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Abstract
In this paper, a multi-objective probabilistic design optimisation approach is presented for reliability and robustness analysis of
composite structures and demonstrated on a mono-omega-stringer stiffened panel. The proposed approach utilises a global
surrogate model of the composite structure while accounting for uncertainties in material properties as well as geometry.
Unlike the multi-level optimisation approach which freezes some parameters at each level, the proposed approach allows for
all parameters to change at the same time and hence ensures global optimum solutions in the given parameter design space (for
both probabilistic and deterministic optimisations) within a certain degree of accuracy. The proposed approach is used in this
study to conduct extensive multi-objective probabilistic and deterministic optimisations (without considering safety factors) on a
mono-stringer stiffened panel. In particular, a global surrogate model is developed utilising the computational power of a high-
performance computing facility. The inputs of the surrogate model are the omega-stringer geometry and the mechanical prop-
erties of the composite material, while the outputs are the fundamental linear buckling load (LBL) and the nonlinear post-
buckling strength (NPS). LBL and NPS are obtained via detailed parametric finite element models of the mono-stringer stiffened
panel; in the nonlinear model, the interface between the skin and the omega-stringer is modelled via cohesive elements to allow
for debonding in the post-buckled regime. Extensive multi-objective optimisations are conducted on the surrogate model using
deterministic and probabilistic approaches to examine the omega-stringer geometric parameters mostly affecting the system
robustness and reliability. The differences between deterministic and probabilistic designs are highlighted as well.

KeywordsProbabilistic design. Multi-objective optimisation. Surrogate modelling. Post-buckling regime. Stiffened panel

1 Introduction

Carbon fibre-reinforced composites are widely used in aircraft
structures. The recent advancements in composites allowed
the industry to increase their usage of composite materials
dramatically. To put it into numbers, the latest models by
Boeing and Airbus are made of 50 and 53% composites, re-
spectively. These percentages will grow in the future to even
further reduce the mass of the aircraft while achieving higher

strengths and increased lifespan. One of the key elements of
an aircraft is the composite stiffened panel, in which the skin is
reinforced via adding a stringer for superior load carrying in
both tension and compression. The main concern in the design
of a stiffened panel, for sections of an aircraft under compres-
sion, is maximising the compressive load carrying due to the
buckling phenomenon (Hao et al.2017). For the case of
omega-stringer stiffened panels, the initial buckling starts in
the skin (Kassapoglou2013; Wang and Abdalla2015), here
referred to as the fundamental linear buckling load (LBL);
however, it is known that beyond the first linear buckling, a
stiffened panel could carry loads of several times the magni-
tude of the fundamental LBL before failure, here referred to as
the nonlinear post-buckling strength (NPS). Hence, designing
a panel which will always operate below the fundamental
LBL is very conservative; given the extra strength of the panel
in the post-buckling regime, much lighter designs can be
achieved by allowing the panel to operate in the post-
buckling regime. This has motivated a large amount of
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research on stiffened panel optimisation in the post-buckling
regime. In what follows, a concise review of the vast literature
on optimisation of composite structures is given; more de-
tailed reviews can be found in surveys conducted by, for in-
stance, Venkataraman and Haftka (1999), Ghiasi et al. (2009)
Ghiasi et al. (2010) and Nikbakt et al. (2018).

The traditional approach of optimisation, also known as
deterministic optimisation (DO), does not account for any
uncertainties in the system. Modern optimisation techniques,
also known as probabilistic optimisation (PO), on the other
hand, account for uncertainties (Salas and Venkataraman
2008) that could affect the design objectives, such as uncer-
tainties associated with mechanical properties or the geometry.
Two well-stablished PO techniques are robust-design optimi-
sation (RDO) and reliability-based design optimisation
(RBDO) (Chen and Qiu2018; das Neves Carneiro and
Antonio 2018; Fang et al.2018; Hu and Duan2018; Kaveh
et al.2018; López et al.2017; Montoya et al.2015; Sohouli
et al.2018; Strömberg2017). RDO focuses on minimising the
sensitivity of the objective function to random changes in the
uncertain variables in the system, while RBDO aims at
achieving a certain confidence in reliability of the product
under a prescribed probabilistic constraint. In what follows,
a brief literature review is conducted on different optimisation
techniques.

One of the methods of optimising stiffened panels is the
finite strip method (FSM) originally developed by Wittrick
(1968) and Cheung (1968), in which the stiffened panel is
divided into a finite number of strips and the motions of the
strips are approximated via trigonometric functions. Further
research was conducted using FSM technique for instance by
Bushnell (1987), Butler and Williams (1993) and Zabinsky
(1998). Homogenisation-based methods have also been used
for optimisation of stiffened panels (Wang and Abdalla2016;
Wang et al.2017; 2018; 2019). For instance, Wang et al.
(2018) conducted a sensitivity analysis for optimisation of
non-uniform curved stiffened composite panels in the frame-
work of homogenisation-based local/global analysis.

The finite element (FE) technique is another method for
modelling and analysis of stiffened panels which is superior
to FSM. However, accurate FE models, which account for
geometric nonlinearities, progressive failure and interfacial
debonding, are usually very time consuming. Conducting a
multi-objective optimisation (Coello2000; Marler and Arora
2004; Zitzler et al.2000) of stiffened panel using FE models
could become very time consuming as massive computational
power is required to search the multi-dimensional design space
while accounting for different sources of nonlinearities. To ad-
dress this problem, a multi-level approach has been suggested
by Sobieszczanski-Sobieski et al. (1987) in which the large
optimisation problem is divided into levels of substructures.
A two-level optimisation procedure for a composite wing was
developed by Liu et al. (2000), who constructed response

surface for the optimal buckling load at the lower level and
employed it later for global optimisation. Herencia et al.
(2008a) proposed a two-level approach for layup optimisation
of composite stiffened panels. A multi-level approach was de-
veloped by Wind et al. (2008), who conducted local and global
optimisation on a multi-component structure. Further studies
were conducted by Herencia et al. (2008b) who proposed a
two-step method for optimisation of anisotropic composite
stiffened panels. Bacarreza et al. (2015) employed a multi-
level approach to conduct robust-design optimisation on com-
posite stiffened panels in post-buckling regime. Although
multi-level approaches reduce the computational costs, they
do not guarantee a global optimum solution as in each level
there is only a selection of system parameters which act as
optimisation inputs while the rest are kept fixed.

Another technique for reducing the computational costs
is to use a surrogate model (Albanesi et al.2018; Marhadi
and Venkataraman2008) to approximate the response of
the system. Lamberti et al. (2003) investigated the use of
approximate models for conducting global optimisation on
stiffened panels and concluded that it allows a greater
exploration of the global design space compared to the
case of util ising local optimisation together with
complicated models. Having developed a surrogate
model, different algorithms can be utilised to perform
deterministic or probabilistic optimisation. Venkataraman
and Salas (2007) proposed an approach for studying the
mechanics influencing progressive failure predictability
and developing surrogate models for deterministic
optimisation in order to maximise performance. Barkanov
et al. (2014) conducted linear buckling optimisation anal-
ysis on composite lateral wing upper covers utilising the
response surface method together with optimal Latin hy-
percube sampling. In the second part of the study
(Barkanov et al.2016), the optimum designs based on lin-
ear buckling analysis were verified through a nonlinear
buckling analysis and re-optimised if necessary; they
utilised the response surface technique for surrogate
modelling and optimisation purposes. Other studies have
been performed on stiffened panel deterministic optimisa-
tion using surrogate modelling, for instance, by Bisagni
and Lanzi (2002), Lanzi and Giavotto (2006), Irisarri
et al. (2011) and Marín et al. (2012). López et al. (2017)
conducted deterministic and reliability-based design opti-
misations of composite stiffened panels in post-buckling
regime; they conducted a decoupled RBDO which sepa-
rates the reliability analysis from the deterministic optimi-
sation. Further RBDO studies of stiffened panel have been
conducted by, for instance, Qu and Haftka (2003), who
conducted RBDO and computed the reliability constraints
employing Monte Carlo sampling and a design response
surface, and Díaz et al. (2016), who performed a compar-
ison of stochastic expansions and moment-based methods
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for the reliability analysis while using genetic and
gradient-based techniques for deterministic optimisation.

