Investigation of flow and heat transfer in a large-scale spent nuclear fuel cooling pond

Ramadan, Ahmed Mohamed (2017) Investigation of flow and heat transfer in a large-scale spent nuclear fuel cooling pond. Doctoral thesis, Northumbria University.

[img]
Preview
Text (Doctoral thesis)
Ramadan.Ahmed_phd.pdf - Submitted Version

Download (12MB) | Preview

Abstract

The recent focus on nuclear power has led to the need for more efficient and economical methods of operating the Spent Nuclear Fuel (SNF) cooling ponds as well as complying with the strict safety and environmental legislations imposed by the IAEA and the UK Government. Like many other industrial applications, the design and operation of the SNF cooling ponds have evolved from experience; trial and error. Since the stored materials in such ponds are radioactive, it is very difficult to perform experimental studies. As a result, a rigorous scientific study based on fundamental principles has to be performed.

The present research explores analytically and numerically the main processes that take place across the pond installation. The body of the present study includes four main parts: the first part is involved in modelling the heat loss from the free water surface, mainly due to evaporation, using analytical and single-phase numerical approaches, which represents a critical factor in the modelling of the large-scale cooling ponds. The predicted results were in good agreement with experimental data available in open literature.

In the second part, a thermal model using Microsoft Excel spreadsheet was developed for the cooling pond based on an analytical approach. The well-mixed hypothesis was adopted to describe the water zone as well as the humid air zone. Also, the ventilation system was considered within this model. The developed spreadsheet tool was validated against reliable data available for Maine Yankee pool as well as temperature measurements collected from the Sellafield site. This spreadsheet tool is able to describe the transient behaviour with low computational cost, allowing many "what-if" scenarios to be rapidly investigated.

In the third part, Computational Fluid Dynamics (CFD) was used to model the cooling pond at both macro and micro levels. The macro level modelling involved in developing a CFD model for Sellafield’s cooling pond where the fuel regions were approximated to porous medium. The computational domain was produced for the water zone only, where the humid air zone was introduced to the model by coupling of the spreadsheet model with the CFD model. This model was validated and used to examine the distribution of water temperature to confirm the reliability of the adopted well-mixed approach in the analytical model. The outcomes from the CFD and spreadsheet models were used to provide some boundary conditions to the micro-level model of the fuel assemblies. The modelling methodology of the fuel assemblies was partially validated with experimental data for heat transfer around vertical cylinder. The maximum temperature of the water within the rack arrangement was determined under various conditions and a correlation was proposed.

Finally, a sensitivity study was performed using Taguchi method and the statistical method of ANOVA to assess the influence of the cooling systems as well as the environmental conditions on the thermal performance of the cooling pond. The spreadsheet model was implemented to carry out the calculations. The outcomes from this study were presented in the form of recommendations that may be able to aid the organisation to manage their cooling pond more efficiently and safely during the normal operating conditions as well as recovery from an accident scenario.

Item Type: Thesis (Doctoral)
Uncontrolled Keywords: Evaluation, heat loss, water, free, evaporation, modelling, mass, transfer, fuel, cooling, pond, flow, thermal, Taguchi, ANOVA, CFD
Subjects: H200 Civil Engineering
H800 Chemical, Process and Energy Engineering
Department: Faculties > Engineering and Environment > Mechanical and Construction Engineering
University Services > Graduate School > Doctor of Philosophy
Depositing User: John Coen
Date Deposited: 07 Feb 2020 14:20
Last Modified: 31 Jul 2021 19:50
URI: http://nrl.northumbria.ac.uk/id/eprint/42057

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics