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Abstract

In this paper, a multi-objective probabilistic design optimisation approach is presented for reliability and robustness analysis of
composite structures and demonstrated on a mono-omega-stringer stiffened panel. The proposed approach utilises a glob
surrogate model of the composite structure while accounting for uncertainties in material properties as well as geometry.
Unlike the multi-level optimisation approach which freezes some parameters at each level, the proposed approach allows for
all parameters to change at the same time and hence ensures global optimum solutions in the given parameter design space (1
both probabilistic and deterministic optimisations) within a certain degree of accuracy. The proposed approach is used in this
study to conduct extensive multi-objective probabilistic and deterministic optimisations (without considering safety factors) on a
mono-stringer stiffened panel. In particular, a global surrogate model is developed utilising the computational power of a high-
performance computing facility. The inputs of the surrogate model are the omega-stringer geometry and the mechanical prop-
erties of the composite material, while the outputs are the fundamental linear buckling load (LBL) and the nonlinear post-
buckling strength (NPS). LBL and NPS are obtained via detailed parametric finite element models of the mono-stringer stiffened
panel; in the nonlinear model, the interface between the skin and the omega-stringer is modelled via cohesive elements to allov
for debonding in the post-buckled regime. Extensive multi-objective optimisations are conducted on the surrogate model using
deterministic and probabilistic approaches to examine the omega-stringer geometric parameters mostly affecting the systen
robustness and reliability. The differences between deterministic and probabilistic designs are highlighted as well.

KeywordsProbabilistic designMulti-objective optimisation Surrogate modellingPost-buckling regimeStiffened panel

1 Introduction strengths and increased lifespan. One of the key elements of
an aircraft is the composite stiffened panel, in which the skinis
Carbon fibre-reinforced composites are widely used in aircrafeinforced via adding a stringer for superior load carrying in
structures. The recent advancements in composites allowedth tension and compression. The main concern in the design
the industry to increase their usage of composite materiad$ a stiffened panel, for sections of an aircraft under compres-
dramatically. To put it into numbers, the latest models bgion, is maximising the compressive load carrying due to the
Boeing and Airbus are made of 50 and 53% composites, réuckling phenomenon (Hao et &017. For the case of
spectively. These percentages will grow in the future to eveomega-stringer stiffened panels, the initial buckling starts in
further reduce the mass of the aircraft while achieving highehe skin (Kassapoglo2013 Wang and Abdall2015, here
referred to as the fundamental linear buckling load (LBL);

Responsible Editor: W. H. Zhang hc_)wever, it is known that beyond the first Iin_ear buckling, a
stiffened panel could carry loads of several times the magni-

*  Hamed Farokhi tude of the fundamental LBL before failure, here referred to as
hamed.farokhi@northumbria.ac.uk the nonlinear post-buckling strength (NPS). Hence, designing

a panel which will always operate below the fundamental

Department of Mechanical and Construction Engineering, LBL is very conservative; given the extra strength of the panel

Northumbria University, Newcastle upon Tyne NE1 8ST, UK in the post-buckling regime, much lighter designs can be
2 Department of Aeronautics, Imperial College London, London SW?aCh'e_Ved by_a”OW'n_g the pangl to operate in the post-
2AZ, UK buckling regime. This has motivated a large amount of
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research on stiffened panel optimisation in the post-bucklingurface for the optimal buckling load at the lower level and
regime. In what follows, a concise review of the vast literaturemployed it later for global optimisation. Herencia et al.
on optimisation of composite structures is given; more dg2008a proposed a two-level approach for layup optimisation
tailed reviews can be found in surveys conducted by, for inaf composite stiffened panels. A multi-level approach was de-
stance, Venkataraman and Haftk@99, Ghiasi et al.Z009  veloped by Wind et al2008, who conducted local and global
Ghiasi et al. 2010 and Nikbakt et al.2018. optimisation on a multi-componestructure. Further studies
The traditional approach of optimisation, also known asvere conducted by Herencia et &008h) who proposed a
deterministic optimisation (DO), does not account for anywo-step method for optimisation of anisotropic composite
uncertainties in the system. Modern optimisation techniquestiffened panels. Bacarreza et 20195 employed a multi-
also known as probabilistic optimisation (PO), on the othelevel approach to conduct robust-design optimisation on com-
hand, account for uncertainties (Salas and Venkataramaposite stiffened panels in post-buckling regime. Although
2008 that could affect the design objectives, such as uncemulti-level approaches reduce the computational costs, they
tainties associated with mechanical properties or the geometria not guarantee a global optimum solution as in each level
Two well-stablished PO techniques are robust-design optintihere is only a selection of system parameters which act as
sation (RDO) and reliability-based design optimisatioroptimisation inputs while the rest are kept fixed.
(RBDO) (Chen and Qil2018 das Neves Carneiro and  Another technique for reducing the computational costs
Antonio 2018 Fang et al2018 Hu and Duar018 Kaveh s to use a surrogate model (Albanesi eRatl8 Marhadi
et al.2018 Lépez et al2017 Montoya et al2015 Sohouli  and VenkataramaB008 to approximate the response of
etal.2018 Stromber@017. RDO focuses on minimising the the system. Lamberti et aR{03 investigated the use of
sensitivity of the objective function to random changes in thapproximate models for conducting global optimisation on
uncertain variables in the system, while RBDO aims astiffened panels and concluded that it allows a greater
achieving a certain confidence in reliability of the producexploration of the global design space compared to the
under a prescribed probabilistic constraint. In what followsgase of utilising local optimisation together with
a brief literature review is conducted on different optimisatiomomplicated models. Having developed a surrogate
techniques. model, different algoritms can be utilised to perform
One of the methods of optimising stiffened panels is theleterministic or probabilistic optimisation. Venkataraman
finite strip method (FSM) originally developed by Wittrick and Salas2007 proposed an approach for studying the
(1968 and Cheung1(969, in which the stiffened panel is mechanics influencing progeive failure predictability
divided into a finite number of strips and the motions of theand developing surrogate models for deterministic
strips are approximated via trigonometric functions. Furthewptimisation in order to maximise performance. Barkanov
research was conducted using FSM technique for instance by al. 014 conducted linear buckling optimisation anal-
Bushnell (987, Butler and Williams 1993 and Zabinsky ysis on composite lateral wing upper covers utilising the
(1998. Homogenisation-based methods have also been usesbponse surface method together with optimal Latin hy-
for optimisation of stiffened panels (Wang and Abd2046 percube sampling. In the second part of the study
Wang et al.2017 2018 2019. For instance, Wang et al. (Barkanov et al2016), the optimum designs based on lin-
(2018 conducted a sensitivity analysis for optimisation ofear buckling analysis were verified through a nonlinear
non-uniform curved stiffened composite panels in the framésuckling analysis and re-optimised if necessary; they
work of homogenisation-based local/global analysis. utilised the response surface technique for surrogate
The finite element (FE) technique is another method fomodelling and optimisation purposes. Other studies have
modelling and analysis of stiffened panels which is superidseen performed on stiffened panel deterministic optimisa-
to FSM. However, accurate FE models, which account faion using surrogate modelling, for instance, by Bisagni
geometric nonlinearities, progressive failure and interfaciand Lanzi 002, Lanzi and Giavotto 2000), Irisarri
debonding, are usually very time consuming. Conducting at al. 011) and Marin et al.Z012. Lépez et al. 2017
multi-objective optimisation (Coelld00Q Marler and Arora conducted deterministic and reliability-based design opti-
2004 Zitzler et al.2000 of stiffened panel using FE models misations of composite stiffened panels in post-buckling
could become very time consuming as massive computationagime; they conducted a decoupled RBDO which sepa-
power is required to search the multi-dimensional design spacstes the reliability analysis from the deterministic optimi-
while accounting for different sources of nonlinearities. To adsation. Further RBDO studies of stiffened panel have been
dress this problem, a multi-level approach has been suggestathducted by, for instance, Qu and Haft2®@3, who
by Sobieszczanski-Sobieski et d987 in which the large conducted RBDO and computed the reliability constraints
optimisation problem is divided into levels of substructuresesmploying Monte Carlo sampling and a design response
A two-level optimisation procedure for a composite wing wasurface, and Diaz et aR§16, who performed a compar-
developed by Liu et al.2000, who constructed response ison of stochastic expansions and moment-based methods
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Probabilistic optimisation of mono-stringer composite stiffened panels in post-buckling regime 1397

