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Abstract: Most common types of defects for composite are debond and delamination. It is difficult to detect the 

inner defects on a complex shaped specimen by using conventional optical thermography nondestructive testing 

(NDT) methods. In this paper, a hybrid of spatial and temporal deep learning architecture for automatic 

thermography defects detection is proposed. The integration of cross network learning strategy has the capability 

to significantly minimize the uneven illumination and enhance the detection rate. The probability of detection 

(POD) has been derived to measure the detection results and this is coupled with comparison studies to verify the 

efficacy of the proposed method. The results show that visual geometry group-Unet (VGG-Unet) cross learning 

structure can significantly improve the contrast between the defective and non-defective regions. In addition, 

investigation of different feature extraction methods in which embedded in deep learning is conducted to 

optimize the learning structure. To investigate the efficacy and robustness of the proposed method, experimental 

studies have been carried out for inner debond defects on both regular and irregular shaped carbon fiber reinforced 

polymer (CFRP) specimens.  
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1 Introduction 

Composite materials are important structural materials in which has been widely used in aerospace, wind 

turbine blades and etc. The defects produced during manufacture and in-service of laminated composites lead to 

potential safety hazard to the device as well as resulting in immeasurable losses [1]. Therefore, non-destructive 

testing and evaluation (NDT&E) is the key technology to guarantee the quality of major construction equipment 

manufacturing and operation safety.  

At present, different NDT&E technology has been used to assess the internal quality of CFRP such as 

penetrant testing (PT), eddy current testing (ECT), ultrasonic testing (UT), and infrared thermography (IT) [2]. 

Compared with traditional detection technology, optical pulsed thermography (OPT) has the advantages of large 

single detection area, fast speed, non-contact, field application, safety and simple operation [3]. In recent years, it 

has been widely studied in the field of NDT&E for composite materials, and gradually become an important 

means to analyze the failure reasons. 

Thermal images using the OPT system suffer from edge blurring, uneven heating and low resolution. In order 

to solve the above problems, different feature extraction algorithms are applied. Principal component analysis 

algorithm (PCA) is a commonly used algorithm for extracting defect information in time series [4]. In combing 

both spatial and temporal information, PCA enhances the detectability of singular regions [5]. Thermographic 
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signal reconstruction (TSR) [6] eliminates high frequency noise and enhances the visibility of defects by 

approximate the temperature evolution at each pixel in n-degree polynomial function. Finally, n+1 frame 

images are reconstructed from the polynomial coefficients. Hajrya R et al. [7] applied independent component 

analysis (ICA) in health structure monitoring. It analyzed the symmetric matrix obtained from the hybrid matrix, 

and defined the damage index (DI). Cheng L et al. [8] combined PCA and ICA to highlight abnormal patterns 

while extracting orthogonal heat map features. Pulsed phase thermography (PPT) [9-10] is a method for 

transforming time domain features into frequency domain, extracting defect information from frequency domain 

information, and eliminating noise. According to the sparsity characteristic of the infrared heat map with defects, 

Gao B et al. [11-13] proposed an adaptive variational Bayesian method. These methods assume that the defect 

areas are sparse distributed and the background is low rank matrix. The detection of these methods yields 

high-accuracy objective performance in extracting sparse component after separating the background. Pilla.M et 

al. [14] improved the signal-to-noise ratio of the signal and better obtain the defect information by using the 

absolute value contrast algorithm. V.P. Vavilov et al. [15] obtained defect information by analyzing the value of 

the surface pixel temperature. Zheng K et al.[16-17] have done in-depth research on the removal of non-uniform 

background, and the proposed algorithm can effectively reduce noise and enhance image contrast. Wang J G at al. 

[18] use the method of wavelet transform to denoise the image and improve the SNR value. Venegas P et al. [19] 

synthesize sequences into a RGB image to speed up the detection. Wang J et al. [20] considers the spatial 

relationship between pixels, and proposes a method based on region to locate defects. Liu Y et al. [21] use 

manifold learning thermography (MLT) and isometric feature mapping ((ISOMAP) to distinguish different regions 

of the thermal images, which improves the detection rate of defects. In terms of infrared image segmentation, Du 

Feng et al. [22] proposed infrared image segmentation based on the index of entropy maximization of the 2-D 

grayscale histogram. Mei Lin et al. [23] focused on the correction of infrared images under non-uniform heating 

conditions and the problem of defect segmentation with different local contrast. Gao B et al. [24] proposed an 

automatic selection of region growth method, which has obtained good results in aerospace composites. 

