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From rotating fluid masses and Ziegler’s
paradox to Pontryagin- and Krein spaces and
bifurcation theory

Oleg N. Kirillov and Ferdinand Verhulst

Abstract Four classical systems, the Kelvin gyrostat, the Maclaurin spheroids, the
Brouwer rotating saddle, and the Ziegler pendulum have directly inspired develop-
ment of the theory of Pontryagin and Krein spaces with indefinite metric and singu-
larity theory as independent mathematical topics, not to mention stability theory and
nonlinear dynamics. From industrial applications in shipbuilding, turbomachinery,
and artillery to fundamental problems of astrophysics, such as asteroseismology and
gravitational radiation — that is the range of phenomena involving the Krein col-
lision of eigenvalues, dissipation-induced instabilities, and spectral and geometric
singularities on the neutral stability surfaces, such as the famous Whitney’s um-
brella.

1 Historical background

The purpose of this paper is to show how a curious phenomenon observed in the nat-
ural sciences, destabilization by dissipation, was solved by mathematical analysis.
After the completion of the analysis, the eigenvalue calculus of matrices which it
involved was (together with other applications) an inspiration for the mathematical
theory of structural stability of matrices. But the story is even more intriguing. Later
it was shown that the bifurcation picture in parameter space is related to a seemingly
pure mathematical object in singularity theory, Whitney’s umbrella.

In many problems in physics and engineering, scientists found what looked like a
counter-intuitive phenomenon: certain systems that without dissipation show stable
behaviour became unstable when any form of dissipation was introduced. This can
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be viscosity in fluids and solids, magnetic diffusivity, or losses due to radiation of
waves of different nature, including recently detected gravitational waves [1, 3],
to name a few. For instance, dissipation-induced modulation instabilities [27] are
widely discussed in the context of modern nonlinear optics [99].

The destabilization by dissipation is especially sophisticated when several dissi-
pative mechanisms are acting simultaneously. In this case, “no simple rule for the
effect of introducing small viscosity or diffusivity on flows that are neutral in their
absence appears to hold” [131] and “the ideal limit with zero dissipation coefficients
has essentially nothing to do with the case of small but finite dissipation coefficients”
[95].

In hydrodynamics, a classical example is given by secular instability of the
Maclaurin spheroids due to both fluid viscosity (Kelvin and Tait, 1879) and gravi-
tational radiation reaction (Chandrasekhar, 1970), where the critical eccentricity of
the meridional section of the spheroid depends on the ratio of the two dissipative
mechanisms and reaches its maximum, corresponding to the onset of dynamical in-
stability in the ideal system, when this ratio equals 1 [84]. In meteorology this phe-
nomenon is known as the ‘Holopäinen instability mechanism’ (Holopäinen, 1961)
for a baroclinic flow when waves that are linearly stable in the absence of Ekman
friction become dissipatively destabilized in its presence, with the result that the lo-
cation of the curve of marginal stability is displaced by an order one distance in the
parameter space, even if the Ekman number is infinitesimally small [48, 142]. For
a baroclinic circular vortex with thermal and viscous diffusivities this phenomenon
was studied by McIntyre in 1970 [93].

In rotor dynamics, the generic character of the discontinuity of the instability
threshold in the zero dissipation limit was noticed by Smith already in 1933 [119].
In mechanical engineering such a phenomenon is called Ziegler’s paradox, it was
found in the analysis of a double pendulum with a nonconservative positional force
with and without damping in 1952 [146, 147]. The importance of solving the Ziegler
paradox for mechanics was emphasized by Bolotin [20]: “The greatest theoretical
interest is evidently centered in the unique effect of damping in the presence of
pseudo-gyroscopic forces, and in particular, in the differences in the results for sys-
tems with slight damping which then becomes zero and systems in which damping
is absent from the start.” Encouraging further research of the destabilization para-
dox, Bolotin was not aware that the crucial ideas for its explanation were formulated
as early as 1956.

Ziegler’s paradox was solved in 1956 by an expert in classical geometry and
mechanics, Oene Bottema [25]. He formulated the problem of the stability of an
equilibrium in two degrees-of-freedom (4 dimensions), allowing for gyroscopic and
nonconservative positional forces. The solution by Bottema in the form of concrete
analysis was hardly noticed at that time. Google Scholar gives no citation of Bot-
tema’s paper in the first 30 years after 1956.

As mentioned above, a new twist to the treatment of the problem came from
identifying geometric considerations independently introduced by Whitney in sin-
gularity theory with the bifurcation analysis of Bottema. Interestingly Whitney’s
“umbrella singularity” predated Bottema’s analysis, it gives the right geometric pic-
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ture but it ignores the stability questions of the dynamical context which is the es-
sential question of Ziegler’s paradox. Later, in 1971-72, V.I. Arnold showed that the
umbrella singularity is generic in parameter families of real matrices. This result
links to stability by linearisation of the vector field near equilibrium.

The phenomenon of dissipation-induced instability and the Ziegler paradox
raised important questions in mechanics and mathematics. For instance, what is
the connection between the conservative and deterministic Hamiltonian systems and
real systems involving both dissipation of energy and stochastic effects [78]? Also it
added a new bifurcation in the analysis of dynamical systems. An important conse-
quence of the results is that in a large number of problem-fields one can now predict
and characterise precisely this type of instability [49, 63, 65, 67, 73, 78, 86, 118].

1.1 Stability of Kelvin’s gyrostat and spinning artillery shells filled
with liquid

Fig. 1 The Kelvin gyrostat [130].

Already von Laue (1905) [137], Lamb (1908) [76] and Heisenberg (1924) [46]
realized that dissipation easily destabilizes waves and modes of negative energy
of an ideal system supported by rotating and translating continua [122, 123].
Williamson (1936) proposed normal forms for Hamiltonian systems allowing sort-
ing stable modes of negative and positive energy according to their symplectic sign
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[88, 140, 141]. However, further generalization — the theory of spaces with indefi-
nite metric, or Krein [74] and Pontryagin [103] spaces, — was directly inspired by
the problem of stability of the Kelvin gyrostat [43, 130], having both astrophysical
and industrial (and even military) applications.

Kelvin [130] experimentally demonstrated in 1880 that a thin-walled and slightly
oblate spheroid completely filled with liquid remains stable if rotated fast enough
about a fixed point, which does not happen if the spheroid is slightly prolate, Fig-
ure 1. In the same year this observation was confirmed theoretically by Greenhill
[43], who found that rotation around the center of gravity of the top in the form of a
weightless ellipsoidal shell completely filled with an ideal and incompressible fluid,
is unstable when a < c < 3a, where c is the length of the semiaxis of the ellipsoid
along the axis of rotation and the lengths of the two other semiaxes are equal to a
[43].

Quite similarly, bullets and projectiles fired from the rifled weapons can rela-
tively easily be stabilized by rotation, if they are solid inside. In contrast, the shells,
containing a liquid substance inside, have a tendency to turn over despite seemingly
revolved fast enough to be gyroscopically stabilized. Motivated by such artillery
applications, in 1942 Sobolev, then director of the Steklov Mathematical Institute
in Moscow, considered stability of a rotating heavy top with a cavity entirely filled
with an ideal incompressible fluid [120]—a problem that is directly connected to
the classical XIXth century models of astronomical bodies with a crust surrounding
a molten core [121].

For simplicity, the solid shell of the top and the domain V occupied by the cavity
inside it, can be assumed to have a shape of a solid of revolution. They have a com-
mon symmetry axis where the fixed point of the top is located. The velocity profile
of the stationary unperturbed motion of the fluid is that of a solid body rotating with
the same angular velocity Ω as the shell around the symmetry axis.

Following Sobolev, we denote by M1 the mass of the shell, M2 the mass of the
fluid, ρ and p the density and the pressure of the fluid, g the gravity acceleration,
and l1 and l2 the distances from the fixed point to the centers of mass of the shell
and the fluid, respectively. The moments of inertia of the shell and the ‘frozen’ fluid
with respect to the symmetry axis are C1 and C2, respectively; A1 (A2) stands for the
moment of inertia of the shell (fluid) with respect to any axis that is orthogonal to
the symmetry axis and passes through the fixed point. Let, additionally,

L =C1 +C2−A1−A2−
K

Ω 2 , K = g(l1M1 + l2M2). (1)

The solenoidal (divv = 0) velocity field v of the fluid is assumed to satisfy the
no-flow condition on the boundary of the cavity: vn|∂V = 0.

Stability of the stationary rotation of the top around its vertically oriented sym-
metry axis is determined by the system of linear equations derived by Sobolev in the
frame (x,y,z) that has its origin at the fixed point of the top and rotates with respect
to an inertial frame around the vertical z-axis with the angular velocity of the unper-
turbed top, Ω . If the real and imaginary part of the complex number Z describe the
deviation of the unit vector of the symmetry axis of the top in the coordinates x, y,
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and z, then these equations are, see e.g. [120, 145]:

dZ
dt

= iΩW,

(A1+ρκ
2)

dW
dt

= iΩLZ + iΩ(C1−2A1+ρE)W + iρ
∫

V

(
vx

∂ χ

∂y
− vy

∂ χ

∂x

)
dV,

∂tvx = 2Ωvy−ρ
−1

∂x p+2iΩ 2W∂yχ,

∂tvy = −2Ωvx−ρ
−1

∂y p−2iΩ 2W∂xχ,

∂tvz = −ρ
−1

∂z p, (2)

where 2κ2 =
∫

V |∇χ|2dV , E = i
∫

V (∂xχ∂yχ−∂yχ∂xχ)dV , and the function χ is
determined by the conditions

∇
2
χ = 0, ∂nχ|

∂V = z(cosnx+ icosny)− (x+ iy)cosnz, (3)

with n the absolute value of a vector n, normal to the boundary of the cavity.
Sobolev realized that some qualitative conclusions on the stability of the top can

be drawn with the use of the bilinear form

Q(R1,R2) = LΩZ1Z2 +(A1 +ρκ
2)W1W 2 +

ρ

2Ω 2

∫
V

vT
2 v1dV (4)

on the elements R1 and R2 of the space {R} = {Z,W,v}. The linear operator B
defined by Eqs. (2) that can be written as dR

dt = iBR has all its eigenvalues real when
L > 0, which yields Lyapunov stability of the top. The number of pairs of complex-
conjugate eigenvalues of B (counting multiplicities) does not exceed the number of
negative squares of the quadratic form Q(R,R), which can be equal only to one when
L < 0. Hence, for L < 0 an unstable solution R = eiλ0tR0 can exist with Imλ0 < 0;
all real eigenvalues are simple except for maybe one [120, 145, 72].