for the reliability analysis while using genetic andof the surrogate model of a structure, the proposed approach
gradient-based techniques faterministic optimisation.  focuses on the main contributing input parameters of the struc-
The present study first proposes a highly reliable multiture under consideration to reduce the computational costs and
objective probabilistic design optimisation approach througto increase accuracy. The mechanical properties of the com-
development of a global surrogate model and then applies thatsite structurelH);,, Ex»>=Ezz Goz and G1,=G;3) should
approach to a stiffened panel. More specifically, the proposedways be considered as inputs since there are always uncer-
approach is detailed in SectidnThen in Section8, 4and5, tainties associated with their value and they could significant-
the approach is demonstrated for a mono-omega-stringer stiff-affect the desired output. Apart from these four inputs, the
ened panel. The main advantage of the proposed approagiometric parameters which mostly affect the desired output
over multi-level optimisation approaches is that it allows foshould be considered as well. The number of geometric inputs
all parameters to change simultaneously and hence ensucesild vary depending on the structure under consideration.
more general (near-global) probabilistic and deterministic ogfter determining the desired inputs, detailed parametric FE
timum solutions. It is worth noting that in this study, a safetynodels should be developed which calculate the outputs for a
factor isnotconsidered for either probabilistic or deterministicgiven set of inputs.
optimisations since the goal here is to differentiate between
the underlying mechanism of these optimisation approache,2 Creating matrix of design samples
which comes before application of any safety factors.
Design-of-experiments metth® are commonly utilised to
determine the spatial didtrition of samples in the design
2 Global multi-objective probabilistic design space. The main goal of design-of-experiments is to max-
optimisation approach imise the amount of information obtained from a limited
number of sample points (Koziel et 2D11). More specif-
The FE method has proven to be the most reliable techniqieally, design-of-experimestwill provide a matrix of de-
for analysis of aircraft structures. The increased accuracy afign samples which best represents the whole design space.
fered by FE techniques comes at the price of increased coin-the proposed approach, the preferred method to create
putational cost, which depending on the size and complexityne matrix of design samples is the optimal Latin hyper-
of the structure could vary between hours to weeks of ruaube sampling technique (PatR94). There is no general
time. Hence, conducting even deterministic optimisation oformula for the number of samples based on the number of
aircraft structures could be a computationally challenging taskputs and outputs, as it depends on the sensitivity of the
with months of run time. Now in the context of probabilisticoutputs to variations of the inputs and many other factors.
optimisation which requires a large number of objective funcFhe proposed approach suggests a sample size of at least
tion calls (in the order of millions), it becomes impossible tdlO times the number of inputs; however, increasing the
use the original FE model as the objective function. In suchumber of samples will reduce the error later on when
cases, it is inevitable to use a surrogate model as an expliciinstructing the surrogate model. After creating a matrix
approximation of the original FE model. Surrogate modelsf design samples, the parametric FE models of the struc-
have been used extensively for optimisation purposes in diftre should be used to calculate the desired outputs for
ferent fields. In the case of aircraft structures, surrogatach sample in the design space. This step is the most
models are usually used with very limited number of inputeomputationally expensive part of the simulation.
and outputs in multi-level approaches to reduce computation@hrallelising simulation of the samples could decrease the
costs; however, since some parameters are kept fixed at edotal run time significantly.
level, the multi-level approaches do not guarantee global op-
timum result. In this study, a new surrogate model-based proB-3 Surrogate model development
abilistic optimisation approach is presented which is more
efficient and more accurate than the multi-level approach&ifferent software packages and codes are available for sur-
since it allows for all parameters to change simultaneouslyogate model development. In the present approach, the
The steps of this approach are explained for a general caSarrogate Modelling (SUMO) toolbox (Gorissen efal10

in the following. is suggested for this purpose due to its comprehensive library
of algorithms. The SUMO toolbox is capable of generating
2.1 Developing a parametric FE model surrogate models based on various algorithms and functions

such as kriging, artificial neural network (ANN), radial basis
The first step is developing a parametric FE model with #unctions, extreme machine learning and genetic algorithm,
specific number of inputs and outputs. Although in generglst to name a few. Hence, it provides a platform to generate
there is no specific limit on the number of inputs and outputand test various surrogate models for the system under

@ Springer



1398 H. Farokhi et al.

consideration. Additionally, it offers different measures fodeterministic constraint, whilg, stands for thath probabi-
error analysis such as cross-validation and reference data cdistic one P[] represents the probability of the constraint being
parison. Having developed the matrix of design samples imnet, withPs being the allowable probability of failure. For the
cluding inputs and outputs within a specific range of paramesase when the random variables are characterised by a normal
ters, various surrogate models offered by the SUMO toolbodistribution,P; is related to the prescribed reliability level

can be tested to find the one which offers the most accuracsiaP;= (S ;) in which is the cumulative distribution func-
The accuracy of a surrogate model can be examined via twion of the standard normal distribution (Enevoldsen and
different measures, i.e. cross-validation and direct comparis@msrensei994.

to a unique data set (Gorissen el Q Rikards et al2006. Different steps of the general approach detailed in this sec-
In a situation where the desired accuracy is not met, furthéion are shown in Figl. In what follows, the approach pro-
design samples should be created and computed using the f&Sed in this section is demonstrated in detail on a mono-
models to increase the size of the matrix of the design samplattinger stiffened panel.

This should be repeated until the desired accuracy is met.