Cluster-based segmentation method [25] is also applied to the detection of defects. Yousefi B et al. [26] combine 

sparse principal component analysis (SPCA) with K-means clustering to achieve automatic segmentation of 

defects. In order to avoid the possibility of losing necessary defect information, Zheng K et al. [27-28] analysis  

all the thermographic data. The thermographic cluster analysis (TCA) method and hyper-image segmentation 

method can automatically segment the shape of the defect. Gao B et al. [29] use the first-order statistics of 

genetics to to quantitatively segment defects. 

Image segmentation algorithms have been widely used in natural image processing whereas they are rarely 

applied in infrared thermography nondestructive testing. Consequently, the application of segmentation deep 

learning networks in the infrared thermal image NDT is a noteworthy direction. Originally, the image block 

classification method is commonly used where each pixel is divided into the corresponding categories by using 

image blocks. The main reason for using image blocks is that the classification network usually has a fully 

connected layer whose input needs to be a fixed size image block. Visual geometry group (VGG) is a 

convolutional neural network (CNN) model introduced by the visual geometry group and one of the structures is 

composed by 16 weight layers. It is using smaller filter sizes and spacing on the first volume base layer in which 

leads to less parameters and more nonlinearities [30]. In 2015, Fully convolutional networks (FCN) is proposed 

where this is [31] extended from the original CNN structure to an enable intensive prediction without a fully 

connected layer. This structure allows the segmentation map to generate images of any size, and improves the 

processing speed. Badrinarayanan et al. [32] proposed a deep convolutional encoder-decoder structure for image 

segmentation-Segnet. The FCN network replicates the characteristics of the encoder, and Segnet transfers the 

maximum pooling index to the decoder, which is more efficient in memory usage and improves the partition 



resolution. In 2015, Fisher Yu et al. [33] proposed dilated convolutions for multi-scale aggregation, which 

increased the receptive field and benefits the classification network. It is a convolutional layer that can be used 

for dense prediction. However, the computational cost is relatively high, and a large number of high-resolution 

feature maps need to be processed in which consumes a large amount of memory. In 2016, Liang-Chieh Chen et 

al. [34] proposed DeepLab which implements atrous spatial pyramid pooling (ASPP) in spatial dimension and 

uses fully connected conditional random fields. Guosheng Lin et al. [35] proposed RefineNet as all components 

follow the design of the residual connection, and the encoder is ResNet-101 [36] module. Hengshuang Zhao et al. 

[37] proposed PSPNet which using the pyramid pooling module to aggregate background information. The 

pyramid pooling module in the ResNet network adds additional losses in addition to the loss of the main branch. 

Olaf Ronneberger et al. [38] proposed a network structure of encode-decoder, U-net. In this network, the encoder 

gradually reduces the spatial dimension of the pooling layer, and the decoder gradually repairs the details and 

spatial dimensions of the object. This network is proved to have good performance in small sample sets. 

Although unsupervised learning method has made considerable research progress in thermography 

processing, the commonly used detection algorithms still have limitations in defect extraction due to weak 

signals, complex interference and etc. Based on the spatial-temporal physic characteristics of the infrared 

sequences, the construction of supervised learning to study the infrared non-destructive testing in segmentation 

networks is a potential trend. This study investigates the performance of several typical deep learning networks 

on the segmentation of optically excited infrared heat map defects. Particularly, the integration of cross network 

learning strategy is proposed to significantly minimize uneven illumination and enhance the detection rate. 

Notwithstanding above, all different algorithms are detail discussed in enhancing detection contrast from the 

spatial and the temporal domain, respectively. The effects of data enhancement and different preprocessing 

methods on defect segmentation are investigated as well.  

