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ABSTRACT

The interaction between ice shelves and the ocean is an important process for the development of marine

ice sheets. However, it is difficult to model in full detail due to the high computational cost of coupled ice–

ocean simulations, so that simplified basal-melt parameterizations are required. In this work, a new analytical

expression for basal melt is derived from the theory of buoyant meltwater plumes moving upward under the

ice shelf and driving the overturning circulation within the ice-shelf cavity. The governing equations are

nondimensionalized in the case of an ice shelf with constant basal slope and uniform ambient ocean condi-

tions. An asymptotic analysis of these equations in terms of small slopes and small thermal driving, assumed

typical forAntarctic ice shelves, leads to an equation that can be solved analytically for the dimensionlessmelt

rate. This analytical expression describes a universal melt-rate curve onto which the scaled results of the

original plume model collapse. Its key features are a positive melt peak close to the grounding line and a

transition to refreezing further away. Comparing the analytical expression with numerical solutions of the

plume model generally shows a close agreement between the two, even for more general cases than the

idealized geometry considered in the derivation. The results show how the melt rates adapt naturally

to changes in the geometry and ambient ocean temperature. The new expression can readily be used for

improving ice-sheet models that currently still lack a sufficiently realistic description of basal melt.

1. Introduction

The interaction between marine ice sheets and the

surrounding ocean currents has received increased at-

tention in recent years due to its potential importance

for the overall mass balance of ice sheets and an asso-

ciated rapid sea level rise. The system in which these

interactions occur can take on the form of tidewater

glaciers with a near-vertical edge terminating in the

ocean or floating ice shelves attached to the grounded

ice sheet. The latter case is especially important for

the Antarctic Ice Sheet (AIS), which is buttressed by a

vast number of floating ice shelves along its margin.

As shown in recent studies (Pritchard et al. 2012;

Depoorter et al. 2013; Rignot et al. 2013; Golledge et al.

2015; DeConto and Pollard 2016), subshelf basalmelting

is a major factor in the mass loss of the AIS and its po-

tential contribution to future sea level rise, particularly

in the warmer waters of the Amundsen Sea sector

(Rignot et al. 2014).

These aspects demonstrate the need for accurate

models of the interaction between ice shelves and

ocean. Traditionally, the main mechanism behind this
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interaction has been described by a buoyancy-driven

overturning circulation beneath the floating ice shelf

(MacAyeal 1985; Hellmer and Olbers 1989; Jenkins

1991). Fresh meltwater, generated either directly at

the ice–ocean interface or at the grounding line in the

form of subglacial discharge, is positively buoyant in

the saline environment of the ice-shelf cavity and

moves upward under the ice shelf base, creating a

turbulent plume. Due to entrainment of the ambient

water within the cavity or the possible inflow of

warmer ocean waters, the plume can generate more

basal melt. In stratified environments, the plume can

also detach from the ice-shelf base when reaching a

level of neutral buoyancy, leading to more compli-

cated circulation patterns and different melting modes

(Jacobs et al. 1992). However, applying these notions

in the context of large-scale climate simulations with

ice-sheet models and/or ocean general circulation

models remains problematic (Asay-Davis et al. 2017).

From an ocean-modeling perspective, basal melt rates

can be calculated by explicitly resolving the cavity circu-

lation, using a parameterization of heat exchange to the

ice shelf. This is currently only feasible in sufficient detail

for single ice-shelf cavities for which the geometry is well

known (e.g., Thoma et al. 2015; Asay-Davis et al. 2016;

De Rydt and Gudmundsson 2016; Seroussi et al. 2017;

Timmermann and Goeller 2017). Several experiments

have been done with high-resolution models on conti-

nental scale to simulate the subshelf circulation and basal

melt rates (e.g., Timmermann and Hellmer 2013;

Dinniman et al. 2015; Mathiot et al. 2017; Naughten et al.

2018), but they are computationally expensive, especially

if coupled to a dynamical ice-sheet model that captures

geometry changes over long time scales. From an ice-

modeling perspective with standalone ice-sheet models

(e.g., De Boer et al. 2015), basal melt is usually described

by highly simplified expressions based on the local ice–

ocean flux (Beckmann and Goosse 2003), which by

themselves do not explicitly account for the cavity cir-

culations. The feedback between basal melt and the

cavity circulation can be partially captured by a simple

quadratic temperature dependence, as described by

Holland et al. (2008) and applied by DeConto and

Pollard (2016), which, however, still lacks important

geometry-dependent effects.

Instead of fully resolving the ice-shelf cavity circula-

tion, it would have great computational advantages if

its dynamical features could be included in a straight-

forward way in a basal melt parameterization, which

is the aim of this paper. The starting point is the quasi-

one-dimensional plume model by Jenkins (1991) that,

although simplified, describes the basic physics of the

aforementioned buoyant meltwater plumes driving

the cavity circulation. Jenkins (2011) already showed

how under certain conditions the results of this plume

model scale to a rather universal relation for the basal

melt rates caused by subglacial discharge at the grounding

line. However, it was shown that the length scale over

which melting is directly influenced by this freshwater in-

put at the grounding line (convection-driven melting) is

typically small for ice shelves. Beyond this small distance

from the grounding line, the dominant mechanism for

plume dynamics is caused by the basal melt itself (melt-

driven convection). A governing length scale for this

mechanism was found by Lane-Serff (1995), depending

on the ambient ocean temperature and the local freezing

point. This regime, in which the depth-dependent freez-

ing point dominates the cavity circulation, is central in

the current study. It should be noted, however, that

other processes remain important for basal melting of

ice shelves, including tidal forcing (e.g., Mueller et al.

2012), the aforementioned subglacial discharge (e.g.,

Jenkins 2011; Slater et al. 2017), stratification of the am-

bient cavity water (e.g., Magorrian and Wells 2016), and

the impact of frazil ice formations on the plume dynamics

(e.g., Smedsrud and Jenkins 2004).

To obtain a practical parameterization describing

subshelf basal melt rates in the dominant regime,

Jenkins (2014) performed a second empirical analysis of

the plume model results, again leading to a universal

scaling for the melt rate that extends the analysis of

Lane-Serff (1995). This parameterization unites the in-

fluence of geometry (basal slope and depth) with the

dependence on ambient ocean properties. A key feature

of the parameterization is a dimensionless melt-rate

curve that contains a positive peak near the grounding

line and a transition to refreezing further away. Lazeroms

et al. (2018) applied the new parameterization to all Ant-

arctic ice shelves and showed an improvement in modeled

melt rates compared with simpler parameterizations (e.g.,

Beckmann and Goosse 2003), especially in terms of spatial

variations and temperature sensitivity. By parameterizing

the melt rates using the dynamical features of the plume

model, one implicitly accounts for important effects of the

cavity circulation without explicitly resolving it. Note that

an alternative approach with similar behavior exists in the

form of the box model by Olbers and Hellmer (2010),

which was successfully applied to Antarctic ice shelves

by Reese et al. (2018).

However, the empirical melt-rate curve used in

Lazeroms et al. (2018) does not immediately provide

insight in the underlying physical assumptions from

which it was derived. It is essentially a polynomial fit

of the scaled numerical data from the plume model.

Lazeroms et al. (2018) provided a quick calculation

from simplified equations that could retrieve the correct
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scaling factors, but not the dimensionless melt-rate curve

itself.Moreover, amajor practical drawback of this curve is

its formulation in terms of a polynomial of degree 11,

which is very sensitive to the numerical values of its co-

efficients andprone to implementation errors. Therefore, a

more robust formulation in terms of a systematically de-

rived analytical expression is desirable.

In this paper, we attempt to formalize the empirical

analysis and the resulting basal-melt parameterization

of Jenkins (2014). Starting with the plume model by

Jenkins (1991), we show how an appropriate scaling of

the plume model equations leads to a dimensionless

system that can be solved analytically under certain

conditions. This yields an analytical expression for the

basal melt rate that is nearly identical to the empirical

melt-rate curve of Jenkins (2014) and allows simple

use in ice-sheet models. Knowing how these expres-

sions are derived systematically from the underlying

physical equations is important for understanding

both the potential and the drawbacks of the parame-

terization for use in ice-sheet models, and it sheds

light on a possible extension including more complex

physics.

In the next section, we present the derivation of the

basal melt rate starting with a brief description of the

underlying plume model. The plume model equations are

simplified step by step, by first assuming a constant basal

slope and uniform ambient ocean properties and then

applying an asymptotic analysis for small values of the

slope and the thermal driving of the plume,whichwe show

to be typical for (Antarctic) ice shelves. In section 3, we

show numerical results comparing the analytical expres-

sion with the full plume model for various cases both

within and beyond the assumptions of the formal deriva-

tion. Section 4 provides concluding remarks and a brief

discussion of the remaining practical issues for numerical

ice-sheet models.