2.4 Global multi-objective optimisation 3 Demonstration of the proposed

optimisation approach on a mono-stringer
Having developed the surrogate model of the system, the fingfiffened panel
step is to conduct multi-objective probabilistic and determin-
istic optimisations on the surrogate model. Genetic algorithnfgonsider a mono-stringer stiffened panel of lerigténd
are best suited for multi-objective optimisations. The maitvidth W, as shown in Fig2 a. The omega-stringer ge-
advantage of the proposed approach is that it offers a dire@fnetry is detailed in Fig2 b, with X;, Xp, H and  being
comparison between probabilistic and deterministic optimisdhe foot, flange, height and angle, respectively. The
tion results. Deterministic optimisation, robust-design optimimono-stringer is clamped at both ends, with the right-
sation and reliability-based design optimisation are conducté@nd end being free to move in the longitudinal direction

on the developed surrogate model. (shown byz in sub-figure a). Furthermore, there are no
A general robust-design optimisation problem can be mati§onstraints on the two longitudinal edges of the skin. In
ematically expressed as: this section, the approach proposed in Secfios im-
plemented for this structure. In particular, the surrogate
min f OF&d;xH> OFad; x Hp gp Mmodel of the structure will be developed in this section.
subject to : g3 P O;m¥a 12,1 M; The optimisation results Wibe discussed in separate
sections.

in which F stands for the objective functiathandx represent

the design and random variablesand show the mean

value and the standard deviation apdienotes theth con- 3.1 Parametric FE model development

straint. It should be noted that in an RDO, randomness could

be associated with either design variables or other systehiie inputs of interest are the omega-stringer geometry, i.e.

variables. For an aircraft structure, uncertainties could be a%:, Xo, H and , as well as the mechanical properties, i.e.

sociated with mechanical properties, Eg,, E;o=Eas Goz  Ei1 E2o=Ess Gyz andG;,= G;3. The desired outputs are

andG:,= G, 3, and/or geometric parameters. Again, the globdinear buckling load as well as the nonlinear post-buckling

surrogate model of the structure allows for accounting fogtrength. In this section, two parametric FE models of the

uncertainties in any of the inputs. mono-stringer stiffened panel are developed in Abaqus as
In a reliability-based design optimisation, on the othedetailed below.

hand, the uncertainties are usually associated with mechanical

properties. The RBDO process ensures that the final desigM 1 |inear FE model

meets a certain probabilistic constraint up to a prescribed reli-

ability level . In general, an RBDO problem can be formu-Tne first parametric FE model developed in this section is a

lated as linear eigen-buckling analysis model in order to obtain the

min Fad b fundamental linear buckling load. An axial load is applied to

subject to : g, P O;m¥% 1,2, M; mp the movable end of the mono-stringer and an eigen-buckling
PL&,ad; x P 0 SPr, 0;nYa1;2;:N; analysis is conducted to obtain the fundamental linear buck-

ling load of the stiffened panel. Conducting a mesh conver-
whered andx are the design and random variables, respegence analysis for the linear buckling load shows that a global
tively, andF is the objective functiong,, denotesmth  mesh size of 2 mm yields reliable results. The model takes 8
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Fig. 1 Flowchart of the proposed approach
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(b)

0
\ v — |

X1

Fig. 2 a Schematic representation of the mono-stringer stiffened |bafleé geometric parameters of the stringer

inputs as described before and calculates the fundamental lin-Modelling the cohesive elements and correct selection of
ear buckling load. properties for modelling a traction-separation response is a
challenging task. The main reason is that for typical epoxy
resin matrix-based carbon fibre-reinforced composites, the
3.1.2 Nonlinear FE model length of the cohesive zone is less than 1 mm. An accurate
representation of the traction in the tip of the crack and prop-
A nonlinear parametric FE model is developed in this seagation of delamination requires at least three elements in the
tion in order to obtain the nonlinear post-buckling strengtltohesive zone. Such small mesh requirement demands signif-
of the composite stiffened panel. This model is much morigant computational costs for structural analysis, such as the
complex compared to the first model and accounts for ge@ase of the mono-stringer stiffened panel of the present study.
metric nonlinearities and praggsive failure and addition- To address this challenge, the procedure introduced by Turon
ally allows for interfacial debonding via use of cohesiveet al. 007 is employed in this study, in which the cohesive
elements. It is known that in the post-buckling regime, theone length is artificially increased via decreasing the interfa-
buckled shape of the skin changes continuously due taial strengths; this procedure is briefly explained in the
increased compressive load. Additionally, sudden changédlowing.
in the modes of buckling, known as mode-switch, occurs in In order to model the cohesive elements based on a mixed-
the post-buckling regime which cannot be properly capmode fracture bilinear traction-separation, the following prop-
tured via use of quasi-static FE techniques. To this enayties are required: the critical fracture enerGies G, c and
the nonlinear explicit dynamic FE analysis is employed5),c; the penalty stiffnessés, K, andKz; and the interfacial
in this study for analysing the nonlinear post-bucklingstrengths®, $and 9. In this study, it is assumed that penalty
characteristics. stiffnesses are the sami¢, € K, = K3 =K); furthermore, ¢
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= 9= 9andGc = Gyc. The penalty stiffness value should displacement curve of the mono-stringer under compressive
be large enough so that it has a negligible influence on tHead is shown in sub-figure a. As seen, the skin buckling (i.e.
effective elastic properties of the composite. To this end, tH#ear buckling) occurs in the vicinity of 0.5 mm shortening,

penalty stiffness is defined as while the failure occurs at around 2.2 mm shortening (i.e.
point A). The mode of failure is skin-stringer debonding; the
K Y, E; &Bp out-of-plane displacement (i.e. buckling amplitude) of the skin

_ _ _ and stringer at points A, B and C are shown in sub-figures b
WhereEg is the materia$ transverse Your‘@modulust is the d’ respective'y. In this studyhe nonlinear post_buck”ng
thickness of the adjacent sublaminate ang a coefficient Strength, denoted as NPS, refers to the maximum load the
much larger than 1. Turon et &2007 suggest a value more mono-stringer stiffened panel carries before failure, i.e. the

than 50; in the present study= 100 is used. load corresponding to point A.
The cohesive zone lengths for modes | and Il can be ap- The nonlinear parametric FE model developed in this sub-
proximated as (Turon et &007) section takes 8 inputs as described previously and calculates
G the nonlinear post-buckling strength.
dPYs ME—:
cz 2 J
N oAb
Gic , . .
1% PYaM Ezm; 3.2 Creating matrix of design samples

whereM is a parameter characterised by the employed cohbl this section, the optimal Latin hypercube sampling method
sive zone model; in the present study, Hillerbengodel 'S employed to create the matrix of design samples. In partic-
(Hillerborg et al 197§ is utilised in whichM = 1. ular, 260 sample points are created for the 8 inputs considered
Denoting the length of the cohesive element hyand with f[he range (_)f the inputs give_n in TaﬁleAs_mentioned in _

assumindNeeas the number of elements in the cohesive zone€ction2, the size of the cohesive element is set to 1 mm in
the cohesive zone lengths i) can be replaced byedce this study. To ensure that this size remains fixed for all com-
Under the assumption of linear elastic fracture mechanicBUter experiments, the foot size of the omega-stringer in the
the effect of the interfacial strengths can be neglecte§@mPpling matrix is rounded to the nearest integer.
Hence, based o, the length of the cohesive zone can be-urthermore, an additional 15-sample test matrix is generated
artificially increased via decreasing the interfacial strength@S Well via the optimal Latin hypercube sampling for the sole
As a result, the modified interfacial strengths4nd ) can ~ PUrPOse of error analysis.

be obtained as While the simulations run quite fast for the linear model,
r r the nonlinear model simulation run time (utilising 20 CPU-
ME>Gc ME>G)c cores) varies between 16 and 20 h per each sample, depending
mYs — Y4 — &b : ;
N ce Nl ce on the total number of cohesive elements. This means an av-