The rest of the paper is organized as follows: Section II describes the basic theory of the OPT system and 

the deep learning structure for thermography NDT. Section III introduces the design of the experiment and 

analyses the results. Section IV concludes the study and outlines the future work. 

2 Methodology 

2.1 Introduction of OPT 

Optical pulsed thermography combing light and thermal imaging technology in which can achieve rapidly 

detection of a wide range for inner defects. OPT is based on the principle of heat conduction. When uniform light 

is irradiated onto the surface of the specimen, the object absorbs the energy of the incident light and converts it into 

heat energy, which then form a heat distribution. If there exists a defect in the specimen, it will cause the heat to be 

uneven and reflected directly on the surface of the specimen. IR camera can be used to record both the spatial and 

the transient response of the temperature on the sample. Fig.1 shows a diagram of the OPT system composition by 

using halogen lamps as excitation source. 

In OPT system, the temperature field of the measured object can be expressed as a function of spatial and 

transient by using a mathematical model: 

 ( , , , )T f x y z t
 ( 1 ) 

The process of heat wave propagation in the medium follows the heat conduction equation. Assuming that 

the thermal conductivity is a constant, the heat conduction equation can be expressed as: 
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Fig.1. Diagram of OPT system and thermal data 

where k  denotes the thermal conductivity of the material,   is the density of the material, pC  is the 

specific heat capacity, q  is the heat generation per unit volume, which is caused by light excitation. The speed 

at which heat propagates through the material can be expressed as thermal diffusivity by  : 
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Bring equation (3) into (1), then (1) can be rewritten as: 
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( 4 ) 

It can be seen that the bigger   is, the faster the temperature changes. For a planar pulsed heat source, since the 

process reach the end of the heating at the cooling phase, in which non heat is generated per volume (q=0), 

its ideal one-dimensional mechanism can be expressed by equation (5) 
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In practical applications, only the surface temperature can be obtained by IR camera, that is z = 0. If there is a 

defect with a depth of d  in the specimen, the heat wave will be blocked and reflected. The surface temperature 

and the surrounding thermal pattern will be inconsistent. Thus, the defect and abnormality can be identified by 

the infrared heat map. 

2.2 Temporal and Spatial Deep Learning Network for OPT Defect Detection  

This section proposes a comparative strategy for segmenting debonded specimens by investigating 

different deep learning networks. Based on the above analysis, two types of networks will be considered as the 

characteristic of spatial and temporal information. The main comparative strategy can be summarized as the 

following four stages: data collecting of a sequence of temperature images (Stage I), data preparation and manual 

labeling for train and test (Stage II), investigating of different segmentation method by constructing deep 

learning or cross learning techniques (Stage III), quantitative evaluation for the result of the method (Stage IV). 

... 



The whole strategy can be shown in Fig.2.  

Given the thermal image sequence of the sample with inner defects, the image sequence can be segmented 

by using a deep learning method. In this paper, the segmentation results of different deep learning networks on 

the OPT thermal video will be compared from the aspects of both spatial and temporal domain. In particular, an 

integration of cross network learning strategy is proposed to enhance the performance. In addition, the 

investigation of the production and preprocessing of the data sets, different deep learning models and 

quantitative evaluation methods will be discussed. 
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2.2.1 Thermal spatial characteristic in deep learning structure 

According to the principle of heat conduction, when there exists a defect in the internal structure of the object 

(for example, debonding), the diffusion and transmission of the heat flow are affected. This effect is manifested by 

the difference in temperature at the surface of the object, which in turn causes an abnormality in the observed 

distribution. Fig.3 shows the temperature distribution on the surface of the object in the presence or absence of 

defects inside. The temperature distribution on the surface of non-defect homogeneous specimen is depicted in 

figure (a) and (d). When the incident wave is partially reflected on the surface of the material, the other parts will 

continue to propagate downward, a uniform temperature field is formed on the surface. In figure (b) and (e), since 

the thermal conductivity of the defective region is smaller than other regions of the material, the downward 

propagation of the incident wave at the defect position is hindered, and the reflected wave is increased, so that a hot 

region is formed on the surface of the specimen. On the contrary, for the thermal conductivity defect, since the 

thermal conductivity of the defect is smaller, the reflected wave of the area is reduced and a cold zone is formed on 

the surface. The details are shown in figure (c) and (f). The properties of this hot zone and cold zone can be used in 

space model to detect defects. 