The present study first proposes a highly reliable multi-
objective probabilistic design optimisation approach through
development of a global surrogate model and then applies that
approach to a stiffened panel. More specifically, the proposed
approach is detailed in Section2. Then in Sections3, 4 and5,
the approach is demonstrated for a mono-omega-stringer stiff-
ened panel. The main advantage of the proposed approach
over multi-level optimisation approaches is that it allows for
all parameters to change simultaneously and hence ensures
more general (near-global) probabilistic and deterministic op-
timum solutions. It is worth noting that in this study, a safety
factor isnotconsidered for either probabilistic or deterministic
optimisations since the goal here is to differentiate between
the underlying mechanism of these optimisation approaches,
which comes before application of any safety factors.

2 Global multi-objective probabilistic design
optimisation approach

The FE method has proven to be the most reliable technique
for analysis of aircraft structures. The increased accuracy of-
fered by FE techniques comes at the price of increased com-
putational cost, which depending on the size and complexity
of the structure could vary between hours to weeks of run
time. Hence, conducting even deterministic optimisation on
aircraft structures could be a computationally challenging task
with months of run time. Now in the context of probabilistic
optimisation which requires a large number of objective func-
tion calls (in the order of millions), it becomes impossible to
use the original FE model as the objective function. In such
cases, it is inevitable to use a surrogate model as an explicit
approximation of the original FE model. Surrogate models
have been used extensively for optimisation purposes in dif-
ferent fields. In the case of aircraft structures, surrogate
models are usually used with very limited number of inputs
and outputs in multi-level approaches to reduce computational
costs; however, since some parameters are kept fixed at each
level, the multi-level approaches do not guarantee global op-
timum result. In this study, a new surrogate model-based prob-
abilistic optimisation approach is presented which is more
efficient and more accurate than the multi-level approaches
since it allows for all parameters to change simultaneously.
The steps of this approach are explained for a general case
in the following.

2.1 Developing a parametric FE model

The first step is developing a parametric FE model with a
specific number of inputs and outputs. Although in general
there is no specific limit on the number of inputs and outputs

of the surrogate model of a structure, the proposed approach
focuses on the main contributing input parameters of the struc-
ture under consideration to reduce the computational costs and
to increase accuracy. The mechanical properties of the com-
posite structure (E11, E22= E33, G23 andG12= G13) should
always be considered as inputs since there are always uncer-
tainties associated with their value and they could significant-
ly affect the desired output. Apart from these four inputs, the
geometric parameters which mostly affect the desired output
should be considered as well. The number of geometric inputs
could vary depending on the structure under consideration.
After determining the desired inputs, detailed parametric FE
models should be developed which calculate the outputs for a
given set of inputs.

2.2 Creating matrix of design samples

Design-of-experiments methods are commonly utilised to
determine the spatial distribution of samples in the design
space. The main goal of design-of-experiments is to max-
imise the amount of information obtained from a limited
number of sample points (Koziel et al.2011). More specif-
ically, design-of-experiments will provide a matrix of de-
sign samples which best represents the whole design space.
In the proposed approach, the preferred method to create
the matrix of design samples is the optimal Latin hyper-
cube sampling technique (Park1994). There is no general
formula for the number of samples based on the number of
inputs and outputs, as it depends on the sensitivity of the
outputs to variations of the inputs and many other factors.
The proposed approach suggests a sample size of at least
10 times the number of inputs; however, increasing the
number of samples will reduce the error later on when
constructing the surrogate model. After creating a matrix
of design samples, the parametric FE models of the struc-
ture should be used to calculate the desired outputs for
each sample in the design space. This step is the most
computationally expensive part of the simulation.
Parallelising simulation of the samples could decrease the
total run time significantly.

2.3 Surrogate model development

Different software packages and codes are available for sur-
rogate model development. In the present approach, the
Surrogate Modelling (SUMO) toolbox (Gorissen et al.2010)
is suggested for this purpose due to its comprehensive library
of algorithms. The SUMO toolbox is capable of generating
surrogate models based on various algorithms and functions
such as kriging, artificial neural network (ANN), radial basis
functions, extreme machine learning and genetic algorithm,
just to name a few. Hence, it provides a platform to generate
and test various surrogate models for the system under
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consideration. Additionally, it offers different measures for
error analysis such as cross-validation and reference data com-
parison. Having developed the matrix of design samples in-
cluding inputs and outputs within a specific range of parame-
ters, various surrogate models offered by the SUMO toolbox
can be tested to find the one which offers the most accuracy.
The accuracy of a surrogate model can be examined via two
different measures, i.e. cross-validation and direct comparison
to a unique data set (Gorissen et al.2010; Rikards et al.2006).
In a situation where the desired accuracy is not met, further
design samples should be created and computed using the FE
models to increase the size of the matrix of the design samples.
This should be repeated until the desired accuracy is met.

2.4 Global multi-objective optimisation

Having developed the surrogate model of the system, the final
step is to conduct multi-objective probabilistic and determin-
istic optimisations on the surrogate model. Genetic algorithms
are best suited for multi-objective optimisations. The main
advantage of the proposed approach is that it offers a direct
comparison between probabilistic and deterministic optimisa-
tion results. Deterministic optimisation, robust-design optimi-
sation and reliability-based design optimisation are conducted
on the developed surrogate model.

A general robust-design optimisation problem can be math-
ematically expressed as:

min � F d; xð Þð Þ; � F d; xð Þð Þf g
subject to : gm dð Þ� 0; m ¼ 1; 2; :::;M;

ð1Þ

in whichF stands for the objective function,d andx represent
the design and random variables,� and � show the mean
value and the standard deviation andgm denotes themth con-
straint. It should be noted that in an RDO, randomness could
be associated with either design variables or other system
variables. For an aircraft structure, uncertainties could be as-
sociated with mechanical properties, i.e.E11, E22= E33, G23

andG12= G13, and/or geometric parameters. Again, the global
surrogate model of the structure allows for accounting for
uncertainties in any of the inputs.

In a reliability-based design optimisation, on the other
hand, the uncertainties are usually associated with mechanical
properties. The RBDO process ensures that the final design
meets a certain probabilistic constraint up to a prescribed reli-
ability level� t. In general, an RBDO problem can be formu-
lated as

min F dð Þ
subject to : gm dð Þ� 0; m ¼ 1; 2; :::;M;

P Gn d; xð Þ� 0½ �ŠPf ;n � 0; n ¼ 1; 2; :::;N;
ð2Þ

whered andx are the design and random variables, respec-
tively, and F is the objective function.gm denotesmth

deterministic constraint, whileGn stands for thenth probabi-
listic one.P[] represents the probability of the constraint being
met, withPf being the allowable probability of failure. For the
case when the random variables are characterised by a normal
distribution,Pf is related to the prescribed reliability level� t

via Pf = � (Š� t) in which� is the cumulative distribution func-
tion of the standard normal distribution (Enevoldsen and
Sørensen1994).