. . _ erage total run time of 4680 h (195 days!) to run all 260
The final values for interracial strengths that endie  samples. To be able to finish the design of experiments in a
number of elements of sitg span the cohesive zone are  reasonable amount of time, the computational power of a
. . high-performance computing (HPC) facility is utilised. In par-
1 . 0. 1 . 0 .
(VAMIn T VaMin T b ticular, each sample is run on one node consisting of 20 CPU-
In the present studiee= 3 andl.= 1.0 mm are selected. CO"€S and _128 GB memory, and multiplg samplgs are run at
Furthermore, a global mesh size of 2.0 mm is used for both tBE Same time. A 10x speed up is achieved using the HPC
skin and the stringer. Such selection of mesh size ensur@cility and the simulations are finished within almost 20 days.
converged and reliable predictions and practical simulatidi@ving developed a 260 x 10 design matrix, as well as a 15 x
run time. 10 reference design matrix for error analysis, different surro-
The properties of the composite and interface materiafidte models are generated and tested, as explained in the fol-
used in the present study are given in Tabl@he damage lowing, to obtain a reliable explicit approximation of the non-
initiation is defined based on Hashin criteria (Hast98Q linear and linear FE models. It is important to note that the
Hashin and Roteri973; additionally, the damage propaga- mode of failure in all the cases examined in this section is
tion is governed by the amount of energy dissipated throug']‘,{dn-stringer debonding which initiates irreversible damage
progressive damage (Lapczyk and Hurtage?. In the structure. In other words, if the skin-stringer debonding
The results of the nonlinear FE simulation for a monolS Not considered, the stiffened panel could withstand much
stringer ofX; = 35.74 mm X, =30.0 mm,H=25.0 mm and larger loads; therefore, the skin-stringer debonding is the fail-
=55.0° are shown in Fig3. In particular, the load Ure bottleneck for the case of mono-omega-stringer stiffened
panel examined in this study. As a result, the nonlinear post-
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Table 1 Material properties

Symbol Value Description
Elastic properties of the E;; (GPa) 139.0 Longitudinal modulus of elasticity
composite material E,»=Egsz (GPa) 8.1 Transversal modulus of elasticity
23 0.45 In-plane Poisstaratio
12= 13 0.33 Out-of-plane Poisstaratio
G,3(GPa) 4.8 In-plane shear modulus
G12=G13(GPa) 3.1 Out-of-plane shear modulus
Damage initiation parameters % (MPa) 2900 Longitudinal tensile strength
of the composite material % (MPa) 1660 Longitudinal compressive strength
G, (N/mm) 162 Tensile fracture toughness in the longitudinal direction
G¢; (N/mm) 106 Compressive fracture toughness in the longitudinal direction
%y, % (MPa) 58 Transverse tensile strength
%y, 9¢(MPa) 25 Transverse compressive strength
GL, ¥ GLy (N/mm) 0.303 Tensile fracture toughness in the transversal direction
G, Ya G5 (N/mm) 1.0 Compressive fracture toughness in the transversal direction
%, Y % (MPa) 125 Out-of-plane shear strength
9% (MPa) 95 In-plane shear strength
Cohesive material properties ° (MPa) 75 Maximum nominal normal stress
° (MPa) 95 Maximum nominal shear stress
Gic (N/mm) 0.303 Normal fracture energy
Giic (N/mm) 0.651 Shear fracture energy

buckling strength (NPS) considered in this study is in fact thi#erations of surrogate models until a best model is found.
maximum load-carrying capacity without permanent damagéfter testing various model building algorithms, it is found
that the artificial neural network and kriging models give the
best results for the mono-stringer stiffened panel under con-
3.3 Surrogate model development sideration. It is found that the surrogate model error can be
further decreased by mixing the two models, with the coeffi-
In this section, a global surrogate model is developed in whickient for each model being determined via another optimisa-
the omega-stringer geometi¥;( Xo, H and ) and the me- tion algorithm. The final version of the mixed ANRtiging
chanical properties of the composite structiie, €>>=Ezs,  surrogate model predicts the nonlinear post-buckling strength
Gz3andG;, = G13) are considered as inputs. The fundamentalith less than 1.5% error and the fundamental linear buckling
linear buckling load and the nonlinear post-buckling strengthgad with less than 0.5% error for the assumed range of inputs.
are considered as outputs. Hence, a surrogate model withT8is surrogate model will be used in the following sections as
inputs and 2 outputs is developed in this section using then explicit approximation of the linear buckling load and non-
260 x 10 design matrix developed in the previous sectioninear post-buckling strength of the mono-stringer stiffened
The mono-stringer length and width as well as the skin anganel to conduct extensive multi-objective deterministic and
omega-stringer thickness and layup are kept fixed in this stugytobabilistic optimisations.
so as not to further increase the computational costs. In this
study, the SUMO toolbox (Gorissen et2010 is utilised to
develop a surrogate model. As mentioned before, the SUMO
toolbox includes various algorithms and functions such a4 Multi-objective deterministic optimisation
kriging, ANN, radial basis functions, extreme machine learn-
ing and genetic algorithm. Hence, various algorithms can bEhis section conducts a multi-objective deterministic optimi-
tested to find one which best suits the present problem. Twaation (MODO) on the surrogate model developed in the pre-
measures for error analysis are considered: cross-validatieious section; as mentioned before, a safety factor is not con-
and the 15-sample reference data set that was developedsidered for either deterministic or probabilistic optimisations.
Section3.2 Even though the number of samples is fixed, thén the present study, the Pareto envelope-based selection algo-
SUMO toolbox uses an optimisation algorithm and generateghm 11 (PESA-II) is utilisedto conduct multi-objective
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Table 2 Fixed and variable parameters

Fixed parameters Value
Skin and stringer thickness (mm) 2.208
Skin and stringer layup [4845/0/0/90/0]
Panel lengthl. (mm) 600.0
Panel widthW (mm) 250.0

Design of experiment inputs Range
Stringer footX; (mm) 26 X; 46
Stringer flangeX, (mm) 18 X, 30
Stringer angle, (°) 55 X; 65
Stringer heightH (mm) 25 H 35
E11 (GPa) 109 E;; 169
Eoo=E33(GPa) 6.4 Ex, 99
G3 (GPa) 24 Gy 38

612:613 (GPa) 3.8 Glz 5.8

optimisation (Corne et #2001, Corne et al2000. PESA-Il is

a multi-objective evolutionary optimisation algorithm which
utilises the genetic algorithm approach along with a selection
based on the Pareto envelope. Furthermore, it utilises an ar-
chive to store the approximate Pareto solutions. Parents and
mutants are the chosen from this archive, based on the grids
which themselves are generated based on the distribution of
the archive members.

The optimisation algorithm aims at minimising the mass of
the stringer and maximising both the fundamental linear buck-
ling load and the nonlinear post-buckling strength. The multi-
objective optimisation is conducted by giving a specific
weight to each of the objectives and then adding/subtracting
them such that they reduce into one objective; more details on
the weight of the objectives are given in the discussions for
each case. Since the aim of this section is to conduct deter-
ministic optimisation, only the geometric parameters of the
stringers are treated as variables in the optimisation loop. In
other words, the mechanical properties are kept fixed while
conducting the optimisation. The goal here is to identify the
major differences between the stringer geometries optimised
for maximum linear buckling load and those optimised for
maximum nonlinear post-buckling strength. It should be noted
that since in this study only the geometry of the stringer (and
not the skin) is varied in the optimisation loop, the reported
mass is that of the stringer only. The skin mass is a constant of
529.9 g throughout this study.