（a）
（b） （c）

（d） （e） （f）

Front view

Top view

Incident wave Reflected wave Temperature curve Defect

 

Fig. 3. Surface temperature field distribution under different conditions: (a) (d): homogeneous; (b) (e): thermal insulation 

defect; (c) (f): thermal conductivity defect. 

Taking the thermal insulation defect as an example, each thermal frame of size m n  is represented by X, which required 

to segment defects. it is assumed that the defect feature ( hot zone ) is the foreground represented by D, the non-defect feature 

(cold zone) is a background as represented by S. The uneven heating due to material properties and heating conditions can be 

regarded as noise as represented by N. Thus, each thermal frame can be expressed by: 

 X=D S N 
 

( 6 ) 

For each specimen, the ground-truth label image Y  that is calibrated according to the actual defect 

position and size is defined as a binary map, where zeros and ones represent sound and defective areas 

respectively. 

In the field of semantic segmentation, certain deep networks have made such significant contributions to the 

field that they have become widely known standards, such as the fully convolutional network (FCN), Unet, 

Segnet. All these spatial-type based deep learning networks have achieved good results in natural image 

-



segmentation. Exploring the application of deep learning networks in OPT is one of the goals. The spatial 

models are all encoder-decoder models. The output of the model can be expressed as (7), where Ŷ  is an image 

predicted by the model, and W is the weight of X. In the encoder stage, different features such as noise, defects, 

and defect edges can be extracted through different kernels. In the training process, adjust the weight W  of 

different features to make Ŷ  closer to Y  adaptively through the guidance of the label, and finally the focus of 

the network will fall on the defect.  

 Ŷ WX b 
 

( 7 ) 

The model is going to conduct optimization by reducing the error between Y and Ŷ . Binary cross entropy 

is used to this loss function as defined as: 
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where N m n   is the total number of pixels, 
iy  is the binary value corresponding to i in the label Y. ˆ

iy  is 

the predicted probability of the pixel. 

For the encoder-decoder model, they can capture several basic information of the tested object, such as 

background noise, texture, and shape etc., in the first few layers of the encoder. Advanced information will be 

extracted in the following deep layers. Compared with FCN, the large changes in structure of Unet are decoder 

phase. An upsampling layer is added after each convolutional layer to increase the resolution of the image in 

decoder. The convolution operation is performed on the layer to impose a high dimensional feature. As shown in 

Fig.4, in the decoding process, in order to emphasis the high-resolution features, the feature map of the encoder is 

connected to the upsampled feature map. Under the guidance of labels and high-resolution features, the model can 

learn more accurate shape, size and localization information of defects through multiple iterations. At the same 

time, the edge of the defect is more obvious and the influence of the heat diffusion is getting weakened. In this 

paper, batch normalization and dropout are applied to improve model accuracy and reduce overfitting. 
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Fig.4. Structure of spatial model 

The generation of the training dataset is also a key condition for the model to be effective. The data process of 

the spatial model is explained below.  

It is divided into two parts: the selection of the training data and the calibration of the data (labeling).  
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a)：selection of training data 

The training set contains four different types of specimens, each specimen contains the defects with different 

diameters and depths. For the obtained image sequence, 50 frames with higher contrast in the t-m~t+m-1 frames 

are extracted, where t is the highest temperature frame and m is a multiple of 25. The temperature gap between the 

defect area and the non-defect area is the largest around the frame with the highest temperature, which is more 

conducive to the segmentation of the defect by the model. This can be explained by thermal temporal 

characteristic of the heat conduction. The first frame is subtracted to remove the background noise, and then 

the environmental background around the specimen is cut, now the original dataset A is obtained.  