In the particular case when the cavity is an ellipsoid of rotation with the semi-
axes a, a, and c, the space of the velocity fields of the fluid can be decomposed into
a direct sum of subspaces, one of which is finite-dimensional. Only the movements
from this subspace interact with the movements of the rigid shell, which yields a
finite-dimensional system of ordinary differential equations that describes coupling
between the shell and the fluid.

Calculating the moments of inertia of the fluid in the ellipsoidal container

C2 =
8πρ

15
a4c, A2 = l2

2M2 +
4πρ

15
a2c(a2 + c2),

denoting m = c2−a2

c2+a2 , and assuming the field v = (vx,vy,vz)
T in the form

vx = (z− l2)a2mξ , vy =−i(z− l2)a2mξ , vz =−(x− iy)c2mξ ,

one can eliminate the pressure in Eqs. (2) and obtain the reduced model
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dx
dt

= iΩA−1Cx = iΩBx, (5)

where x = (Z,W,ξ )T ∈ C3 and

A =

1 0 0

0 A1+l2
2M2+

4πρ

15 a2c (c2−a2)2

c2+a2 0
0 0 c2 +a2

 ,

C =

 0 1 0
L C1−2A1−2l2

2M2− 8πρ

15 a2c3m2 − 8πρ

15 a4c3m2

0 −2 −2a2

 . (6)

The matrix B 6= BT in Eq. (5) after multiplication by a symmetric matrix

G =

L 0 0

0 A1+l2
2M2+

4πρ

15 a2c (c2−a2)2

c2+a2 0

0 0 4πρ

15 a4c3 (c2−a2)2

c2+a2

 (7)

yields a Hermitian matrix GB = (GB)
T

, i.e. B is a self-adjoint operator in the space
C3 endowed with the metric

[u,u] := (Gu,u) = uT Gu, u ∈ C3, (8)

which is definite when L > 0 and indefinite with one negative square when L < 0.
If λ is an eigenvalue of the matrix B, i.e. Bu = λu, then uT GBu = λuT Gu. On the
other hand, uT (GB)T u = λ uT Gu = λ uT Gu. Hence,

(λ −λ )uT Gu = 0,

implying uT Gu= 0 on the eigenvector u of the complex λ 6= λ . For real eigenvalues
λ = λ and uT Gu 6= 0. The sign of the quantity uT Gu (or Krein sign) can be different
for different real eigenvalues.

For example, when the ellipsoidal shell is massless and the supporting point is at
the center of mass of the system, then A1 = 0, C1 = 0, M1 = 0, l2 = 0. The matrix B
has thus one real eigenvalue (λ+

1 =−1, u+
1

T Gu+
1 > 0) and the pair of eigenvalues

λ
±
2 =−1

2
± 1

2

√
1+

32πρ

15
ca4

L
, L =

4πρ

15
a2c(a2− c2), (9)

which are real if L > 0 and can be complex if L < 0. The latter condition together
with the requirement that the radicand in Eq. (9) is negative, reproduces the Green-
hill’s instability zone: a < c < 3a [43]. With the change of c, the real eigenvalue λ

+
2

with u+
2

T Gu+
2 > 0 collides at c = 3a with the real eigenvalue λ

−
2 with u−2

T Gu−2 < 0
into a real double defective eigenvalue λd with the algebraic multiplicity two and
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Fig. 2 (a) Simple real eigenvalues (9) of the Sobolev’s top in the Greenhill’s case for a = 1 with
(red) uT Gu > 0 and (green) uT Gu < 0. (b) At simple complex-conjugate eigenvalues (black) and
at the double real eigenvalue λd we have uT Gu = 0.

geometric multiplicity one. This Krein collision is illustrated in Figure 2. Note that
ud

T Gud = 0, where ud is the eigenvector at λd .
Therefore, in the case of the ellipsoidal shapes of the shell and the cavity, the

Hilbert space {R} = {Z,W,v} of the Sobolev’s problem endowed with the indef-
inite metric (L < 0) decomposes into the three-dimensional space of the reduced
model (5), where the self-adjoint operator B can have complex eigenvalues and real
defective eigenvalues, and a complementary infinite-dimensional space, which is
free of these complications. The very idea that the signature of the indefinite metric
can serve for counting unstable eigenvalues of an operator that is self-adjoint in a
functional space equipped with such a metric, turned out to be a concept of a rather
universal character possessing powerful generalizations that were initiated by Pon-
tryagin in 1944 [103] and developed into a general theory of indefinite inner product
spaces or Krein spaces [19, 71, 74]. Relation of the Krein sign to the sign of energy
or action has made it a popular tool for predicting instabilities in physics [96, 148].

1.2 Secular instability of the Maclaurin spheroids by viscous and
radiative losses

It is hard to find a physical application that would stimulate development of math-
ematics to such an extent as the problem of stability of equilibria of rotating and
self-gravitating masses of fluids. Rooted in the Newton and Cassini thoughts on the
actual shape of the Earth, the rigorous analysis of this question attracted the best
minds of the XVIII-th and XIX-th centuries, from Maclaurin to Riemann, Poincaré
and Lyapunov. In fact, modern nonlinear dynamics [5, 52, 75] and Lyapunov sta-
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bility theory [87] are by-products of the efforts invested in solution of this question
of the astrophysical fluid dynamics [22], which experiences a revival nowadays [3]
inspired by the recent detection of gravitational waves [1].

We recall that in 1742 Maclaurin established that an oblate spheroid

x2

a2
1
+

y2

a2
2
+

z2

a2
3
= 1, a3 < a2 = a1

is a shape of relative equilibrium of a self-gravitating mass of inviscid fluid in a
solid-body rotation about the z-axis, provided that the rate of rotation, Ω , is related

to the eccentricity e =
√

1− a2
3

a2
1

through the formula [90]

Ω
2(e) = 2e−3(3−2e2)sin−1(e)

√
1− e2−6e−2(1− e2). (10)

A century later, Jacobi (1834) has discovered less symmetric shapes of relative
equilibria in this problem that are tri-axial ellipsoids

x2

a2
1
+

y2

a2
2
+

z2

a2
3
= 1, a3 < a2 < a1.

Later on a student of Jacobi, Meyer (1842) [94], and then Liouville (1851) [85] have
shown that the family of Jacobi’s ellipsoids has one member in common with the
family of Maclaurin’s spheroids at e ≈ 0.8127. The equilibrium with the Meyer-
Liouville eccentricity is neutrally stable.

In 1860 Riemann [104] established neutral stability of inviscid Maclaurin’s
spheroids on the interval of eccentricities (0 < e < 0.952..). At the Riemann point
with the critical eccentricity e ≈ 0.9529 the Hamilton-Hopf bifurcation sets in and
causes dynamical instability with respect to ellipsoidal perturbations beyond this
point [37, 112, 113].

A century later Chandrasekhar [31] used a virial theorem to reduce the problem
to a finite-dimensional system, which stability is governed by the eigenvalues of the
matrix polynomial

Li(λ ) = λ
2
(

1 0
0 1

)
+λ

(
0 −4Ω

Ω 0

)
+

(
4b−2Ω 2 0

0 4b−2Ω 2

)
, (11)

where Ω(e) is given by the Maclaurin law (10) and b(e) is as follows

b =

√
1− e2

4e5

{
e(3−2e2)

√
1− e2 +(4e2−3)sin−1(e)

}
. (12)

The eigenvalues of the matrix polynomial (11) are

λ =±
(

iΩ ± i
√

4b−Ω 2
)
. (13)
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Requiring λ = 0 we can determine the critical Meyer-Liouville eccentricity by
solving with respect to e the equation [31]

4b(e) = 2Ω
2(e).

The critical eccentricity at the Riemann point follows from requiring the radicand
in (13) to vanish:

4b(e) = Ω
2(e),

which is equivalent to the equation

e = sin

(
e(3+4e2)

√
1− e2

3+2e2−4e4

)

that has a root e≈ 0.9529.
Remarkably, when

Ω
2(e)< 4b(e)< 2Ω

2(e) (14)

both eigenvalues of the stiffness matrix(
4b−2Ω 2 0

0 4b−2Ω 2

)
are negative. The number of negative eigenvalues of the matrix of potential forces
is known as the Poincaré instability degree. The Poincaré instability degree of the
equilibria with the eccentricities (14) is even and equal to 2. Hence, the interval
(14) corresponding to 0.812.. < e < 0.952.., which is stable according to Riemann,
is, in fact, the interval of gyroscopic stabilization [77] of the Maclaurin spheroids,
Figure 3.

In 1879 Kelvin and Tait [127] realized that viscosity of the fluid can destroy
the gyroscopic stabilization of the Maclaurin spheroids: “If there be any viscosity,
however slight, in the liquid, the equilibrium [beyond e ≈ 0.8127] in any case of
energy either a minimax or a maximum cannot be secularly stable”.