The results of the 3-objective PESA-II-based optimisation
is shown in Fig4 through three sub-figures. For the sake of
clarity, a 2-dimensional (2D) graph with two vertical axes is
used to show the results of the 3-objective optimisation. The

Fig. 3 a Load-displacement curve of the mono-stringer stiffened panehorizontal axis shows the mass of the stringer, while the ver-
under compressive loab-d Out-of-plane displacement of the skin and tjca| axes illustrate the LBL and NPS objectives. A portion of

stringer corresponding to points A, B and C of sub-figumespectively

the solutions obtained by the optimisation algorithm are plot-
ted, with blue dots representing NPS and orange dots showing
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respectively. Depending on the weight given to the LBL and
NPS objectives in the optimisation algorithm, different Pareto
fronts are obtained. Three Pareto envelopes are examined here
and shown through sub-figurescashowing the designs with

(a) maximum nonlinear post-buckling strength, (b) maximum
linear buckling load, and (c) maximum LBL and NPS.
Figure4a and bclearly show the competing nature of all
objectives and specifically the competing objectives of
maximising both LBL and NPS against minimising the mass.
Itis seen in sub-figure a that when a large weight is given NPS
objective, the obtained optimised designs do not show an even
near-optimum LBL. On the other hand, in sub-figure b, when
a large weight s given to LBL, the reported optimised designs
do not display near-optimum NPS. This is due the competing
nature of these objectives where fully maximising one results
in non-optimum value for the other one.

To examine the optimised omega-stringer geometries in more
detail, Tables3 and4 are constructed showing the selection of
points on the Pareto fronts corresponding to4bgnd a, respec-
tively. More specifically, Tabl@ shows the omega-stringer designs
optimised for maximum linear buckling load and minimum mass.

It is interesting to note that the first parameter that is
changed by the optimiser as the stringer mass is increased
from 280 g is the flange. Additionally, it is seen that optimised
designs for this case are associated with minimum height and
angle and maximum flange size. Tablleorresponds to Fig.

43, i.e. showing the stringer designs optimised for maximum
nonlinear post-buckling strength and minimum mass. As seen
in this table, optimised designs for NPS are associated with
maximised flange size, similar to optimised designs for LBL;
however, unlike the LBL optimised results, the optimised de-
signs for maximum NPS tend to have near maximum values
for height and angle parameters. TalBlesmd4 clearly high-

light the differences in designs of minimum-mass mono-
stringer stiffened panels optimised for maximum LBL versus
those optimised for maximum NPS.

Figure5 shows the geometries of mono-stringer designs
optimised for (a) maximum NPS, corresponding to a stringer
design ofX;=27.51 mm,X,=30.0 mm,H=35.0 mm and

=64.57°, and (b) maximum LBL, corresponding to a string-
er design o, = 35.74 mmX,=30.0 mmH =25.0 mm and

=55.0°. The figure clearly shows the differences between
the height and angle of the two stringer designs.

Fig. 4 Deterministic multi-objective optimisation results of the mono- i_ahi i ilicti imi i
stringer stiffened pane a large weight given to NPS objective;a 5 Mult objectlve prObabIhStIC optimisation

large weight given to LBL objective;similar weights to both NPS and ] ] ] o o o
LBL objectives. For each case, squares and circles show the Pareto frolitsthis section, multi-objective probabilistic optimisations

of NPS and LBL, respectively (MOPOQ) are conducted on the surrogate model developed in
Section3, while considering only the nonlinear post-buckling
strength as an output of the surrogate model. RDO as well as

LBL. For the 2D diagram shown in Fig, the squares and RBDO is conducted. In particular, RDO is performed while

circles show the Pareto envelope for the NPS and LBlgonsidering the uncertainties in the stringer mechanical
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Table 3 Detailed optimisation

Fig. 4, i.e. stringer designs
optimised for maximum LBL

results for case b of the system of Stringer geometry (optimisation inputs) Optimisation objectives
Flange X, Angle,  Foot,X; Height,H Stringer mass (g) NPS (KN)  LBL (KN)
(1830 mm) (55-65) (2646 mm) (25-35 mm)
19.74 55 26 25 281.45 191.21 36.83
24.01 55 26 25 290.49 197.8 39.12
28.25 55 26 25 299.49 200.4 4153
30 55 27.22 25 308.38 200.66 43.68
30 55 29.37 25 317.49 202.15 45.73
30 55 31.49 25 326.48 203.52 47.87
30 55 33.62 25 335.49 204.79 50.14
30 55 35.74 25 344.48 205.95 52.55
30 55 37.86 25 353.48 206.98 55.1
30 55 39.99 25 362.5 207.89 57.8
30 55 4211 25 371.49 208.69 60.63
30 55 44.23 25 380.48 209.39 63.6
30 55 46 25.29 389.49 210.39 66.6
30 55 46 27.03 398.49 212.41 69.28

properties as well as its geometric parameters. RBDO, on tl&3; andG;,= G; 3, and the other considering uncertainties in
other hand, is carried out while accounting only for uncerstringer geometry, i.&y, X, Hand .
tainties associated with mechanical properties. PESA-II

multi-objective evolutionary optimisation algorithm is utilised
for all the cases in this section.

5.1.1 RDO with uncertainties in mechanical properties

The RDO conducted in this section assumes that the mechan-

5.1 Robust-design optimisation ical properties have a random normal distribution with 5%

coefficient of variation (Akul2014 Yang et al.2013 and

In this section, two different RDOs are performed: one assunthe mean values as given in TalileA direct Monte Carlo
ing uncertainties in mechanical properties B, Ex»=Ez;, ~ sampling approach is employed to conduct a robustness

Table 4 Detailed optimisation

Fig. 4, i.e. stringer designs
optimised for maximum NPS

results for case a of the system of Stringer geometry (optimisation inputs) Optimisation objectives

Flange X, Angle, Foot, X; Height,H Stringer mass ()  NPS (KN)  LBL (KN)
(1830 mm) (55-65) (26-46 mm) (25-35 mm)

19.74 55 26 25 281.45 191.21 36.83
24.01 55 26 25 290.49 197.8 39.12
30 57.51 26 25 299.47 201.35 40.85
30 58.66 26 27.12 308.42 202.99 41.71
30 61.55 26 29.77 317.36 204.41 41.61
30 63.05 26.02 32.06 326.4 206.8 42.09
30 64.8 26 34.49 335.42 208.62 42.34
30 64.57 27.51 35 344.49 209.4 44.24
30 64.65 29.65 35 353.48 210.09 46.19
29.97 64.32 31.69 35 362.46 210.77 4851
30 63.85 33.6 35 371.33 211.49 51.05
30 63.66 35.69 35 380.46 212.24 53.63
30 63.31 37.69 35 389.44 212.97 56.44
24.89 59.43 40.89 35 398.39 214 61.19
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(@)

(b)

[ 1
[ I [ [ [ 1

Fig. 5 Mono-stringer stiffened panel geometries optimised for minimum massaaximum nonlinear post-buckling strength &ndaximum linear
buckling load. The mass of the stringer for both cases is around 344.5 g

analysis within the optimisation loop. To ensure the accuragyerformed and the mean value and standard deviation of the
of the Monte Carlo approach, a random normal distributiooutput, i.e. NPS, are passed to the optimiser. The optimiser
consisting of 1®samples is considered for each of the meeobjectives are minimising mass, maximising NPS mean value
chanical properties, as shown in Fag. and minimising the standard deviation of NPS. Given that
More specifically, each time the objective function is calledhere are three objectives to be optimised, a population size
by the optimiser, a Monte Carlo loop consisting ofihs is  of 100 is selected with a maximum of 100 iterations to ensure

(@)

(b)
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Fig. 6 a—d Random normal distributions of the mechanical properties of the mono-stringer stiffened panel considering a coefficient of variation of 5%

and 16 samples
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that all optimised solutions in the design space are found. This
results in 16 runs in the optimisation loop and a total of 10
runs in the Monte Carlo-nested optimisation algorithm. This
large number of runs requires the surrogate model to be
optimised for very fast run time. It is worth noting that even
a surrogate model run time of 1 ms results in 278 h (11 days!)
total run time for the RDO to be completed. In this study, a
20x speed up is achieved via developing a vectorised surro-
gate model as well as taking advantage of parallel computing.