Data augmentation is essential to guide the network to obtain the desired invariance and robustness properties 

since only few training samples are available. Therefore, methods such as color conversion and rotation are used to 

augment the data, namely dataset B. 

b): calibration of the data 

For the supervision learning, corresponding labels for the above training data are required to generate. Since 

the position of the specimen is fixed during the experiment and the relative position of the defect does not change 

with time, each thermal sequence uses a same label. The label making process for each specimen is shown in Fig.5：

a) Select one frame with the strongest defect information in the thermal sequence confirmed by peers and 

preparation map; b) Use the data calibration tool - labelme to calibrate the defects of the frame image. The process 

will be confirmed by multiple peers; c) generate a binary image. 

a) b) c)

 

Fig.5. Process of labeling 

2.2.2 Thermal temporal characteristic in deep learning structure 

From the perspective of the entire inspection process, temporal behavior of the surface temperature for 

defect and sound area is different. This is shown in Fig.6. For the insulation defect, in the heating stage, the 

temperature of the defect area rises rapidly, and the sound area rises slowly. Therefore, a temperature gap is 

formed. Especially in the vicinity of the end of heating, the difference in temperature time curves between the 

two regions is more pronounced. It is worth noting that the change of the surface temperature of the test piece is 

a continuous process, and the temperature of each frame collected by the infrared camera is related to its 

historical frames that the closer to that moment, the greater the impact. This feature can be applied to time series 

prediction model with memory. In the sequence model, long short term memory (LSTM) is such an excellent 

time-series network that can handle continuous information, and it solves the long-term dependence of recurrent 

neural network (RNN), that is, the information required to predict the result is lost due to the long interval. For 

each pixel of a frame, a temperature change curve over time can be obtained on the given image sequence. 

According to the temperature change of each pixel, the time series model can distinguish whether the pixel 

belongs to a defective area or a sound area. 

A 3-layer long short term memory (3-layer LSTM) loop is applied to capture the physical properties that 

mining the feature of the temperature varies between the defect point and the non-defect point. The process of 



3-layer-LSTM segmentation is shown in Fig.7. The obtained thermal video data is de-background and 

normalized, and n-frame data of a fixed duration is selected as the preprocessed data. Each pixel is vectorized in 

time, and then the vectorized data is input into the 3-layer LSTM. The predicted value of the model for this pixel 

sequence is ˆ
iy , which ranges from 0 to 1. Finally, a segmented image is reconstructed by the predicted value. 
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Fig.6. Sequence model prediction principle based on differential temperature signal vs. time at surface points corresponding 

to defective and sound areas. 
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Fig.7. The process of 3-layer LSTM segmentation 

For the data process, an important step is that all the defect pixels and the same number of non-defective 

pixels are selected for training. Note that the sequence data is already removed the background and normalized 

and the training non-defective pixels are selected randomly. This is to deal with data imbalance problems where 

the defective pixel is much lower than the sound pixel. The time steps are [t-n, t+n-1], where t is the highest 

temperature time and n is a multiple of 50. The label of each pixel is still marked as 0 and 1, representing the 

non-defect and defect areas, respectively. 

2.2.3 Cross network learning strategy and evaluation 

For more complex test pieces, due to their special structure and more influence of heat diffusion, the single 

spatial-based segmentation model needs to be optimized. The training of the above models starts from the random 

initialization weights, and Unet has such an advantage on small data sets. However, for complex situations, Unet 

cannot learn sufficient features from small data sets. Thus, we explore the cross learning strategy of adding 

VGG-16 pre-trained weights in the encoder to help the model to better extract weak defect features from large 

amounts of thermal information. In the decoder stage, the skip-connection with high-resolution features is added 

to preserve the accuracy of original model for defect shape, size, and position. This cross learning model is 

shown in Fig.8. 
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Fig.8. Cross learning of spatial-oriented model 

For the detection of deeper defects, the spatial SNR value is very low, and it is necessary to use the 

information in the time domain to assist the spatial-oriented model to obtain the thermal characteristics of the 

defect. In this paper, PCA processing is performed on such specimens. Combined with the PCA extraction 

algorithm, The model can be regarded as a temporal-spatial model because PCA extracts several principal 

components from the thermal video with temporal-spatial features. The schematic is shown in Fig.9. The 

three-dimensional features including the temporal are compressed into the 2-D image, and then the 

spatial-oriented model is used to detect the defects. 
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Fig.9. Feature extraction temporal-spatial model 

Therefore, cross network learning strategy and evaluation will be fully validated as shown in Fig.10. The 

blue arrow in the figure shows the flow chart of comparing the segmentation effects of different models on 

different defect types. In this process, four different types of defect images are first augmented by rotation, color 

conversion, translation, etc., and then are segmented by different segmentation networks. POD will be used to 

evaluate the detection effects of different models. If the number of defects detected in the segmentation result is 

I I ff • • f 



significantly too low (for example, TP<2), the PCA or other processing will be introduced on the original 

sequence to extract the features, and then the segmentation network is applied to obtain the detection results. 