The prediction made by Kelvin and Tait [127] has been rigorously verified only
in the XX-th century by Roberts and Stewartson [106]. Using the virial approach by
Chandrasekhar, the linear stability problem can be reduced to the study of eigenval-
ues of the matrix polynomial

Lv(λ ) = λ
2
(

1 0
0 1

)
+λ

(
10µ −4Ω

Ω 10µ

)
+

(
4b−2Ω 2 0

0 4b−2Ω 2

)
, (15)

where µ = ν

a2
1
√

πGρ
, ν is the viscosity of the fluid, G is the universal gravitation

constant, and ρ the density of the fluid [31]. The λ and Ω are measured in units of√
πGρ . The operator Lv(λ ) differs from the operator of the ideal system, Li(λ ), by

the matrix of dissipative forces 10λ µI, where I is the 2×2 unit matrix.
The characteristic polynomial written for Lv(λ ) yields the equation governing

the growth rates of the ellipsoidal perturbations in the presence of viscosity:
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e = 0.8127

e = 0.9529 e = 0.9529

e = 0.8127

Fig. 3 (Left) Frequencies and (right) growth rates of the eigenvalues of the inviscid eigenvalue
problem Li(λ )u = 0 demonstrating the Hamilton-Hopf bifurcation at the Riemann critical value
of the eccentricity, e≈ 0.9529 and neutral stability at the Meyer-Liouville point, e≈ 0.8127.

e=0.8127

e=0.9529

e=0.8127

e=0.9529

Fig. 4 (Left) Frequencies and (right) growth rates of the (black lines) inviscid Maclaurin spheroids
and (green and red lines) viscous ones with µ = ν

a2
1
√

πGρ
= 0.01. Viscosity destroys the gyroscopic

stabilization of the Maclaurin spheroids on the interval 0.8127.. < e < 0.9529.., which is stable in
the inviscid case [31, 33, 106].

25Ω
2
µ

2 +(Reλ +5µ)2(Ω 2−Reλ
2−10Reλ µ−4b) = 0. (16)

The right panel of Figure 4 shows that the growth rates (16) become positive be-
yond the Meyer-Liouville point. Indeed, assuming Reλ = 0 in (16), we reduce it to
50µ2(Ω 2−2b) = 0, meaning that the growth rate vanishes when Ω 2 = 2b no mat-
ter how small the viscosity coefficient µ is. But, as we already know, the equation
Ω 2(e) = 2b(e) determines exactly the Meyer-Liouville point, e≈ 0.8127.
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Fig. 5 Paths of the eigenvalues in the complex plane for (left) viscous Maclaurin spheroids
with µ = ν

a2
1
√

πGρ
= 0.002, (centre) Maclaurin spheroids without dissipation, and (right) invis-

cid Maclaurin spheroids with radiative losses for δ = 0.05. The collision of two modes of the
non-dissipative Hamiltonian system shown in the centre occurs at the Riemann critical value
e ≈ 0.9529. Both types of dissipation destroy the collision and destabilize one of the two inter-
acting modes at the Meyer-Liouville critical value e≈ 0.8127.

It turns out, that the critical eccentricity of the viscous Maclaurin spheroid is
equal to the Meyer-Liouville value, e ≈ 0.8127, even in the limit of vanishing vis-
cosity, µ→ 0, and thus does not converge to the inviscid Riemann value e≈ 0.9529.

Viscous dissipation destroys the interaction of two modes at the Riemann critical
point and destabilizes one of them beyond the Meyer-Liouville point, showing an
avoided crossing in the complex plane, Figure 5(left).

Kelvin and Tait [127] hypothesised that the instability, which is stimulated by
the presence of viscosity in the fluid, will result in a slow, or secular, departure of
the system from the unperturbed equilibrium of the Maclaurin family at the Meyer-
Liouville point and subsequent evolution along the Jacobi family, as long as the
latter is stable [31, 129].

Therefore, a rotating, self-gravitating fluid mass, initially symmetric about the
axis of rotation, can undergo an axisymmetric evolution in which it first loses
stability to a nonaxisymmetric disturbance, and continues evolving along a non-
axisymmetric family toward greater departure from axial symmetry; then it under-
goes a further loss of stability to a disturbance tending toward splitting into two
parts. Rigorous mathematical treatment of the validity of the fission theory of bi-
nary stars by Lyapunov and Poincaré has laid a foundation to modern nonlinear
analysis. In particular, it has led Lyapunov to the formulation of a general theory of
stability of motion [22].

In 1970 Chandrasekhar [32] demonstrated that there exists another mechanism
making Maclaurin spheroids unstable beyond the Meyer-Liouville point of bifurca-
tion, namely, the radiative losses due to emission of gravitational waves. However,
the mode that is made unstable by the radiation reaction is not the same one that is
made unstable by the viscosity, Figure 5(right).

In the case of the radiative damping mechanism stability is determined by the
spectrum of the following matrix polynomial [32]
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Fig. 6 Critical eccentricity in the limit of vanishing dissipation depends on the damping ratio, X ,
and attains its maximum (Riemann) value, e ≈ 0.9529 exactly at X = 1. As X tends to zero or
infinity, the critical value tends to the Meyer-Liouville value e≈ 0.8127, [84, 33].

Lg(λ ) = λ
2 +λ (G+D)+K+N

that contains the matrices of gyroscopic, G, damping, D, potential, K, and noncon-
servative positional, N, forces

G =
5
2

(
0 −Ω

Ω 0

)
, D =

(
δ16Ω 2(6b−Ω 2) −3Ω/2
−3Ω/2 δ16Ω 2(6b−Ω 2)

)

K =

(
4b−Ω 2 0

0 4b−Ω 2

)
, N = δ

(
2q1 2q2
−q2/2 2q1

)
,

where Ω(e) and b(e) are given by equations (10) and (12). Explicit expressions

for q1 and q2 can be found in [32]. The coefficient δ =
GMa2

1(πGρ)3/2

5c5 is related to
gravitational radiation reaction, G is the universal gravitation constant, ρ the density
of the fluid, M the mass of the ellipsoid, and c the velocity of light in vacuum.

In 1977 Lindblom and Detweiler [84] studied the combined effects of the gravita-
tional radiation reaction and viscosity on the stability of the Maclaurin spheroids. As
we know, each of these dissipative effects induces a secular instability in the Maclau-
rin sequence past the Meyer-Liouville point of bifurcation. However, when both ef-
fects are considered together, the sequence of stable Maclaurin spheroids reaches
past the bifurcation point to a new point determined by the ratio, X = 25

2Ω 4
0

µ

δ
, of the

strengths of the viscous and radiation reaction forces, where Ω0 = 0.663490....
Figure 6 shows the critical eccentricity as a function of the damping ratio in the

limit of vanishing dissipation. This limit coincides with the inviscid Riemann point
only at a particular damping ratio. At any other ratio, the critical value is below the
Riemann one and tends to the Meyer-Liouville value as this ratio tends either to zero
or infinity. Lindblom and Detweiler [84] correctly attributed the cancellation of the
secular instabilities to the fact that viscous dissipation and radiation reaction cause
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different modes to become unstable, see Figure 5. In fact, the mode destabilized
by the fluid viscosity is the prograde moving spherical harmonic that appears to be
retrograde in the frame rotating with the fluid mass and the mode destabilized by
the radiative losses is the retrograde moving spherical harmonic when it appears to
be prograde in the inertial frame [3]. It is known [76, 96] that to excite the positive
energy mode one must provide additional energy to the mode, while to excite the
negative energy mode one must extract energy from the mode [35, 108]. The latter
can be done by dissipation and the former by the non-conservative positional forces
[61, 62, 65]. Both are present in the model by Lindblom and Detweiler [84].

Fig. 7 (a) Stability domain (18) of the Brouwer’s rotating vessel and (b) its cross-section at ω = 0.7
[64, 65].

1.3 Brouwer’s rotating vessel

In 1918, Brouwer [28] published a simple model for the motion of a point mass
near the bottom of a rotating vessel. For an English translation see [29] pp. 665-
675. The shape of the vessel is described by a surface S, rotating around a vertical
axis with constant angular velocity ω . With the equilibrium chosen on the vertical
axis at (x,y) = (0,0) on S, the linearized equations of motion without dissipation
are

ẍ−2ω ẏ+(gk1−ω
2)x = 0,

ÿ+2ω ẋ+(gk2−ω
2)y = 0. (17)

The constants k1 and k2 are the x,y-curvatures of S at (0,0), g is the gravitational
constant. Suppose that k1 ≥ k2.
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Stability and instability without friction
Assuming there is no damping, there are the following three cases [28, 29]:

• 0 < k2 < k1 (single-well at equilibrium).
Stability iff 0 < ω2 < gk2 (slow rotation) or ω2 > gk1 (fast rotation).

• k2 < 0 and k1 > 0, k1 >−k2 (saddle at equilibrium).
Stability iff ω2 > gk1.

• k2 < 0 and k1 > 0, k1 <−k2 (saddle).
If 3k1 + k2 < 0: instability.
If 3k1 + k2 > 0: stability if [28, 29]

gk1 < ω
2 <−g

8
(k1− k2)

2

(k1 + k2)
. (18)

• k1 < 0, k2 < 0: instability.