Different steps of the general approach detailed in this sec-
tion are shown in Fig.1. In what follows, the approach pro-
posed in this section is demonstrated in detail on a mono-
stringer stiffened panel.

3 Demonstration of the proposed
optimisation approach on a mono-stringer
stiffened panel

Consider a mono-stringer stiffened panel of lengthL and
width W, as shown in Fig.2 a. The omega-stringer ge-
ometry is detailed in Fig.2 b, with X1, X2, H and� being
the foot, flange, height and angle, respectively. The
mono-stringer is clamped at both ends, with the right-
hand end being free to move in the longitudinal direction
(shown byz in sub-figure a). Furthermore, there are no
constraints on the two longitudinal edges of the skin. In
this section, the approach proposed in Section2 is im-
plemented for this structure. In particular, the surrogate
model of the structure will be developed in this section.
The optimisation results will be discussed in separate
sections.

3.1 Parametric FE model development

The inputs of interest are the omega-stringer geometry, i.e.
X1, X2, H and� , as well as the mechanical properties, i.e.
E11, E22= E33, G23 andG12= G13. The desired outputs are
linear buckling load as well as the nonlinear post-buckling
strength. In this section, two parametric FE models of the
mono-stringer stiffened panel are developed in Abaqus as
detailed below.

3.1.1 Linear FE model

The first parametric FE model developed in this section is a
linear eigen-buckling analysis model in order to obtain the
fundamental linear buckling load. An axial load is applied to
the movable end of the mono-stringer and an eigen-buckling
analysis is conducted to obtain the fundamental linear buck-
ling load of the stiffened panel. Conducting a mesh conver-
gence analysis for the linear buckling load shows that a global
mesh size of 2 mm yields reliable results. The model takes 8
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Testing various models 
using SUMO toolbox

Determining the desired 
inputs/outputs

Developing parametric FE
models based on the desired

inputs/outputs

Creating a matrix of design 
samples using Optimal Latin-
hypercube sampling technique

HPC
Speeding up through

parallelisation

Conducting detailed FE simulation 
for each design sample and

calculating the outputs

The model meets the desired
accuracy?

Adding more design 
samples

No Yes

Surrogate model multi-
objective optimisation using

genetic algorithms

Deterministic 
optimisation

Robust-design optimisation Reliability-based design
optimisation

Direct Monte Carlo 
sampling for

robustness analysis

Comparison of deterministic and 
probabilistic optimised designs

Developing a surrogate model
based on the completed matrix

of design samples

Hybrid Mean Value 
method for reliability

analysis

Fig. 1 Flowchart of the proposed approach
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inputs as described before and calculates the fundamental lin-
ear buckling load.

3.1.2 Nonlinear FE model

A nonlinear parametric FE model is developed in this sec-
tion in order to obtain the nonlinear post-buckling strength
of the composite stiffened panel. This model is much more
complex compared to the first model and accounts for geo-
metric nonlinearities and progressive failure and addition-
ally allows for interfacial debonding via use of cohesive
elements. It is known that in the post-buckling regime, the
buckled shape of the skin changes continuously due to
increased compressive load. Additionally, sudden changes
in the modes of buckling, known as mode-switch, occurs in
the post-buckling regime which cannot be properly cap-
tured via use of quasi-static FE techniques. To this end,
the nonlinear explicit dynamic FE analysis is employed
in this study for analysing the nonlinear post-buckling
characteristics.

Modelling the cohesive elements and correct selection of
properties for modelling a traction-separation response is a
challenging task. The main reason is that for typical epoxy
resin matrix-based carbon fibre-reinforced composites, the
length of the cohesive zone is less than 1 mm. An accurate
representation of the traction in the tip of the crack and prop-
agation of delamination requires at least three elements in the
cohesive zone. Such small mesh requirement demands signif-
icant computational costs for structural analysis, such as the
case of the mono-stringer stiffened panel of the present study.
To address this challenge, the procedure introduced by Turon
et al. (2007) is employed in this study, in which the cohesive
zone length is artificially increased via decreasing the interfa-
cial strengths; this procedure is briefly explained in the
following.

In order to model the cohesive elements based on a mixed-
mode fracture bilinear traction-separation, the following prop-
erties are required: the critical fracture energiesGIC, GIIC and
GIIIC; the penalty stiffnessesK1, K2 andK3; and the interfacial
strengths� 0, � 0

1 and� 0
2. In this study, it is assumed that penalty

stiffnesses are the same (K1 = K2 = K3 = K); furthermore,� 0
1

(a)

W

(b)
X2

X1

H

Fig. 2 a Schematic representation of the mono-stringer stiffened panel.b The geometric parameters of the stringer
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= � 0
2 = � 0 andGIIC = GIIIC. The penalty stiffness value should

be large enough so that it has a negligible influence on the
effective elastic properties of the composite. To this end, the
penalty stiffness is defined as

K ¼ �
E3

t
; ð3Þ

whereE3 is the material’s transverse Young’s modulus,t is the
thickness of the adjacent sublaminate and� is a coefficient
much larger than 1. Turon et al. (2007) suggest a value more
than 50; in the present study,� = 100 is used.

The cohesive zone lengths for modes I and II can be ap-
proximated as (Turon et al.2007)

l Ið Þ
cz ¼ ME2

GIC

� 0ð Þ2
;

l IIð Þ
cz ¼ ME2

GIIC

� 0ð Þ2
;

ð4Þ

whereM is a parameter characterised by the employed cohe-
sive zone model; in the present study, Hillerborg’s model
(Hillerborg et al.1976) is utilised in whichM = 1.

Denoting the length of the cohesive element bylce and
assumingNceas the number of elements in the cohesive zone,
the cohesive zone lengths in (4) can be replaced byNcelce.
Under the assumption of linear elastic fracture mechanics,
the effect of the interfacial strengths can be neglected.
Hence, based on (4), the length of the cohesive zone can be
artificially increased via decreasing the interfacial strengths.
As a result, the modified interfacial strengths (� m and� m) can
be obtained as

� m ¼

�����������������
ME2GIC

Ncelce

r

; � m ¼

������������������
ME2GIIC

Ncelce

r

: ð5Þ

The final values for interracial strengths that ensureNce

number of elements of sizelcespan the cohesive zone are

� f ¼ Min � m; � 0� �
; � f ¼ Min � m; � 0� �

: ð6Þ

In the present study,Nce= 3 andlce= 1.0 mm are selected.
Furthermore, a global mesh size of 2.0 mm is used for both the
skin and the stringer. Such selection of mesh size ensures
converged and reliable predictions and practical simulation
run time.

The properties of the composite and interface materials
used in the present study are given in Table1. The damage
initiation is defined based on Hashin criteria (Hashin1980;
Hashin and Rotem1973); additionally, the damage propaga-
tion is governed by the amount of energy dissipated through
progressive damage (Lapczyk and Hurtado2007).