This process is shown by the yellow arrow. 

In time domain, a 3-layer long short term memory (3-layer LSTM) loop is used to predict the pixels of 

different types of data. The process is shown by the red arrow. 

In order to compare the detection effects of a model more clearly, criterion probability of detection (POD) 

[39][40] is selected. It is defined as (9) 

 =
TP

POD
TP FN

 ( 9 ) 

where TP is true positive, indicating the number of defects detected, and FN is false negative, indicating the 

number of defects not detected. 
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3. Coating material

4. R area
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Gray
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Fig.10. Cross network learning strategy and evaluation 

3 Result and Discussion 

3.1 Experiment Platform and Sample Preparation 

The platform used to acquire the data is optical pulsed thermography including optical excitation source, 

two halogen lamps with a power of 2 kW in total, IR camera, PC, and the sample, as shown in Fig.11. The 

infrared thermal camera is FLIR A655sc, with the band is 7.5-14um, the temperature sensitivity is 0.05°C, and 

the maximum resolution is 640×480. 

l 



 

Fig.11. Experiment platform 

Nine different samples tested in this paper are shown in Table 1. Eight of them are collective heat type 

samples, the last one is carbon fiber reinforced plastic (CFRP) with insulated heat type. Among the first 8 

specimens, the No.1 is a carbon fiber composite with 16 sub-surface debond defects of different sizes. The No. 2 

to No. 4 samples are coating materials with debond defects, and the No. 3 is a curved surface, which is more 

difficult to detect than No. 2. The samples No. 5 to No. 8 are CFRP with curved shape which named R area. 

There are debond defects at elbow, which is more challenging to detect. 

Table 1. The description of different samples 

Types 
Sam

ples 
Indication 

Dimension 

(mm) 

Defect 

information(mm) 
Picture 

CFRP 

(collective 

heat type） 

1 

 

250 250 2.2   

Depth: 2 or 2.2 

Diameter: 

2,4,6,8,10,12,16,20 

 

Coating 

material 

2 

 

150 300 2   

Depth: 1 or 1.2 

Diameter: 

3,5,7,10,12 

  

3 

 

150 300 2   

Depth: 1 or 1.2 

Diameter: 

3,5,7,10,12 

curve 
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4 

 

150 150 2   

Depth:1.2 

Diameter: 3,5,7,10 

 

 

R shape 

5 
 

100 100 8   

Depth:1 to 1.5 

Diameter:  

9,10  

6 
 

100 100 8   

Depth:1 to 1.5 

Diameter:  

9,10  

7 
 

100 100 8   

Depth:1 to 1.5 

Diameter:  

6,8 
 

8 
 

100 100 8   

Depth:1 to 1.5 

Diameter:  

6,8 
 

CFRP 

(radiant 

heat type） 

9 

 

250 300 24.2 

 

Depth: 2 or 2.2 

Diameter: 

3,6,10,14,18 
 

In order to verify the robustness of the model under the different experimental conditions, specimens in 

table 2 were detected using a portable optical pulsed thermography (POPT) system. No.10 and No.11 are R 

shape specimens of different diameters. No.12 is a flat bottom hole specimen. POPT system is shown in Fig.11, 

including an excitation source and CPU, a display screen, a halogen lamp with a power of 800 W, an IR camera 

and a grip, as shown in Fig.12. The infrared thermal camera is MAGNITY MAG-62, the temperature sensitivity 

is 0.06°C, and the resolution is 640×480. 

