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Abstract: In this paper we propose and investigate a novel magnetic field sensor based on a Tri-
microfiber coupler combined with magnetic flui d and a fiber Bragg grating (FBG) in a ring. A 
sensitivity of 1306 pm/mT was experimentally demonstrated in the range of magnetic fields from 0 
to 15 mT. The reflection peak in the output spectrum associated with the FBG serves as a reference 
point allowing to avoid ambiguity in determining th e spectral shift induced by the magnetic field. 
Due to its high sensitivity at low magnetic fields, th e proposed structure could be of high interest in 
low field biosensing applications that involve a ma gnetic field, such as magnetic manipulation or 
separation of biomolecules. 

Keywords: magnetic field sensor; magnetic fluid; tri-microf iber coupler; taper; fiber Bragg grating (FBG)  
 

1. Introduction 

Optical fiber interferometers using 2 × 2 couplers, such as Mach–Zehnder, Fabry–Perot or Sagnac 
loop interferometers have been widely utilized as magnetic fiel d sensors for many applications 
including navigation, aviation, space and geophysical research, and biosensing [1–3].  

Magnetic sensors based on optical fiber interferometers are an excellent alternative to traditional 
electronic sensors due to their outstanding advantages of immunity to electromagnetic interference, 
compact size, and ability to operate in hazardous environments. A number of optical fiber 
interferometric structures have been proposed for magnetic field sensing, such as fiber gratings [4], 
microfiber couplers [5,6], surface plasmonic structures [7–9], cascaded fiber hetero-structures [10], 
tapered photonic crystal fibers [ 11], various fiber structures incorp orating magnetic fluids [12], and 
so on. It should be noted however, that since the main research focus currently is on sensing of the 
magnetic field strength, most of the existing sensors cannot be used for determining the magnetic 
field direction.  

Typically, existing fiber-optic sensors suffer fr om temperature-induced drift and often require 
additional means for temperature compensation [1,5,7–9], and fiber Bragg grating (FBGs) prove to be 
an effective tool for temperature referencing [4,6]. Finally, many of the fiber-optic sensors 
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incorporating magnetic fluids or nanoparticles suff er from hysteresis due to their inherently slow 
response times [1,3]. One way to accelerate the response is reduction of nanoparticle concentration in 
the magnetic fluid, which often leads to a decreased sensitivity to the magnetic fluid. 

Traditional fiber interferometers such as Mach–Zehnder, Fabry–Perot, or Sagnac are about ten 
times more sensitive to environmental parameters compared to modal interferometers [13,14]. One 
possible way of realizing modal interferometers is by  tapering single-mode fibers. Once the radius of 
the tapered fiber is smaller than the normal fibe r core radius, the fundamental core mode (HE11) 
transitions into higher-order modes (HE11, HE12, HE13...) when entering the first transition region 
of the taper. The light then propagates within th e uniform taper waist region accumulating relative 
phase differences between the different higher-order modes before they re-couple and interfere again 
in the second transition region of the taper. The phase difference is vital in interferometer, by 
inducing birefringence, or change of environmental refractive index (RI) the effective refractive index 
difference increases [15]. Fiber interferometers employing interference in an optical microfiber 
coupler fabricated from a single-mode fiber have the advantage of high sensitivity to external 
environmental parameters due to the larger pr oportion of evanescent field surrounding the 
microfiber. In addition, a larger phase difference be tween the interfering modes can be facilitated by 
using a polarization controller. Research shows that there are advantages to using 3 × 3 couplers as 
opposed to 2 × 2 couplers in the Mach–Zehnder and Sagnac sensing configurations, as it provides an 
instantaneous stable reference arm with low-coherence, allowing for the optical resolution of 
complex-conjugate ambiguity without phase stepping [16–19]. 

In this letter we propose and investigate a novel magnetic field sensor based on a microfiber 
interferometer combined with a fiber loop containing a 3 × 3 tapered microfiber coupler (Tri-MFC) 
covered with magnetic fluid (MF) and a fiber Brag g grating (FBG). In addition to sensing of a 
magnetic field, the FBG could be used for simultaneously providing temperature information. This 
feature could be particularly useful in many magnet ic field sensing applications where there is also 
a need to measure temperature, for example in research in superconductors. Spectral shift in the 
output spectrum of the proposed sensor is proporti onal to the magnetic field strength applied to the 
Tri-MFC, and the spectral shift of the FBG peak indicates changes in the surrounding temperature. 