The results of the nonlinear FE simulation for a mono-
stringer ofX1 = 35.74 mm,X2 = 30.0 mm,H = 25.0 mm and
� = 55.0° are shown in Fig.3. In particular, the load–

displacement curve of the mono-stringer under compressive
load is shown in sub-figure a. As seen, the skin buckling (i.e.
linear buckling) occurs in the vicinity of 0.5 mm shortening,
while the failure occurs at around 2.2 mm shortening (i.e.
point A). The mode of failure is skin-stringer debonding; the
out-of-plane displacement (i.e. buckling amplitude) of the skin
and stringer at points A, B and C are shown in sub-figures b–
d, respectively. In this study,the nonlinear post-buckling
strength, denoted as NPS, refers to the maximum load the
mono-stringer stiffened panel carries before failure, i.e. the
load corresponding to point A.

The nonlinear parametric FE model developed in this sub-
section takes 8 inputs as described previously and calculates
the nonlinear post-buckling strength.

3.2 Creating matrix of design samples

In this section, the optimal Latin hypercube sampling method
is employed to create the matrix of design samples. In partic-
ular, 260 sample points are created for the 8 inputs considered
with the range of the inputs given in Table2. As mentioned in
Section2, the size of the cohesive element is set to 1 mm in
this study. To ensure that this size remains fixed for all com-
puter experiments, the foot size of the omega-stringer in the
sampling matrix is rounded to the nearest integer.
Furthermore, an additional 15-sample test matrix is generated
as well via the optimal Latin hypercube sampling for the sole
purpose of error analysis.

While the simulations run quite fast for the linear model,
the nonlinear model simulation run time (utilising 20 CPU-
cores) varies between 16 and 20 h per each sample, depending
on the total number of cohesive elements. This means an av-
erage total run time of 4680 h (195 days!) to run all 260
samples. To be able to finish the design of experiments in a
reasonable amount of time, the computational power of a
high-performance computing (HPC) facility is utilised. In par-
ticular, each sample is run on one node consisting of 20 CPU-
cores and 128 GB memory, and multiple samples are run at
the same time. A 10× speed up is achieved using the HPC
facility and the simulations are finished within almost 20 days.
Having developed a 260 × 10 design matrix, as well as a 15 ×
10 reference design matrix for error analysis, different surro-
gate models are generated and tested, as explained in the fol-
lowing, to obtain a reliable explicit approximation of the non-
linear and linear FE models. It is important to note that the
mode of failure in all the cases examined in this section is
skin-stringer debonding which initiates irreversible damage
in the structure. In other words, if the skin-stringer debonding
is not considered, the stiffened panel could withstand much
larger loads; therefore, the skin-stringer debonding is the fail-
ure bottleneck for the case of mono-omega-stringer stiffened
panel examined in this study. As a result, the nonlinear post-
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buckling strength (NPS) considered in this study is in fact the
maximum load-carrying capacity without permanent damage.

3.3 Surrogate model development

In this section, a global surrogate model is developed in which
the omega-stringer geometry (X1, X2, H and� ) and the me-
chanical properties of the composite structure (E11, E22= E33,
G23andG12= G13) are considered as inputs. The fundamental
linear buckling load and the nonlinear post-buckling strengths
are considered as outputs. Hence, a surrogate model with 8
inputs and 2 outputs is developed in this section using the
260 × 10 design matrix developed in the previous section.
The mono-stringer length and width as well as the skin and
omega-stringer thickness and layup are kept fixed in this study
so as not to further increase the computational costs. In this
study, the SUMO toolbox (Gorissen et al.2010) is utilised to
develop a surrogate model. As mentioned before, the SUMO
toolbox includes various algorithms and functions such as
kriging, ANN, radial basis functions, extreme machine learn-
ing and genetic algorithm. Hence, various algorithms can be
tested to find one which best suits the present problem. Two
measures for error analysis are considered: cross-validation
and the 15-sample reference data set that was developed in
Section3.2. Even though the number of samples is fixed, the
SUMO toolbox uses an optimisation algorithm and generates

iterations of surrogate models until a best model is found.
After testing various model building algorithms, it is found
that the artificial neural network and kriging models give the
best results for the mono-stringer stiffened panel under con-
sideration. It is found that the surrogate model error can be
further decreased by mixing the two models, with the coeffi-
cient for each model being determined via another optimisa-
tion algorithm. The final version of the mixed ANN–kriging
surrogate model predicts the nonlinear post-buckling strength
with less than 1.5% error and the fundamental linear buckling
load with less than 0.5% error for the assumed range of inputs.
This surrogate model will be used in the following sections as
an explicit approximation of the linear buckling load and non-
linear post-buckling strength of the mono-stringer stiffened
panel to conduct extensive multi-objective deterministic and
probabilistic optimisations.

4 Multi-objective deterministic optimisation

This section conducts a multi-objective deterministic optimi-
sation (MODO) on the surrogate model developed in the pre-
vious section; as mentioned before, a safety factor is not con-
sidered for either deterministic or probabilistic optimisations.
In the present study, the Pareto envelope-based selection algo-
rithm II (PESA-II) is utilisedto conduct multi-objective

Table 1 Material properties

Symbol Value Description

Elastic properties of the
composite material

E11 (GPa) 139.0 Longitudinal modulus of elasticity

E22= E33 (GPa) 8.1 Transversal modulus of elasticity

	 23 0.45 In-plane Poisson’s ratio

	 12 = 	 13 0.33 Out-of-plane Poisson’s ratio

G23 (GPa) 4.8 In-plane shear modulus

G12= G13 (GPa) 3.1 Out-of-plane shear modulus

Damage initiation parameters
of the composite material

� 0t
1 (MPa) 2900 Longitudinal tensile strength

� 0c
1 (MPa) 1660 Longitudinal compressive strength

Gt
c1 (N/mm) 162 Tensile fracture toughness in the longitudinal direction

Gc
c1 (N/mm) 106 Compressive fracture toughness in the longitudinal direction

� 0t
2 ¼ � 0t

3 (MPa) 58 Transverse tensile strength

� 0c
2 ¼ � 0c

3 (MPa) 25 Transverse compressive strength

Gt
c2 ¼ Gt

c3 (N/mm) 0.303 Tensile fracture toughness in the transversal direction

Gc
c2 ¼ Gc

c3 (N/mm) 1.0 Compressive fracture toughness in the transversal direction

� 0
12 ¼ � 0

13 (MPa) 125 Out-of-plane shear strength

� 0
23 (MPa) 95 In-plane shear strength

Cohesive material properties � 0 (MPa) 75 Maximum nominal normal stress

� 0 (MPa) 95 Maximum nominal shear stress

GIC (N/mm) 0.303 Normal fracture energy

GIIC (N/mm) 0.651 Shear fracture energy
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optimisation (Corne et al.2001; Corne et al.2000). PESA-II is
a multi-objective evolutionary optimisation algorithm which
utilises the genetic algorithm approach along with a selection
based on the Pareto envelope. Furthermore, it utilises an ar-
chive to store the approximate Pareto solutions. Parents and
mutants are the chosen from this archive, based on the grids
which themselves are generated based on the distribution of
the archive members.

The optimisation algorithm aims at minimising the mass of
the stringer and maximising both the fundamental linear buck-
ling load and the nonlinear post-buckling strength. The multi-
objective optimisation is conducted by giving a specific
weight to each of the objectives and then adding/subtracting
them such that they reduce into one objective; more details on
the weight of the objectives are given in the discussions for
each case. Since the aim of this section is to conduct deter-
ministic optimisation, only the geometric parameters of the
stringers are treated as variables in the optimisation loop. In
other words, the mechanical properties are kept fixed while
conducting the optimisation. The goal here is to identify the
major differences between the stringer geometries optimised
for maximum linear buckling load and those optimised for
maximum nonlinear post-buckling strength. It should be noted
that since in this study only the geometry of the stringer (and
not the skin) is varied in the optimisation loop, the reported
mass is that of the stringer only. The skin mass is a constant of
529.9 g throughout this study.

