Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects

Okamoto, Takenori J., Antolin, Patrick, De Pontieu, Bart, Uitenbroek, Han, Van Doorsselaere, Tom and Yokoyama, Takaaki (2015) Resonant absorption of transverse oscillations and associated heating in a solar prominence. I. Observational aspects. The Astrophysical Journal, 809 (1). p. 71. ISSN 0004-637X

Okamoto_2015_ApJ_809_71.pdf - Published Version

Download (2MB) | Preview
Official URL:


Transverse magnetohydrodynamic waves have been shown to be ubiquitous in the solar atmosphere and can, in principle, carry sufficient energy to generate and maintain the Sun's million-degree outer atmosphere or corona. However, direct evidence of the dissipation process of these waves and subsequent heating has not yet been directly observed. Here we report on high spatial, temporal, and spectral resolution observations of a solar prominence that show a compelling signature of so-called resonant absorption, a long hypothesized mechanism to efficiently convert and dissipate transverse wave energy into heat. Aside from coherence in the transverse direction, our observations show telltale phase differences around 180° between transverse motions in the plane-of-sky and line-of-sight velocities of the oscillating fine structures or threads, and also suggest significant heating from chromospheric to higher temperatures. Comparison with advanced numerical simulations support a scenario in which transverse oscillations trigger a Kelvin–Helmholtz instability (KHI) at the boundaries of oscillating threads via resonant absorption. This instability leads to numerous thin current sheets in which wave energy is dissipated and plasma is heated. Our results provide direct evidence for wave-related heating in action, one of the candidate coronal heating mechanisms.

Item Type: Article
Uncontrolled Keywords: Sun: chromosphere, Sun: transition region, Waves
Subjects: F300 Physics
F500 Astronomy
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: Elena Carlaw
Date Deposited: 25 Oct 2019 15:03
Last Modified: 01 Aug 2021 00:00

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics