n.s. Subsequent to glucose 

ingestion, post-hoc pairwise t-tests revealed that blood glucose concentrations within 

the glucose condition were significantly higher than baseline 10 minutes, t(24) = -

6.38, p < .001,  40 minutes, t(24) = -7.67, p < .001  and 60 minutes, t(24) = -3.17, p < 
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.01, post-treatment delivery. Within the glucose condition, post-hoc pairwise t-tests 

also revealed that blood glucose concentrations were significantly higher 40 minutes 

post-treatment, relative to 10 minutes post-treatment, t(24) = -3.24, p < .01 and that 

blood glucose concentrations were significantly lower 60 minutes post-treatment, 

relative to 40 minutes post-treatment delivery, t(24) = 5.85, p < .001. As anticipated, 

post-hoc t-tests did not reveal any significant differences between blood glucose 

concentrations across the test session for the placebo condition (see Figure 1). 

 

INSERT FIGURE 1 ABOUT HERE 

 

Bond-Lader Scale 

Time x treatment interactions failed to reach significance on the alertness, 

contentedness, calmness and satiety subscales of the Bond-Lader questionnaire. 

A significant effect of time was observed on the alertness subscale, F(3, 22) = 

6.38, p > .01, with a moderate effect size (partial η
2
 = .46).  Post-hoc Bonferroni 

pairwise comparisons revealed that self-rated alertness, collapsed across treatment 

conditions, was significantly higher 10 minutes post-treatment delivery than at 

baseline, p = .001. All other comparisons were nonsingificant on the alertness 

subscale. 

A significant effect of time was also observed on the calmness subscale, F(3, 

22) = 7.83, p = .001, with the effect size being large (partial η
2
 = .52).  Post-hoc 

Bonferroni pairwise comparisons revealed that self-rated calmness, collapsed across 

treatment conditions, was significantly lower 10 minutes post-treatment delivery than 

at baseline, p = .001. Overall self-rated calmness was also higher a) at 40 minutes 
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post-treatment, p < .05, and b) at 60 minutes post-treatment, p < .05, than c) at 10 

minutes post-treatment. 

There was also a significant effect of time on the satiety subscale, F(3, 22) = 

5.08, p < .01, with a moderate effect size (partial η
2
 = .41).  Post-hoc Bonferroni 

pairwise comparisons revealed that self-rated satiety, collapsed across both treatment 

conditions, was significantly lower 60 minutes post-treatment than a) at 10 minutes 

post-treatment, p = .01, and b) 40 minutes post-treatment, p < .01. 

No significant effect of time was observed on the contentedness subscale. 

There was no significant effect of treatment on any of the four Bond-Lader subscales.  

Modified CVLT-II 

 Immediate Free Recall. An analysis of free recall learning did not reveal any 

significant differences between the two treatment conditions across the five 

immediate free recall trials. 

Short and Long Delay Recall. No significant effects of treatment were 

observed on any of the free or cued delayed recall phases of the modified CVLT-II. 

However, an analysis of the total items recalled at each recall phase in the two test 

sessions, collapsed across both treatment groups, demonstrated evidence of order 

effects between the two testing sessions. It is possible that any potential treatment 

effects were masked by this order effect. Therefore, treatment order was entered into 

the subsequent analyses as a between subjects factor, in order to enable systematic 

analysis of treatment x treatment order interactions. 

 Treatment x Treatment Order Interactions. A significant treatment x treatment 

order interaction effect was observed on short delay cued recall, F (1, 23) = 19.93, p < 

.001, long delay free  recall, F (1, 23) = 16.31, p = .001,  and long delay cued recall, F 

(1, 23) = 10.55, p < .01. Post-hoc pairwise t-tests revealed that on short delay cued 
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recall, long delay free recall and long delay cued recall, memory performance was 

significantly better in the glucose condition relative to the placebo condition for those 

participants who consumed the glucose treatment in the second testing session. For 

these three delayed recall phases, there was no significant difference between the 

glucose and placebo conditions for participants who consumed glucose in the first 

testing session (see Table 1). Significance values of all post-hoc tests reported here 

were Bonferroni adjusted. 