The results of the 3-objective PESA-II-based optimisation
is shown in Fig.4 through three sub-figures. For the sake of
clarity, a 2-dimensional (2D) graph with two vertical axes is
used to show the results of the 3-objective optimisation. The
horizontal axis shows the mass of the stringer, while the ver-
tical axes illustrate the LBL and NPS objectives. A portion of
the solutions obtained by the optimisation algorithm are plot-
ted, with blue dots representing NPS and orange dots showing

(a)
A

C

B

(b)

(c)

(d)

Fig. 3 a Load–displacement curve of the mono-stringer stiffened panel
under compressive load.b–d Out-of-plane displacement of the skin and
stringer corresponding to points A, B and C of sub-figurea, respectively

Table 2 Fixed and variable parameters

Fixed parameters Value

Skin and stringer thickness (mm) 2.208

Skin and stringer layup [45/Š45/0/0/90/0]s
Panel length,L (mm) 600.0

Panel width,W (mm) 250.0

Design of experiment inputs Range

Stringer foot,X1 (mm) 26� X1 � 46

Stringer flange,X2 (mm) 18� X2 � 30

Stringer angle,� (°) 55� X1 � 65

Stringer height,H (mm) 25� H � 35

E11 (GPa) 109� E11� 169

E22= E33 (GPa) 6.4� E22� 9.9

G23 (GPa) 2.4� G23� 3.8

G12= G13 (GPa) 3.8� G12� 5.8
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LBL. For the 2D diagram shown in Fig.4, the squares and
circles show the Pareto envelope for the NPS and LBL,

respectively. Depending on the weight given to the LBL and
NPS objectives in the optimisation algorithm, different Pareto
fronts are obtained. Three Pareto envelopes are examined here
and shown through sub-figures a–c showing the designs with
(a) maximum nonlinear post-buckling strength, (b) maximum
linear buckling load, and (c) maximum LBL and NPS.
Figure4a and bclearly show the competing nature of all
objectives and specifically the competing objectives of
maximising both LBL and NPS against minimising the mass.
It is seen in sub-figure a that when a large weight is given NPS
objective, the obtained optimised designs do not show an even
near-optimum LBL. On the other hand, in sub-figure b, when
a large weight is given to LBL, the reported optimised designs
do not display near-optimum NPS. This is due the competing
nature of these objectives where fully maximising one results
in non-optimum value for the other one.

To examine the optimised omega-stringer geometries in more
detail, Tables3 and4 are constructed showing the selection of
points on the Pareto fronts corresponding to Fig.4band a, respec-
tively. More specifically, Table3shows the omega-stringer designs
optimised for maximum linear buckling load and minimum mass.

It is interesting to note that the first parameter that is
changed by the optimiser as the stringer mass is increased
from 280 g is the flange. Additionally, it is seen that optimised
designs for this case are associated with minimum height and
angle and maximum flange size. Table4 corresponds to Fig.
4a, i.e. showing the stringer designs optimised for maximum
nonlinear post-buckling strength and minimum mass. As seen
in this table, optimised designs for NPS are associated with
maximised flange size, similar to optimised designs for LBL;
however, unlike the LBL optimised results, the optimised de-
signs for maximum NPS tend to have near maximum values
for height and angle parameters. Tables3 and4 clearly high-
light the differences in designs of minimum-mass mono-
stringer stiffened panels optimised for maximum LBL versus
those optimised for maximum NPS.

Figure5 shows the geometries of mono-stringer designs
optimised for (a) maximum NPS, corresponding to a stringer
design ofX1 = 27.51 mm,X2 = 30.0 mm,H = 35.0 mm and
� = 64.57°, and (b) maximum LBL, corresponding to a string-
er design ofX1 = 35.74 mm,X2 = 30.0 mm,H = 25.0 mm and
� = 55.0°. The figure clearly shows the differences between
the height and angle of the two stringer designs.

5 Multi-objective probabilistic optimisation

In this section, multi-objective probabilistic optimisations
(MOPO) are conducted on the surrogate model developed in
Section3, while considering only the nonlinear post-buckling
strength as an output of the surrogate model. RDO as well as
RBDO is conducted. In particular, RDO is performed while
considering the uncertainties in the stringer mechanical

Fig. 4 Deterministic multi-objective optimisation results of the mono-
stringer stiffened panel:a a large weight given to NPS objective;b a
large weight given to LBL objective;c similar weights to both NPS and
LBL objectives. For each case, squares and circles show the Pareto fronts
of NPS and LBL, respectively
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properties as well as its geometric parameters. RBDO, on the
other hand, is carried out while accounting only for uncer-
tainties associated with mechanical properties. PESA-II
multi-objective evolutionary optimisation algorithm is utilised
for all the cases in this section.

5.1 Robust-design optimisation

In this section, two different RDOs are performed: one assum-
ing uncertainties in mechanical properties, i.e.E11, E22= E33,

G23 andG12= G13, and the other considering uncertainties in
stringer geometry, i.e.X1, X2, H and� .

5.1.1 RDO with uncertainties in mechanical properties

The RDO conducted in this section assumes that the mechan-
ical properties have a random normal distribution with 5%
coefficient of variation (Akula2014; Yang et al.2013) and
the mean values as given in Table1. A direct Monte Carlo
sampling approach is employed to conduct a robustness

Table 3 Detailed optimisation
results for case b of the system of
Fig. 4, i.e. stringer designs
optimised for maximum LBL

Stringer geometry (optimisation inputs) Optimisation objectives

Flange,X2

(18–30 mm)
Angle, �
(55–65°)

Foot,X1

(26–46 mm)
Height,H
(25–35 mm)

Stringer mass (g) NPS (KN) LBL (KN)

19.74 55 26 25 281.45 191.21 36.83

24.01 55 26 25 290.49 197.8 39.12

28.25 55 26 25 299.49 200.4 41.53

30 55 27.22 25 308.38 200.66 43.68

30 55 29.37 25 317.49 202.15 45.73

30 55 31.49 25 326.48 203.52 47.87

30 55 33.62 25 335.49 204.79 50.14

30 55 35.74 25 344.48 205.95 52.55

30 55 37.86 25 353.48 206.98 55.1

30 55 39.99 25 362.5 207.89 57.8

30 55 42.11 25 371.49 208.69 60.63

30 55 44.23 25 380.48 209.39 63.6

30 55 46 25.29 389.49 210.39 66.6

30 55 46 27.03 398.49 212.41 69.28

Table 4 Detailed optimisation
results for case a of the system of
Fig. 4, i.e. stringer designs
optimised for maximum NPS

Stringer geometry (optimisation inputs) Optimisation objectives

Flange,X2

(18–30 mm)
Angle, �
(55–65°)

Foot,X1

(26–46 mm)
Height,H
(25–35 mm)

Stringer mass (g) NPS (KN) LBL (KN)

19.74 55 26 25 281.45 191.21 36.83

24.01 55 26 25 290.49 197.8 39.12

30 57.51 26 25 299.47 201.35 40.85

30 58.66 26 27.12 308.42 202.99 41.71

30 61.55 26 29.77 317.36 204.41 41.61

30 63.05 26.02 32.06 326.4 206.8 42.09

30 64.8 26 34.49 335.42 208.62 42.34

30 64.57 27.51 35 344.49 209.4 44.24

30 64.65 29.65 35 353.48 210.09 46.19

29.97 64.32 31.69 35 362.46 210.77 48.51

30 63.85 33.6 35 371.33 211.49 51.05

30 63.66 35.69 35 380.46 212.24 53.63

30 63.31 37.69 35 389.44 212.97 56.44

24.89 59.43 40.89 35 398.39 214 61.19
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analysis within the optimisation loop. To ensure the accuracy
of the Monte Carlo approach, a random normal distribution
consisting of 105 samples is considered for each of the me-
chanical properties, as shown in Fig.6.