Stability of triangular libration points L4 and L5
Brouwer’s rotating vessel model includes both a well with two positive curvatures k1
and k2 and a saddle with the curvatures of opposite signs. Remarkably, the latter case
describes stability of triangular libration points L4 and L5 (discovered by Lagrange
in 1772) in the restricted circular three-body problem of celestial mechanics. Indeed,
the linearized equation for this problem is (17) where ω = 1,

gk1 = −1
2
+

3
2

√
1−3µ(1−µ)≥ 1

4
,

gk2 = −1
2
− 3

2

√
1−3µ(1−µ)≤−5

4
, (19)

µ = m1
m1+m2

, and m1 and m2 are the masses of the two most massive bodies (in com-
parison with each of them the mass of the third body is assumed to be negligible)
[2, 38, 105]. Since k1 and k2 are of opposite signs for all 0≤ µ ≤ 1, the linear stabil-
ity of the triangular Lagrange equilibriums is determined by the stability conditions
(18) for the rotating saddle [12]. Note that the coefficients (19) satisfy the constraint
gk1 +gk2 =−1. Intervals of intersection of this line with the narrow corners of the
curvilinear triangle in Figure 7b correspond to the stable Lagrange points. After
substitution of (19) into (7), we reproduce the classical condition for their linear
stability first established by Gascheau in 1843 [38]

(gk1−gk2)
2−8 = 1−27µ(1−µ)> 0.

Stability in a rotating saddle potential is a subject of current active discussion in
respect with the particle trapping [12, 13, 64, 128]. An effect of slow precession
of trajectories of the trapped particles in a rotating saddle potential [69, 117] has
recently inspired new works leading to the improvement of traditional averaging
methods [34, 83, 144].

Destabilization by friction
Adding constant (Coulomb) damping, Brouwer [28] finds a number of instability
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Fig. 8 Domain of asymptotic stability of the damped Brouwer’s rotating vessel in the plane of the
damping coefficients for gk1 = 1, gk2 = 1, and ω = 0.3 [65, 66].

cases. The equations of motion become in this case:

ẍ−2ω ẏ+ c1ẋ+(gk1−ω
2)x = 0, (20)

ÿ+2ω ẋ+ c2ẏ+(gk2−ω
2)y = 0. (21)

The friction constants c1,c2 are positive. The characteristic (eigenvalue) equation
takes the form:

λ
4 +a1λ

3 +a2λ
2 +a3λ +a4 = 0,

with a1 = c1 + c2,
a2 = g(k1 + k2)+2ω2 + c1c2
a3 = c1(gk2−ω2)+ c2(gk1−ω2),
a4 = (gk1−ω2)(gk2−ω2).

There are two cases that drastically change the stability (see also Bottema [26]
and the recent works [23, 135]) :

• 0 < k2 < k1 (single-well).
Stability iff 0 < ω2 < gk2.
The fast rotation branch ω2 > gk1 has vanished.

• k2 < 0 and k1 > 0, k1 <−k2 (saddle).
The requirement a4 > 0 produces 0< gk1 <ω . This is not compatible with a3 < 0
so a saddle is always unstable with any size of positive damping.

Brouwer studied this model probably to use in his lectures. In a correspondence
with O. Blumenthal and G. Hamel he asked whether the results of the calculations
were known; see [29] pp. 677-686. Hamel confirmed that the results were correct
and surprising, but there is no reference to older literature in this correspondence.
See also [26].

Indefinite damping and PT-symmetry
Brouwer’s model for the case of a rotating well with two positive curvatures has a
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direct relation to rotordynamics as it contains the Jeffcott rotor model, see for in-
stance [64]. Dissipation induces instabilities in this model at high speeds of rotation
ω [20, 35, 119], of course, under the assumption that the damping coefficients are
both positive. But what happens if we relax this constraint and extend the space of
damping parameters to negative values? It turns out that at low speeds ω the do-
main of asymptotic stability spreads to the area of negative damping, Figure 8. Even
more, a part of the neutral stability curve belongs to the line c1 + c2 = 0 where one
of the damping coefficients is positive and the other one is negative. On this line
the system is invariant under time and parity reversion transformation and is there-
fore PT -symmetric. Its eigenvalues are imaginary in spite of the presence of the
loss (positive damping) and gain (negative damping) in the system. PT -symmetric
systems with the indefinite damping can easily be realized in the laboratory experi-
ments [111]. Recent study [149] shows their connection to complex G-Hamiltonian
systems [67, 143].

2 Ziegler’s paradox

We already know that Greenhill’s analysis of stability of the Kelvin gyrostat [43]
inspired the works of Sobolev [120] and Pontryagin [103] which have led to the
development of the theory of spaces with indefinite inner product [19, 74]. Another
work of Greenhill [44] ultimately brought about the famous Ziegler paradox [146].
As Gladwell remarked in his historical account of the genesis of the field of noncon-
servative stability [39], “It was Greenhill who started the trouble though he never
knew it.”

Motivated by the problem of buckling of propeller-shafts of steamers Greenhill
(1883) analyzed stability of an elastic shaft of a circular cross-section under the
action of a compressive force and an axial torque [44]. He managed to find the
critical torque that causes buckling of the shaft for a number of boundary conditions.
For the clamped-free and the clamped-hinged shaft loaded by an axial torque the
question remained open until Nicolai in 1928 reconsidered a variant of the clamped-
hinged boundary conditions, in which the axial torque is replaced with the follower
torque [97]. The vector of the latter is directed along the tangent to the deformed
axis of the shaft at the end point [39].

Nicolai had established that no nontrivial equilibrium configuration of the shaft
exists different from the rectilinear one, meaning stability for all magnitudes of the
follower torque. Being unsatisfied with this overoptimistic result, he assumed that
the equilibrium method does not work properly in the case of the follower torque.
He decided to study small oscillations of the shaft about its rectilinear configuration
using what is now known as the Lyapunov stability theory [87] that, in particular,
can predict instability via eigenvalues of the linearized problem.

Surprisingly, it turned out that there exist eigenvalues with positive real parts
(instability) for all magnitudes of the torque, meaning that the critical value of the
follower torque for an elastic shaft of a circular cross-section is actually zero. Be-
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cause of its unusual behavior, this instability phenomenon received a name “Nico-
lai’s paradox” [39, 86, 97].

In 1951-56 Hans Ziegler of the ETH Zürich re-considered the five original Green-
hill problems with the Lyapunov approach and found that the shaft is unstable in
cases of the clamped-free and the clamped-hinged boundary conditions for all val-
ues of the axial torque, just as in Nicolai’s problem with the follower torque [147].
Moreover, the non-self-adjoint boundary eigenvalue problem for the Greenhill’s
shaft with the axial torque turned out to be a Hermitian adjoint of the non-self-
adjoint boundary eigenvalue problem for the Greenhill’s shaft with the follower
torque [20].

Fig. 9 Original drawings from Ziegler’s work of 1952 [146]: (a) double linked pendulum under
the follower load P, (b) (bold line) stability interval of the undamped pendulum and (shaded area)
the domain of asymptotic stability of the damped pendulum with equal coefficients of dissipation
in both joints. If b = 0 we have no dissipation and the system is marginally stable for P < Pk.

In 1952, inspired by the paradoxes of Greenhill-Nicolai follower torque prob-
lems, Ziegler introduced the notion of the follower force and published a paper
[146] that became widely known in the engineering community, in particular among
those interested in theoretical mechanics. It was followed by a second paper [147]
that added more details.

Ziegler considered a double pendulum consisting of two rigid rods of length l
each. The pendulum is attached at one of the endpoints and can swing freely in a
vertical plane; see Figure 9. The angular deflections with respect to the vertical are
denoted by φ1,φ2, two masses m1 and m2 resulting in the external forces G1 and G2
are concentrated at the distances a1 and a2 from the joints. At the joints we have
elastic restoring forces of the form cφ1, c(φ2−φ1) and internal damping torques

b1
dφ1

dt
, b2

(
dφ2

dt
− dφ1

dt

)
.

So if b1 = b2 = 0 we have no dissipation. We impose a follower force P on the
lowest hanging rod, see Figure 9. We consider only the quadratic terms of kinetic
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and potential energy. With these assumptions the kinetic energy T of the system is:

T =
1
2

[
(m1a2

1 +m2l2)φ̇1
2
+2m2la2φ̇1φ̇2 +m2a2

2φ̇2
2
]
. (22)

A dot denotes differentiation with respect to time t. The potential energy V reads:

V =
1
2
[
(G1a1 +G2l +2c)φ 2

1 −2cφ1φ2 +(G2a2 + c)φ 2
2
]
. (23)

This leads to the generalised dissipative and non-conservative forces Q1,Q2:

Q1 = Pl(φ1−φ2)− ((b1 +b2)φ̇1−b2φ̇2), Q2 = b2(φ̇1− φ̇2). (24)

Writing the Lagrange’s equations of motion L̇ϕ̇i−Lϕi = Qi, where L = T −V and
assuming G1 = 0 and G2 = 0 for simplicity, we find(

m1a2
1 +m2l2 m2la2

m2la2 m2a2
2

)(
ϕ̈1
ϕ̈2

)
+

(
b1 +b2 −b2
−b2 b2

)(
ϕ̇1
ϕ̇2

)
+

(
−Pl +2c Pl− c

−c c

)(
ϕ1
ϕ2

)
= 0. (25)

The stability analysis of equilibrium follows the standard procedure. With the sub-
stitution ϕi = Ai exp(λ t), equation (25) yields a 4-dimensional eigenvalue problem
with respect to the spectral parameter λ .