2. Materials and Methods 

In the manuscript, the proposed theoretical model based on the coupled-mode theory was 
analyzed numerically by means of the MATLAB software package (MathWorks). A set of differential 
equations and the corresponding boundary conditions  were derived according to coupled-mode theory. 

2.1. Materials 

The MF sample (IO-A20-5) was employed with 20 nm Fe4O3 particles at a concentration of 5 mg/mL, 
which was purchased from Cytodiagnostics Inc.  

2.2. Proposed Structure and Fabrication 

A schematic diagram of the proposed sensor is shown in Figure 1a. The structure includes a Tri-
MFC (3 × 3 MFC in Figure 1a) made from three single-mode fibers (SMF) fused and tapered together 
(Figure 1b,c). The Tri-MFC was fabricated using a custom-built fiber tapering setup. Three ~4 cm long 
sections of a standard single-mode optical fiber (SMF-28, Coring) were stripped of their coating, 
placed together, and twisted together slightly. Th en the coupler was fabricated by simultaneously 
fusing and tapering the three SMFs using a method known as the microheater brushing technique [20]. 

Light from a broadband source (BBS) emitting in the wavelength range from 1520 nm to 1580 
nm was fed into the MFC input (port 3) and split into beams to ports 4, 5, and 6. Port 4 was connected 
to the FBG for monitoring of the reflected peak. Port 5 and port 6 were connected by a section of 
polarization maintaining fiber (PMF) with a ~15 cm length with a polarization controller (PC) 
included in the loop. The output spectrum of the sensor was monitored at port 2, using an optical 
spectrum analyzer (OSA) with a resolution of 10 pm. The magnetic field in the experiments was 
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generated by a permanent magnet, with changes in the field strength achieved by changing the 
distance between the magnet and Tri-MFC immersed in the magnetic fluid (MF). 

 

 

Figure 1. (a) Schematic diagram of the proposed sensor; (b) Three fibers are slightly twisted together 

to ensure close proximity among them during the fusing and tapering process. ( c) Sketch of a cross-

section of the 3 × 3 tapered microfiber coupler (Tri-MFC) immersed in magnetic fluid. 

The schematic of the fusion and tapering process for the Tri-MFC, operating as the sensor’s head, 
is illustrated in Figure 1b. The waist diameter of each of the microfibers was 2 µm resulting in a total 
diameter of 6 µm for the Tri-MFC. The uniform ta per waist section for the Tri-MFC was about 2.5 cm 
in length.  

In order to improve the mechanical st ability of the MFC in our experiment, 
polydimethylsiloxane (PDMS) materi al was used to package the Tri-MFC by encapsulating it in the 
center of a prefabricated slot with the opposi te MFC ends immobilized by a UV curable glue. 

The fabricated Tri-MFC was then immersed into magn etic fluid (IO-A20-5, 20 nm particles, 5 mg/mL, 
from Cytodiagnostics Inc.), of which refractive index (RI) in the absence of magnetic field was 1.350. 
A sketch of the Tri-MFC immersed in to the MF is shown as Figure 1c. Varying magnetic fields in the 
range from 0 to 15 mT were applied to the sensor using a permanent magnet.  

2.3. Theoretical Analysis and Operating Principle 

Light propagation in the Tri-MF C can be described using the coupled-mode theory method 
discussed in [16]. It is well known that in an SMF,  the normalized frequency V is the cutoff frequency, 
and single-mode operation occurs when V is less than or equal to 2.405 [13]. For the fiber taper with 
a waist diameter of 2 µm, the normalized frequency V is calculated to be 7.35, which means that 
higher-order modes can propagate in the fiber taper leading to modal interference along the length 
of the fiber taper. 
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The coupling coefficients for the Tri-MFC are func tions of both the fiber parameters and the Tri-
MFC geometry [5]. A 3 × 3 fused coupler can be considered as a triangular cross-section fiber coupler 
as shown in Figure 1c. Considering the rotational symmetry and orthogonality between normal 
modes in the Tri-MFC, we limited the study to the case where the three coupling coefficients (k) are 
identical with the same value of k. With a unit powe r input to the system from port 3 of the Tri-MFC, 
after coupling, P4(z), P5(z), and P6(z) were the power amplitudes in th e three fibers at ports 4, 5, and 
6 as shown in Figure 1a. The power exchange between the three fibers is given by [13,18] as follows: 