More specifically, each time the objective function is called
by the optimiser, a Monte Carlo loop consisting of 105 runs is

performed and the mean value and standard deviation of the
output, i.e. NPS, are passed to the optimiser. The optimiser
objectives are minimising mass, maximising NPS mean value
and minimising the standard deviation of NPS. Given that
there are three objectives to be optimised, a population size
of 100 is selected with a maximum of 100 iterations to ensure

(a)

(b)

Fig. 5 Mono-stringer stiffened panel geometries optimised for minimum mass anda maximum nonlinear post-buckling strength andb maximum linear
buckling load. The mass of the stringer for both cases is around 344.5 g

(a) (b)

(c) (d)

Fig. 6 a–d Random normal distributions of the mechanical properties of the mono-stringer stiffened panel considering a coefficient of variation of 5%
and 105 samples
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that all optimised solutions in the design space are found. This
results in 104 runs in the optimisation loop and a total of 109

runs in the Monte Carlo-nested optimisation algorithm. This
large number of runs requires the surrogate model to be
optimised for very fast run time. It is worth noting that even
a surrogate model run time of 1 ms results in 278 h (11 days!)
total run time for the RDO to be completed. In this study, a
20× speed up is achieved via developing a vectorised surro-
gate model as well as taking advantage of parallel computing.

In order to better highlight the differences between robust
and deterministic designs of the mono-stringer panel, three
cases are considered and the corresponding optimisation re-
sults are plotted in Fig.7 through sub-figures a–c. As men-
tioned before, the first, second and third objectives are
minimising mass, maximising NPS mean value and
minimising NPS standard deviation. For the first case, shown
in sub-figure a, a large weight is given to the second optimi-
sation objective, i.e. NPS mean value. This will result in
stringer designs which are very similar to those obtained via
deterministic optimisation; the purpose of this figure is to ex-
amine the robustness of deterministic designs in the presence
of uncertainties in mechanical properties. The next two cases
correspond respectively to RDOs with weights 5 (RDO-1) and
10 (RDO-2) given to the NPS standard deviation and weight 1
given to the other two objectives. The results of RDO-1 and
RDO-2 are plotted in sub-figures b and c, respectively.
Figure7 clearly shows the trend that reduced NPS standard
deviation comes at the price of a reduction in NPS mean value.
However, comparing sub-figures a and b shows that the RDO-
1 approach manages to reduce the NPS standard deviation
significantly without reducing the NPS mean value by much.
The reduction in the NPS mean value is more for the case
RDO-2 in order to achieve narrower NPS distributions, i.e.
smaller NPS standard deviations.

In order to be able to compare the stringer geometries corre-
sponding to each case, Table5 is constructed, listing a summary
of the Pareto fronts of cases RDO-1 and RDO-2, corresponding
to Fig.7b and c, respectively. It should be noted that the stringer
geometries corresponding to case 1, i.e. Fig.7a, are almost iden-
tical to those of the deterministic optimisation given in Table4.
Comparing the results of RDO-1 to those of DO shows that for
stringer masses larger than 319 g, the optimised stringer geom-
etries based on RDO-1 have maximum possible angle (65°),
while those based on DO have angles varying from 63° to
65°. A comparison of RDO-2 results with the other cases reveals
that the optimised geometries based on RDO-2 have very dif-
ferent angles and heights compared to RDO-1 and DO results.
In particular, for a large spectrum of mass, the angle and height
vary in the vicinity of 58° and 26 mm, as opposed to 63–65° and
35 mm of the other two cases. For stringer masses more than
390 g, both RDOs result in the same stringer geometries while
DO results in stringer geometries with reduced angle and flange
size. In order to better illustrate the differences between robust

and deterministic designs, the mono-stringer designs ob-
tained based on the two approaches are plotted in Fig.8
for a stringer of mass 399 g. The deterministic design cor-
responds to a stringer ofX1 = 41.04 mm,X2 = 25.03 mm,

Fig. 7 Multi-objective robust-design optimisation results of the mono-
stringer stiffened panel:a a large weight given to NPS mean value
objective;b, c increased weights of NPS standard deviation objective.
For each case, squares and circles show the Pareto fronts of NPS mean
value and standard deviation, respectively
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H = 35.0 mm and� = 59.39°, while the robust one corre-
sponds to a stringer ofX1 = 40.53 mm,X2 = 30.0 mm,H =
35.0 mm and� = 65.0°. It is clearly seen in the figure that
the robust design has a larger angle as well as a larger
flange. The probability density function (PSD) plots of the
two designs are depicted in Fig.9, showing that the robust
design has a slightly smaller NPS mean value, accompanied
by a narrower distribution.

5.1.2 RDO with uncertainties in stringer geometry

The RDO conducted in this section aims at minimising mass
and NPS standard deviation and maximising NPS mean value
while considering uncertainties in the stringer geometry. The
geometric inputs are assumed to have atruncatedrandom nor-
mal distribution with 0.1% coefficient of variation; the mean
values are determined by the optimiser each time the objective

Table 5 Detailed optimisation results for cases a and b of the system of Fig.7, denoted by RDO-1 and RDO-2, respectively

Stringer geometry (optimisation inputs) Optimisation objectives

Flange,X2 (18–30 mm) Angle,� (55–65°) Foot,X1 (26–46 mm) Height,H (25–35 mm) Stringer
mass (g)

NPS mean (KN) NPS STD (KN)

RDO-1 27.39 59.25 26 25 291.6 195.76 5.43
30 59.34 26 25.83 301.13 201.01 5.67
30 58.77 27.48 26.12 309.57 202.54 5.73
30 58.56 28.86 26.8 319.07 204.07 5.82
30 65 26 33.16 328.94 207.17 6
30 65 26.15 35 338.18 208.97 6.05
30 65 28.34 35 347.46 209.63 5.98
30 65 30.47 35 356.48 210.23 5.91
30 65 32.59 35 365.45 210.79 5.83
30 65 34.85 35 375.05 211.36 5.73
30 65 37.12 35 384.69 211.91 5.63
30 65 39.32 35 393.99 212.43 5.54
30 65 41.28 35 402.3 212.87 5.45
30 65 43.29 35 410.81 213.32 5.36

RDO-2 27.39 59.25 26 25 291.6 195.76 5.43
30 59.34 26 25.83 301.13 201.01 5.67
29.07 58.87 28.35 25.75 309.35 201.1 5.54
29.1 58.54 30.44 25.7 318.44 202.11 5.52
29.11 58.7 31.9 26.45 328.18 203.67 5.52
30 58.61 34.29 25.78 336.97 204.26 5.47
30 58.15 36.61 25.8 347.54 205.67 5.47
29.55 58.36 37.42 26.92 355.34 207.07 5.5
29.23 58.49 40.62 26.35 365.2 206.16 5.3
30 58.38 42.04 26.67 374.57 208.21 5.37
29.6 58.01 44.28 26.82 384.54 209.25 5.36
30 65 39.32 35 393.99 212.43 5.54
30 65 41.28 35 402.3 212.87 5.45
30 65 43.29 35 410.81 213.32 5.36