Putting m1 = 2m, m2 = m, a1 = a2 = l, b1 = b2 = b and assuming that internal
damping is absent (b = 0), Ziegler found from the characteristic equation that the
vertical equilibrium position of the pendulum looses its stability when the magni-
tude of the follower force exceeds the critical value Pk, where

Pk =

(
7
2
−
√

2
)

c
l
' 2.086

c
l
. (26)

In the presence of damping (b > 0) the Routh-Hurwitz condition yields the new
critical follower load that depends on the square of the damping coefficient b

Pk(b) =
41
28

c
l
+

1
2

b2

ml3 . (27)

Ziegler found that the domain of asymptotic stability for the damped pendulum is
given by the inequalities P < Pk(b) and b > 0 and he plotted it against the stability
interval P < Pk of the undamped system, Figure 9(b). Surprisingly, the limit of the
critical load Pk(b) when b tends to zero turned out to be significantly lower than the
critical load of the undamped system

P∗k = lim
b→0

Pk(b) =
41
28

c
l
' 1.464

c
l
< Pk. (28)
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Fig. 10 (a) The (dimensionless) follower force F , shown as a function of the (transformed via
cotα = m1/m2) mass ratio α , represents the flutter domain of (dashed/red line) the undamped, or
‘ideal’, Ziegler pendulum [110] and the flutter boundary of the dissipative system in the limit of
vanishing (dot-dashed/green line) internal and (continuous/blue line) external damping. (b) Dis-
crepancy ∆F between the critical flutter load for the ideal Ziegler pendulum and for the same
structure calculated in the limit of vanishing external damping. The discrepancy quantifies the
Ziegler’s paradox due to external (air drag) damping [132].

Note that in the original work of Ziegler, formula (27) contains a misprint which
yields linear dependency of the critical follower load on the damping coefficient b.
Nevertheless, the domain of asymptotic stability found in [146] and reproduced in
Figure 9(b), is correct.

Ziegler limited his original calculation to a particular mass distribution, m1 =
2m2, and took into account only internal damping in the joints, neglecting, e.g, the
air drag (an external damping). Later studies confirmed that the Ziegler paradox
is a generic phenomenon and exists at all mass distributions, both for internal and
external damping [15, 16, 124, 132], see Figure 10.

After invention of robust methods of practical realization of follower forces [14]
the Ziegler paradox was immediately observed in the recent laboratory experiments
[15, 16]. Nowadays follower forces find new applications in cytosceletal dynamics
[9, 36] and acoustics of friction [47]. In general, the interest to mathematical mod-
els involving nonconservative positional forces (known also as circulatory [147] or
curl [10] forces) is growing both in traditional areas such as energy harvesting and
fluid-structure interactions [92, 101] and in rapidly emerging new research fields of
optomechanics [125] and light robotics [100].

3 Bottema’s analysis of Ziegler’s paradox

In 1956, in the journal ‘Indagationes Mathematicae’, there appeared an article by
Oene Bottema (1901-1992) [25], then Rector Magnificus of the Technical Univer-
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sity of Delft and an expert in classical geometry and mechanics, that outstripped
later findings for decades. Bottema’s work on stability in 1955 [24] can be seen as
an introduction, it was directly motivated by Ziegler’s paradox. However, instead of
examining the particular model of Ziegler, he studied in [25] a much more general
class of non-conservative systems.

Following [24, 25], we consider a holonomic scleronomic linear system with
two degrees of freedom, of which the coordinates x and y are chosen in such a way
that the kinetic energy is T = (ẋ2 + ẏ2)/2. Hence the Lagrange equations of small
oscillations near the equilibrium configuration x = y = 0 are as follows

ẍ+a11x+a12y+b11ẋ+b12ẏ = 0,
ÿ+a21x+a22y+b21ẋ+b22ẏ = 0, (29)

where ai j and bi j are constants, A := (ai j) is the matrix of the forces depending
on the coordinates, B := (bi j) of those depending on the velocities. If A is sym-
metrical and while disregarding the damping associated with the matrix B, there
exists a potential energy function V = (a11x2 + 2a12xy+ a22y2)/2, if it is antisym-
metrical, the forces are circulatory. When the matrix B is symmetrical, we have
a non-gyroscopic damping force, which is positive when the dissipative function
(b11x2 + 2b12xy+ b22y2)/2 is positive definite. If B is antisymmetrical the forces
depending on the velocities are purely gyroscopic.

The matrices A and B can both be written uniquely as the sum of symmetrical
and antisymmetrical parts: A = K+N and B = D+G, where

K =

(
k11 k12
k21 k22

)
, N =

(
0 ν

−ν 0

)
, D =

(
d11 d12
d21 d22

)
, G =

(
0 Ω

−Ω 0

)
, (30)

with k11 = a11, k22 = a22, k12 = k21 = (a12 + a21)/2, ν = (a12− a21)/2 and d11 =
b11, d22 = b22, d12 = d21 = (b12 +b21)/2, Ω = (b12−b21)/2.

Disregarding damping, the system (29) has a potential energy function when
ν = 0, it is purely circulatory for k11 = k12 = k22 = 0, it is non-gyroscopic for Ω = 0,
and has no damping when d11 = d12 = d22 = 0. If damping exists, we suppose in
this section that it is positive.

In order to solve the linear stability problem for equations (29) we put x =
C1 exp(λ t), y = C2 exp(λ t) and obtain the characteristic equation for the frequen-
cies of the small oscillations around equilibrium

Q := λ
4 +a1λ

3 +a2λ
2 +a3λ +a4 = 0, (31)

where [54, 55, 60]

a1 = trD, a2 = trK+detD+Ω
2, a3 = trKtrD−trKD+2Ων , a4 = detK+ν

2.
(32)

For the equilibrium to be stable all roots of the characteristic equation (31) must be
semi-simple and have real parts which are non-positive.



Rotating fluid masses, Ziegler’s paradox, Krein spaces and bifurcation theory 21

It is always possible to write, in at least one way, the left hand-side as the product
of two quadratic forms with real coefficients, Q = (λ 2 + p1λ +q1)(λ

2 + p2λ +q2).
Hence

a1 = p1 + p2, a2 = p1 p2 +q1 +q2, a3 = p1q2 + p2q1, a4 = q1q2. (33)

For all the roots of the equation (31) to be in the left side of the complex plane (L)
it is obviously necessary and sufficient that pi and qi are positive. Therefore in view
of (33) we have: a necessary condition for the roots of Q = 0 having negative real
parts is ai > 0 (i = 1,2,3,4). This system of conditions however is not sufficient, as
the example (λ 2−λ +2)(λ 2+2λ +3)= λ 4+λ 3+3λ 2+λ +6 shows. But if ai > 0
it is not possible that either one root of three roots lies in L (for then a4≤ 0); it is also
impossible that no root is in it (for, then a4 ≤ 0). Hence if ai > 0 at least two roots
are in L; the other ones are either both in L, or both on the imaginary axis, or both in
R. In order to distinguish between these cases we deduce the condition for two roots
being on the imaginary axis. If µi (µ 6= 0 is real) is a root, then µ4−a2µ2 +a4 = 0
and −a1µ2 + a3 = 0. Hence H := a2

1a4 + a2
3− a1a2a3 = 0. Now by means of (33)

we have
H =−p1 p2(a1a3 +(q1−q2)

2). (34)

In view of a1 > 0, a3 > 0 the second factor is positive; furthermore a1 = p1+ p2 >
0, hence p1 and p2 cannot both be negative. Therefore H < 0 implies p1 > 0, p2 > 0,
for H = 0 we have either p1 = 0 or p2 = 0 (and not both, because a3 > 0), for H > 0
p1 and p2 have different signs. We see from the decomposition of the polynomial
(31) that all its roots are in L if p1 and p2 are positive.

Hence: a set of necessary and sufficient conditions for all roots of (31) to be on
the left hand-side of the complex plane is

ai > 0 (i = 1,2,3,4), H < 0. (35)

We now proceed to the cases where all roots have non-positive real parts, so that
they lie either in L or on the imaginary axis. If three roots are in L and one on the
imaginary axis, this root must be λ = 0. Reasoning along the same lines as before we
find that necessary and sufficient conditions for this are ai > 0 (i = 1,2,3), a4 = 0,
and H < 0. If two roots are in L and two (different) roots on the imaginary axis we
have p1 > 0, q1 > 0, p2 = 0, q2 > 0 and the conditions are ai > 0 (i = 1,2,3,4) and
H = 0. If one root is in L and three are on the imaginary axis, then p1 > 0, q1 = 0,
p2 = 0, q2 > 0 and the conditions are ai > 0 (i = 1,2,3), a4 = 0, and H = 0.

The obtained conditions are border cases of (35). This does not occur with the last
type we have to consider: all roots are on the imaginary axis. We now have p1 = 0,
p2 = 0, q1 > 0, q2 > 0. Hence a2 > 0, a4 > 0, a1 = a3 = 0 and therefore H = 0. This
set of relations is necessary, but not sufficient, as the example Q= λ 4+6λ 2+25= 0
(which has two roots in L and two in the righthand side of the complex plane (R))
shows. The proof given above is not valid because as seen from (35), H = 0 does
not imply now p1 p2 = 0, the second factor being zero for a1a3 = 0 and q1 = q2. The
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condition can of course easily be given; the equation (31) is λ 4+a2λ 2+a4 = 0 and
therefore it reads a2 > 0, a4 > 0, a2

2 > 4a4.
Summing up we have: all roots of (31) (assumed to be different) have non-

positive real parts if and only if one of the two following sets of conditions is satis-
fied [25]

A : a1 > 0, a2 > 0, a3 > 0, a4 ≥ 0, a2 ≥
a2

1a4 +a2
3

a1a3
,

B : a1 = 0, a2 > 0, a3 = 0, a4 > 0, a2 > 2
√

a4. (36)

Note that a1 represents the damping coefficients b11 and b22 in the system. One
could expect B to be a limit of A, so that for a1→ 0, a3→ 0 the set A would contin-
uously tend to B. That is not the case.