In order to better highlight the differences between robust
and deterministic designs of the mono-stringer panel, three
cases are considered and the corresponding optimisation re-
sults are plotted in FigZ through sub-figures-&. As men-
tioned before, the first, second and third objectives are
minimising mass, maximising NPS mean value and
minimising NPS standard deviation. For the first case, shown
in sub-figure a, a large weight is given to the second optimi-
sation objective, i.e. NPS mean value. This will result in
stringer designs which are very similar to those obtained via
deterministic optimisation; the purpose of this figure is to ex-
amine the robustness of deterministic designs in the presence
of uncertainties in mechanical properties. The next two cases
correspond respectively to RDOs with weights 5 (RDO-1) and
10 (RDO-2) given to the NPS standard deviation and weight 1
given to the other two objectives. The results of RDO-1 and
RDO-2 are plotted in sub-figas b and c, respectively.
Figure7 clearly shows the trend that reduced NPS standard
deviation comes at the price of a reduction in NPS mean value.
However, comparing sub-figures a and b shows that the RDO-
1 approach manages to reduce the NPS standard deviation
significantly without reducing the NPS mean value by much.
The reduction in the NPS mean value is more for the case
RDO-2 in order to achieve narrower NPS distributions, i.e.
smaller NPS standard deviations.

In order to be able to compare the stringer geometries corre-
sponding to each case, Tablis constructed, listing a summary
of the Pareto fronts of cases RDO-1 and RDO-2, corresponding
to Fig. 7b and ¢respectively. It should be noted that the stringer
geometries corresponding to case 1, i.e. fégare almost iden-
tical to those of the deterministic optimisation given in Tdble
Comparing the results of RDDto those of DO shows that for
stringer masses larger than 319 g, the optimised stringer geom-
etries based on RDO-1 have maximum possible angle (65°),
while those based on DO have angles varying from 63° to
65°. A comparison of RDO-2 results with the other cases revedt®. 7 Multi-objective robust-design optimisation results of the mono-

that the optimised geometries based on RDO-2 have very ditringer stiffened paned a large weight given to NPS mean value
f t | d height d to RDO-1 and DO l&b}jeetive;b, c increased weights of NPS standard deviation objective.
erent angies and heignts compared to -Lan reSUISyr each case, squares and circles show the Pareto fronts of NPS mean

In particular, for a large spectrum of mass, the angle and heigj#lue and standard deviation, respectively

vary in the vicinity of 58° and 26 mm, as opposed ted&3 and

35 mm of the other two cases. For stringer masses more thand deterministic designs, the mono-stringer designs ob-
390 g, both RDOs result in the sarstringer geometries while tained based on the two approaches are plotted in8Fig.
DO results in stringer geometries with reduced angle and flanf@r a stringer of mass 399 g. The deterministic design cor-
size. In order to better illustrate the differences between robustisponds to a stringer of; =41.04 mm,X; =25.03 mm,
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Table 5 Detailed optimisation results for cases a and b of the system af, Bignoted by RDO-1 and RDO-2, respectively

Stringer geometry (optimisation inputs) Optimisation objectives

Flange X, (18-30 mm) Angle, (55-65°) FootX; (26-46 mm) HeightH (25-35 mm) Stringer NPS mean (KN) NPS STD (KN)

mass (g)

RDO-1 27.39 59.25 26 25 291.6 195.76 5.43
30 59.34 26 25.83 301.13 201.01 5.67
30 58.77 27.48 26.12 309.57 202.54 5.73
30 58.56 28.86 26.8 319.07 204.07 5.82
30 65 26 33.16 328.94 207.17 6
30 65 26.15 35 338.18 208.97 6.05
30 65 28.34 35 347.46 209.63 5.98
30 65 30.47 35 356.48 210.23 5.91
30 65 32.59 35 365.45 210.79 5.83
30 65 34.85 35 375.05 211.36 5.73
30 65 37.12 35 384.69 211.91 5.63
30 65 39.32 35 393.99 21243 5.54
30 65 41.28 35 402.3 212.87 5.45
30 65 43.29 35 410.81 213.32 5.36

RDO-2 27.39 59.25 26 25 291.6 195.76 5.43
30 59.34 26 25.83 301.13 201.01 5.67
29.07 58.87 28.35 25.75 309.35 201.1 5.54
29.1 58.54 30.44 25.7 318.44 202.11 5.52
29.11 58.7 31.9 26.45 328.18 203.67 5.52
30 58.61 34.29 25.78 336.97 204.26 5.47
30 58.15 36.61 25.8 347.54 205.67 5.47
29.55 58.36 37.42 26.92 355.34 207.07 55
29.23 58.49 40.62 26.35 365.2 206.16 5.3
30 58.38 42.04 26.67 37457 208.21 5.37
29.6 58.01 44.28 26.82 384.54 209.25 5.36
30 65 39.32 35 393.99 21243 5.54
30 65 41.28 35 402.3 212.87 5.45
30 65 43.29 35 410.81 213.32 5.36

H=35.0 mm and =59.39°, while the robust one corre- 5.1.2 RDO with uncertainties in stringer geometry

sponds to a stringer of; =40.53 mmX,=30.0 mmH =

35.0 mm and =65.0°. It is clearly seen in the figure that The RDO conducted in this section aims at minimising mass
the robust design has a larger angle as well as a largand NPS standard deviation and maximising NPS mean value
flange. The probability density function (PSD) plots of thewhile considering uncertainties in the stringer geometry. The
two designs are depicted in Fi@g.showing that the robust geometric inputs are assumed to hatreiacatedrandom nor-
design has a slightly smaller NPS mean value, accompaniethl distribution with 0.1% cofifient of variation; the mean

by a narrower distribution. values are determined by the optimiser each time the objective

(a)

(b)

Fig. 8 Mono-stringer stiffened panel geometry optimised for maximum nonlinear post-buckling strength bastdlevministic optimisation arixl
robust-design optimisation (uncertainties in mechanical properties). The mass of the stringer for both cases is around 399 g
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Fig. 10 a-d Examples of truncated random normal distributions of the stringer geometric parameters considering a coefficient of variation of 0.1% and
manufacturing tolerances of + 0.1 mm for flange, foot and height and toOdhgle
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Fig. 11 Multi-objective robust-design optimisation results of the mono-+or each case, squares and circles show the Pareto fronts of NPS mean
stringer stiffened paneh a large weight given to NPS mean value value and standard deviation, respectively
objective;b a large weight given to NPS standard deviation objective.