2. Derivation of the model

In this section we derive the new analytical expression

for the basal-melt rate beneath a floating ice shelf, based

on the plume model by Jenkins (1991, 2011). Although

the original model is designed for a general quasi-one-

dimensional geometry of the ice-shelf base and general

temperature and salinity profiles for the ambient ocean

water, we will assume a constant basal slope and constant

ambient properties to simplify the analysis. Using a suit-

able scaling and perturbation methods, this analysis leads

to a dimensionless melt-rate curve that can be applied in

more general cases, as shown in section 3.

a. Plume model equations

The plume model of Jenkins (1991, 2011) describes the

evolution of a buoyant meltwater plume beneath an ice

shelf with a basal geometry that is uniform in the cross-flow

direction (Fig. 1). This quasi-one-dimensional geometry

can be described by a slope angle a that essentially de-

pends on the basal depth zb or, equivalently, the along-

slope coordinate X, where X5 0 corresponds to the

grounding-line depth zgl. Note that all z values are defined

as increasing upward with zero position at sea level. Fur-

thermore, the ambient ocean water in the ice-shelf cavity

has temperature Ta and salinity Sa, which in principle can

be depth dependent as well.

The dynamics of the plume under the ice shelf in

Fig. 1 can be modeled by a two-layer system, in which

the plume thickness D and the (depth-averaged)

plume velocity U, plume temperature T, and plume

salinity S as functions of X are described by the fol-

lowing system:

dDU

dX
5 _e1 _m , (1a)

dDU2

dX
5D

Dr

r
0

g sina2C
d
U2 , (1b)

dDUT

dX
5 _eT

a
1 _mT

b
2C1/2

d G
T
U(T2T

b
), and (1c)

dDUS

dX
5 _eS

a
1 _mS

b
2C1/2

d G
S
U(S2 S

b
) , (1d)

corresponding to conservation of mass, momentum,

heat, and salt, respectively. The first equation describes

the plume volume flux DU as being determined by the

melt rate _m (input of meltwater from the ice–ocean in-

terface) and the entrainment rate _e (input of ambient

ocean water), which in turn is modeled by (Bo Pedersen

1980):

_e5E
0
U sina , (2)

FIG. 1. Schematic picture of the plumemodel of Jenkins (1991, 2011)

for a typical ice-shelf geometry with basal slope a(X). The plume is

described by a thicknessD, speedU, temperature T, and salinity S and

forced by entrainment _e of ambient ocean water and basal melting _m.
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where E0 is a dimensionless constant. As already ex-

plained by Jenkins (1991), this entrainment parameter-

ization is chosen for its simple dependence on plume

velocity and basal slope, giving good agreements with

laboratory studies for small slopes, but we note that

more general 2D parameterizations without an explicit

slope dependence exist (see, e.g., Sergienko 2013).

The second equation [(1b)] provides the balance be-

tween the driving force (buoyancy), determined by the

density contrast Dr5 ra 2 r of the plume with respect to

the ambient ocean, and the drag force with dimension-

less drag coefficient Cd. The density contrast is found

from a linearized equation of state:

Dr

r
0

5b
S
(S

a
2 S)2b

T
(T

a
2T) , (3)

where bS is the haline contraction coefficient and bT the

thermal expansion coefficient. Note that Coriolis forces

have been neglected in (1b), as well as along-stream vari-

ations in the buoyancy d(DDr)/dX (see, e.g., Sergienko

2013). Coriolis forces are known to have a significant effect

on larger ice shelves, but Jenkins (2011) provides an esti-

mate of rotational length scales, on which we will briefly

comment in section 3c. A more detailed analysis of the

momentum equation was performed by Mahrt (1982),

showing that the along-stream variations in buoyancy

can generally be neglected. This assumptionmost notably

breaks down on the outer parts of ice shelves, where the

plume decelerates due to either a loss of buoyancy or a

reduction in the basal slope.

Equations (1c) and (1d) describe the input of heat and

salt due to entrainment _e and melting _m, as well as tur-

bulent exchange through the sub-ice-shelf boundary layer

with exchange coefficients (Stanton numbers) C1/2
d GT and

C1/2
d GS. Furthermore, Tb and Sb are the temperature and

salinity at the ice–ocean interface. To close the system,

we require three additional conditions at the ice–ocean

interface (Jenkins 1991, 2011):

C1/2
d G

T
U(T2T

b
)5 _m

�
L

c
1
c
i

c
(T

b
2T

i
)

�
, (4a)

C1/2
d G

S
U(S2 S

b
)5 _m(S

b
2 S

i
), and (4b)

T
b
5 l

1
S
b
1 l

2
1 l

3
z
b
. (4c)

Equations (4a) and (4b) describe the balance of heat

and salt fluxes at the interface, where Ti and Si are the

temperature and salinity of the ice, L is the latent heat

of fusion for ice, and ci and c are the specific heat ca-

pacities of ice and ocean water, respectively. Finally,

(4c) equates the interface temperature Tb with the local

pressure freezing point for salinity Sb at depth zb, given

by the (linearized) liquidus condition with constant

coefficients l1, l2, and l3.

The plume model in the form presented above can

be solved numerically for any quasi-one-dimensional

ice-shelf geometry, defined by the draft zb(X) and

slope angle a(X), and any vertical profile for the am-

bient ocean properties Ta(z) and Sa(z). The constant

parameter values used in this study are summarized in

Table 1. Furthermore, the plume model requires four

initial conditions at the grounding line (X5 0) for the

quantities D, U, T, and S [(1)]. In general, one can

impose an initial freshwater flux (DU)X50 at the

grounding line with zero salinity and temperature

equal to the local pressure freezing point, as discussed

in Jenkins (2011). However, in contrast to the afore-

mentioned paper, we are mainly interested in the re-

gime of melt-driven convection where the primary

source of buoyancy is the meltwater generated locally

at the ice-shelf base. Therefore, we take D5U5 0 as

initial condition at the grounding line throughout this

paper. The numerical solution of the plume model will

be revisited in section 3, where it is compared with the

analytical formulation derived in the following.

b. Simplified formulation and scaling

To facilitate the analytical derivation, we shall ap-

ply a number of simplifications to the original plume

model. First of all, following Jenkins (2011), the interface

conditions in (4) can be replaced by a simpler formula-

tion (McPhee 1992; McPhee et al. 1999) consisting of

only two equations:

C1/2
d G

TS
U(T2T

f
)5 _m

�
L

c
1

c
i

c
(T

f
2T

i
)

�
, and (5a)

T
f
5 l

1
S1 l

2
1 l

3
z
b
, (5b)

where Tf is the pressure freezing point of the plume,

taking over the role of the interface temperature Tb, and

C1/2
d GTS is an effective heat exchange coefficient. This

simplification also requires replacing Tb by Tf and GT by

GTS in the plume heat balance in (1c). Note that the in-

terface salinitySb can be eliminated directly by substituting

(4b) in the salinity equation (1d), where the ice salinity

Si is assumed to be zero. Furthermore, the ice temper-

ature Ti is eliminated by neglecting the conductive heat

flux [the last term on the right-hand side in (5a)], con-

sidering that ci(Tf 2Ti) � L. Alternatively, one could

assume the heat conduction term to be constant, as in

Jenkins (2011), which would not change the algebra be-

cause this term can be incorporated as a small correction

to the value of L. Compared to the three-equation for-

mulation in (4), the two-equation formulation in (5) can
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underestimate the melt-rate maximum by up to 2% for the

test cases considered in section 3, which, however, can in-

crease up to 10% when the basal slope becomes near-

vertical.

Next, we consider an ice-shelf geometry with constant

basal slope a. Hence, the ice-shelf basal depth zb is related

to the coordinate X along the ice-shelf base as follows:

z
b
5 z

gl
1X sina , (6)

where the grounding-line depth zgl corresponds to X5 0.

Moreover, we also take uniform ambient ocean properties

Ta and Sa (this assumption and its consequences will be

discussed further in section 3b). In particular, we can now

define the characteristic freezing point at the grounding line

as follows:

T
f ,0

5l
1
S
a
1 l

2
1l

3
z
gl
, (7)

which is also constant for a fixed geometry. Note that

we have:

T
f
5T

f ,0
1 l

1
DS1 l

3
X sina , (8)

whereDS5 S2 Sa is the salinity contrast between plume

and ambient ocean.

Taking into account these assumptions, the plume

equations can now be written in a more compact way,

expressed only in terms of D, U, Dr, DT5T2Tf , DS,
and independent variable X. Formally, only four equa-

tions would be required to close the system, but keeping

an equation for DS will simplify the analysis later on.

