Wu, Dandan, Jia, Runping, Wen, Ming, Zhong, Shuai, Wu, Qingsheng, Fu, Richard and Yu, Shuhong (2020) Ultrastable PtCo/Co3O4–SiO2 Nanocomposite with Active Lattice Oxygen for Superior Catalytic Activity toward CO Oxidation. Inorganic Chemistry, 59 (2). pp. 1218-1226. ISSN 0020-1669
|
Text
revised manuscript In-org Chem.pdf - Accepted Version Download (1MB) | Preview |
Abstract
A nanostructural catalyst with long-term durability under harsh conditions is very important for an outstanding catalytic performance. Herein, a new ultrastable PtCo/Co3O4–SiO2 nanocatalyst was explored to improve the catalytic performance of carbon monoxide (CO) oxidation by virtue of the surface active lattice oxygen derived from strong metal–support interactions. Such a structure can overcome the issues of Co3O4–SiO2 inactivation by water vapor and the Pt inferior activity at low temperature. Further, Co3O4–SiO2 nanosheets endow superior structure stability under high temperatures of up to 800 °C, which gives long-term catalytic cyclability of PtCo/Co3O4–SiO2 nanocomposites for CO oxidation. Moreover, the large specific surface areas (294 m2 g–1) of the nanosheet structure can expose abundant surface active lattice oxygen, which significantly enhanced the catalytic activity of CO oxidation at 50 °C over 30 days without apparent aggregation of PtCo nanoparticles after 20 cycles from 50 to 400 °C. It can be expected to be a promising candidate as an ultrastable efficient catalyst.
Item Type: | Article |
---|---|
Subjects: | F100 Chemistry H800 Chemical, Process and Energy Engineering |
Department: | Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering |
Depositing User: | Elena Carlaw |
Date Deposited: | 15 Jan 2020 15:35 |
Last Modified: | 31 Jul 2021 14:18 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/41913 |
Downloads
Downloads per month over past year