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Abstract : A nonlinear optimal control method is developed for autonomous truck and trailer systems.
Actually,two cases are distinguished: (a) a truck and trailer systemthat is steered by the front wheels
of its truck, (b) an autonomous �re-truck robot that is steered by both the front wheels of its truck and
by the rear wheels of its trailer. The kinematic model of the autonomous vehicles undergoes linearization
through Taylor series expansion. The linearization is computed at a temporary operating point that is
de�ned at each time instant by the present value of the state vector and the last value of the control
inputs vector. The linearization is based on the computation of Jacobian matrices. The modelling error
due to approximate linearization is considered to be a perturbation that is compensated by the robustness
of the control scheme. For the approximately linearized model of the autonomous vehicles an H-in�nity
feedback controller is designed. This requires the solution of an algebraic Riccati equation at each iteration
of the control algorithm. The stability of the control loop is con�rm ed through Lyapunov analysis. It is
shown that the control loop exhibits the H-in�nity tracking perfor mance which implies elevated robust-
ness against modelling errors and external disturbances. Moreover, under moderate conditions the global
asymptotic stability of the control loop is proven. Finally, to implemen t state estimation-based control for
the autonomous vehicles, through the processing of a small number of sensor measurements, the H-in�nity
Kalman Filter is proposed.

Keywords : truck and trailer, autonomous �re-truck robot, autonomous v ehicle, nonlinear H-in�nity con-
trol, nonlinear optimal control, Riccati equation, asymptotic stab ility, H-in�nity Kalman Filter

1 Introduction

As a consequence of the rapid development of intelligent transportation systems, the need to provide
multi-body and articulated vehicles with self-steering features andautonomy has also emerged [1],[2-4].
Due to their complicated kinematic and dynamic model the problems ofpath planning and path following
for the aforementioned types of vehicles is of elevated di�culty [5-10]. To achieve accurate tracking of
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reference paths and to assure stability for the vehicles' autonomous navigation system, nonlinear control
approaches have been proposed [11-15]. In [16-20] one can �nd results on global linearization-based control
of multi-body and articulated vehicles. In [21-23] the controller's design for the above mentioned type of
vehicles is based on approximate linearization and the description of their kinematics or dynamics with
the use of local models. Moreover, in [24-26] Lyapunov theory-based control methods are developed for
such complicated vehicles. Apart from truck and trailer vehicles which are steered by the front wheels of
their truck one can also considered di�erent kinematic models wheresteering comes from both the front
wheels of the truck and rear wheels of the trailer. Vehicles having such kinematic models exhibit improved
maneuverability and a typical case is the autonomous �re-truck robot [27-31] .

In this article the problems of nonlinear optimal control and the problem of autonomous navigation of truck
and trailer vehicles are considered. The kinematic model of the vehicles are formulated and the controller's
design proceeds by carrying out an approximate linearization on these models around a time-varying equi-
librium. The linearization procedure is based on Taylor series expansion for the vehicles' kinematic model
and on the computation of the associated Jacobian matrices [32-34]. The linearization point (equilibrium)
is updated at each time instant and is de�ned by the present value ofthe vehicles' state vector and the last
value of the vehicles' control inputs vector. The modelling error which is due to approximate linearization
and the cut-o� of higher order terms in the Taylor series expansionis considered as a perturbation that is
compensated by the robustness of the H-in�nity control scheme[35-36].

For the linearized equivalent model of the truck and trailer vehicles an H-in�nity feedback controller is
designed. This is an optimal controller for the case of a system thatis subject to model uncertainty and
external perturbations [37-41]. H-in�nity control stands for th e solution of a mini-max di�erential game.
Actually, the control inputs try to minimize a quadratic cost functio n associated with the deviation of the
vehicle's state vector from its reference values, while the perturbations and model uncertainty terms try
to maximize this cost function [42-43]. The feedback gain of the controller is based on the solution of an
algebraic Riccati equation that is performed at each iteration of the control algorithm. The stability of the
control loop is con�rmed through Lyapunov analysis. First, it is shown that the H-in�nity tracking perfor-
mance criterion is satis�ed. This signi�es elevated robustness of the control loop against model uncertainty
and exogenous disturbances. Moreover, under moderate conditions the global asymptotic stability of the
control loop is proven. Finally, to implement feedback control for the autonomous truck and trailer systems
when their state vectors are only partially measurable, the H-in�nit y Kalman Filter is proposed [44-45].