 

INSERT TABLE 1 ABOUT HERE 

 

 Glucose regulation. The area under the glucose response curve (AUC) was 

calculated for each participant, as an indicator of that individual’s glucoregulatory 

efficiency. A median split was subsequently performed on these data, to establish i) a 

group of better glucose regulators and ii) a group of poorer glucose regulators. 

Demographic and blood glucose data for each of these groups is displayed in Table 2. 

The poorer glucose regulators had a significantly elevated blood glucose 

concentration, relative to the better glucose regulators, 40 minutes and 60 minutes 

post-treatment delivery. 

 

INSERT TABLE 2 ABOUT HERE 

 

A significant treatment x treatment order interaction effect was observed for 

the better glucose regulators on short delay free recall, F (1, 20) = 7.04, p < .05, short 

delay cued recall, F (1, 10) = 13.61, p < .01, long delay free  recall, F (1, 10) = 13.47, 

p < .01  and long delay cued recall, F (1, 10) = 22.66, p = .001. Specifically, post-hoc 
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pairwise t-tests (Bonferroni adjusted) revealed that on long delay free recall and on 

long delay cued recall, memory performance was significantly better in the glucose 

condition relative to the placebo condition for those participants who consumed the 

glucose treatment in the second test session (see Table 3). 

 

INSERT TABLE 3 ABOUT HERE 

 

Discussion 

The present study investigated the effect of oral glucose administration and 

glucoregulatory efficiency on verbal episodic memory in healthy adolescents. 

Subsequent to the ingestion of a glucose laden drink or a sweetness matched placebo, 

participants were required to perform a secondary hand movement task during 

encoding of a supraspan word list. Blood glucose concentration was significantly 

elevated across the test session for the glucose condition, relative to the placebo 

condition.  

It was hypothesised prior to the present study that ingestion of glucose would 

facilitate memory performance, relative to the placebo control condition. An order 

effect was observed in the present study, in that improved memory performance was 

observed in the second test session, relative to the first test session, irrespective of 

whether the glucose or placebo treatment was administered. When these order effects 

were controlled for statistically, a significant glucose memory facilitation effect was 

observed on short delay cued recall, long delay free recall and long delay cued recall. 

This finding is in line with previous research suggesting that glucose facilitates 

memory in healthy young adults under conditions of divided attention at encoding 
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(Foster et al., 1998; Sünram-Lea et al., 2001, 2002; Riby, McMurtrie, Smallwood, 

Ballantyne, Meikle, & Smith, 2006). 

The second hypothesis in the present study was that the glucose memory 

facilitation effect would be more pronounced in the poorer glucoregulators. In 

contrast to this hypothesis, glucose was observed to enhance memory, in a treatment 

order-specific manner, on both components of long delay recall for adolescents 

exhibiting relatively better glucose regulation, while no significant effect of glucose 

on memory was observed for the poorer glucoregulators. 

For participants administered glucose in the second testing session, 

significantly more items were recalled subsequent to glucose ingestion, compared to 

the placebo received in the first test session, on the following measures: short delay 

cued recall, long delay free recall and long delay cued recall. This difference reflects 

the combined influence of order and glucose administration on verbal episodic 

memory. By contrast, the difference in the total number of items recalled between the 

glucose and placebo conditions for those participants who consumed glucose in the 

first session was not found to be significant for any of the CVLT-II recall phases. 

Given that treatment order was controlled for statistically in the data analysis, there is 

no reason to suspect that the findings of the study were compromised by the fact that 

treatment order was not counterbalanced in the final study sample. 

To our knowledge, the present study represents the first report that the glucose 

memory facilitation effect can be extended to healthy adolescent participants. 