(a)

(b)

Fig. 8 Mono-stringer stiffened panel geometry optimised for maximum nonlinear post-buckling strength based on:a deterministic optimisation andb
robust-design optimisation (uncertainties in mechanical properties). The mass of the stringer for both cases is around 399 g
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Robust design

Deteministic
design

Fig. 9 Probability density
function plot of NPS distribution
for the deterministic and robust
mono-stringer designs given in
Fig. 6

(a) (b)

(c) (d)

Fig. 10 a–d Examples of truncated random normal distributions of the stringer geometric parameters considering a coefficient of variation of 0.1% and
manufacturing tolerances of ± 0.1 mm for flange, foot and height and ± 0.2° for angle
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function is called. Similar to the previous case, a direct Monte
Carlo sampling approach is implemented in the objective func-
tion to conduct a robustness analysis within the optimisation
loop. A truncated random normal distribution consisting of 105

samples is considered for each geometric input with
manufacturing tolerances of ± 0.1 mm forX1, X2 andH and
± 0.2° for � . An example of the truncated random normal dis-
tribution for each of the inputs is shown in Fig.10, for a stringer
with mean geometric inputs ofX1 = 35.0 mm,X2 = 28.0 mm,
H = 30.0 mm and� = 60.0°. Similar to the previous case,

PESA-II optimisation algorithmis used with a population size
of 100 and a maximum of 100 iterations.

The results of the RDO with uncertainties in geometric pa-
rameters are plotted in Fig.11. Sub-figure a corresponds to an
RDO with a large weight given to the NPS mean value objec-
tive, while for the case in sub-figure b, a large weight is given to
NPS standard deviation objective. As explained before, when a
large weight is given to NPS mean value, the optimisation
results become very similar to deterministic optimisation with
only two objectives of minimising mass and maximising NPS.

Fig. 11 Multi-objective robust-design optimisation results of the mono-
stringer stiffened panel:a a large weight given to NPS mean value
objective;b a large weight given to NPS standard deviation objective.

For each case, squares and circles show the Pareto fronts of NPS mean
value and standard deviation, respectively
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The goal of constructing Fig.11ais to measure the robust-
ness of the stringer designs with maximum possible NPS mean
value, while Fig.11bdemonstrates the amount of reduction in
NPS mean value as a result of minimising the NPS standard
deviation. As seen in Fig.11b, for a large portion of the mass
spectrum, the NPS mean value does not change much com-
pared to Fig.11awhile NPS standard deviation is minimised.
To show the changes in stringer geometry corresponding to
Fig.11b, Table6 is constructed showing the optimisation inputs
and outputs for a wide range of stringer masses. Comparing
these optimised designs to thoseof the deterministic optimisa-
tion shows that the stringer angle and foot have been changed
slightly to accommodate more robust designs.

A comparison between the deterministic (X1= 26.0 mm,X2=
30.0 mm,H = 31.91 mm and� = 63.0°) and robust (X1 =

28.83 mm,X2= 29.82 mm,H = 28.06 mm and� = 58.33°) de-
signs is shown in Fig.12 for a stringer of mass 325 g; the PDF
plots of the NPS for the two designs are shown in Fig.13. Another
comparison between NPS distribution of deterministic and robust
stringer designs of mass 378.7 g is shown in Fig.14, with the
robust stringer design being ofX1= 35.46 mm,X2= 28.85 mm,
H = 35.0 mm and� = 62.48° and the deterministic one being of
X1= 35.45 mm,X2= 30.0 mm,H = 35.0 mm and� = 64.17°.

5.2 Reliability-based design optimisation

In this section, a reliability-based design optimisation is
conducted by considering uncertainties in the mechanical
properties, i.e.E11, E22 = E33, G23 and G12 = G13. The
RBDO process ensures that the final design meets a certain

Table 6 Detailed optimisation results for case b of the system of Fig.11

Stringer geometry (optimisation inputs) Optimisation objectives

Flange,X2 (18–30 mm) Angle,� (55–65°) Foot,X1 (26–46 mm) Height,H (25–35 mm) Stringer mass (g) NPS mean (KN) NPS STD (KN)

26.87 55 26 25.9 301.23 201.03 0.0233

29.95 58.65 26 27.37 309.58 203.12 0.0206

30 58.78 27.18 28.14 318.32 204.04 0.0207

26.98 61.49 26 33.11 327.16 205.87 0.0279

30 64.31 26 34.42 335.74 208.59 0.0278

30 64.62 27.31 35 343.58 209.33 0.0268

30 64.2 29.26 35 352.47 209.97 0.0256

30 64.06 31.28 35 361.2 210.68 0.0265

30 63.71 32.97 35 368.88 211.26 0.0253

30 63.44 34.85 35 377.2 211.92 0.0252

29.61 62.79 37.12 35 386.91 212.55 0.0252

25.23 59.4 40.1 35 395.84 213.62 0.0261

25.08 59.17 42.01 35 404.07 214.62 0.0269

25.04 58.89 43.67 35 411.5 215.47 0.0267

(a)

(b)

Fig. 12 Mono-stringer stiffened panel geometry optimised for maximum nonlinear post-buckling strength based on:a deterministic optimisation andb
robust-design optimisation (geometric uncertainties). The mass of the stringer for both cases is around 325 g
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probabilistic constraint up to a prescribed reliability level� t as
explained in Section2.4. The RBDO is performed by includ-
ing a reliability analysis within the optimisation loop. More
specifically, a reliability analysis algorithm based on the first-
order reliability method (FORM) is formulated within the
objective function to calculate the reliable NPS based on a
prescribed reliability index� t. The reliability analysis is
solved through use of a hybrid mean value (HMV) method
(Youn et al.2003).

The reliability analysis technique employed in this study is
validated using direct Monte Carlo sampling, which is com-
monly used as benchmark for validation purposes. Although

direct Monte Carlo sampling is the most accurate method for
reliability analysis, it becomes very time consuming for large
reliability indices. The comparison is conducted for a stringer of
X1 = 35.0 mm,X2 = 25.0 mm,H = 30.0 mm and� = 60.0°, for
reliability indices 3 and 4. For each reliability index, the corre-
sponding NPS is obtained via the reliability analysis technique
employed in this study (HMV) and direct Monte Carlo sam-
pling. Three Monte Carlo sampling cases are considered with
105, 106 and 107 samples, to ensure converged result. Due to the
stochastic nature of the Monte Carlo simulations, for each case,
the average of 5 different runs isreported as the final probabi-
listic NPS. The results of the comparison are shown in Table7.

Robust design

Deterministic 
design

Fig. 14 Probability density
function plot of NPS distribution
for the robust and deterministic
mono-stringer designs; mass of
the stringer for both cases is
around 378.7 g

Robust design

Deterministic
design

Fig. 13 Probability density
function plot of NPS distribution
for the robust and deterministic
mono-stringer designs given in
Fig. 10
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As seen, for both� t = 3.0 and 4.0, the results of the reliability
analysis technique employed in this study are very close to

those obtained via the direct Monte Carlo sampling technique
verifying the accuracy of the employed method.