The article o�ers one of the most e�ective solutions to the nonlinear optimal control problem of (a) truck
and trailer vehicles that are steered by the front wheels of their truck and (b) autonomous �re-truck robots
that are steered by both the front wheels of the truck and the real wheels of the trailer. Popular approaches
for industrial control such as MPC or NMPC may have questionable performance when applied to such
control problems. Actually, MPC has been developed for linear dynamical systems and its use in the case
of the nonlinear model of the truck and trailer systems will risk the control loop's destabilization. Besides,
the convergence of NMPC is not assured either. The convergenceof the method's iterative search for an
optimum depends on initialization and speci�c parameters' selection,therefore under NMPC one cannot
always guarantee a solution for the nonlinear optimal control problem of the truck and trailer system.
Finally, comparing to local models-based optimal control the article's approach exhibits speci�c advan-
tages: (1) in the local-models based approach linearization is performed around multiple operating points
(equilibria) which are selected o�-line and which are not updated in time, whereas in the article's approach
there is linearization only around one single operating point which is updated at each iteration of the
control algorithm, (ii) in the local-models approach there is need to perform solution of multiple Riccati
equations associated with the individual models and this solution is performed o�ine. On the other side,
in the article's approach there is need to solve one single Riccati equation and this solution is repeated at
each time-step of the control algorithm. (iii) in local models-based control there is need to �nd a common
solution for the individual Riccati equations, and one cannot assure that such a solution always exists. On
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the other side, in the article's approach there is need to obtain solution for one single Riccati equation
and the existence of such a solution can be assured through suitable selection of the gains and coe�cients
that appear in it. In conclusion, comparing to local models-based control, the article's control method is
computationally more e�cient and is subject to less constraining assumptions.

The structure of the paper is as follows: in Section 2 the kimenatic model of the truck and trailer system
that is steered by the front wheels of its truck is formulated. Moreover, through Taylor series expansion
and the computation of Jacobian matrices an approximately linearized model of the vehicle is obtained. In
Section 3 the kimenatic model of the autonomous �re-truck robot that is steered by both the front wheels
of its truck and the rear wheels of its trailer is formulated. Moreover, through Taylor series expansion
and the computation of Jacobian matrices an approximately linearized model of the vehicle is obtained.
In Section 4 an H-in�nity feedback controller is designed for the linearized equivalent model of the truck
and trailer system. In Section 5 the stability of the H-in�nity contro l method is proven through Lyapunov
analysis. In Section 6 the H-in�nity Kalman Filter is introduced for imple menting state estimation-based
control for the truck and trailer model. In Section 7 simulation tests are performed to further con�rm the
stability and robustness properties of the control scheme for the autonomous vehicle. Finally in Section 8
concluding remarks are stated.

2 Kinematic model of the truck and trailer

2.1 State-space description of the truck and trailer system

The kinematic model of the truck and trailer system which is steeredby the front wheels of its truck is
given by
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where (x t ,yt ) are the cartesian coordinates of the truck in an inertial reference frame, � is the heading
angle of the truck formed by its transversal axis and the OX axis ofthe reference frame,! is the turn
rate of the truck (turn rate of the steering wheel), (x i ,yi ) are the cartesian coordinates of the trailer, i

is the heading angle of the trailer,v is the longitudinal speed of the truck, and � is the hitch point angle
between the truck and the drawbar that connects the truck with the trailer. The parameters of the truck
and trailer system are shown in Fig. 1.

In the diagram of Fig. 1, the following distances are de�ned: L t is the distance between the front and
the rear axis of the truck, L c is the distance between the hitch pointRJ and the rear axis of the trailer.
while L i is the length of the implement. The state vector of the truck and trailer system is de�ned as
x = [ x t ; yt ; �; x i ; yi ;  ]T while the control inputs vector is de�ned as u = [ v; ! ]T and thus consists of the
velocity of the truck and the turn rate of the front steering wheel of the truck.