The resulting system has the following closed form:

dDU

dX
5 (E

0
sina)U1

 
C1/2

d G
TS

L/c

!
UDT , (9a)

dDU2

dX
5

�
g sina

r
0

�
DDr2C

d
U2 , (9b)

dDUDr

dX
5 r

0

 
C1/2

d G
TS

L/c

!
UDT

�
b
S
S
a
2b

T

�
T
a
2T

f ,0

1
L

c
2l

1
DS2 (l

3
sina)X

��
, (9c)

dDUDT

dX
5 (E

0
sina)U[T

a
2T

f ,0
2 (l

3
sina)X]

1

 
C1/2

d G
TS

L/c

!
UDT

�
l
1
S
a
1 l

1
DS2

L

c

�
2 (l

3
sina)DU, and (9d)

dDUDS

dX
52S

a

 
C1/2

d G
TS

L/c

!
UDT . (9e)

Note that these equations only have constant coefficients,

as well as some terms that are explicit in X through the

depth dependence of the freezing point. Equations (9) can

now be nondimensionalized using the following scaling:

x5
z
b
2 z

gl

l
0

5

�
sina

l
0

�
X , (10a)

d5
D

E
0
l
0

, u5
U

U
0

, r5
Dr

b
S
S
a
r
0

,

t5
DT

t
, s5

DS

S
a

, (10b)

where l0,U0, and t are the characteristic length, velocity,

and temperature scales, respectively. These character-

istic scales are defined as follows. The temperature dif-

ference between ambient ocean Ta and the freezing

point at the grounding line Tf ,0 is considered to be the

main external parameter that drives the initial melting at

the grounding line and, hence, the initial buoyancy flux.

Therefore, we take

TABLE 1. Constant parameters used in the plumemodel (Jenkins

1991, 2011) and the (derivation of the) melt-rate parameterization

(28). The values for c, bS, bT , l1, l2, and l3 are for potential tem-

perature and practical salinity units. Note that the values of cr1, cr2,

and ct technically depend on the ambient salinity Sa; the presented

values are for Sa 5 34:65 psu.

Plume model parameters Values

E0 Entrainment coefficient 3.6 3 1022

Cd Drag coefficient 2.5 3 1023

l1 Freezing point salinity

coefficient

25.73 3 1022 8C

l2 Freezing point offset 8.32 3 1022 8C
l3 Freezing point depth coefficient 7.61 3 1024 8Cm21

C1/2
d GT Thermal Stanton number 1.1 3 1023

C1/2
d GS Haline Stanton number 3.1 3 1025

L Latent heat of fusion for ice 3.35 3 105 J kg21

c Specific heat capacity of ocean

water

3.974 3 103 J kg21 8C21

ci Specific heat capacity of ice 2.009 3 103 J kg21 8C21

bS Haline contraction coefficient 7.86 3 1024 psu21

bT Thermal expansion coefficient 3.87 3 1025 8C21

g Gravitational acceleration 9.81m s22

Melt-rate parameterization Values

C1/2
d GTS Effective thermal Stanton

number

5.9 3 1024

cr1
L/c

C1/2
d GTS

bT

bSSa

2.0 3 102

cr2 2l1bT /bS 2.8 3 1023

ct cr2/cr1 1.4 3 1025

C« Slope correction parameter 0.6
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t5T
a
2T

f ,0
. (11)

Neglecting the effects of stratification, Coriolis forces,

and initial freshwater fluxes at the grounding line, the

main length scale governing the plume dynamics is as-

sociated with Ta 2Tf ,0 (cf. Lane-Serff 1995; Jenkins

2011; Lazeroms et al. 2018):

l
0
5

t

l
3

. (12)

This length scale denotes the vertical distance from the

grounding line over which the thermal driving of the

plume decreases from the initial value t to zero due to

the pressure dependence of the freezing point, assuming

uniform ambient water. In other words, it indicates the

point where the ambient water would start freezing, which

may be above or below sea level, depending on ambient

conditions (Lane-Serff 1995). Finally, since the dynamics

of the plume are determined by melt-induced buoyancy

and not by an external flux, the velocity scale is fixed by

taking the densimetric Froude number equal to unity:

Fr5
U

0ffiffiffiffiffiffiffiffiffiffiffiffiffifDr
r
0

gl
0

s 5
U

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
S
S
a
gl

0

p 5 1, (13)

where fDr5bSSar0 is the characteristic density scale

defined in (10). In addition to these physical scales, we

define two dimensionless parameters that determine the

entrainment rate and the basal melt rate, respectively:

h5E
0
sina, m5

C1/2
d G

TS

L/c
t , (14)

noting that the factor C1/2
d GTS/(L/c) is equivalent to the

factor M0 in Jenkins (2011). Using (10)–(14), the plume

equations in (9) can be written in the following way:

h
d

dx
(du)5hu1mut , (15a)

h
d

dx
(du2)5hdr2C

d
u2 , (15b)

h
d

dx
(dur)5mut[12 c

r1
C1/2

d G
TS

1mc
r1
(x2 1)2 c

r2
s] ,

(15c)

h
d

dx
(dut)5h(12 x2 d)u2(C1/2

d G
TS
1 c

t
1 c

t
s)ut, and

(15d)

h
d

dx
(dus)52mut , (15e)

where we introduced a set of new parameters cr1, cr2, and

ct, which are defined in Table 1 along with their typical

values. The dimensionless system in (15) will now be

simplified further using the observation that the param-

eters h and m are small. This will lead to an equation that

can be solved analytically, yielding a closed expression for

the dimensionless basal melt rate.

c. Asymptotic analysis in terms of h and m

A central notion in perturbation theory is the asymp-

totic expansion of order N (or Poincaré expansion; see,

e.g., Nayfeh 1973; Eckhaus 1979; Holmes 1995; Mattheij

et al. 2005) of a function f (x; «) in terms of a small

problem parameter « � 1:

f (x; «)’ �
N

n50

a
n
(«)f

n
(x), with lim

«/0

a
n11

(«)

a
n
(«)

5 0, (16)

in which each consecutive term an(«) decreases strictly

faster as « goes to zero [e.g., an(«)5 «n]. Ideally, this al-

lows the asymptotic expansion to converge to the func-

tion f (x; «) for «/ 0. Such an expansion can be used to

systematically approximate problems that are too com-

plicated to solve analytically. As we shall see below, it is

often convenient to scale the equations by the leading-

order asymptote a0(«) so that the first term in the ex-

pansion is O(1) as « / 0. This allows us to expand all

dependent variables individually.

System (15) contains two parameters that are poten-

tially small and that are dependent on external proper-

ties, namely h (depending on the basal slope) and m

(depending on the temperature difference t). Since

we disregard changes in the ambient salinity Sa, the

remaining parameters in (15) are model constants with

values given in Table 1. Before we proceed, it is worth-

while investigating if h andm are indeed small for typical

ice-shelf conditions and if they are of the same order of

magnitude. With ambient salinity Sa 5 34:65 psu and a

typical grounding-line depth zgl $21500m, a lower bound

for the freezing point Tf ,0 is 238C. With typical ambient

temperatures Ta between228 and128C, this yields upper
bounds t, 58C andm, 3:53 1025, which is indeed small.

A typical estimate of the basal slope sin(a) ismore difficult

to find, as the slope can vary considerably along the ice

shelf. As sin(a) cannot exceed 1, a strict upper bound is

h,E0 5 3:63 1022. Hence, both h and m are indeed

small parameters.

It appears thatm is potentially some orders of magnitude

smaller thanh, althoughone shouldkeep inmind that small

values of sin (a) are very common for most ice shelves,

even close to the grounding line. For example, we can

consider the overall slope of a flowline of Filchner–Ronne

Ice Shelf (FRIS), taking zgl ’21500m and a horizontal
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distance of 700km, yielding sin(a)’ 2:13 1023 and

h’ 7:73 1025 [see, e.g., the data of Bombosch and

Jenkins (1995) used in Lazeroms et al. (2018) and the

test cases in Fig. 8]. Taking Ta ’228C as a typical am-

bient temperature, we obtain t’ 18C and m’ 73 1026.

Similarly, we could estimate the slope of Pine Island Gla-

cier (PIG, also shown in Fig. 8) as sin(a)’ 500m/60 km’
8:33 1023, giving h’ 33 1024, while m might approach

the upper bound 3:53 1025 for warm cavities mentioned

above. In these cases, h is indeed one order of magnitude

larger than m, also considering that the slope near the

grounding line is typically higher than the overall slope. This

would justify the scaling assumption that terms of O(m) in

(15) could be neglected with respect to terms of O(h).

Physically, this means neglecting the direct effect of themelt

rate on the volume flux in (15a) with respect to the en-

trainment rate. Note that this condition might be violated

locally for relativelywarm ice shelf cavitieswith small slopes.