�Õ
�Ö
�Ô

�Ö
�Ó

�@�2�8(�V)
�V

+  �F�Ú�2�8(�V) =  F�F�G[�2�9(�V) + �2�:(�V)]

�@�2�9(�V)
�V

+  �F�Ú�2�9(�V) =  F�F�G[�2�8(�V) + �2�:(�V)]

�@�2�:(�V)
�V

+  �F�Ú�2�:(�V) =  F�F�G[�2�8(�V) + �2�9(�V)]

 (1) 

where �Ú is the propagation constant. 
In this case, the characteristic equation is independent of the propagation constant �Ú: 

= F�Fe
� Ú � G � G
� G � Ú � G
� G � G � Ú

i (2) 

The roots of the characteristic equation are: 

�ã�5,�6 = F�F(� Ú  F � G),�ã�7 = F�F(�Ú+ 2 �G) (3) 

with the eigenvector of: 

�B�5 = e
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0
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0
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1
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The general solutions are: 
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1
0
1
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0
1
1

i 
(5) 

so �?�5 = �?�6 = �?�7 =
�5

�7
. 

Normalized solutions for the optical power coupled in to the Tri-MFC ports are then given as follows:  

�Õ
�Ö
�Ô

�Ö
�Ó �2�8(�V) =  �F

1
3

[� V  F2sin (�G�V)] �A�?�Ý�	�í

�2�9(�V) = F�F 
2
3

(1 + cos ( �G�V))sin ( �G�V)�A�?�Ý�	�í

�2�:( �V) = �F
1
3

[�V+ 2 (1 Fcos(�G�V)) ]sin (�G�V)�A�?�Ý�	�í

 (6) 

Based on the proposed sensor structure shown in Figure 1a, the optical power P4(z) passing 
through the FBG loop, becomes power P1(z) [21]. 

�2�¿�»�À(�V) = �P�=�J�D�6(
�0�ß(�8)�Ü�J�4

�J
)�2�8(�V) (7) 

where N is the number of periodic vari ations of refractive index in FBG, �ß(�8) is the fraction of power 
in the core, V is the normalized frequency, and �Ü�J�4 is the variation in the refraction index. 

In the proposed sensor structure, the PMF loop and the FBG loop can be treated as separate light 
paths. When input light was launch ed into port 3, it split into three signals and passed through the 
Tri-MFC toward ports 4, 5, and 6. Under these conditions a Sagnac loop was formed between ports 5 
and 6 resulting in light interference  in the Tri-MFC. By substituting Equation (6) into Equation (1), 
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�2�9(�V) = �2�:(�V). After being combined with the light reflecte d back from the loop containing the FBG, 
the resulting transmission observed at port 2 can be expressed as:  

(�V) =
|�2�â�è�ç|�6

|�2�Ü�á|�6 =
|�2�9(�V)|�6+ |�2�:(�V)|�6+ 2 |�2�9(�V)| �®|�2�:(�V)|�?�K�O(�î )�?�K�O(�G�V�.) + � G � ®|�2�¿�»�À|�6

|�2�7(�V)|�6
 (8) 

By ignoring some higher-order te rms, T(z) can be expressed as: 

�6(�V) =
4
9

(1 + cos(�G�V))[ �V+ 2 (1 Fcos(�G�V)) �O�E�J�6(�G�V)] � ® � ?� K� O(�î ) �?�K�O(�G�V�.) + �G

�®
1
9

�P�=�J�D�8(
�0�ß(�8)�Ü�J�4

�J
)[ � V  F2 sin(�G�V)]�6 

(9) 

where �î = 2 �N�H(�J�4  F � J�Ø)/ �ã is the phase delay accumulated within the PMF loop, �à is the total angle 
between light polarizations at both ends of the PMF, l is the length of PMF, (no �º ne) is the birefringence 
of the PMF, �• is the operating wavelength, and k is the coupling coefficient of the fiber coupler. L is 
the length of the tapered waist of the Tri-MFC. 