The kinematic model of the truck and trailer system is justi�ed as follows: The velocity v of point RJ is
�rst projected on the longitudinal axis of the trailer, thus giving vcos(� �  ) and next (a) it is projected on
the OX axis thus giving vcos(� �  )cos( ). This variable is the velocity of the trailer along the OX axis
(b) it is projected on the OY axis thus giving vcos(� �  )sin ( ). Morover, the trailer performs a rotational
motion round point RJ , with rotational speed denoted as _ . The linear velocity of point RJ that is parallel
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Figure 1: Kinematic model of the truck and trailer

to the transversal axis of the vehicle is given byvsin (� �  ). Thus, it holds: _ = 1
L i

vsin (� �  ).

The kinematic model of the truck and trailer system is also written in the vector form:

_x = f (x; u) (2)

where x2R6� 1, f 2R6� 1 and u2R2� 1. It also holds that � = � �  . With the previous de�nition of state
variables one arrives at the following state-space description
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2.2 Approximate linearization of the truck and trailer model

Approximate linearization is performed to the kinematic model of the truck and trailer system being steered
by the fornt wheels of its truck, around a temporary equilibrium x � which is re-computed at each iteration
of the control algorithm. The method is based on Taylor series expansion and on the calculation of the
associated Jacobian matrices, while the equilibrium consists of the present value of the system's state
vector x � and of the last value of the control inputs vector u� that was exerted on it. Thus one has the
linearization point ( x � ; u� ). Using that the kinematic model of the system is _x = f (x; u) the following
linearized description is obtained

_x = Ax + Bu + ~d (4)

where ~d is the linearization error and the associated Jacobian matrices are:
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A = r x f (x; u) j(x � ;u � ) B = r u f (x; u) j(x � ;u � ) (5)

The elements of the Jacobian matrices are
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With the previous de�nition of the Jacobian matrices one �nds

The �rst row of the Jacobian matrix A = r x f (x; u) j(x � ;u � ) is @f1
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The second row of the Jacobian matrixA = r x f (x; u) j(x � ;u � ) is @f2
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The third row of the Jacobian matrix A = r x f (x; u) j(x � ;u � ) is @f3
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The fourth row of the Jacobian matrix A = r x f (x; u) j(x � ;u � ) is @f4
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The sixth row of the Jacobian matrix A = r x f (x; u) j(x � ;u � ) is @f6
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In a similar manner one �nds

The �rst row of the Jacobian matrix B = r u f (x; u) j(x � ;u � ) is @f1
@u1

= cos(x3), @f1
@u2

= 0,

The second row of the Jacobian matrixB = r u f (x; u) j(x � ;u � ) is @f2
@u1

= sin (x3), @f2
@u2

= 0,

The third row of the Jacobian matrix B = r u f (x; u) j(x � ;u � ) is @f3
@u1

= 0, @f3
@u2

= 1,

The fourth row of the Jacobian matrix B = r u f (x; u) j(x � ;u � ) is @f4
@u1

= cos(x3 � x6)cos(x6), @f4
@u2

= 0,

The �fth row of the Jacobian matrix B = r u f (x; u) j(x � ;u � ) is @f5
@u1

= cos(x3 � x6)sin (x6), @f6
@u2

= 0,

The sixth row of the Jacobian matrix B = r u f (x; u) j(x � ;u � ) is @f6
@u1

= 1
L i sin (x3 � x6), @f6

@u2
= 0,
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3 Kinematic model of the autonomous �re-truck robot

3.1 State-space description of the autonomous �re-truck robot

The autonomous �re-truck comprises the truck (cab) and the trailer, as shown in Fig. 2. The vehicle is
steered by both the front wheels of its truck and by the rear wheels of its trailer. The main parameters of
the model of the autonomous �re-truck are as follows [27],[31]: (x0; y0): are the coordinates of the center
of the front axle of the truck, ( x1; y1) are the coordinates of the center of the rear axle of the truck,(� 1)
is the angle of the steering wheels of the truck with respect to the longitudinal axis of the truck, � 1 is the
angle between the longitudinal axis of the truck and theOx axis of the inertial coordinates system, (x2; y2)
are the coordinates of the center of the real axle of the trailer,� 2 is the angle of the steering wheels of the
trailer with respect to the longitudinal axis od the truck, � 2 its the angle between the longitudinal axis of
the trailer and the Ox axis of the inertial coordinates system. The length of the cab is denoted asL 0 and
the length of the trailer is denoted asL 1.