Remark first of all that the roots of (31) never lie outside R if a1 = 0, a3 6= 0 (or
a1 6= 0, a3 = 0). Furthermore, if A is satisfied and we take a1 = εb1, a3 = εb3, where
b1 and b3 are fixed and ε → 0, the last condition of A reads (ε 6= 0)

a2 >
b2

1a4 +b2
3

b1b3
= g1

while for ε = 0 we have
a2 > 2

√
a4 = g2.

Obviously we have [25]

g1−g2 =
(b1
√

a4−b3)
2

b1b3

so that (g1 > g2) but for b3 = b1
√

a4. That means that in all cases where b3 6= b1
√

a4
we have a discontinuity in our stability condition.

In 1987, Leipholz remarked in his monograph on stability theory [80] that “In-
dependent works of Bottema and Bolotin for second-order systems have shown that
in the non-conservative case and for different damping coefficients the stability con-
dition is discontinuous with respect to the undamped case.” However, Leipholz did
not mention that, in contrast to Bolotin, Bottema illustrated the phenomenon of the
discontinuity in a remarkable geometric diagram, first published in [25] and repro-
duced in Figure 11.

Following Bottema [25] we substitute in (31) λ = cµ , where c is the positive
fourth root of a4 > 0. The new equation reads P := µ4+b1µ3+b2µ2+b3µ+1= 0,
where bi = ai/ci (i = 1,2,3,4). If we substitute ai = cibi in A and B we get the same
condition as when we write bi for ai, which was to be expected, because if the
roots of (31) are outside R, those of P = 0 are also outside R and inversely. We can
therefore restrict ourselves to the case a4 = 1, so that we have only three parameters
a1, a2, a3. We take them as coordinates in an orthogonal coordinate system.

The condition H = 0 or
a1a2a3 = a2

1 +a2
3 (37)
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is the equation of a surface V of the third degree, which we have to consider for a1 ≥
0, a3≥ 0, Figure 11. Obviously V is a ruled surface, the line a3 =ma1, a2 =m+1/m
(0 < m < ∞) being on V . The line is parallel to the 0a1a3-plane and intersects the
a2-axis in a1 = a3 = 0, a2 =m+1/m≥ 2. The a2-axis is the double line of V , a2 > 2
being its active part. Two generators pass through each point of it; they coincide for
a2 = 2 (m = 1), and for a2→ ∞ their directions tend to those of the a1 and a3-axis
(m = 0,m = ∞). The conditions A and B express that the image point (a1,a2,a3) lies
on V or above V . The point (0,2,0) is on V , but if we go to the a2-axis along the
line a3 = ma1 the coordinate a2 has the limit m+1/m, which is > 2 but for m = 1.

Fig. 11 Original drawing (left) from the 1956 work [25] of Oene Bottema (right), showing the do-
main of the asymptotic stability of the real polynomial of fourth order and of the two-dimensional
non-conservative system with Whitney’s umbrella singularity discussed in the sequel. The ruled
surface (called V in the text) is given by equation (37).

Note that we started off with 8 parameters in Eq. (29), but that the surface V
bounding the stability domain is described by 3 parameters. It is described by a map
of E2 into E3 as in Whitney’s papers [138, 139]. Explicitly, a transformation of (19)
to (2) is given by

a1 =
1
2

y3 +w, a2 = 2+ y2, a3 =−
1
2

y3 +w

with w2 = 1
4 y2

3 + y1y2.
Returning to the non-conservative system (29) (ν 6= 0), with damping, but with-

out gyroscopic forces, so Ω = 0, and assuming as in [24] that k12 = 0, k11 > 0,
and k22 > 0 (a similar setting but with d12 = 0 and k12 6= 0 was considered later by
Bolotin in [20]), we find that the condition for stability H ≤ 0 reads

ν
2 <

(k11− k22)
2

4
(38)

− (d11−d22)
2(k11− k22)

2−4(k11d22 + k22d11)(d11d22−d2
12)(d11 +d22)

4(d11 +d22)2 .
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Suppose now that the damping force decreases in a uniform way, so we put d11 =
εd′11, d12 = εd′12, d22 = εd′22, where d11, d12, d22 are constants and ε→ 0. Then, for
the inequality (38) we get

ν
2 < ν

2
cr :=

(k11− k22)
2

4
− (d′11−d′22)

2(k11− k22)
2

4(d′11 +d′22)
2 . (39)

But if there is no damping, we have to make use of condition B, which gives

ν
2 < ν0

2 :=
(k11− k22)

2

4
=

(
trK
2

)2

−detK. (40)

Obviously

ν0
2−ν

2
cr =

(d′11−d′22)
2(k11− k22)

2

4(d′11 +d′22)
2 =

[
2trKD− trKtrD

2trD

]2

≥ 0, (41)

where the expressions written in terms of the invariants of the matrices involved [60]
are valid also without the restrictions on the matrices D and K that were adopted in
[20, 24]. For the values of 2trKD−trKtrD

2trD which are small with respect to ν0 we can
approximately write [56, 57]

νcr ' ν0−
1

2ν0

[
2trKD− trKtrD

2trD

]2

. (42)

If D depends on two parameters, say δ1 and δ2, then (42) has a canonical form (44)
for the Whitney’s umbrella in the (δ1,δ2,ν)-space. Due to discontinuity existing for
2trKD− trKtrD 6= 0 the equilibrium may be stable if there is no damping, but un-
stable if there is damping, however small it may be. We observe also that the critical
non-conservative parameter, νcr, depends on the ratio of the damping coefficients
and thus is strongly sensitive to the distribution of damping similarly to how it hap-
pens in other applications, including the viscous Chandrasekhar-Friedman-Schutz
(CFS) instability of the Maclaurin spheroids [84].

The analytical approximations of the type (42) for the onset of the flutter in-
stability in the general finite-dimensional and infinite-dimensional cases were ob-
tained for the first time in the works [54, 55, 56, 57, 59, 61] as a result of further
development of the sensitivity analysis of simple and multiple eigenvalues in mul-
tiparameter families of non-self-adjoint operators. The previous important works
include [4, 11, 17, 35, 45, 37, 53, 89, 98, 112, 113, 114, 115, 116]. Recent results on
the perturbation analysis of dissipation-induced instabilities and the destabilization
paradox are summarized in the works [65] and [86].
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4 An umbrella without dynamics

Part of global analysis, a topic of pure mathematics, is concerned with singularity
theory, which deals with the geometric characterisation and classification of singu-
larities (stationary points) of vector fields. In dynamics these singularities are recog-
nised as equilibria of dynamical systems. Well-known representatives of this singu-
larity school are René Thom [126] and Christopher Zeeman. Among pure mathe-
maticians they were exceptional as they promoted singularity theory as useful for
real-life problems in biology, the social sciences and physics. Unfortunately their
approach gave singularity theory a bad name as in their examples they used geomet-
ric methods without explaining a possible relation between realistic vector fields and
dynamics. It makes little sense to describe equilibria and transitions (bifurcations)
between equilibria without discussing actual causes that are tied in with dynami-
cal processes and corresponding equations of motion. We want to stress here that
notwithstanding the lack of dynamics the geometry of singularities as an ingredient
of dynamical systems theory can be very useful.

Before Ziegler’s results a geometric result in singularity theory was obtained
(1943-44) by Hassler Whitney. This result turned out to be an excellent complement
to Bottema’s analytic approach. In his paper [138], Whitney described singularities
of maps of a differential n-manifold into Em with m = 2n−1. It turns out that in this
case a special kind of singularity plays a prominent role. Later, the local geomet-
ric structure of the manifold near the singularity has been aptly called ‘Whitney’s
umbrella’. In Figure 12 we reproduce a sketch of the singular surface.

Fig. 12 Whitney’s umbrella, lowest dimensional case with 3 parameters [138, 139].

The paper [138] contains two main theorems. Consider the Ck map f : En 7→ Em

with m = 2n−1.

1. The map f can be altered slightly, forming f ∗, for which the singular points
are isolated. For each such an isolated singular point p, a technical regularity
condition C is valid which relates to the map f ∗ of the independent vectors near
p and of the differentials, the vectors in tangent space.



26 Oleg N. Kirillov and Ferdinand Verhulst

2. Consider the map f ∗ which satisfies condition C. Then we can choose coordi-
nates x=(x1,x2, · · · ,xn) in a neighborhood of p and coordinates y=(y1,y2, · · · ,ym)
(with m = 2n−1) in a neighborhood of y = f (p) such that in a neighborhood of
f ∗(p) we have exactly

y1 = x2
1,

yi = xi, i = 2, · · · ,n,
yn+i−1 = x1xi, i = 2, · · · ,n.

If for instance n = 2, m = 3, the simplest interesting case, we have near the origin

y1 = x2
1, y2 = x2, y3 = x1x2, (43)

so that y1 ≥ 0 and on eliminating x1 and x2:

y1y2
2− y2

3 = 0. (44)

Starting on the y2-axis for y1 = y3 = 0, the surface widens up for increasing values of
y1. For each y2, the cross-section is a parabola; as y2 passes through 0, the parabola
degenerates to a half-ray, and opens out again (with sense reversed); see Figure 12.

Note that because of the Ck assumption for the differentiable map f , the analy-
sis is delicate. There is a considerable simplification of the treatment if the map is
analytical.

The analysis of singularities of functions and maps is a fundamental ingredient
for bifurcation studies of differential equations. After the pioneering work of Hassler
Whitney and Marston Morse, it has become a huge research field, both in theoretical
investigations and in applications. We can not even present a summary of this field
here, so we restrict ourselves to citing a number of survey texts and discussing a few
key concepts and examples. In particular we mention [5, 6, 7, 8, 40, 41, 42, 136]. A
monograph relating bifurcation theory with normal forms and numerics is [75].