function is called. $nilar to the previous case, a direct Monte PESA-II optimisation algorithris used with a population size
Carlo sampling approach is ifemented in the objective func- of 100 and a maximum of 100 iterations.

tion to conduct a robustness arsid within the optimisation The results of the RDO with uncertainties in geometric pa-
loop. A truncated random normasttibution consisting of 0 rameters are plotted in FityL. Sub-figure a corresponds to an
samples is considered for each geometric input witRDO with a large weight given to the NPS mean value objec-
manufacturing tolerances of + 0.1 mm ¥ X, andH and  tive, while for the case in sub-figure b, a large weight is given to
+0.2 for . An example of the truncated random normal disNPS standard deviatimbjective. As explained before, when a
tribution for each of the inputs is shown in Fi@, for a stringer  large weight is given to NPS mean value, the optimisation
with mean geometric inputs of = 35.0 mm,X,=28.0 mm, results become very similar tetdrministic optimisation with
H=30.0 mm and =60.0°. Similar to the previous case, only two objectives of minimising mass and maximising NPS.
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Table 6 Detailed optimisation results for case b of the system oflEig.

Stringer geometry (optimisation inputs) Optimisation objectives

Flange X, (18-30 mm) Angle, (55-65°) FootX; (26-46 mm) HeightH (25-35 mm) Stringer mass (g) NPS mean (KN) NPS STD (KN)

26.87 55 26 259 301.23 201.03 0.0233
29.95 58.65 26 27.37 309.58 203.12 0.0206
30 58.78 27.18 28.14 318.32 204.04 0.0207
26.98 61.49 26 33.11 327.16 205.87 0.0279
30 64.31 26 34.42 335.74 208.59 0.0278
30 64.62 27.31 35 343.58 209.33 0.0268
30 64.2 29.26 35 352.47 209.97 0.0256
30 64.06 31.28 35 361.2 210.68 0.0265
30 63.71 32.97 35 368.88 211.26 0.0253
30 63.44 34.85 35 377.2 211.92 0.0252
29.61 62.79 37.12 35 386.91 212.55 0.0252
25.23 59.4 40.1 35 395.84 213.62 0.0261
25.08 59.17 42.01 35 404.07 214.62 0.0269
25.04 58.89 43.67 35 411.5 215.47 0.0267

The goal of constructing Fidlais to measure the robust- 28.83 mm,X,=29.82 mmH =28.06 mm and =58.33°) de-
ness of the stringer designs with maximum possible NPS meaigns is shown in Figl2 for a stringer of mass 325 g; the PDF
value, while Figllbdemonstrates the amount of reduction inplots of the NPS for the two designs are shown inTdgAnother
NPS mean value as a result of minimising the NPS standacomparison between NPS disttibn of deterministic and robust
deviation. As seen in Fid.1h for a large portion of the mass stringer designs of mass 378.7 g is shown in Hgwith the
spectrum, the NPS mean value does not change much corabust stringer design being Xf = 35.46 mmX,=28.85 mm,
pared to Figllawhile NPS standard deviation is minimised. H=35.0 mm and =62.48° and the deterministic one being of
To show the changes in stringer geometry corresponding ¥q = 35.45 mmX,=30.0 mmH =35.0 mm and =64.17°.
Fig.11b Table6 is constructed showingealoptimisation inputs
and outputs for a wide range of stringer masses. Compariig2 Reliability-based design optimisation
these optimised designs to thadehe deterministic optimisa-
tion shows that the stringer angle and foot have been changedthis section, a reliability-based design optimisation is

slightly to accommodate more robust designs. conducted by considering uncertainties in the mechanical
A comparison between the deterministic£ 26.0 mmX, = properties, i.eEjq, Exo=Ezs Guz and G1,=G;3. The
30.0 mm,H=31.91 mm and =63.0°) and robustX; = RBDO process ensures that the final design meets a certain
(a)
! 1
(b)

Fig. 12 Mono-stringer stiffened panel geometry optimised for maximum nonlinear post-buckling strength basketieoministic optimisation arml
robust-design optimisation (geometric uncertainties). The mass of the stringer for both cases is around 325 g
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Fig. 13 Probability density
function plot of NPS distribution
for the robust and deterministic
mono-stringer designs given in
Fig. 10

probabilistic constraint up to a prescribed reliability leyals
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direct Monte Carlo sampling is the most accurate method for

explained in Sectio@.4 The RBDO is performed by includ- reliability analysis, it becomes very time consuming for large
ing a reliability analysis within the optimisation loop. More reliability indices. The compain is conducted for a stringer of
specifically, a reliability analysis algorithm based on the firstX; = 35.0 mm X, =25.0 mm,H =30.0 mm and =60.0°, for
order reliability method (FORM) is formulated within the reliability indices 3 and 4. For el reliability index, the corre-
objective function to calculate the reliable NPS based on sponding NPS is obtained via treiability analysis technique
prescribed reliability index;. The reliability analysis is employed in this study (HMV) and direct Monte Carlo sam-
solved through use of a hybrid mean value (HMV) methogbling. Three Monte Carlo sampling cases are considered with
10°, 16° and 1d samples, to ensure converged result. Due to the
The reliability analysis technique employed in this study istochastic nature of the Monte Carlo simulations, for each case,
validated using direct Monte Carlo sampling, which is comthe average of 5 different runsreported as the final probabi-
monly used as benchmark for validation purposes. Althouglistic NPS. The results of the comparison are shown in Table

(Youn et al.2003.

Fig. 14 Probability density
function plot of NPS distribution
for the robust and deterministic
mono-stringer designs; mass of
the stringer for both cases is
around 378.7 g
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Table 7 Comparison of the
reliability analysis results Prescribed reliability NPS (KN) % error
obtained via the method
employed in this study (HMV) HMV method Monte Carlo (average of 5 runs)
and those obtained using direct
Monte Carlo sampling 10° samples 1Dsamples 10samples
=3.0 185.25 185.53 185.40 185.40 0.08
+=4.0 178.27 178.09 178.32 178.38 0.06

As seen, for both,=3.0 and 4.0, the results of the reliability those obtained via the directavite Carlo sampling technique
analysis technique employed in this study are very close terifying the accuracy of the employed method.

Fig. 15 Multi-objective reliability-based design optimisation results ofreliability of

the mono-stringer stiffened pane:a large weight given to
deterministic NPS objectivdy a large weight given to NPS with

=5.0. For each case, squares and circles show the Pareto
fronts of deterministic and reliable NPS, respectively
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Table 8 Detailed optimisation results for case b of the system oflBig.