Figure 2: Diagram of the autonomous �re-truck robot which comprises the truck (cab) and the trailer

The kinematic model of the autonomous �re-truck is given by [27],[31]:

_x = g1(x)u1 + g2(x)u2 + g3(x)u3 (7)

where the control inputs of the vehicle are de�ned asu1: is the forward driving velocity of the truck vf ,
u2 is the steering speed of the front wheels of the cab_� 1 and u3 is the steering speed of the rear wheels of
the trailer _� 2. Vector �elds g1(x)2R6� 1, g2(x)2R6� 1 and g3(x)2R6� 1 are de�ned as:
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The state vector of the system is de�ned asx = [ x; y; � 1; � 1; � 1; � 2]T or x = [ x1; x2; x3; x4; x5; x6]T . Using
this state variables' notation and the model of Eq. (7) and Eq. (8) one obtains the following form of the
state-space equations

_x1 = cos(x4)u1 (9)

_x2 = sin (x4)u1 (10)

_x3 = u2 (11)
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L o

tan(x3) (12)

_x5 = u3 (13)

_x6 = � 1
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1
cos(x 5 ) sin (x5 � x4 + x6) (14)

3.2 Approximate linearization of the autonomous �re-truck robot

By applying �rst-order Taylor series expansion in the kinematic model of the �re-truck

_x = g1(x)u1 + g2(x)u2 + g3(x)u3 (15)

one obtains the following state-space description

_x = Ax + Bu + ~d (16)

where matricesA and B rely on the computation of the system's Jacobians

A = r x g1(x)u1 j(x � ;u � ) + r x g2(x)u1 j(x � ;u � ) + r x g3(x)u3 j(x � ;u � ) (17)

B = [ g1(x) g2(x) g3(x)] j(x � ;u � ) (18)

First, the following Jacobian matrix is computed
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1st row of the Jacobian matrix r x g1(x): @g11
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= 0.
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2nd row of the Jacobian matrix r x g1(x): @g12
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6th row of the Jacobian matrix r x g1(x): r x g1(x): @g16
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Next, about the rest of the Jacobian matrices of the system one has: r x g2(x) = 0 2R6� 6 and r x g3(x) =
02R6� 6.

4 The nonlinear H-in�nity control

4.1 Mini-max control and disturbance rejection

The generic nonlinear kinematic model of the truck and trailer systems is in the form

_x = f (x; u) x2Rn ; u2Rm (20)

Linearization of the truck and trailer systems is performed at eachiteration of the control algorithm
round its present operating point (x � ; u� ) = ( x(t); u(t � Ts)). The linearized equivalent of these systems is
described by

_x = Ax + Bu + L ~d x2Rn ; u2Rm ; ~d2Rq (21)

where matricesA and B are obtained from the computation of the Jacobians

A =

0

B
B
B
@

@f1
@x1

@f1
@x2

� � � @f1
@xn

@f2
@x1

@f2
@x2

� � � @f2
@xn

� � � � � � � � � � � �
@fn
@x1

@fn
@x2

� � � @fn
@xn

1

C
C
C
A

j(x � ;u � ) B =

0

B
B
B
@

@f1
@u1

@f1
@u2

� � � @f1
@um

@f2
@u1

@f2
@u2

� � � @f2
@um

� � � � � � � � � � � �
@fn
@u1

@fn
@u2

� � � @fn
@um

1

C
C
C
A

j(x � ;u � ) (22)

and vector ~d denotes disturbance terms due to linearization errors. The problem of disturbance rejection
for the linearized model that is described by

_x = Ax + Bu + L ~d
y = Cx

(23)

where x2Rn , u2Rm , ~d2Rq and y2Rp, cannot be handled e�ciently if the classical LQR control scheme
is applied. This because of the existence of the perturbation term~d. The disturbance term ~d apart from
modeling (parametric) uncertainty and external perturbation te rms can also represent noise terms of any
distribution.