The next step is to determine how the dependent var-

iables (d, u, r, t, s) scale with h and m, that is, determine

the scale function a0(h, m) in analogy to (16) for each

variable. This can be done by inspection of (15), requiring

that every equation retains ameaningful balance of terms

in the limits h/ 0 andm/ 0. A crucial observation here

is that x5O(1) by construction, since otherwise l0 would

not be the governing length scale. This allows us to esti-

mate themagnitudes of the terms in (15a) as hdu, hu, and

mut. Assuming that d, u, r, t, s#O(1) and O(m),O(h)

as explained earlier, we see that the final term, the melt

rate, is indeed neglected at leading order. Similar argu-

ments can be applied to the other terms in (15), where the

constant parameters such as Cd are considered O(1) be-

cause they are independent of h and m. From top to

bottom, we then find the following leading-order balance

of terms:

hdu;hu ,

hdr; u2 ,

hdur;mut ,

hu; ut ,

hdus;mut , (17)

which yields

d5O(1), u5O[(hm)1/2], r5O(m) ,

t5O(h), s5O(m) . (18)

Physically, this means that both the density and salinity

differences scale with the melt rate m, while the temper-

ature difference depends on the slope h. As it turns out,

all terms in (15) depending explicitly on the salinity dif-

ference s will be of higher order in m and neglected in the

following approximation. Consequently, s and its corre-

sponding primitive equation (15e) can be disregarded.

We can now extract the scales in (18) and expand to

leading order in m. Furthermore, we incorporate several

algebraic factors that are essentiallyO(1) functions of h,

which make the resulting equations more compact. This

amounts to the following scaling:

d5D 1O(m) , (19a)

u5 (hm)1/2

24 12 c
r1
C1/2

d G
TS

(C
d
1h)(C1/2

d G
TS

1 c
t
1h)

351/2

½U1O(m)� ,

(19b)

r5m

 
12 c

r1
C1/2

d G
TS

C1/2
d G

TS
1 c

t
1h

!
½R1O(m)�, and (19c)

t5h

 
1

C1/2
d G

TS
1 c

t
1h

!
½T 1O(m)� , (19d)

By substituting these expression in (15) and dividing by

common factors, we then obtain the following system,

valid up to O(m):

d

dx
ðDUÞ5U , (20a)

d(h)DU
dU
dx

5DR2U2 , (20b)

d

dx
ðDURÞ5UT , and (20c)

«(h)D
dT
dx

5 12 x2D 2 T . (20d)

with

d(h)5
h

C
d
1h

, «(h)5
h

C1/2
d G

TS
1 c

t
1h

, (21)

where we have also used the mass equation (20a) to ex-

pand the derivatives in the momentum and heat equa-

tions (20b) and (20d). Note that this system is indeed

uncoupled from the salinity equation, so that it can be

disregarded in the remainder of this study. This also

clarifies the reason for initially keeping the salinity

equation, as mentioned in section 2a, because it simplifies

the scaling analysis done so far. Furthermore, we see that

the advection terms in the mass and buoyancy equations

(20a) and (20c) are of leading order, while those in the
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momentum and heat equations areO(h), which will have

important consequences further on.

We have now scaled the plume equations to a compact

form containing only O(1) terms except for the velocity

and temperature derivatives, which have new factors

d(h) and «(h). What remains is the question of whether

d(h) and «(h) are still small parameters and if we can

use an asymptotic expansion in either d or « to further

simplify the analysis. Figure 2 shows these parameters

as a function of h within a range of values deemed

typical for ice shelves (the previously found values for

FRIS and PIG are indicated in the figure, as well as a

typical value for Ross ice shelf). It appears that « is always

larger than d and larger than 0.1 over a significant range of

values. Still, « could be considered as a small parameter

except for the larger values of h. Furthermore, although

formally both « and d scale with h and their ratio is

approximately constant, it appears that d is one order

of magnitude smaller than « over a wide range of values

except for very small h& 1025. This would justify a

second assumption d,O(«), making the momentum

advection term in (20b) one order smaller than the heat

advection term in (20d).

Equations (20) describe the behavior of the dimen-

sionless quantities ðD , U , R, T Þ as a function of the

dimensionless coordinate x. Since the melt rate _m is

essentially the product UDT [see (5a)], the scaled

product M5UT describes the dimensionless melt

rate. To leading order in « and m, (20) should be in-

terpreted as follows: (20a) is themass balance determined

entirely by entrainment with meltwater input neglected;

(20b) is a balance of buoyancy and drag forces, neglecting

inertial accelerations up to O(d); (20c) is the buoyancy

flux determined entirely by the melt rate, neglecting

higher-order changes in plume temperature and plume

salinity; and (20d) determines the plume temperature

contrast from the depth-dependent freezing point, en-

trainment, and the ice–ocean interface heat flux, ne-

glecting higher-order changes in plume salinity and melt

rate, while downstream changes in temperature areO(«).

In the next subsection, we show how system (20) can be

solved with an asymptotic expansion in «. Note that the

error in this approach with respect to the full plume

model depends on the value of « (i.e., the basal slope).

The extent of the error in realistic test cases will become

clear in section 3.

d. Analytical expression for the melt rate

The structure of the solution of (20) is most easily

understood by writing it as a single equation. It turns out

that the volume flux, defined as

u5DU , (22)

is the most convenient variable to use, for example,

because (20a) then becomes du/dx5U , directly ex-

pressing the dimensionless velocity in terms of u. In
appendix A, we show how system (20) can be reduced to

the following equation with d 5 «2:

(12 «)(u0)3 2u[12 x2 «(31 «)u0u00]1O(«3)5 0,

(23)

where the primes indicate derivatives with respect to x.

Moreover, we have initial conditions u(0)5u0(0)5 0.

The first condition simply corresponds to zero initial

mass flux, that is,DU5 0 at the grounding line, while the

condition u0(0)5 0 corresponds to U(0)5 0, which is

implied by (20b). This is the most compact formulation

of the problem. Correspondingly, we find an expression

in terms of u for the dimensionless melt rate:

M5 3(u0)2u00 1O(«2) . (24)

Note that the problem is now reduced to a second-order

differential equation for u, requiring only two boundary

conditions. Hence, the boundary values for the plume

temperature and plume salinity are automatically im-

posed by the solution of (23) and cannot be chosen

independently. Physically, the initial meltwater at the

grounding line undergoes a rapid adjustment as it mixes

with the ambient water, a process also described by

Jenkins (2011). By reducing the order of the system

and the number of boundary conditions, we neglect

this rapid adjustment and immediately start from the

mixed conditions.

An analytical expression for the melt rate can be ob-

tained from (24) after finding the solution of (23). As

explained in detail in appendix A, an analytical solution

will be constructed using an asymptotic expansion of

FIG. 2. Logarithmic plots of the parameters d and « defined in

(21) and their ratio d/« as a function of the entrainment parameter

h. The vertical dashed lines indicates the typical value for Ross

(h’ 2:63 1025), FRIS (h’ 7:73 1025), and PIG (h’ 33 1024).
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u in terms of «. Restricting our attention to the leading-

order behavior, the positive real-valued solution for

0# x# 1 is found to be

u
0
(x)5

1

2
ffiffiffi
2

p [12 (12 x)4/3]3/2 . (25)

Note that the function u0 has an important physical

meaning: it is the scaled volume flux of ambient water in

the plume that determines the strength of the overturning

circulation inside the cavity, making it a key quantity for

parameterizing the effects of ice-shelf melting in ocean

models. Furthermore, as explained in appendix A, this

leading-order solution is equivalent to the assumption that

the volume fraction of meltwater in the plume (u3
0)

0
/u0

falls linearly as 12 x, which can be seen by taking «/ 0 in

(23). From (25) and (24), we can directly obtain an ex-

pression for the melt rate:

M
0
(x)5 3[u0

0(x)]
2u00

0(x)

5
1

2
ffiffiffi
2

p [3(12 x)4/3 2 1][12 (12 x)4/3]1/2 . (26)

We now have the main result of the derivation, namely

an explicit analytical expression for the dimensionless

melt rate. Physically, it describes the basal melt rates

along the plume path after applying an appropriate

scaling in terms of the basal slope h and the thermal

driving of the plume m. In this respect, it should be

noted that (26) takes over the role of the dimensionless

melt-rate curve applied by Lazeroms et al. (2018), which

was described by a polynomial fit and found from a purely

empirical study (Jenkins 2014). The expressions for the

other plume variables D 0, U0, R0, and T 0, as well as

interesting points about their physical interpretation,

are given in appendix A.