 

Fig.12. Portable optical pulsed thermography system 
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Table 2. The description of different samples tested by POPT 

Types 
Sam

ples 
Indication 

Dimension 

(mm) 

Defect 

information(mm) 
Picture 

R shape 

10 
 

100 100 8   

Depth:1 to 1.5 

Diameter:  

9, 10  

11 
 

100 100 8   

Depth:1 to 1.5 

Diameter:  

6, 8  

CFRP 

(collective 

heat type） 

12 
Ø20mm

Ø10mm

Ø5mm

5
.5

m
m 0
.5 1

1
.5

4
.5 5

3
.52 3

2
.5 4

 

530 180 5.5   

Depth:0.5, 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5, 5 

Diameter:  

5, 20, 10 
 

 

3.2 Result Analysis 

In order to compare the detection effects of different segmentation models, different samples and different 

pretreatments, the following six models will be applied, namely Unet, VGG-Unet, Segnet, VGG-Segnet, FCN8, 

and 3-layer-LSTM. The detection results of the six models were compared for different data sets. It should be 

noted that all these models predict defects in the spatial domain, except that the 3-layer LSTM is in temporal. 

3.2.1 Segmentation effect of different models on different type of defects 

    Table 3 shows the visual results of spatial models for flat or curved samples, while Table 4 shows the results 

of R shaped sample. It can be seen that the five segmentation models can better segment the defect information 

of CFRP and coating materials. Compared with the other models, the boundary of Unet segmentation is obvious 

bigger than the actual defect. VGG-Unet, Segnet, VGG-Segnet have a good performance for the segmentation 

results of the R shaped sample, while the defects with a diameter of 3mm in the curved coating material cannot 

be detected. FCN8 excels in coating materials but does not perform well in the R shaped sample. Table 5 shows 

the POD of those different models. It can be seen that, from the point of view of the detection rate, the detection 

effect of VGG-Unet is more remarkable for R shaped sample while Unet is for plat simple samples. 

Table 3. Results comparison of spatial models for flat or curved samples 

 original image ground truth Unet VGG-Unet Segnet VGG-Segnet FCN8 

1 

       

2 

       

•• •• • • 
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3 

       

4 

       

 

Table 4. Results comparison of spatial models for R area 

 5 6 7 8 

original image     

ground truth 
    

Unet 
    

VGG-Unet 
    

Segnet 
    

VGG-Segnet 
    

FCN8 
    

 

Table 5. Performance comparison of POD in spatial models 

Samples evaluation 

Models 

Unet VGG-Unet Segnet 
VGG-Segn

et 
FCN8 

1 

TP 16 14 15 14 14 

FN 0 2 1 2 2 

POD 1.000 0.875 0.938 0.875 0.875 

2 

TP 10 9 10 10 10 

FN 0 1 0 0 0 

POD 1.000 0.900 1.000 1.000 1.000 

3 

TP 10 9 8 9 9 

FN 0 1 2 1 1 

POD 1.000 0.900 0.800 0.900 0.900 

4 

TP 4 4 3 4 4 

FN 0 0 1 0 0 

POD 1.000 1.000 0.750 1.000 1.000 

5 
TP 0 5 6 1 5 

FN 6 1 0 5 1 

D ::::: .·:::· D D • 
••·~ 1 •: .•: D· •: . . . . . . . ' 
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POD 0 0.833 1.000 0.167 0.833 

6 

TP 0 6 6 7 5 

FN 7 1 1 0 2 

POD 0 0.857 0.857 1.000 0.714 

7 

TP 0 5 4 3 1 

FN 5 0 1 2 4 

POD 0 1.000 0.800 0.600 0.200 

8 

TP 0 7 7 3 1 

FN 7 0 0 4 6 

POD 0 1.000 1.000 0.429 0.143 

Average POD 0.571 0.921 0.893 0.746 0.708 

 

The data obtained by POPT is segmented by the proposed model and the results are shown in Tabel 6. 

VGG-Unet can segment the two defects of the sample 10, while the segmentation effect of other models is 

greatly affected by the hot zone and the result is not good. Two-thirds of the defects in sample 11 can be 

segmented by VGG-Unet, while there exists partial errors. For the flat sample 12, VGG-Unet can segment 

one-third of the defects, and the segmentation effect is weaker than Unet. Under the condition of POPT 

experiment, the POD value of segmentation effect is shown in Table 7. Compared with other models, VGG-Unet 

has the highest average POD value, which can reach 0.667. 