In the H1 control approach, a feedback control scheme is designed for trajectory tracking by the system's
state vector and simultaneous disturbance rejection, considering that the disturbance a�ects the system
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in the worst possible manner. The disturbances' e�ects are incorporated in the following quadratic cost
function:

J (t) = 1
2

RT
0 [yT (t)y(t) + ru T (t)u(t) � � 2 ~dT (t) ~d(t)]dt; r; � > 0 (24)

The signi�cance of the negative sign in the cost function's term that is associated with the perturbation
variable ~d(t) is that the disturbance tries to maximize the cost function J (t) while the control signal
u(t) tries to mininize it. The physical meaning of the relation given above isthat the control signal and
the disturbances compete to each other within a mini-max di�erential game. This problem of min-max
optimization can be written as

min u max ~dJ (u; ~d) (25)

The objective of the optimization procedure is to compute a control signal u(t) which can compensate for
the worst possible disturbance, that is externally imposed to the system of the truck and trailer system.
However, the solution to the mini-max optimization problem is directly r elated to the value of the param-
eter � . This means that there is an upper bound in the disturbances magnitude that can be annihilated
by the control signal.

4.2 H-in�nity feedback control

For the linearized system given by Eq. (23) the cost function of Eq.(24) is de�ned, where the coe�cient
r determines the penalization of the control input and the weight coe�cient � determines the reward of
the disturbances' e�ects. It is assumed that (i) The energy that is transferred from the disturbances signal
~d(t) is bounded, that is

R1
0

~dT (t) ~d(t)dt < 1 , (ii) matrices [A; B ] and [A; L ] are stabilizable, (iii) matrix
[A; C ] is detectable. Then, the optimal feedback control law is given by

u(t) = � Kx (t) (26)

with K = 1
r B T P, whereP is a positive semi-de�nite symmetric matrix which is obtained from the solution

of the Riccati equation

AT P + P A + Q � P( 1
r BB T � 1

2� 2 LL T )P = 0 (27)

where Q is also a positive de�nite symmetric matrix. The worst case disturbance is given by ~d(t) =
1

� 2 L T P x(t). This equation is obtained by solving the optimal control problem for the case that the system

receives as input only the disturbance~d(t). The diagrams of the considered control loop is depicted in Fig. 3.

4.3 The role of Riccati equation coe�cients in H1 control robustness

The parameter � in Eq. (24), is an indication of the closed-loop system robustness. If the values of � > 0
are excessively decreased with respect tor , then the solution of the Riccati equation is no longer a positive
de�nite matrix. Consequently there is a lower bound � min of � for which the H1 control problem has a
solution. The acceptable values of� lie in the interval [ � min ; 1 ). If � min is found and used in the design
of the H1 controller, then the closed-loop system will have increased robustness. Unlike this, if a value
� > � min is used, then an admissible stabilizingH1 controller will be derived but it will be a suboptimal
one. The Hamiltonian matrix

H =
�

A � ( 1
r BB T � 1

� 2 LL T )
� Q � AT

�
(28)

provides a criterion for the existence of a solution of the Riccati equation Eq. (27). A necessary condition
for the solution of the algebraic Riccati equation to be a positive semi-de�nite symmetric matrix is that H
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(a) (b)

Figure 3: (a) Diagram of the nonlinear optimal control scheme for the truck and trailer system that is
steered by the front wheels of its truck, (b) Diagram of the nonlinear optimal control scheme for the
autonomous �re-truck robot that is steered by both the front w heels of its truck and the real wheels of its
trailer

has no imaginary eigenvalues [37].

5 Lyapunov stability analysis

Through Lyapunov stability analysis it will be shown that the proposed nonlinear control scheme assures
H1 tracking performance for the control loop of the truck and trailer systems, that is (a) the truck and
trailer that is steered by the front wheels of its truck, (b) the aut onomous �re-truck robot that is steered by
both the front wheels of its truck and by the rear wheels of its trailer. Moreover, under moderate conditions
asymptotic stability is proven and convergence to the reference setpoints is achieved. The tracking error
dynamics for the truck and trailer systems is written in the form

_e = Ae + Bu + L ~d (29)

where in such vehicles' caseL = I 2R6� 6 with I being the identity matrix. Variable ~d denotes model
uncertainties and external disturbances of the truck and trailer models, as well as sensors' measurement
noise. The following Lyapunov equation is considered

V = 1
2 eT P e (30)

where e = x � xd is the tracking error. By di�erentiating with respect to time one obt ains

_V = 1
2 _eT P e+ 1

2 eP _e)
_V = 1

2 [Ae + Bu + L ~d]T P + 1
2 eT P[Ae + Bu + L ~d])

(31)