As one can see from Equation (8), the interference of the tapered 3 × 3 coupler is highly affected 
by the coupling coefficient between the two fiber lo ops, which has been proven to be wavelength and 
RI dependent [5], thus making the resulting outp ut spectrum strongly dependent on the coupler’s 
surrounding environment. 

The operating principle of the PMF loop is based on the interference between the clockwise and 
counterclockwise propagating beams with a �”  phase difference after passing the length of the PMF. 
Both loops’ spectra were overlapped at port 2 and observed using an OSA as illustrated in Figure 1a. 

3. Results and Discussion 

Figure 2 shows a typical combined spectrum of the PMF loop and the FBG measured at port 2. 

  

(a) (b) 

Figure 2. (a) Interference spectrum of polarization main taining fiber - microfiber coupler (PMF-MFC) 

loop measured at port 2 without the fiber Bragg grating (FBG); ( b) Combined spectra of the FBG and 

the PMF-MFC loop measured at port 2. 

In the experiments we used a 15 cm long PMF which resulted in a spectrum with a free spectral 
range (FSR) of 16 nm. The spectral position of the FBG peak in such a configuration is determined by 
the temperature only and does not change under the influence of the magnetic field (change of the 
magnetic fluid RI). However, by measuring the spectral distance between the FBG reflection peak 
and the nearest selected interference dip, the change in RI (magnetic field) is easily determined, and 
further, the strength of the applied magnetic fiel d can be measured assuming a suitable calibration 
has taken place. The experimentally measured transmission spectrum of the FBG and PMF loops 
recorded at port 2 is shown in Figure 2a. 

Figure 3 shows experimentally measured transmission spectra of the proposed sensor under 
different magnetic field strengths. An increase in the magnetic field strength applied to the sensor 
head (Tri-MFC immersed in the magnetic fluid) from 0 to 15 mT results in a blue spectral shift of the 
selected interference dip by 19.6 nm. Thanks to the presence of the FBG peak as a reference point in 
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the output spectrum, it is possible to avoid ambigu ity in determining the shift of the interference 
spectrum. For example, if the FBG reflection was not present, a 10 mT induced shift of the dip at 
1536.3 nm would not be distinguishable from the zero-field neighboring interference dip. 

 

Figure 3. Experimental output spectra for the sensing head immersed in a MF containing 12 nm-

diameter Fe4O3 particles with concentration of 5 mg/mol at  different magnetic field strengths ranging 

from 0 to 15 mT. 

Figure 4 is a plot of spectral positions of the selected transmission dip (near 1536.3 nm) and the 
FBG reflection peak (1547.6 nm) against the applied magnetic field strength. As  can be seen from the 
plot, the selected transmission dip shifts rapidly from 1536.3 nm to 1516.7 nm within the studied 
range while the FBG peak remains unaffected. 

 

Figure 4. Measured wavelength shift of the selected transmission dip (at 1536.3 nm) and the FBG 
reflection peak (1547.6 nm) against increasing magnetic field from 0 to 15 mT and then decreased back 

to zero. 

Figure 4 also illustrates the hysteresis behavior (black and red lines) of the sensor unavoidable 
due to the limited time necessary for the magnetic nanoparticles to reach a balance after a change in 
the magnetic field strength or direction. As one can see from the graph, there was a circa 0.1 nm 
difference between zero-field spectral positions of the selected interference dip after the magnetic 
field strength was at first increased from 0 to 15 mT, and then decreased back to 0 mT again. It should 
be noted that the selected spectral dip returned to its initial position appr oximately 20 min after the 
magnetic field was reduced to zero. 