Figure 3a shows a plot of the analytical expression

(26) as a function of the dimensionless coordinate x. The

melt-rate curve indeed shows the desired behavior: the

melt rate is zero at the grounding line (x5 0) and in-

creases to a positive peak at x’ 0:2 before transitioning

to negative melt (refreezing) around x’ 0:6. This tran-

sition point agrees with the empirical value found by

Lane-Serff (1995). The same qualitative behavior is seen

in the empirical melt-rate curve applied in Lazeroms

et al. (2018), also shown in Fig. 3a. However, since (26)

represents only a leading-order asymptotic approxima-

tion of (23) and (24), it is independent of «. Therefore,

the errors with respect to the (numerical) solution of

these original equations will depend on «, and it is im-

portant to check how these errors are distributed over

the entire domain of interest. Numerical solutions for

«5 0:01 and «5 0:1 are shown in Fig. 3a and directly

compared with the analytical expression. Clearly, the

analytical expression approximates the numerical curves

well close to the grounding line (x5 0), but the discrep-

ancies become larger further away from the grounding

line and increase with «. In fact, the analytical expression

(26) is only valid for 0# x# 1, while the numerical so-

lutions continue until the points x’ 1:025 and x’ 1:15,

respectively. Hence, the ‘‘endpoint’’ of the plume moves

further away from x5 1 as « increases. Conversely, the

endpoint moves toward x5 1 for «/ 0, in which case

the numerical solution converges to expression (26) for

0# x# 1.

So far, we have only considered the zeroth-order

terms in the asymptotic expansion. One might expect

to improve the approximation by adding higher-order

terms in our asymptotic expansion. However, this turns

FIG. 3. Comparison of the analytical solution for M0 calculated

from (26) (solid line) with numerical solutions M calculated from

(23) and (24) (dashed lines). Also shown is the polynomial fit from

Lazeroms et al. (2018) scaled with a constant factor 0.124 (dotted

line). Each panel shows two numerical solutions for «5 0:01 and

«5 0:1, respectively. (a) Solutions as functions of the original di-

mensionless coordinate x. (b) Solutions as functions of the new

coordinate ~x containing the slope correction of (27). Note that the

analytical solution and the polynomial fit are valid on the domain

[0, 1], while the numerical solutions are valid until the plume

endpoints indicated by circles.
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out not to be possible for technical reasons explained in

appendix B. On the other hand, some of the aforemen-

tioned discrepancies might be overcome by adding an

additional slope-dependent correction, similar to the ad

hoc scaling used by Jenkins (2014) and Lazeroms et al.

(2018). Intuitively, such an additional «-dependent cor-

rection should provide the final scaling step that con-

strains the values of the along-slope coordinate between

0 and 1, where the latter corresponds to the aforemen-

tioned «-dependent endpoint of the plume. The theo-

retical discussion in appendix B suggests a correction of

the following form:

~x5
x

11C
«
«3/4

, (27)

where C« 5 0:6 turns out to give the best match between

the analytical expression and the numerical solution of

(23) for «, 0:3. Figure 3b shows how the results from

Fig. 3a change when the additional correction is applied.

The three curves now agree well in most of the domain,

except for a small region near ~x5 1. Note, however, that

this region may not be important in practice for the

following reasons. The point x5 1 (i.e., the original

coordinate) corresponds exactly to a depth at which

zb 2 zgl 5 l0, that is, where Ta is equal to the local

ambient freezing point. It appears unphysical to have

ambient waters colder than the local freezing point,

except for, for example, locally supercooled plumes

with possible nucleation of frazil ice crystal, which is

not captured by the plume model equations in (1).

Therefore, the point x5 1 can only be reached at the

surface zb 5 0 when Ta is equal to the ambient freezing

temperature at atmospheric pressure. For higher Ta, the

point x5 1 occurs above the sea surface and is clearly

nonphysical. Moreover, the point x5 1 corresponds to a

corrected value ~x, 1 for positive slopes «. 0, making it

more unlikely for the model to approach the point ~x5 1,

and increasingly so for steeper slopes. The results in

section 3 indeed show that the true endpoint of the

plume always has a value ~x 2 (0, 1) and the discrep-

ancies remain small or outranked by other effects such

as varying slopes or stratification. Most importantly,

the correction in (27) ensures that the transition point

between melting and refreezing is almost perfectly

predicted for «, 0:3.

To summarize, we have systematically derived an

analytical expression (26) for the dimensionless basal

melt rate as a function of the along-slope coordinate

under an ice-shelf with constant slope and constant

ambient properties. We can trace back the derivation

to the dimensional quantities and arrive at the final form

of the proposed basal melt parameterization, including

dimensional factors:

_m5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
S
S
a
g

l
3
(L/c)3

s  
12 c

r1
C1/2

d G
TS

C
d
1E

0
sina

!1/2

3

 
C1/2

d G
TS
E

0
sina
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d G

TS
1 c

t
1E

0
sina
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(T
a
2T

f ,0
)2M

0
(~x) ,

(28a)

where M0 is the analytical function in (26) with input

~x given by

~x5 l
3

z
b
2 z

gl

T
a
2T

f ,0

2411C
«

 
E

0
sina

C1/2
d G

TS
1 c

t
1E

0
sina

!3/4
3521

.

(28b)

Similarly, we can express the dimensional volume flux

F5DU of the cavity circulation in terms of the function

u0 in (25):

F5E
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
S
S
a
g

l3
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0
(~x) .

(29)

These expressions should be compared with the basal-

melt parameterization found empirically by Jenkins (2014)

and applied to the Antarctic ice shelves by Lazeroms

et al. (2018). In both formulations, the basal melt is

calculated by multiplying a melt-rate scale by a dimen-

sionless functionM0 of a dimensionless coordinate ~x. In

fact, the melt-rate scale in (28a) is almost equal to the

empirical scale shown in Lazeroms et al. (2018), being a

product of geometric factors involving sin(a) and a

quadratic dependence onTa 2Tf ,0. A notable difference

is the addition of some new constants that only have a

very small effect on the final value of _m (e.g., the con-

stant ct with respect to C1/2
d GTS). Moreover, the constant

prefactor in (28a) is now explicitly given in terms of

other model constants, whereas Lazeroms et al. (2018)

simply used a parameter M0 5 10 myr21 8C22. Apart

from this, (28a) contains the same dependence on sin(a)

with the same exponents as in the empirical model.

Similarly, the dimensionless coordinate in (28b) has the

same basic form as in the empirical model: the depth

difference zb 2 zgl scaled by the temperature difference

Ta 2Tf ,0 and multiplied by a slope-dependent factor.

This factor differs slightly from the one in Lazeroms

et al. (2018), but in both cases it is an ad hoc correction

with the purpose of constraining the coordinate values
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between 0 and 1 for different values of the slope. Finally,

the function M0 given by (26) now plays the same role

as the dimensionless polynomial fit in Lazeroms et al.

(2018). Note, however, that the analytical expression

(26) and the polynomial fit differ by a factor of 0.124 (as

shown in Fig. 3a) due to the aforementioned difference

in the constant dimensional prefactor. In the next sec-

tion, we show how the basal-melt parameterization

given by (28) performs for various ice-shelf geometries

and ambient ocean properties.

3. Numerical results

So far, the analytical expression for themelt rate given

by (28a) has been directly compared with (23) from

which it is derived. Since this equation is itself an ap-

proximation of the plumemodel, it is important to check

how it compares to the full model. In the following, we

shall evaluate the plume model as presented in section 2a

and the parameterization given by (28) for various test

cases. Both models are evaluated using the constant pa-

rameter values given in Table 1. We distinguish between

effects of the geometry and the ambient ocean profiles,

before applying the model to more realistic cases.

a. Slope dependence

Themain assumptions of the derivation as formulated

in section 2b are a constant slope angle a (i.e., a linear

ice-shelf draft) and uniform ambient properties Ta and

Sa. First, we investigate how well the analytical expression

(28) agrees with the full plume model [including the

three-equation formulation in (4)] for such simplified

cases. In the following, both models are evaluated for

simple geometries defined by the grounding-line depth

zgl and a slope angle a and extending up to sea level

(z5 0). The reference geometry has zgl 521000 m and

sin(a)5 0:002, so that the plume path extends up to

X5 500 km. By order of magnitude, this is comparable

to the larger Antarctic ice shelves such as FRIS andRoss

ice shelf. Moreover, we consider steep and flat geome-

tries [sin(a)5 0:003 and sin(a)5 0:001, respectively]

and shallow and deep geometries (zgl 52500m and

zgl 522000m, respectively), as well as the special case

of a vertical ice wall [sin(a)5 1 and zgl 52500m]. In

each case, the plume model is evaluated up to the ice-

shelf front at z5 0, though in section 3b we will show

examples where the plume path ends before reaching

the end of the domain.

Figure 4a shows the results of both models for all of

the aforementioned geometries. Clearly, in each case

the parameterization closely follows the behavior of the

plume model over the entire domain. All curves, except

the vertical ice wall, show the same qualitative behavior

outlined in section 2d: a region of melting (positive _m)

closer to the grounding line and a transition to refreez-

ing (negative _m) further away from the grounding line.

A steeper slope causes an increase in melt near the

grounding line, as well as stronger refreezing further

away, due to stronger volume flux and entrainment,

while the flatter slope has the opposite effect. Likewise, a

deeper grounding line causes both increased melting and

refreezing due to the lower freezing point and an asso-

ciated increase of thermal driving at greater depths, with

the shallow case showing the opposite. In all cases, rela-

tively small discrepancies between the models appear

both at themelting peaks closer to the grounding line and

near the end of the domain in the area of refreezing, while

the transition point between melting and refreezing is

almost perfectly predicted by the parameterization.

