Chan, Poh Yin, Tong, Chi Ming and Durrant, Marcus (2011) Estimation of boiling points using density functional theory with polarized continuum model solvent corrections. Journal of Molecular Graphics and Modelling, 30. pp. 120-128. ISSN 1093-3263
Full text not available from this repository. (Request a copy)Abstract
An empirical method for estimation of the boiling points of organic molecules based on density functional theory (DFT) calculations with polarized continuum model (PCM) solvent corrections has been developed. The boiling points are calculated as the sum of three contributions. The first term is calculated directly from the structural formula of the molecule, and is related to its effective surface area. The second is a measure of the electronic interactions between molecules, based on the DFT-PCM solvation energy, and the third is employed only for planar aromatic molecules. The method is applicable to a very diverse range of organic molecules, with normal boiling points in the range of −50 to 500 °C, and includes ten different elements (C, H, Br, Cl, F, N, O, P, S and Si). Plots of observed versus calculated boiling points gave R2 = 0.980 for a training set of 317 molecules, and R2 = 0.979 for a test set of 74 molecules. The role of intramolecular hydrogen bonding in lowering the boiling points of certain molecules is quantitatively discussed.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Boiling points, DFT, implicit solvent corrections, QSPR, quantum calculations |
Subjects: | C700 Molecular Biology, Biophysics and Biochemistry F100 Chemistry |
Department: | Faculties > Health and Life Sciences > Applied Sciences |
Depositing User: | Ellen Cole |
Date Deposited: | 15 Dec 2011 16:46 |
Last Modified: | 12 Oct 2019 18:26 |
URI: | http://nrl.northumbria.ac.uk/id/eprint/4199 |
Downloads
Downloads per month over past year