5 Hopf bifurcation near 1:1 resonance and structural stability

A study of the stability of equilibria of dynamical systems will usually involve the
analysis of matrices obtained by linearisation of the equations of motion in a neigh-
bourhood of the equilibria. This triggered off the study of structural stability of
matrices as an independent topic in singularity theory [6, 7].

More explicitly, consider a dynamical system described by the autonomous ODE

ẋ = f(x,p), x ∈ Rn, f : Rn 7→ Rn,

where p ∈ Rk is a vector of parameters. An equilibrium x0 of the system arises if
f(x0,p) = 0. With a little smoothness of the map f we can linearise near x0 so that
we can write
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ẋ = Ap(x−x0)+g(x,p) (45)

with Ap a constant n×n−matrix, g(x,p) contains higher-order terms only. In other
words

lim
x→x0

‖g(x,p)‖
‖x−x0‖

= 0,

g(x,p) is tangent to the linear map in x0. The properties of the matrix Ap determine
in a large number of cases the local behavior of the dynamical system.

Suppose that for p = 0, A0 has two equal non-zero imaginary eigenvalues and
their complex conjugates, ±iω,ω > 0, and no other eigenvalues with zero real part.
This equilibrium is called a 1 : 1 resonant double Hopf point [42]. (Similarly, in
a Hopf point the matrix of linearization has a single conjugate pair of imaginary
eigenvalues±iω and in a double Hopf point there are two distinct such pairs:±iω1,
±iω2 [42].) Then, without loss of generality, we may assume that the system (45)
has been already reduced to a centre manifold of dimension n = 4. Considering
further a generic case of double non-semisimple eigenvalues with geometric multi-
plicity 1, after a linear change of coordinates and re-scaling time to get ω = 1, we
can transform A0 to [136] 

0 −1 1 0
1 0 0 1
0 0 0 −1
0 0 1 0

 . (46)

Setting z1 = ∆x1+ i∆x2 and z2 = ∆x3+ i∆x4, where i =
√
−1 and ∆x = x−x0, and

assuming A0 to be in the form (46) we re-write (45) at p = 0 in the complex form
[136] (

ż1
ż2

)
=

(
i 1
0 i

)(
z1
z2

)
+ g̃(z1,z2,z1,z2). (47)

The second pair of equations governing the conjugates z1, z2 is omitted here for
simplicity.

Arnold [6, 7] has proven that a universal unfolding of the linear vector field with
the matrix (

i 1
0 i

)
is given by the three-parameter family of complex matrices(

i+α 1
µ1 + iµ2 i+α

)
, (48)

where α , µ1, and µ2 are real parameters and versality is understood with respect
to the group of similarity transformations and a real positive scaling. The set of
matrices with a resonant Hopf pair is a group orbit [42].

The universal unfolding has a pure imaginary eigenvalue if and only if there
exists a real number δ such that (i(δ − 1)−α)2− (µ1 + iµ2) = 0. Eliminating δ

yields [42]
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a) b)

Fig. 13 (a) The Plücker conoid in the unfolding of a semisimple 1 : 1 resonance has a pair of Whit-
ney umbrellas [50]; (b) two pairs of Whitney umbrellas on the boundary of the stability domain of
a general 4-degrees-of-freedom dynamical system near a semisimple 1 : 1 resonance [51].

α
2(4µ1 +4α

2) = µ
2
2 .

Setting y2 = α , y3 = µ2, and y1 = 4µ1 + 4α2 we reduce the equation to the
form y2

3 = y1y2
2, which is nothing else but the normal form (44) for the Whitney

umbrella. The double Hopf points of (48) form the half-line α = µ2 = 0, µ1 = 0.
Along the continuation µ1 > 0 of this half-line the eigenvalues of (48) are given
by λ = i±√µ1. We see that the double Hopf points have codimension 2 and the
resonant double Hopf points are of codimension 3.

If a family of matrices A(p) = A(p1, p2, p3, . . . , pk) has a 1 : 1 resonant double
Hopf point, the universality of the unfolding (48) means that there exist smooth
functions α(p), µ1(p), µ1(p), such that the Hopf structure of A(p) near the 1 : 1
resonant point is the same as the Hopf structure of the unfolding with α , µ1, µ2
replaced by α(p), µ1(p), µ2(p).

Therefore, the stratified set of Hopf points in the neighborhood of a non-
semisimple 1 : 1 resonance is a Whitney umbrella in p-space too [42]. The functions
α(p), µ1(p), µ2(p) can be found approximately as truncated Taylor series with re-
spect to the components of the vector p of the parameters [116].

Similar stratification of Hopf points near a semisimple 1 : 1 resonance involves
pairs of Whitney umbrellas forming a Plücker conoid [50, 51], see Figure 13.

Hoveijn and Ruijgrok (1995) were the first who applied these ideas to a practi-
cal problem exhibiting the Ziegler paradox. Namely, they considered a problem of
widening due to dissipation of the zones of the combination resonance [143] in a
system of two parametrically forced coupled oscillators [49]. The system models
a rotating disk with oscillating suspension point introduced in [107]. Its linearized
equations are

ẍ+2Ω ẏ+(1+ ε cosω0t)x+2εµ ẋ = 0,
ÿ+2Ω ẋ+(1+ ε cosω0t)y+2εµ ẏ = 0. (49)
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It is assumed that for ε = 0 the system (49) has two pairs of imaginary eigenvalues
±iω1, ±iω2 that depend on the parameter Ω representing the speed of rotation. Of
special interest is the case of the sum resonance ω0 = ω1 +ω2.

Let parameters δ1 and δ2 control the detuning of the frequencies ω1 and ω2;
then δ+ = δ1 + δ2 and δ− = δ1− δ2. The parameter δ+ is small and represents the
detuning of the exact sum resonance: ω0 = ω1 +ω2 +δ+ where δ+ = 0. Parameters
µ1 and µ2 control the detuning of the damping from µ; µ+ = µ1+µ2, µ− = µ1−µ2.

The original nonlinear system that has the linearization (49) at zero detuning can
be reduced to the following type of equation [49]

ż = A0z+ εf(z,ω0t;p), z ∈ R4, (50)

where A0 is a 4×4 matrix with the eigenvalues ±iω1,±iω2. The vector of parame-
ters p = (δ+,δ−,µ+,µ−) is used to control detuning from resonance and damping.

The vector-valued function f is 2π-periodic in ω0t and f(0,ω0t;p) = 0 for all t
and p. Since the origin is a stationary point of (50), one may ask how its stability
depends on the parameters. Analogous to the case of a single forced oscillator, one
can make a planar stability diagram by varying the strength ε and the frequency
ω0 of the forcing while fixing the other parameters. Also in this case one obtains a
resonance tongue at ω0 =ω1+ω2. However if damping is varied, the planar stability
diagram does not change continuously [107]. For instance, applying zero damping
(µ = 0, no damping detuning) we find instability of the trivial solution (equilibrium)
if

|δ+| ≤ 1.

For µ > 0 the trivial solution is unstable if

|δ+| ≤ ω0

√
1
4
− µ2

ω2
0
.

The instability interval depends discontinuously on damping coefficient µ!
Hoveijn and Ruijgrok [49] presented a geometrical explanation of this dissipation-

induced instability using ‘all’ the parameters as unfolding parameters first putting
the equation (50) into a normal form [7, 109] which is similar to that of the non-
semisimple 1 : 1 resonance studied in [136].

In the normalized equation the time dependence appears only in the high order
terms. But the autonomous part of this equation contains enough information to
determine the stability regions of the origin.

The second step was to test the linear autonomous part A(p) of the normalized
equation for structural stability. This family of matrices is parameterized by the
detunings of the frequencies ω1 and ω2 and of the damping parameter µ .

Identifying the most degenerate member of this family one can show that A(p)
is its versal unfolding in the sense of Arnold [6, 7]. Put differently, the family
A(δ+,δ−,µ+,µ−) is structurally stable, whereas A(δ+,δ−,0,0) is not. Therefore
the stability diagram actually ‘lives’ in a four dimensional space. In this space, the
stability regions of the origin are separated by a critical surface which is the hyper-
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Fig. 14 The critical surface for the damped combination resonance in (µ+,µ−,δ+) space, where
µ+ = µ1 + µ2, µ− = µ1 − µ2, δ+ = δ1 + δ2. The parameters δ1 and δ2 control the detuning of
the frequencies ω1 and ω2, the parameters µ1 and µ2 the damping of the oscillators. The self-
intersection of the surface with the Whitney umbrella singularity is along the δ+ axis [49].

surface where A(p) has at least one pair of imaginary complex conjugate eigenval-
ues. This critical surface is diffeomorphic to the Whitney umbrella, see Figure 14.

It is the singularity of the Whitney umbrella that causes the discontinuous be-
haviour of the planar stability diagram for the combination resonance in the pres-
ence of dissipation. The structural stability argument guarantees that the results are
‘universally valid’ and qualitatively hold for every system in sum resonance. For
technical details we refer again to [49].

6 Abscissa minimization, robust stability and heavy damping

Let us return to the work of Bottema [25]. The conditions

a1 > 0, a3 > 0, a2 > 2+
(a1−a3)

2

a1a3
> 0 (51)

are necessary and sufficient for the polynomial

p(λ ) = λ
4 +a1λ

3 +a2λ
2 +a3λ +1 (52)

to be Hurwitz. The domain (51) was plotted by Bottema in the (a1,a3,a2)-space,
Figure 15a.