_V = 1
2 [eT AT + uT B T + ~dT L T ]P e+
+ 1

2 eT P[Ae + Bu + L ~d])
(32)
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_V = 1
2 eT AT P e+ 1

2 uT B T P e+ 1
2

~dT L T P e+
1
2 eT P Ae + 1

2 eT P Bu + 1
2 eT P L ~d

(33)

The previous equation is rewritten as

_V = 1
2 eT (AT P + P A)e+ ( 1

2 uT B T P e+ 1
2 eT P Bu)+

+( 1
2

~dT L T P e+ 1
2 eT P L ~d)

(34)

Assumption: For given positive de�nite matrix Q and coe�cients r and � there exists a positive de�nite
matrix P, which is the solution of the following matrix equation

AT P + P A = � Q + P( 2
r BB T � 1

� 2 LL T )P (35)

Moreover, the following feedback control law is applied to the system

u = � 1
r B T P e (36)

By substituting Eq. (35) and Eq. (36) one obtains

_V = 1
2 eT [� Q + P( 2

r BB T � 1
2� 2 LL T )P]e+

+ eT P B(� 1
r B T P e) + eT P L ~d)

(37)

_V = � 1
2 eT Qe + ( 2

r P BB T P e� 1
2� 2 eT P LL T )P e

� 1
r eT P BB T P e) + eT P L ~d

(38)

which after intermediate operations gives

_V = � 1
2 eT Qe � 1

2� 2 eT P LL T P e+ eT P L ~d (39)

or, equivalently

_V = � 1
2 eT Qe� 1

2� 2 eT P LL T P e+
+ 1

2 eT P L ~d + 1
2

~dT L T P e
(40)

Lemma: The following inequality holds

1
2 eT L ~d + 1

2
~dLT P e� 1

2� 2 eT P LL T P e� 1
2 � 2 ~dT ~d (41)

Proof : The binomial ( �� � 1
� b)2 is considered. Expanding the left part of the above inequality one gets

� 2a2 + 1
� 2 b2 � 2ab� 0 ) 1

2 � 2a2 + 1
2� 2 b2 � ab � 0 )

ab� 1
2� 2 b2 � 1

2 � 2a2 ) 1
2 ab+ 1

2 ab� 1
2� 2 b2 � 1

2 � 2a2 (42)

The following substitutions are carried out: a = ~d and b = eT P L and the previous relation becomes

1
2

~dT L T P e+ 1
2 eT P L ~d � 1

2� 2 eT P LL T P e� 1
2 � 2 ~dT ~d (43)

Eq. (43) is substituted in Eq. (40) and the inequality is enforced, thus giving

_V � � 1
2 eT Qe+ 1

2 � 2 ~dT ~d (44)

Eq. (44) shows that the H1 tracking performance criterion is satis�ed. The integration of _V from 0 to T
gives

RT
0

_V (t)dt� � 1
2

RT
0 jjejj2

Q dt + 1
2 � 2

RT
0 jj ~djj2dt)

2V(T) +
RT

0 jjejj2
Q dt� 2V(0) + � 2

RT
0 jj ~djj2dt

(45)
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Moreover, if there exists a positive constantM d > 0 such that

R1
0 jj ~djj2dt � M d (46)

then one gets

R1
0 jjejj2

Q dt � 2V(0) + � 2M d (47)

Thus, the integral
R1

0 jjejj2
Q dt is bounded. Moreover,V (T) is bounded and from the de�nition of the

Lyapunov function V in Eq. (30) it becomes clear that e(t) will be also bounded sincee(t) 2 
 e =
f ejeT P e� 2V (0) + � 2M dg.

According to the above and with the use of Barbalat's Lemma one obtains lim t !1 e(t) = 0.