Figure 5 illustrates the dependences of spectral positions of two selected interference dips on the 
orientation of the applied magnetic field with an  amplitude of 10 mT with respect to the Tri-MFC 
axis. As one can see from the plot, the dependences are periodic with the change of the direction of 
the magnetic field from 0 to 180 degrees, demonstrating the potential capability of the proposed 
sensor to detect field orientation. 
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Figure 5. Periodic change in the position of spectral dips with initial positions at 1536.3 nm and 1559 

nm when the applied magnetic field direction changes from 0 two 180 degrees. 

The sensing mechanism of the proposed structure for sensing the orientation of the magnetic 
field is the orientation-dependent distribution of na noparticles, leading to the field dependent RI of 
the magnetic fluid. The distribution  of nanoparticles will be influenced by the external magnetic field 
orientation with respect to the Tri-microfiber coup ler (Tri-MFC), whose cross-section at the waist has 
a triangular symmetry. Figure 6a–d shows that as the external magnetic field direction changes, the 
magnetic nanoparticles aggregate depending on the field orientation. As was shown in previous 
reports [5,8], the nanoparticle chains re-align along the magnetic field direction, causing the change 
of the RI of the surrounding the Tri-MFC fluid. 

    

(a) (b) (c) (d) 

Figure 6. (a) External magnetic field direction is at 0° with respect to horizontal axis; ( b) at 60° with 

respect to horizontal; (c) external magnetic field is vertical (90°); (d) external magnetic field direction 

creates 120° angle with the horizontal axis. 

In Figure 5, the period is about 120°, due to the triangular symmetry of the Tri-MFC cross-
section. Besides the main impact from the magnetic field strength, the nanoparticles chain 
distribution is also influenced by the orientation of  the magnetic field with respect to the cross-section 
of Tri-MFC and magnetic field direction. From Figure 6, when magnetic field is 0°, 60°, and 120°, the 
distribution of nanoparticles create similar patterns, resulting in period ic changes of the spectral dips 
positions every 120°. It should be noted that a change in the magnetic field direction from that within 
the range from 0° to ~ 60° to a value from 60° to ~120°, results in the re-alignment of the nanoparticle 
chains reversing their collective magnetic moment. Thus, the maximum and minimum spectral dip 
positions are located at ~30° and 90° in Figure 5. 

The effect of temperature has been studied and reported previously [6 ] for a similar sensing 
structure containing the same FBG grating as a temperature sensor. Due to this, the results of 
temperature characterization have not been presented here. It should be noted however that 
monitoring of the FBG peak spectral position with in the proposed structure can be used to provide 
the surrounding temperature information. 
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Table 1 compares properties of related fiber-optic magnetic field sensing structures, illustrating 
that the proposed sensor is capable of sensing magnetic field strength with relatively high sensitivity, 
and in addition is capable of providing informatio n about magnetic field direction and temperature. 

Table 1. Comparison of properties of fiber-optic ma gnetic sensors reported in the literature. 

Scheme Sensitivity Vector Temperature Reference 
Thin-core fiber-FBG �º0.78 dB/m No Yes [4] 
2 × 2 MFC Sagnac �º488�9pm/mT Yes No [5] 

MFC and FBG based fiber laser 102 pm/mT No Yes [6] 
Surface Plasmon Resonance (SPR) 10 nm/mT No No [7] 

SPR 597.8 pm/Oe Yes No [8] 
SPR 0.692 nm/Oe Yes No [9] 

Cascaded fiber hetero structures 65.9 pm/Oe No Yes [10] 
Photonic crystal fiber 384 pm/Oe No No [11] 

Microfiber Knot Resonator 277 pm/mT No No [12] 
3 × 3 MFC Sagnac 1306 pm/mT Yes Yes This work 

4. Conclusions 

In conclusion, we have proposed and demonstrated a novel Tri-MFC sensor structure based on 
a combination of PMF and FBG loops. The sensitivity to magnetic field strength for the proposed 
structure is 1306 pm/mT for low magn etic fields of up to 15 mT, which is experimentally verified as 
2.6 times higher than that for a 2 × 2 MFC based sensor with similar Sagnac structure [5]. Initial results 
of studies of the influence of the magnetic field orientation on the sensor response indicate the 
potential capability of the proposed sensor to measure magnetic field direction. The sensor’s high 
sensitivity in the low fields makes it ve ry promising for biosensing applications. 
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