Stringer geometry (optimisation inputs) Optimisation objectives

FlangeX, (18-30 mm) Angle, (55-65°) FootX; (2646 mm) HeightH (25-35 mm) Stringer mass (g) NPS (KN) NPRSs0(KN)

30 58.22 26 25.43 300.63 201.52 168.64
30 59.68 26 27.69 309.78 203.07 169.95
30 62.95 26 30.45 318.77 204.68 171.33
30 65 26 32.93 327.83 206.82 174.48
30 65 26 34.88 336.96 208.83 176.89
30 65 28 35 346 20951 177.67
30 65 30.13 35 355.04 21011 178.56
30 65 32.26 35 364.05 210.67 179.46
30 65 34.41 35 373.2 211.22 180.39
30 65 36.55 35 382.25 211.75 181.3

30 65 38.68 35 391.28 212.26 182.21
30 65 40.82 35 400.36 212.76 183.1

30 65 42.94 35 409.33 213.24 183.95
30 64.95 45.08 35 418.49 213.78 184.79

The PESA-II optimisation algorithm is employed with a The PDF plots of the NPS distribution associated with de-
population size of 300 and a maximum of 100 iterationsterministic and reliable stringer designs of masses 368.5 and
The goal of an RBDO is to maximise/minimise an objective891.5 g are depicted in Fij6 using 16 points with the solid
while meeting a certain probabilistic constraint up to a preand dashed vertical lines showing the NPS with a reliability of
scribed reliability level. In this study, the ultimate nonlinear =5.0 for reliable and deterministic designs, respectively. As
post-buckling strength, denoted as NPS, is considered in batken, the reliable designs for both cases have slightly smaller
the objective function and in the probabilistic constraint. INPS mean value, but visibly larger NPS with desired reliabil-
other words, the optimiser aims at maximizing the NPS whiléy level of =5.0.
ensuring that the reliability is larger than the prescribed value.

Since that the mass of the stringean optimisation objective
as well, selecting a specificlua for the NPS to measure the 6 Conclusions
reliability from does not serve the purpose, as the maximum
NPS is varying with mass. Instedblree objectives are consid- |n this study, a multi-objective design optimisation approach is
ered and optimised, i.e. the masthe stringer, to be minimised; presented for probabilistic analysis of composite structures. The
deterministic NPS, to be maximised; and the NPS with the prepproach is demonstrated on a mono-stringer stiffened panel for
scribed reliability of ;, to be maximised. Hence, for a given rohust and reliability-based desigptimisations. In particular, an
reliability index, the optinsation algorithm finds the accurate and comprehensive surrogate model is developed with
minimum-mass designs which are optimised for not only thehe stringer geometry and the composite material mechanical
maximum deterministic NPS, but also the maximum reliablgroperties as the inputs and the fundamental linear buckling load
NPS. The results of this multi-elutive probabilistic optimisa- and the nonlinear post-buckling strength as the outputs. Multi-
tion are shown in Figl5through sub-figures a and b. Sub-figure opjective probabilistic and deterministic optimisations are per-
a corresponds to an optimisation with a large weight given to thgrmed on the surrogate model. Different probabilistic optimisa-
deterministic NPS objective,hile sub-figure b shows the re- tjon methods, i.e. robust-design optimisation and reliability-
sults for a case with a large weight given to reliable NPS. Thgased design optimisation, are utilised.
optimisation is conducted assuming a reliability index of5. The results of the initial deterministic optimisation showed
As seen in Figl5a the designs optimised for maximum deter-that optimised designs for maximum LBL are achieved by
ministic NPS are not necessarily the most reliable designs espgmimising the height and angle and maximising the flange
cially when the mass is larger than 390 g. Figifleshows that  of the stringer. The optimised designs for maximum NPS, on
the optimum designs having maximum NPS up to the desirgle other hand, are associated with maximised height and an-
reliability level of = 5.0 can be achieved without reducing thegle as well as maximised flange size.
maximum deterministic NPS significantly. The detailed optimi- - Robust-design optimisations were conducted by consid-
sation resullts for case b of Fith are listed in Tabl&. ering uncertainties in mechanical properties and geometric
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parameters. It was shown that for both cases, compared toFinally, reliability-based design optimisation results
deterministic designs, robust designs tend to have slightBhowed that more reliable designs can be achieved by slightly
smaller NPS mean value and smaller NPS standard deviaodifying the stringer angle and height. More specifically, it
tion. In other words, the RDO finds designs which are lessias shown that the reliable designs offer larger NPS (in the
sensitive to variations in meahical properties and geo- order of several KNs) with a reliability of while not reduc-
metric parameters but at the cost of slightly reduced NPiig the NPS mean value much (1 KN or less).

mean value compared to the deterministic designs.

Furthermore, RDO designs vary significantly dependingCompliance with ethical standards

on the weights given to the mean and standard deviation

objectives. Conflict of interest The authors declare that they have no conflict of
interest.

@ Springer



1416 H. Farokhi et al.

Replication of results There are several ways through which the reader8utler R, Williams FW (1993) Optimum buckling design of compression
can check their simulation results against those presented in this study. First panels using VICONOPT. Struct Opt 6:1665
is using the tables provided in this study; in fact, the most important optEhen X, Qiu Z (2018) Reliability assessment of fiber-reinforced composite
misation results of the present study maported using tables including the laminates with correlated elastic mechanical parameters. Compos
optimisation inputs and outputs to make it easier for benchmark analysis  Struct 203:396403. https://doi.org/10.1016ompstruct.2018.05.032
and comparison purposes. Additionally, the raw data for constructing tf@heung Y (1968) The finite strip method in the analysis of elastic plates
results presented in Fig§.7, 9, 11, 13 14 and15is provided as supple- with two opposite simply supported ends. Proc Inst Civ Eng-40:1
mentary materials; this allows the readers to check their optimisation resuisello CA (2000) An updated survey of GA-based multiobjective opti-
against a wide range of results reported in this study. The size of raw datafor mization techniques. ACM Comput Surv (CSUR) 321108
Fig. 16is very large due to the large number of point§YL8ed to create  Corne DW, Knowles JD, Oates MJ (2000) The Pareto envelope-based
the distribution; therefore, the data for that figure is not provided.  selection algorithm for multiobjective optimization. In: International
Additionally, since the random normal distributions and truncated ones conference on parallel problem solving from nature. Springer, pp
for Monte Carlo samplings (i.e. Figsand10) are different each time they 839-848
are generated, the data for these figures is not provided. Corne DW, Jerram NR, Knowles JD,t€aMJ (2001) PESA-II: region-based

It should be noted that the readers might obtain slightly different  selection in evolutionary multiobjective optimization. In: Proceedings of
results than those presented in this study due to the probabilistic nature the 3rd Annual Conference on Gtmand Evolutionary Computation.
of the optimisation as well as the differences in the algorithms used for  Morgan Kaufmann Publishers Inc., pp 2280
surrogate model development. If a surrogate model is developed bydas Neves Carneiro G, Antonio CC (2018) A RBRDO approach based on
reader with a similar accuracy to the one used in this study, even if a structural robustness and imposed reliability level. Struct
different method is used, they should be able to obtain results close to Multidiscip Optim 57:24112429
those presented in this study. As explained in the manuscript, this stutjaz J, Montoya MC, Hernandez S (2016) Efficient methodologies for
utilises a Monte Carlo sampling for robust optimisation analysis using 10 reliability-based design optimization of composite panels. Adv Eng

samples. Such large number of gd@s was intentionally selected Softw 93:9-21
(through a convergence analysis), to ensure a converged probabiligiaevoldsen |, Sarensen JD (1994) Reliability-based optimization in struc-
optimisation analysis assuming random normal distributions. tural engineering. Struct Saf 15::496

Fang H, Gong C, Li C, Li X, SuH, Gu L (2018) A surrogate model based
Open AccessThis article is licensed under a Creative Commons  nested optimization framework for inverse problem considering in-
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