The similarities between the first five cases become

clear in Fig. 4b, where the plume model results with

corresponding X coordinates have been scaled using the

same dimensional factors as in (28a) and (28b) and di-

rectly compared with the dimensionless curve M0(~x).

The plume model results collapse onto nearly the same

curve, which is again slightly underpredicted by the pa-

rameterization at the melting peak (~x’ 0:2). The typical

relative error in the melting region for these five cases is

around 10% (disregarding the small regions where the

melt rate goes to zero). This particular error can be traced

back to the fact that we only use a zeroth-order approx-

imation in « and might be improved by higher-order

terms. Also note that this error depends on « and will be

smaller for smaller basal slopes. On the other hand, the

errors near the end of the domain (~x’ 0:9) are related to

the singularities discussed in appendixes A and B and are

not easily improved, though they appear relatively small

with relative values between 0% and 10%. Note that the

good agreement around the melting-freezing transition

point (~x’ 0:56) is partly the result of the correction term

(27) that rescales the plume-path coordinate.

Among the results in Fig. 4, the vertical ice wall is a

special case because it has an infinitely steep slope with

sin(a)5 1. For such high values of the slope, the pa-

rameter « in (21) approaches 1 and is no longer small.

Hence, the analysis of the previous section is no longer

valid for this case. This issue appears in Fig. 4 through

the slightly higher discrepancies between the plume

model and the parameterization. The relative error in

this cases now reaches values between 20% and 30%.

Nevertheless, both models are still reasonably close,

which shows that the parameterization is useful even for

high slopes and at the calving fronts of ice shelves and

tidewater glaciers.

Since the constant-slope assumption will generally not

hold for realistic ice-shelf geometries, the next step is to
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investigate the performance of the parameterization for

varying slopes. Although this goes beyond the formal

assumptions behind its derivation, it is possible to eval-

uate (28) by inserting a varying slopea(X) directly in the

equations. Here, we consider four geometries: a convex

shelf (increasing a), a concave shelf (decreasing a), a

shelf with a periodically varying slope, and a shelf con-

sisting of two line segments with different slopes (abrupt

change in a). A comparison of the parameterization and

the full plumemodel for these cases is shown in Fig. 5. In

all cases, the parameterization still appears to give re-

sults close to the plume model, even though the scaled

plume model results can differ considerably from the

dimensionless curve M0(~x).

In particular, comparing Figs. 5a and 5d, we see that

both the height of themelting peak and the error here are

higher for the concave case, which starts with a high slope

at the grounding line, than for the convex case. Due to the

slope-dependent scaling in (28b), the melting peak is also

closer to the grounding line in the concave case. Though

the melting–freezing transition is almost perfectly pre-

dicted in both cases, a larger discrepancy remains in the

refreezing region of Fig. 5d. This could be explained by

considering that the discrepancies between the dynami-

cally evolving plume model and the parameterization are

typically higher in regions where the slope changes, be-

cause the plume model adapts more gradually to such

changes. Having these slope changes in the refreezing

region close to the inherent singularity at ~x5 1, as shown

in the concave case, will also contribute to these errors.

An interesting example is shown in Fig. 5g because the

parameterization remains close to the original plume

model despite the rapid slope changes over the entire

length of the ice shelf. This case clearly shows that high

melt rates are obtained locally where the slope is relatively

steep.Hence, although the dimensionless curveM0(~x) has

only one positive melting peak, the unscaled parameteri-

zation yields many melting peaks. These peaks are located

at the same positions as in the plumemodel, but the plume

model again adapts more gradually to the slope changes.

Therefore, the relative error in M0 is highest in regions

where the slope flattens, though this has only a minor im-

pact because the melt rates are small here. A similar be-

havior is shown in Fig. 5j for the abruptly changing slope.

As the slope suddenly increases, the parameterization

predicts a discontinuous jump in the melt rate whereas

the plume model adapts more gradually.

The examples above show that the parameterization

formulated in (28) agrees well with the original plume

model, not only for simple constant-slope geometries

but also for more complicated cases. Despite the pres-

ence of errors, which can be explained quite easily from

the assumptions in the derivation, the agreement ap-

pears good enough to apply the parameterization to

more realistic geometries.

b. Thermal driving and stratification

Next, we investigate the effect of the temperature and

the salinity of the ambient ocean water inside the ice-

shelf cavity. The thermal driving, that is, the tempera-

ture differenceTa 2Tf ,0 at the grounding line, is perhaps

the most important input variable determining the ab-

solute value of the melt rates in (28a). Figure 4 already

FIG. 4. Comparison of the basal melt rates obtained from (28)

(solid lines) and the full plume model (dashed lines) for different

idealized ice-shelf geometries with constant slope and uniform am-

bient properties (Sa 5 34:65 psu,Ta 521:98C). (a) Unscaled results.

(b) Scaled plume model results compared with the dimensionless

melt-rate curveM0(~x). The used geometries are reference geometry

(black) with zgl 521000 m and sin(a)5 0:002, steep geometry

(blue) with sin(a)5 0:003, flat geometry (cyan) with sin(a)5 0:001,

shallow geometry (red) with zgl 52500 m, deep geometry (green)

with zgl 522000 m, and [inset in (a)] vertical ice wall (gray) with

zgl 52500 m and sin(a)5 1. Note that in all cases the curves extend

up to the end of the ice-shelf base at sea level.
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FIG. 5. Comparison of the basal melt rates obtained from (28) (solid lines) and the full plume model (dashed lines)

for different idealized ice-shelf geometries with varying slope and uniform ambient properties (Sa 5 34:65 psu,

Ta 521:98C). (left) Unscaled results. (center) Scaled plume model result compared with the dimensionless melt-rate

curveM0(~x). (right) Draft of the used geometries: (a)–(c) convex, (d)–(f) concave, (g)–(i) periodically varying slope,

and (j)–(l) abrupt change in slope.
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showed that a deeper grounding line leads to a higher

melting peak because the freezing point Tf ,0 decreases

with depth. By varying the (still uniform) ambient tem-

perature Ta, keeping the geometry and other variables

fixed, we obtain the results shown in Fig. 6 for a constant

basal slope, as in Fig. 4. The results show the same

qualitative behavior and good agreement between the

parameterization and the plume model as in the pre-

vious section. The effect of increasing Ta is immediately

clear: the melt rates increase in the whole domain, while

the position of the melting peak (in the dimensional

sense) appears to shift to the right.WhenTa is sufficiently

high (in this case 21.48C), the region of refreezing dis-

appears and melting occurs in the entire domain. The

deeper reasons for this behavior are illustrated by the scaled

curves in Fig. 6b. All plume model results for the different

values of Ta lie along the same curve, but increasing Ta

causes the endpoint of the plume (indicated by circles

and corresponding to X5 500 km) to shift to the left.

Hence, the effect of increasing Ta in the parameteriza-

tion is twofold: in the dimensionless sense the range of ~x

decreases because a larger depth change would be re-

quired to compensate the higher thermal driving at the

grounding line (causing the refreezing region to disap-

pear), but in the dimensional sense the melt-rate scale

increases quadratically according to (28a). It also fol-

lows that the position of the ice-shelf front can corre-

spond to any value of ~x between 0 and 1 depending on

the ambient temperature, where ~x5 1 can only be ap-

proached if Ta is close to the surface freezing point

(section 2d).

The preceding results confirm that the parameteriza-

tion performs well compared with the plume model for

different uniform values of Ta. We now briefly comment

on the effect of uniform values of salinity Sa. This

quantity appears in the parameterization in the first

factor of (28a), as well as indirectly through the freezing

point Tf ,0 and the (small) parameter ct. In this sense,

it determines the initial strength of buoyancy on the

meltwater plume. Since absolute values of salinity vary

only slightly within a given region (e.g., a few percent

around 34 psu inAntarctica; see, e.g., Zweng et al. 2013),

the value of Sa used in either the parameterization or the

plume model will only have a very small effect on the

results, as long as it is assumed uniform. In other words,

the current, unstratified formulation of the parameteri-

zation can be used in regional simulations [e.g., Lazeroms

et al. (2018) for Antarctica] without a spatially varying

field for Sa, as the absolute values in this field will not

significantly affect the melt rates.

However, this does not hold when stratification (ver-

tically varying Ta and Sa) is taken into account. In fact,

stratification might be the most important phenomenon

that is absent in the derivation of section 2. In reality,

stratification causes plumes to detach from the ice-shelf

base when reaching levels of neutral buoyancy, leading

to new plumes that are uncoupled from the grounding-

line conditions. These form the well-known subshelf

melting modes described by Jacobs et al. (1992). As

shown by Jenkins (2011), the strength of the stratifi-

cation can be described by a stratification length scale

lr ;Dr/(›ra/›z), and determining the relative impor-

tance of stratification boils down to a comparison of lr
with the currently used freezing-point length scale l0.