Fig. 15 Multi-objective reliability-based design optimisation results of
the mono-stringer stiffened panel:a a large weight given to
deterministic NPS objective;b a large weight given to NPS with

reliability of �
t

= 5.0. For each case, squares and circles show the Pareto
fronts of deterministic and reliable NPS, respectively

Table 7 Comparison of the
reliability analysis results
obtained via the method
employed in this study (HMV)
and those obtained using direct
Monte Carlo sampling

Prescribed reliability NPS (KN) % error

HMV method Monte Carlo (average of 5 runs)

105 samples 106 samples 107 samples

� t = 3.0 185.25 185.53 185.40 185.40 0.08

� t = 4.0 178.27 178.09 178.32 178.38 0.06
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The PESA-II optimisation algorithm is employed with a
population size of 300 and a maximum of 100 iterations.
The goal of an RBDO is to maximise/minimise an objective
while meeting a certain probabilistic constraint up to a pre-
scribed reliability level. In this study, the ultimate nonlinear
post-buckling strength, denoted as NPS, is considered in both
the objective function and in the probabilistic constraint. In
other words, the optimiser aims at maximizing the NPS while
ensuring that the reliability is larger than the prescribed value.

Since that the mass of the stringer is an optimisation objective
as well, selecting a specific value for the NPS to measure the
reliability from does not serve the purpose, as the maximum
NPS is varying with mass. Instead, three objectives are consid-
ered and optimised, i.e. the massof the stringer, to be minimised;
deterministic NPS, to be maximised; and the NPS with the pre-
scribed reliability of� t, to be maximised. Hence, for a given
reliability index, the optimisation algorithm finds the
minimum-mass designs which are optimised for not only the
maximum deterministic NPS, but also the maximum reliable
NPS. The results of this multi-objective probabilistic optimisa-
tion are shown in Fig.15through sub-figures a and b. Sub-figure
a corresponds to an optimisation with a large weight given to the
deterministic NPS objective, while sub-figure b shows the re-
sults for a case with a large weight given to reliable NPS. The
optimisation is conducted assuming a reliability index of� t = 5.
As seen in Fig.15a, the designs optimised for maximum deter-
ministic NPS are not necessarily the most reliable designs espe-
cially when the mass is larger than 390 g. Figure15bshows that
the optimum designs having maximum NPS up to the desired
reliability level of� t = 5.0 can be achieved without reducing the
maximum deterministic NPS significantly. The detailed optimi-
sation results for case b of Fig.15are listed in Table8.

The PDF plots of the NPS distribution associated with de-
terministic and reliable stringer designs of masses 368.5 and
391.5 g are depicted in Fig.16using 106 points with the solid
and dashed vertical lines showing the NPS with a reliability of
� t = 5.0 for reliable and deterministic designs, respectively. As
seen, the reliable designs for both cases have slightly smaller
NPS mean value, but visibly larger NPS with desired reliabil-
ity level of � t = 5.0.

6 Conclusions

In this study, a multi-objective design optimisation approach is
presented for probabilistic analysis of composite structures. The
approach is demonstrated on a mono-stringer stiffened panel for
robust and reliability-based design optimisations. In particular, an
accurate and comprehensive surrogate model is developed with
the stringer geometry and the composite material mechanical
properties as the inputs and the fundamental linear buckling load
and the nonlinear post-buckling strength as the outputs. Multi-
objective probabilistic and deterministic optimisations are per-
formed on the surrogate model. Different probabilistic optimisa-
tion methods, i.e. robust-design optimisation and reliability-
based design optimisation, are utilised.

The results of the initial deterministic optimisation showed
that optimised designs for maximum LBL are achieved by
minimising the height and angle and maximising the flange
of the stringer. The optimised designs for maximum NPS, on
the other hand, are associated with maximised height and an-
gle as well as maximised flange size.

Robust-design optimisations were conducted by consid-
ering uncertainties in mechanical properties and geometric

Table 8 Detailed optimisation results for case b of the system of Fig.15

Stringer geometry (optimisation inputs) Optimisation objectives

Flange,X2 (18–30 mm) Angle,� (55–65°) Foot,X1 (26–46 mm) Height,H (25–35 mm) Stringer mass (g) NPS (KN) NPS� t = 5.0 (KN)

30 58.22 26 25.43 300.63 201.52 168.64

30 59.68 26 27.69 309.78 203.07 169.95

30 62.95 26 30.45 318.77 204.68 171.33

30 65 26 32.93 327.83 206.82 174.48

30 65 26 34.88 336.96 208.83 176.89

30 65 28 35 346 209.51 177.67

30 65 30.13 35 355.04 210.11 178.56

30 65 32.26 35 364.05 210.67 179.46

30 65 34.41 35 373.2 211.22 180.39

30 65 36.55 35 382.25 211.75 181.3

30 65 38.68 35 391.28 212.26 182.21

30 65 40.82 35 400.36 212.76 183.1

30 65 42.94 35 409.33 213.24 183.95

30 64.95 45.08 35 418.49 213.78 184.79
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parameters. It was shown that for both cases, compared to
deterministic designs, robust designs tend to have slightly
smaller NPS mean value and smaller NPS standard devia-
tion. In other words, the RDO finds designs which are less
sensitive to variations in mechanical properties and geo-
metric parameters but at the cost of slightly reduced NPS
mean value compared to the deterministic designs.
Furthermore, RDO designs vary significantly depending
on the weights given to the mean and standard deviation
objectives.

Finally, reliability-based design optimisation results
showed that more reliable designs can be achieved by slightly
modifying the stringer angle and height. More specifically, it
was shown that the reliable designs offer larger NPS (in the
order of several KNs) with a reliability of� t while not reduc-
ing the NPS mean value much (1 KN or less).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

(a)

(b)

Reliable design

Deterministic
design

Reliable design

Deterministic
design

Fig. 16 Probability density
function plot of NPS distribution
for the reliable and deterministic
stringer designs of massesa
368.5 g andb 391.5 g. The solid
and dashed vertical lines show the
NPS with a reliability of� t = 5.0
for reliable and deterministic
designs, respectively
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Replication of resultsThere are several ways through which the readers
can check their simulation results against those presented in this study. First
is using the tables provided in this study; in fact, the most important opti-
misation results of the present study are reported using tables including the
optimisation inputs and outputs to make it easier for benchmark analysis
and comparison purposes. Additionally, the raw data for constructing the
results presented in Figs.4, 7, 9, 11, 13, 14 and15 is provided as supple-
mentary materials; this allows the readers to check their optimisation results
against a wide range of results reported in this study. The size of raw data for
Fig. 16 is very large due to the large number of points (106) used to create
the distribution; therefore, the data for that figure is not provided.
Additionally, since the random normal distributions and truncated ones
for Monte Carlo samplings (i.e. Figs.6 and10) are different each time they
are generated, the data for these figures is not provided.

It should be noted that the readers might obtain slightly different
results than those presented in this study due to the probabilistic nature
of the optimisation as well as the differences in the algorithms used for
surrogate model development. If a surrogate model is developed by a
reader with a similar accuracy to the one used in this study, even if a
different method is used, they should be able to obtain results close to
those presented in this study. As explained in the manuscript, this study
utilises a Monte Carlo sampling for robust optimisation analysis using 105

samples. Such large number of samples was intentionally selected
(through a convergence analysis), to ensure a converged probabilistic
optimisation analysis assuming random normal distributions.
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