Evidence for glucose enhancement of memory has previously been reported in young 

adults (Foster et al., 1998; Sünram-Lea et al., 2001, 2002; Riby et al., 2006), elderly 

participants (Manning, Hall, & Gold, 1990; Parsons & Gold, 1992; Craft et al., 1994; 

Kaplan et al., 2000; Riby et al., 2004) and even in young infants, who demonstrate 
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greater remembering of a vocal sound (measured via head movements toward the 

source of spoken words) subsequent to glucose ingestion (Horne, Barr, Valiante, 

Zelazo, & Young, 2006). However, whether uniform neurocognitive mechanisms are 

responsible for subserving the observed glucose facilitation effects across all of these 

age groups is unknown. For example, the hippocampus is thought to be involved in 

the mediation of the glucose memory enhancement effect (Winocur, 1995; Riby, 

2004), yet temporal lobe brain structures are known to undergo significant 

neuroanatomical development during childhood and adolescence (Giedd et al., 1999). 

Further, adolescents demonstrate a greater susceptibility to abnormally high stress 

levels relative to other age groups (Byrne et al., 2007), which may be relevant given 

that the glucose memory facilitation effect may be modulated by the established 

interaction between glucose administration and stress-related circulating 

glucocorticoid levels (Fernández-Real, Ricart, & Casamitjana, 1997; Gibson, 

Checkley, Papadopoulos, Poon, Daley, & Wardle, 1999; Gonzalez-Bono, Rohleder, 

Hellhammer, Salvador, & Kirschbaum, 2002; Smith, 2002). This question should be 

addressed in future research investigations.  

The within subjects design is the most sensitive and powerful study design in 

this area of research, as this methodology permits participants to serve as their own 

control (Riby, 2004). However, the present study highlights the importance of 

controlling for treatment order effects when employing a within subjects design, even 

when using two independent but matched forms of the same task, such as the versions 

of the modified CVLT-II used in this investigation. This is especially important in 

context of the relative sensitivity of the glucose memory facilitation effect (Foster et 

al., 1998). Learning strategies, such as semantic clustering, are more likely to be 

employed during performance of cognitive tasks such as the CVLT-II, in which 
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stimuli are drawn from shared semantic categories (which are used as recall cues).  

Although purely speculative, a further possibility is that participants are likely to feel 

less stressed in the second testing session, owing to greater familiarity with the testing 

procedure. If this is the case, it may well be that glucocorticoid (i.e. cortisol) levels 

were higher during the first testing session, relative to the second testing session. This 

is relevant given that acute elevation of glucocorticoids is known to be detrimental to 

episodic memory performance when the to-be-remembered material is unrelated to 

the source of the stressor (for a review see Wolf, 2003). While it was beyond the 

scope of the present study to investigate systematically whether stress and 

glucocorticoid levels modulated memory performance subsequent to glucose 

ingestion, this question may be an avenue for future research in this area.  

A further finding of the present study was that an order-specific glucose 

memory facilitation effect was observed for adolescents exhibiting relatively better 

glucoregulatory efficiency, but not in the relatively poorer glucose regulators. 

Interestingly, this finding is inconsistent with previous research reporting a glucose 

enhancement effect only in healthy young adults exhibiting poor glucose regulation 

(Craft et al., 1994; Messier et al., 1999). Craft et al. (1994) observed that a) older 

males with better glucose regulation, and b) younger males with poorer glucose 

regulation, demonstrated superior memory performance subsequent to glucose 

ingestion. However, quantitative blood glucose profiles were, in fact, similar for these 

two groups, a) and b) above (Craft et al., 1994). An implication of this finding is that 

rather than glucoregulatory efficiency per se determining susceptibility for glucose 

facilitation of memory, it may actually be that a glucose memory enhancement effect 

is observed only when blood glucose concentration is located within an optimal range 

to induce memory facilitation. This suggestion also appears consistent with the 
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observation that individual differences in glucoregulatory efficiency shift the inverted-

U shaped dose-response curve (relating blood glucose concentration to memory 

performance) for the glucose memory facilitation effect (Parsons & Gold, 1992). 