The numerical results of Jenkins (2011) reveal an

interesting difference between Antarctic ice shelves

FIG. 6. Comparison of the basal melt rates obtained from (28) (solid lines) and the full plume model (dashed

lines) for varying but uniform ambient temperature Ta, uniform salinity Sa 5 34:65 psu, and a fixed ice-shelf ge-

ometry with constant slope. (left) Unscaled results. (center) Scaled plume model result compared with the di-

mensionless melt-rate curveM0(~x), with circles indicating the endpoint of the plume at X5 500 km. (right) Draft

of the used geometry.
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(l0 � lr) and Greenland fjords (l0 � lr), indicating

that stratification is typically less important for Ant-

arctica than for Greenland.

Formally, the current formulation of both the plume

model and the parameterization only describes the first

melting mode from the grounding line, but it is inter-

esting to evaluate the models for a nonuniform ambient

ocean and investigate their behavior. Figure 7 shows

the results of this evaluation for the same case as Fig. 6,

but with uniform Ta and vertically varying, stably strati-

fied Sa. First, note that all curves show roughly the

same behavior close to the grounding line, because the

grounding-line conditions (thermal driving and slope)

are equal. However, as the plume moves up toward

levels of lower Sa, it eventually reaches a point of

neutral buoyancy and the evaluation of the plume

model is stopped before the buoyancy changes sign.

These endpoints are again indicated in Fig. 7 by circles

(note that the true endpoints should be at _m5 0 when

extrapolated from the numerical results).

As far as the parameterization is concerned, Fig. 7

leads to the reassuring conclusion that it remains close to

the plume model in most of the evaluated domain, ex-

cept in the direct vicinity of the endpoint of the plume.

This can be explained by noting again that the absolute

value of Sa does not change significantly and has a neg-

ligible impact on the parameterization output. Near the

endpoint, the formulation of section 2 breaks down

in a way similar to the case of uniform ambient ocean

(cf. Fig. 3b). Nevertheless, it appears that the essen-

tially unstratified parameterization (28) can still be

applied in stratified environments if the position of the

endpoint can be identified and parameterized. A

detailed discussion of such an extension is beyond the scope

of thiswork, but estimates of the stratification length scale lr
and its impact on the plume model were given by Jenkins

(2011). In practical simulations, one might also consider

defining different uniform layers in the ice-shelf cavity

corresponding to the melting modes described by Jacobs

et al. (1992) and applying the current formulation

separately to each layer, similar to what was done by

Magorrian and Wells (2016) for near-vertical glaciers

terminating in a strongly stratified ocean.

c. Realistic flow line data

After investigating the effects of a changing slope and

changing ambient temperature separately in the afore-

mentioned idealized cases, we now turn to the evalua-

tion of the melt-rate parameterization for more realistic

geometries. Figure 8 compares the results from the plume

model and the parameterization for three different ice-shelf

geometries based onflow line data of FRIS (Bombosch and

Jenkins 1995), Ross ice shelf (Shabtaie and Bentley 1987),

and Pine Island Glacier (PIG; Crabtree and Doake 1982).

These results should be compared with those shown in

Lazeroms et al. (2018) for the same flow lines of FRIS

and Ross ice shelf using the qualitatively similar param-

eterization of Jenkins (2014), as discussed in section 2d.

Note that all cases shown in Fig. 8 have uniform am-

bient ocean properties Ta and Sa. Although it is techni-

cally possible to use depth-dependent profiles for these

quantities, such data is usually only available from

observations near the ice-shelf front and not within

the ice-shelf cavity, especially for the larger ice shelves.

Therefore, it is unclear if using such observed profiles

for Ta and Sa would give more realistic results. The

lack of ocean data within the cavities and the associ-

ated modeling issues were discussed extensively in

FIG. 7. As in Fig. 6, but for nonuniform ambient salinity Sa (stable stratification) and uniform ambient tem-

perature Ta 521:98C. The circles now indicate the variable endpoint of the plume model, which is integrated until

buoyancy changes sign. In all cases, the salinity equals 34.65 psu at X5 0 and decreases with vertical gradients

shown in the legend.
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Lazeroms et al. (2018). In that study, a two-dimensional

effective ocean temperature field was constructed by

inverse modeling, causing the modeled basal melt

rates to match area-averaged values from the obser-

vations by Rignot et al. (2013). Hence, we use this

constructed field to obtain characteristic values for Ta

for each ice shelf, yielding Ta 521:98C for FRIS and

Ross and Ta 521:08C for PIG. Furthermore, we take

Sa 5 34:65 psu as in the previous sections. It is im-

portant to stress that these ocean temperatures are

only effective values that yield a plausible order of

magnitude for the basal melt within the current mod-

eling framework, as many more details of the cavity

circulation (e.g., stratification, discussed in section 3b)

and the bathymetry are required to realistically model

Ta and Sa and the associated melt-rate profiles.

The results in Fig. 8 essentially combine the effects

of a varying slope shown in Fig. 5 into a much more

complicated profile. For both FRIS and Ross, the

parameterized melt rates closely agree with the results

of the full plume model. In particular, the FRIS profile

shows a transition from melting to refreezing which is

again perfectly predicted. The Ross profile remains

within the positive melt region and shows a slightly

better agreement between the plume model and the

parameterization, mostly due to the smaller slopes in

the ice-shelf base. On the other hand, the PIG profile

shows a considerable discrepancy betweenX’ 15 km and

X’ 40 km, partly caused by the very steep basal slope

at X’ 15 km (cf. the gray curve in Fig. 4) and partly

by the rather abrupt change in the slope, giving an

abrupt change in the parameterized melt rate as op-

posed to the more gradual behavior of the plume

model (cf. Figs. 5j–l). However, the parameterized

melt rate appears to ‘‘catch up’’ with the plume model

further along the path and the overall order of mag-

nitude remains comparable.

To indicate how themodeledmelt rates in Fig. 8 relate

to observations for these realistic ice shelves, we show

the averaged melt rates along the flow lines in Table 2,

comparing again the values obtained with the full plume

model and the analytical expression.Clearly, bothmodels

capture low melt rates for Ross, slightly higher melt rates

for FRIS, and relatively high melt rates for PIG, at least

for the chosen values ofTa. The same trend can be seen in

the area-averaged data of Rignot et al. (2013), although it

is problematic to give a direct comparison of these area

averages with the line averages presented here. Further-

more, we have assumed a monotonically increasing ice-

shelf base along the flow line, which is not always valid for

realistic geometries. For a more thorough discussion on

applying the parameterization to realistic 3D ice shelf

geometries, see Lazeroms et al. (2018).

Finally, we briefly comment how the region of influ-

ence of the neglected Coriolis forces can be estimated.

As discussed by Jenkins (2011), the validity of the plume

equations (1) is limited by the Ekman number rather

than the Rossby number, that is, friction remains more

important than rotation as long as the plume thickness is

smaller than the Ekman length. This was estimated by

Jenkins (2011) as D, 0:24C1/2
d U/[f cos(a)]. In this in-

equality, we can now substitute the analytical solutions

for D and U (appendix A), which leads to

[12 (12 ~x)4/3]1/2(12 ~x)22/3, 0:34
C1/2

d

f cos(a)

s
U
(h)

s
D

, (30)

where sU and sD are the dimensional scales of U and

D as determined from (10) and (19). Note that sU still

depends on the slope parameter h while the dependence

on t disappears from the ratio sU /sD. A quick analysis of

this inequality shows that for the typical values of h given

in Fig. 2 and for f 5 1024 s21, the maximum value of ~x

for which the inequality holds ranges from 0.2 (smaller

slopes) to 0.6 (higher slopes). Comparing this to Fig. 8, we

can conclude that rotational effects likely become im-

portant for larger shelves such as FRIS and Ross, but less

important for smaller shelves such as PIG. However,

close to the grounding line up to ~x’ 0:2 there is a general

region in which the Coriolis effect might be neglected.

4. Conclusions

We provided a systematic derivation of the basal

melt rate _m as a function of the scaled distance from the

grounding line ~x as obtained from the plume model of

Jenkins (1991) for constant basal slope and uniform

ambient ocean properties, using the simplified two-

equation model of McPhee (1992) for the ice–ocean

interface conditions. Mathematically, the derivation con-

sists of an asymptotic analysis of the governing plume

equations in the limit of small basal slope and small

initial buoyancy. The resulting equation (28) for the

basal melt rate consists of a melt-rate scale depending

on basal slope a and thermal driving t5Ta 2Tf ,0 and

multiplied by a dimensionless melt-rate functionM0(~x),

which is given by the compact expression in (26). The

vertical distance from the grounding line is scaled by the

length scale t/l3, governing the plume dynamics through

the pressure dependence of the freezing point and associ-

ated thermal driving, and multiplied by a slope-dependent

factor that incorporates some first-order effects, leading to

the coordinate ~x given by (28b). The dimensionless func-

tionM0 replaces the empirically derived polynomial curve

found by Jenkins (2014) and applied to all Antarctic ice

shelves in Lazeroms et al. (2018).