The outline of the global stability proof is that at each iteration of th e control algorithm the state vector of
the truck and trailer vehicles converges towards the temporary equilibrium and the temporary equilibrium
in turn converges towards the reference trajectory [1]. Thus, the control scheme exhibits global asymptotic
stability properties and not local stability. Assume the i-th iteration of the control algorithm and the
i-th time interval about which a positive de�nite symmetric matrix P is o btained from the solution of the
Riccati equation appearing in Eq. (35). By following the stages of the stability proof one arrives at Eq.
(44) which shows that the H-in�nity tracking performance criterio n holds. By selecting the attenuation
coe�cient � to be su�ciently small and in particular to satisfy � 2 < jjejj2

Q =jj ~djj2 one has that the �rst
derivative of the Lyapunov function is upper bounded by 0. Therefore for the i-th time interval it is proven
that the Lyapunov function de�ned in Eq (30) is a decreasing one. This signi�es that between the begin-
ning and the end of the i-th time interval there will be a drop of the value of the Lyapunov function and
since matrix P is a positive de�nite one, the only way for this to happen is the Euclidean norm of the state
vector error e to be decreasing. This means that comparing to the beginning of each time interval, the
distance of the state vector error from 0 at the end of the time interval has diminished. Consequently as
the iterations of the control algorithm advance the tracking error will approach zero, and this is a global
asymptotic stability condition.

6 Robust state estimation with the use of the H1 Kalman Filter

The control loop for the truck and trailer systems can be implemented with the feedback of a partially
measurable state vector and by processing only a small number of state variables. To reconstruct the miss-
ing information about the state vector of the autonomous vehiclesit is proposed to use a �ltering scheme
and based on it to apply state estimation-based control [39]. The recursion of the H1 Kalman Filter, can
be formulated in terms of a measurement updateand a time update part

Measurement update:

D (k) = [ I � �W (k)P � (k) + CT (k)R(k) � 1C(k)P � (k)] � 1

K (k) = P � (k)D (k)CT (k)R(k) � 1

x̂(k) = x̂ � (k) + K (k)[y(k) � Cx̂ � (k)]
(48)

Time update:

x̂ � (k + 1) = A(k)x(k) + B (k)u(k)
P � (k + 1) = A(k)P � (k)D (k)AT (k) + Q(k)

(49)

where it is assumed that parameter� is su�ciently small to assure that the covariance matrix P � (k) �
�W (k) + CT (k)R(k) � 1C(k) will be positive de�nite. When � = 0 the H1 Kalman Filter becomes equiv-
alent to the standard Kalman Filter. One can measure only a part of the state vector of the system of
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the truck and trailer systems, such as the cartesian coordinatesof the vehicle, and can estimate through
�ltering the rest of the state vector elements.

7 Simulation tests

7.1 Path tracking by the autonomous truck and trailer system

The performance of the proposed nonlinear optimal control scheme for the autonomous truck and trailer
vehicle that is steered by the front wheels of its truck has been tested in the case of tracking of di�erent
reference setpoints. The control scheme exhibited fast and accurate tracking of the reference paths. The
computation of the feedback control gain required the solution ofthe algebraic Riccati equation given in
Eq. (27), at each iteration of the control algorithm. The obtained results are depicted in Fig. 4 to Fig.
8. The measurement units for the state variables of the vehicle's model were in the SI system (position
coordinates measured in m). The H-in�nity Kalman Filter has provided estimates of the state vector of
the system by processing measurements of a subset of state variables, such as:x3 = � , x4 = x i , x5 = yi

and x6 =  . It can be noticed that the H-in�nity controller achieved fast and a ccurate convergence to the
reference setpoints for all elements of the vehicle's state-vector. Moreover, the variations of the control
inputs, that is of the truck's velocity and of the truck's steering angle were smooth.

Yet computationally simple, the proposedH1 control scheme has an excellent performance. Comparing to
the control of the truck and trailer system that can be based on global linearization methods the presented
nonlinear H-in�nity control scheme is equally e�cient in setpoint trac king while also retaining optimal
control features [39]. The tracking accuracy of the presented nonlinear optimal (H1 ) control method has
been monitored in the case of several reference setpoints. The obtained results are given in Table I.

Table I: RMSE of the truck and trailer's state variables
path RMSE � RMSE x i RMSE yi RMSE  
1 0:0001 0:0017 0:0017 0:0001
2 0:0023 0:0211 0:0084 0:0019
3 0:0004 0:0548 0:0831 0:0032
4 0:0054 0:0706 0:0984 0:0081
5 0:0084 0:0667 0:0998 0:0165

The tracking performance of the nonlinear H-in�nity control meth od for the model of the truck and trailer
system and under uncertainty, imposing a change equal to �a% to the length of the implement L i , is out-
lined in Table II. It can be noticed that despite model perturbations the tracking accuracy of the control
method remained satisfactory.