Notwithstanding this suggestion, the blood glucose concentration observed after 

glucose treatment in the better glucoregulators in the present study (at which memory 

enhancement was observed) was considerably lower than the blood glucose 

concentration at which memory facilitation has been observed previously in adults 

with poorer glucose regulation (Craft et al., 1994; Messier et al., 1999). It is, however, 

possible that a different dose-response relationship exists for children and adolescents, 

and adults. This issue should be addressed in future research. 

The large variation in methodology between studies in this area makes it 

challenging to draw clear comparisons between studies. For example, different studies 

have used diverse criteria for defining glucoregulatory efficiency. In the present study, 

and in other investigations (Kaplan et al., 2000; Awad et al., 2002; Sunram-Lea et al., 

2008), AUC was used as a marker of glucoregulatory efficiency. However, other 

studies have used a range of criteria, including i) peak blood glucose concentration 

(Hall et al., 1989; Manning et al., 1990), ii) the extent of recovery to baseline levels 

after a pre-determined interval (Craft et al., 1994; Messier et al., 1997; Messier et al., 

1999; Knott, Messier, Mahoney, & Gagnon, 2001; Meikle et al., 2004), iii) the change 

in blood glucose concentration between defined time-points (Riby et al., 2004), iv) β-

cell function and insulin resistance (Kaplan et al., 2000) and v) results of an oral 

glucose tolerance test (Donohoe & Benton, 2000; Messier et al., 2003). AUC was 

selected as the measure of glucoregulatory efficiency in the present study, as this is 

the only measure of the increase in blood glucose after glucose intake that 

incorporates a range of measurements over time (Messier et al., 2003). 
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It is important to note that in the present study (and in human studies of the 

glucose memory facilitation effect more generally) reported blood glucose 

concentrations reflect the blood plasma concentration of glucose. Glucose crosses the 

blood-brain barrier via a facilitated glucose transport mechanism. However, plasma 

glucose concentration does not necessarily reflect the concentration of glucose in the 

extracellular fluid of the brain regions which mediate memory (McNay & Gold, 

2002). On this basis, an alternative potential explanation of the present study finding 

that glucose only improved memory in adolescents exhibiting relatively better 

glucoregulatory efficiency is that the “better glucoregulators” may, in fact, have a 

greater capacity for facilitated glucose transport across the blood-brain barrier. This 

proposition is purely speculative. However, it may well be that although the observed 

plasma glucose concentrations in the “better glucoregulators” were relatively lower 

across the test session, hippocampal extracellular fluid glucose concentration in these 

individuals was relatively higher than the “poorer glucoregulators”, resulting in 

enhanced memory performance in the “better glucoregulators”.  

One further limitation of the present study is that due to the restricted sample 

size, no analysis comparing the effects of glucose and glucose regulation on memory 

performance between male and female participants was afforded. This could be a 

potentially relevant consideration, given that the interplay between glucoregulation 

and gender is thought to be relevant with regard to the glucose memory facilitation 

effect (Craft et al., 1994). Future research in this area should investigate further the 

relationship between age and gender on glucose regulation, and the influence of this 

relationship on the glucose memory facilitation effect. The participants in the present 

study all exhibited blood glucose concentrations within normal limits (e.g. Messier, 

2005). Therefore, it may also be of interest in future work to investigate the effect of 
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glucose on memory in adolescents exhibiting glucoregulatory efficiency outside of the 

normal range. In this context, it is important to note that the glucose load delivered to 

participants in the present study was 25 g, whereas the glucose load of a standard oral 

glucose tolerance test is 75 g. The relatively smaller glucose dose administered in the 

current study may therefore not be sufficient to detect impairments in glucoregulatory 

efficiency. 