A part of the plane a1 = a3 that lies inside the domain of asymptotic stability
constitutes a set of all directions leading from the point (0, 0, 2) to the stability
region
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{(a1,a3,a2) : a1 = a3, a1 > 0, a2 > 2}. (53)

The tangent cone (53) to the domain of asymptotic stability at the Whitney umbrella
singularity, which is shown in green in Figure 15a,b, is degenerate in the (a1,a3,a2)
– space because it selects a set of measure zero on a unit sphere with the center at
the singular point [81, 82].

The singular point (a1,a3,a2) = (0,0,2) corresponds to a double complex-
conjugate pair of roots λ =±i of the polynomial (52). The fact that multiple roots of
a polynomial are sensitive to perturbation of the coefficients is a phenomenon that
was studied already by Isaac Newton, who introduced the so-called Newton polygon
to determine the leading terms of the perturbed roots as fractional powers of a per-
turbation parameter. It follows that, in matrix analysis, eigenvalues are in general
not locally Lipschitz at points in matrix space with non-semi-simple eigenvalues
[30], and, in the context of dissipatively perturbed Hamiltonian systems, [91]. Thus,
it has been well-understood for a long time that perturbation of multiple roots or
multiple eigenvalues on or near the stability boundary is likely to lead to instability
[58].

Because of the sensitivity of multiple roots and eigenvalues to perturbation, in
engineering and control-theoretical applications a natural desire is to “cut the singu-
larities off” by constructing convex inner approximations to the domain of asymp-
totic stability. Nevertheless, multiple roots per se are not undesirable.

a) c)b)

Fig. 15 (a) A singular boundary Γ of the domain of asymptotic stability (51) of the polynomial
(52) with the Whitney umbrella singularity at the point (a1,a3,a2) = (0,0,2), marked by the dia-
mond symbol. (b) The tangent cone, the EP-sets, and the discriminant surface with the Swallowtail
singularity at EP4. The domain of heavy damping is inside the ‘spire’. (c) Trajectories of roots of
the polynomial (52) when a2 increases from 0 to 15 and: a1 = a3 = 4 (black); a1 = 4, a3 = 3.9
(red); a1 = 3.9, a3 = 4 (green). The global minimum of the abscissa is attained when all the roots
coalesce into the quadruple root λ =−1 (EP4) [70].

Indeed, multiple roots also occur deep inside the domain of asymptotic stability.
Although it might seem paradoxical at first sight, such configurations are actually
obtained by minimizing the so-called polynomial abscissa in an effort to make the
asymptotic stability of a linear system more robust, as we now explain.
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Abscissa minimization and multiple roots
The abscissa of a polynomial p(λ ) is the maximal real part of its roots [18]:

a(p) = max{Re λ : p(λ ) = 0}. (54)

We restrict our attention to monic polynomials with real coefficients and fixed de-
gree n: since these have n free coefficients, this space is isomorphic to Rn. On this
space, the abscissa is a continuous but non-smooth, in fact non-Lipschitz, as well
as non-convex, function whose variational properties have been extensively studied
using non-smooth variational analysis [18, 30].

Now set n= 4, consider the set of polynomials p(λ ) defined in (52), and consider
the restricted set of coefficients{

(a1,a3,a2) : a1 = a3, a2 = 2+
a2

1
4

}
(55)

On this set the roots are

λ1 = λ2 =−
a1

4
− 1

4

√
a2

1−16, λ3 = λ4 =−
a1

4
+

1
4

√
a2

1−16.

When 0 ≤ a1 < 4 (a1 > 4), the roots λ1,2 and λ3,4 are complex (real) with each
pair being double, that is with multiplicity two. At a1 = 4 there is a quadruple real
eigenvalue−1. So, we refer to the set (55) as a set of exceptional points [65, 67, 68]
(abbreviated as the EP-set).

When a1 > 0, the EP-set (55) (shown by the red curve in Figure 15a,b) lies within
the tangent cone (53) to the domain of asymptotic stability at the Whitney umbrella
singularity (0,0,2). The points in the EP-set all define polynomials with two double
roots (denoted EP2) except (a1,a3,a2) = (4,4,6), at which p has a quadruple root
and is denoted EP4; see Figure 15a,b.

Let us consider how the roots move in the complex plane when a1 and a3 coincide
and are set to specific values and a2 increases from zero, as shown by black curves
in Figure 15c. When a1 = a3 < 4, the roots that initially have positive real parts and
thus correspond to unstable solutions move along the unit circle to the left, cross the
imaginary axis at a2 = 2 and merge with another complex conjugate pair of roots

at a2 = 2+ a2
1

4 , i.e., at the EP-set. Further increase in a2 leads to the splitting of
the double eigenvalues, with one conjugate pair of roots moving back toward the
imaginary axis. By also considering the case a1 = a3 > 4, it is clear that when a1

and a3 coincide, the choice a2 = 2+ a2
1

4 minimizes the abscissa, with the polynomial
p on the EP-set.

Furthermore, when a1 = a3 is increased toward 4 from below, the coalescence
points (EP2) move around the unit circle to the left. This conjugate pair of coales-
cence points merges into the quadruple real root λ = −1 (EP4) when a1 = a3 = 4
and hence a2 = 6, as is visible in Figure 15c. If a1 = a3 is increased above 4 the
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quadruple point EP4 splits again into two exceptional points EP2, one of them in-
side the unit circle.

Thus, all indications are that the abscissa is minimized by the parameters corre-
sponding to EP4, with a quadruple root at −1.

In fact, application of the following theorem shows that the abscissa of (52) is
globally minimized by the EP4 parameters.

Theorem 1. ([18], Theorems 7 and 14)
Let F denote either the real field R or the complex field C. Let b0, b1, . . ., bn ∈ F

be given (with b1, . . . ,bn not all zero) and consider the following family of monic
polynomials of degree n subject to a single affine constraint on the coefficients:

P =

{
λ

n +a1λ
n−1 + . . .+an−1λ +an : b0 +

n

∑
j=1

b ja j = 0, ai ∈ F

}
.

Define the optimization problem

a∗ := inf
p∈P

a(p). (56)

Let

h(λ ) = bnλ
n +bn−1

(
n

n−1

)
λ

n−1 + . . .+b1

(
n
1

)
λ +b0.

First, suppose F= R. Then, the optimization problem (56) has the infimal value

a∗ =−max
{

ζ ∈ R : h(i)(ζ ) = 0 f or some i ∈ {0, . . . ,k−1}
}
,

where h(i) is the i-th derivative of h and k = max{ j : b j 6= 0}. Furthermore, the
optimal value a∗ is attained by a minimizing polynomial p∗ if and only if −a∗ is a
root of h (as opposed to one of its derivatives), and in this case we can take

p∗(λ ) = (λ − γ)n ∈ P, γ = a∗.

Second, suppose F=C. Then, the optimization problem (56) always has an optimal
solution of the form

p∗(λ ) = (λ − γ)n ∈ P, Re γ = a∗,

with −γ given by a root of h (not its derivatives) with largest real part.

In our case, F = R, n = 4 and the affine constraint on the coefficients of p is
simply a4 = 1. So, the polynomial h is given by h(λ ) = λ 4−1.

Its real root with largest real part is 1, and its derivatives have only the zero
root. So, the infimum of the abscissa a over the polynomials (52) is −1, and this is
attained by

p∗(λ ) = (λ +1)4 = λ
4 +4λ

3 +6λ
2 +4λ +1, (57)
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that is, with the coefficients at the exceptional point EP4. There is nothing special
about n = 4 here; if we replace 4 by n we find that the infimum is still −1 and is
attained by

p∗(λ ) = (λ +1)n.

Swallowtail singularity as the global minimizer of the abscissa
It is instructive to understand the set in the (a1,a3,a2)-space where the roots

of the polynomial (52) are real and negative, but not necessarily simple, which is
given by the discriminant surface of the polynomial. A part of it is shown in Fig-
ure 15a,b. At the point EP4 with the coordinates (4,4,6) in the (a1,a3,a2)- space the
discriminant surface has the Swallowtail singularity, which is a generic singularity
of bifurcation diagrams in three-parameter families of real matrices [6, 7].

Therefore, the coefficients of the globally minimizing polynomial (57) are ex-
actly at the Swallowtail singularity of the discriminant surface of the polynomial
(52).

In the region in side the “spire” formed by the discriminant surface all the roots
are simple real and negative. Owing to this property, this region, belonging to the
domain of asymptotic stability (see Figure 15a), plays an important role in stability
theory. Physical systems with semi-simple real and negative eigenvalues are called
heavily damped. The solutions of the heavily damped systems do not oscillate and
monotonically decrease, which is favorable for applications in robotics and auto-
matic control.

Now we can give the following interpretation of the Bottema stability diagram
shown in Figure 15a [70]. The dissipative system with the characteristic polynomial
(52) is asymptotically stable inside the domain (51). The boundary of the domain
(52) has the Whitney umbrella singular point at a1 = 0, a3 = 0, and a2 = 2.

The domain corresponding to heavily damped systems is confined between three
hypersurfaces of the discriminant surface and has a form of a trihedral spire with
the Swallowtail singularity at its cusp at a1 = 4, a2 = 6, and a3 = 4. The Whitney
umbrella and the Swallowtail singular points are connected by the EP-set given
by (55). At the Swallowtail singularity of the boundary of the domain of heavily
damped systems, the abscissa of the characteristic polynomial of the damped system
attains its global minimum.

Therefore, by minimizing the spectral abscissa one finds points at the boundary
of the domain of heavily damped systems. Furthermore, the sharpest singularity at
this boundary corresponding to a quadruple real eigenvalue λ =−1 with the Jordan
block of order four is the very point where all the modes of the system with two
degrees of freedom are decaying to zero as rapidly as possible when t→ ∞.
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