Table 6. Results comparison of spatial models for POPT 

 original image 
ground 

truth 
Unet VGG-Unet Segnet VGG-Segnet FCN8 

10 

       

11 

       

12 

       

 

Table 7. Performance comparison of POD in spatial models for POPT 

sample 
Model 

Unet VGG-Unet Segnet VGG-Segnet FCN8 

1 0 1 0.5 0.5 0.5 

2 0 0.667 0.333 0.667 0.333 

3 0.6 0.333 0.2 0.333 0.067 
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Average 0.2 0.667 0.344 0.5 0.3 

In summary, VGG-Unet can achieve good results in both high-power and low-power optical pulsed 

thermography platforms. The proposed mode has the capability of the robustness validation. 

Previous models only predicted defects in the spatial domain. Using OPT to detect defects is based on the 

principle of heat conduction in the specimen, which is a process of transient. Thus, 3-layer-LSTM is applied to 

conduct the prediction of the transient characteristic. The results of each samples are shown in Table 8. 

Unfortunately, this model can detect defects well for coating materials and heat-collecting CFPR materials 

whereas it is almost impossible to detect for R shaped sample and heat-dissipating CFPR materials. The POD of 

this model is shown in Table 9. 

Table 8. Results of 3-layer-LSTM 

samples 1 2 3 4 5 

3LSTM 

 
 

 
 

 

samples 6 7 8 9  

3LSTM 

    

 

 

Table 9. POD of 3-layer-LSTM 

Model evaluation 
Samples 

1 2 3 4 5 6 7 8 9 

3-layer-

LSTM 
POD 0.625 0.900 0.900 1.000 0 0 0 0 0 

 

3.2.2 Segmentation effect after feature extraction 

For the sample 9, the SNR of the original image is very low due to the influence of the ambient halo and the 

depth of defect. As show in Fig.13, the most of the defect information is drowned in the hot zone of the specimen. 

The model can hardly segment the defect information from the original image. 

In order to compare the segmentation effect of the model after different preprocessing methods, four 

methods are selected: Grayscale, randomColor, PCA, PCA+randomColor. After pre-processing, the 

segmentation results have been significantly improved. In particular, after PCA processing, the model can almost 

completely segment the defects. This is because the PCA compresses the information in the time domain first, 

and then the model extracts the information of the space. This method can enhance time domain and spatial 

information in the same time. The detailed results are shown in Table 10. The POD of samples after feature 

extraction can be found in Table 11. 
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(a) original image     (b) ground truth     (c) segmentation result 

Fig.13. The original image, ground truth and segmentation result of sample 9  

 

Table 10. Segmentation effect after feature extraction of sample 9 

Method Gray randomColor PCA PCA 

+randomColor 

Feature map 

    

Result 

    

 

 

Table 11. POD after feature extraction 

sample 

 Methods 

origin Gray randomColor PCA 
PCA 

+randomColor 

1 0.875 0.875 1 0.875 1 

2 0.9 1 1 1 1 

3 0.9 0.9 0.9 1 0.9 

4 1 1 1 1 1 

9 0 0.500 0.500 0.900 0.900 

Average 0.735 0.855 0.880 0.955 0.960 
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4 Conclusion and Future Works 

In this paper, deep cross learning strategy based segmentation models are applied in defect detection of 

composite materials. The validation results on four different type of specimen with different defects depth and 

diameter are discussed in a complete way. Cross learning strategy of VGG-Unet can basically reach the better 

performance in the spatial-oriented model. Because it combines the characteristics of Unet for small sample set 

segmentation and VGG pre-training weights. The 3-layer-LSTM for predicting defect information by temporal 

changes in the transient response of image pixels is not performing well in the R shaped sample. It is worth 

noting that after extracting certain features from low SNR images, especially of combining transient and spatial 

information, better evaluation results can be obtained. It is confirmed that the performance will be better as 

the training sets have the same type of data in the test sets. Future research will focus on the structured 

learning combination of transient and spatial information.  
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