Table II: RMSE of state variables under model disturbance
� a RMSE � RMSE x RMSE y RMSE  

0 % 0:0023 0:0211 0:0084 0:0019
25 % 0:0036 0:0217 0:0056 0:0018
50 % 0:0047 0:0223 0:0053 0:0018
75 % 0:0057 0:0228 0:0053 0:0018

100 % 0:0068 0:0232 0:0060 0:0018

7.2 Path tracking by the autonomous �re-truck robot

The e�ciency of the proposed nonlinear optimal control method for the model of the autonomous �re-truck
robot that is steered by both the front wheels of its truck and the rear wheels of its trailer has been tested

13



0 5 10 15 20 25 30 35 40
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

time (sec)

q

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

xi

y
i

(a) (b)

Figure 4: (a) tracking of reference setpoint 1 (red-line) by the heading angle� of the truck (blue line), (b)
tracking of reference path (red line) on thexy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 5: (a) tracking of reference setpoint 2 (red-line) by the heading angle� of the truck (blue line), (b)
tracking of reference path (red line) on thexy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 6: (a) tracking of reference setpoint 3 (red-line) by the heading angle� of the truck (blue line), (b)
tracking of reference path (red line) on thexy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 7: (a) tracking of reference setpoint 4 (red-line) by the heading angle� of the truck (blue line), (b)
tracking of reference path (red line) on thexy-plane by the center of the rear wheel axis of the trailer (blue
line)
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Figure 8: (a) tracking of reference setpoint 5 (red-line) by the heading angle� of the truck (blue line), (b)
tracking of reference path (red line) on thexy-plane by the center of the rear wheel axis of the trailer (blue
line)

through simulation experiments. The obtained results are depictedin Fig. 9 to Fig. 20.These demon-
strate that fast and accurate tracking of the reference setpoints is achieved by all state vector elements
of the robotic vehicle. The variations of the control inputs were moderate. For the computation of the
control signal the algebraic Riccati equation of Eq. (35) had to berepetitively solved at each time-step of
the control algorithm. The control inputs were applied on the initial nonlinear model of the vehicle and
not on the equivalent linearized description of it that was obtained through the system's Jacobian matrices.

The transient performance of the control scheme relied on the control loop gains r and � and well as on
the value of the diagonal elements of matrixQ. As explained above, the smallest value of the attenuation
coe�cient � for which the algebraic Riccati equation of Eq. (35) admits a solution, is the one that provides
maximum robustness to the control system. It is also noted that by using the H-in�nity Kalman Filter a
state estimation-based implementation of the control method hasbeen achieved. This allows the reliable
functioning of the control loop after receiving measurements from a small number of sensors. Actually, the
H-in�nity Kalman Filter can be fed with measurements of the following s tate variables, such as:x1 = x,
x2 = y and x6 = � 2. In the simulation diagrams, the real values of the state vector elements are depicted
in blue, the estimated values are plotted in green and the related reference setpoints are printed in red.

As noted, the proposed nonlinear optimal control method for thetruck and trailer model (that is steered
by the front wheels of its truck), as well as for the autonomous �re-truck robot (that is steered by both
the front wheels of its truck and the rear wheels of its trailer), wasbased on an approximate linearization
of the vehicles' kinematics. The advantages that the proposed control method exhibits are outlined as
follows: (i) it is applied directly on the nonlinear dynamical model of the truck and trailer systems and
not on an equivalent linearized description of it, (ii) It avoids the elaborated linearizing transformations
(di�eomorphisms) which can be met in global linearization-based control methods for autonomous vehi-
cles (iii) the controller is designed according to optimal control principles which implies the best trade-o�
between precise tracking of the reference setpoints on the one side and moderate variations of the control
inputs on the other side (iv) the control method exhibits robustness to parametric uncertainty, modelling
errors as well as to external perturbations (v) the computational implementation of the control method is
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Figure 9: Tracking of setpoint 1 for the autonomous �re-truck robot (a) convergence of state variablesx1

to x3 to their reference setpoints (b) convergence of state variablesx4 to x6 to their reference setpoints
(red line: setpoint, blue line: real value, green line: estimated value)
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Figure 10: Tracking of setpoint 1 for the autonomous �re-truck robot (a) variation of the control inputs
u1 to u3 (b) path followed by the autonomous �re-truck robot on the xy-plane
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