In summary, the present study investigated the effect of glucose ingestion on 

verbal episodic performance in healthy adolescents. Encoding of memory materials 

was undertaken under dual task conditions. A significant order effect was observed, in 

that superior performance was seen in the second testing session, relative to the first 

testing session, irrespective of treatment condition. When this order effect was 

controlled for statistically, the glucose memory facilitation effect was observed. When 

glucoregulatory efficiency was also considered, only the relatively better glucose 

regulators demonstrated the glucose memory enhancement effect. The findings of this 

study suggest that the glucose memory facilitation effect, previously observed in 

adults, can be extended to adolescents. Further research is warranted to investigate in 

greater depth the relationship between age, glucoregulatory efficiency, glucose dose 

and gender effects on memory. 
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Table 1 

 CVLT-II delayed recall results for the first and second testing session for the glucose and placebo condition, arranged by treatment order. 

Mean values are displayed, with standard deviations in parentheses. 

 Glucose First   Placebo First  

Modified CVLT-II recall phase Glucose Placebo p  Glucose Placebo p 

Short delay free recall 11.1 (4.8) 13.7 (4.6) -  12.6 (4.7) 11.3 (2.9) - 

Short delay cued recall*** 12.8 (2.7) 14.5 (3.9) n.s.  14.9 (3.5) 11.2 (3.0) .01 

Long delay free recall*** 12.6 (3.5) 14.7 (4.3) n.s.  14.2 (4.1) 10.5 (3.8) < .05 

Long delay cued recall** 13.9 (2.9) 15.1 (3.8) n.s.  14.8 (3.6) 11.4 (3.5) < .05 

Treatment x Treatment Order Interactions: **p<.01. ***p < .001 
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Table 2 

Demographic details and blood glucose data for the better and poorer glucose 

regulation groups. 

 Better regulators Poorer regulators p 

Age (years) 15.7 (0.9) 15.5 (1.0) n.s. 

BMI (kg/m
2
) 22.6 (3.0) 21.7 (5.0) n.s. 

Fasting blood glucose (mmol/L) 5.3 (0.5) 5.0 (0.5) n.s. 

10-min blood glucose (mmol/L) 6.1 (0.7) 6.0 (0.6) n.s. 

40-min blood glucose (mmol/L) 6.2 (0.6) 7.8 (0.6) < .001 

60-min blood glucose (mmol/L) 5.3 (0.7) 6.7 (1.2) .001 

AUC
a
 34.6 (27.4) 117.6 (28.6) < .001 

a
The equation for the AUC calculation for the glucose testing session (Awad et al., 

2002; Sunram-Lea et al., 2008) is as follows: [((BGC10 – BGC0)/2) x (10 – 0)] + 

[{((BGC10 – BGC0) + (BGC40 – BGC0))/2} x (40 – 10)] + [{((BGC40 – BGC0) + 

(BGC60 – BGC0))/2} x (60 – 40)]. 
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Table 3 

CVLT-II delayed recall results for the first and second testing session for the glucose and placebo condition, arranged by treatment order, for 

the better glucoregulators. 

 Glucose First   Placebo First  

Modified CVLT-II recall phase Glucose Placebo p  Glucose Placebo p 

Short delay free recall* 7.7 (4.9) 12.8 (5.0) n.s.  13.6 (4.9) 10.6 (3.4) n.s. 

Short delay cued recall** 10.7 (1.7) 13.4 (4.7) n.s.  15.6 (4.3) 11.0 (2.8) n.s. 

Long delay free recall** 10.1 (3.2) 13.4 (5.5) n.s.  14.8 (5.1) 10.2 (2.8) < .05 

Long delay cued recall*** 11.4 (2.1) 14.3 (4.7) n.s.  15.6 (4.3) 10.0 (3.5) < .01 

Treatment x Treatment Order Interactions: *p < .05. **p < .01. ***p  <  .001 
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Figure 1 

Blood glucose concentrations for the glucose and placebo treatment conditions. 