932 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49



The advantage of the current derivation is twofold.

First, it provides more insight into the main processes

governing the plume dynamics and the resulting basal

melt rate. The assumptions made to obtain the dimen-

sionless function M0 are arguably close to the minimal

requirements for the desired behavior in Fig. 4, showing

a positive melting peak close to the grounding line and a

possible transition to refreezing further down the plume

path.As shown in Lazeroms et al. (2018), this behavior is

needed to obtain more realistic melt-rate patterns com-

pared with simpler parameterizations currently used in

ice-sheet models.

Second, the expression forM0 in (26) is compact and

easier to implement in ice-sheet models than the original

empirical curve of Jenkins (2014) and Lazeroms et al.

(2018). The original curve is expressed as a polynomial

with 11 coefficients, whose 16-digit values should be

accurately copied to avoid an incorrect implementation.

The current formulation in terms of (26) would be rec-

ommended for a more robust implementation. It should

be noted, however, that both formulations are numerically

very similar, as Fig. 3 shows, and both formulations should

have a similar impact on practical ice-sheet model simu-

lations when implemented correctly.

FIG. 8. As inFig. 5, but for three realistic ice-shelf geometries along the flow lines of (a)–(c) FRIS, (d)–(f)Ross ice shelf,

and (g)–(i) PIG. Note that we used a different value for the ambient ocean temperature beneath PIG (Ta 521:08C),
deemed characteristic for the warmer waters in the Amundsen Sea. Circles indicate the endpoint of the plume.
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Furthermore, the numerical results in section 3 show

that the parameterization works well compared with

the full plume model (including the three-equation

model for the interface conditions) for various ice-

shelf geometries and ambient ocean conditions in the

regime where buoyancy dominates plume dynamics,

even though theoretically its derivation is only valid

for highly idealized cases. The largest discrepancies are

visible where the basal slope is locally large or rapidly

varying, due to the fact that higher-order terms in the

(constant) slope were neglected in the derivation, but

overall the parameterization remains close to the plume

model as the latter responds more gradually to slope

changes. Technically, the current formulation also breaks

down in the vicinity of the plume endpoint, caused by the

decrease of buoyancy and momentum close to ~x5 1.

However, this regime will likely not be reached for most

realistic ice shelf geometries, unless the ambient tem-

perature Ta is close to the surface freezing point (ex-

plained in section 2d and shown in Fig. 6) or the plume

detaches from the ice shelf due to stratification (Fig. 7).

One should also note that the original plume model (1)

might be less valid here due to the neglected Coriolis

forces and along-stream variations in buoyancy, as dis-

cussed in sections 2a and 3c.

In the case of stratified ambient water, an extension of

the current model to multiple uniform layers (Magorrian

and Wells 2016) might be necessary to account for de-

tached plumes and different melting modes, as briefly

noted in section 3b. Such an extension can be formulated

in terms of a stratification length scale lr, as discussed by

Jenkins (2011) and in section 3b. For strongly stratified

regimes, lr takes over the role of l0 as the dominant scale

determining the plume extent, an effect clearly shown

in Fig. 7. Another important process not present in the

current formulation is the effect of tidal currents.As shown

by, for example, Mueller et al. (2012), tidal forcing pro-

duces high melt rates near the calving front of ice shelves

in regions where the current model typically yields re-

freezing. The absence of this effect can also be seen in the

results of Lazeroms et al. (2018) for the larger ice shelves

when comparing these to observational data (e.g., Rignot

et al. 2013). Finally, we mention the subglacial discharge

of meltwater at the grounding line extensively discussed

by Jenkins (2011), which can significantly impact the

melt rates in the immediate vicinity of the grounding

line. Jenkins (2011) provided a similar parameterization

for this regime, but also showed that for typical ice

shelves the associated length scale is much smaller than

the length scale l0 considered here.

From a practical viewpoint, the current study only

focuses on the quasi-one-dimensional plume dynamics

along a single ice-shelf flow line with uniform ambient

ocean properties. Other aspects need to be considered

before the derived parameterization can be applied to

realistic three-dimensional ice-shelf geometries for use

in ice-sheet models. The two most important issues were

discussed extensively in Lazeroms et al. (2018), namely

the extension of the quasi-1D setting to 2D shelves and

the required oceanic forcing field. For the first issue,

Lazeroms et al. (2018) proposed a practical solution in

the form of an algorithm that searches for multiple

plume paths in each ice-shelf point and taking average,

effective values for both the grounding-line depth zgl
and the basal slope a in order to calculate the basal

melt rate in that point. Of course, this algorithm is not

unique and it is still uncertain how sensitive the

computed melt rates are to the method used to find

effective plume paths.

The second issue of finding a suitable ocean forcing field

might be more problematic, as observational data within

ice-shelf cavities are sparse. For this reason, Lazeroms

et al. (2018) constructed an effective temperature field from

extrapolated ocean data by constraining themodeled basal

melt rates to present-day observations from Rignot et al.

(2013). The resulting forcing field contains horizontal

variations in the ocean temperature (e.g., relatively

warmer waters in the Amundsen Sea as in Figs. 8g–i),

but it lacks information about seasonal variability and

vertical profiles. Hence, the proper way to model the

oceanic forcing needs to be investigated further. As a

next step, horizontal variations in the ocean conditions

could be incorporated by defining different coastal sec-

tors, each with its own effective temperature and salin-

ity. Vertical variations and stratification could then be

included by using themultiple uniform layersmentioned

previously. It should be pointed out that the method of

constructing an effective temperature by inversion of

themelt rates not only corrects for unknown temperature

data, but also intrinsic biases in the melt-rate parame-

terization itself. The resulting temperature field should

therefore be interpreted with care.

All in all, the current derivation of the basal melt pa-

rameterization is an important step in improving the de-

scription of ice–ocean interaction in ice-sheet models

without fully resolving the ice-shelf cavity circulations. Its

relatively simple formulation contains theminimal amount

of physics needed to obtain the spatial variations in the

TABLE 2. Modeled basal melt rates (m yr21) averaged over the

length of the flow lines shown in Fig. 8.

Ice shelf Plume model Analytical expression

FRIS 0.56 0.54

Ross 0.026 0.024

PIG 22.1 15.0
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melt rate between the grounding line and the ice-shelf

front that cannot be captured by simpler models.
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APPENDIX A

Solution in Terms of the Volume Flux u

Here we discuss how the dimensionless system of

equations (20) for ðD , U , R, T Þ can be reduced to a

single equation in terms of the volume flux u5DU . As

noted in section 2d, this variable is chosen because it has

several convenient properties, such as

du
dx

5U , (A1)

which directly follows from (20a). Furthermore, we can

combine (20b) and (20c) to express T in u:

T 5
1

U
d

dx
ðDURÞ5 1

U
d

dx

�
U3 1 dDU2 dU

dx

�

5 3U
dU
dx

1 d
dDU
dx

dU
dx

1 dD
�
dU
dx

�2

1 dDU
d2U
dx2

5 (31 d)u0u00 1 d
u(u00)2

u0 1 duu000

5 3u0u00 1O(d) ,

(A2)

where we have used primes to denote the x derivatives

ofu. It should be clear now that the assumption d,O(«)

made in section 2c is necessary to make the problem

manageable and avoid complicated terms with higher-

order derivatives of u. Note that we are neglecting the

term u(u00)2/u0, which might appear problematic for

u0 / 0, but as we will see this singularity drops out

whenever we multiply (4) with u0 and in particular at

x5 0 where we will obtain u; x3/2. Also note that (A1)

and (A2) already give us the required expression for the

dimensionless melt rate M in terms of u:

M5UT 5 3(u0)2u00 1O(d) . (A3)

The next step is to derive a single equation for u and

construct a solution. Equations (20c) and (20d) can be

combined in the following way:

d

dx
ðuRÞ5 d

dx
ðDURÞ5UT

5 (12 x)U 2DU2 «DU
dT
dx

5 (12 x)u0 2u

�
11 «

dT
dx

�
5

d

dx
½uð12 x2 «T Þ�1 «T u0

5
d

dx
½uð12 x2 «T Þ�1 3«(u0)2u00 1O(«d) ,

where we have inserted (A2) in the last line. This equa-

tion can be directly integrated using the initial condition

D 5U 5 0 at x5 0, that is, u(0)5u0(0)5 0:

uð12 x2 «T 2RÞ1 «(u0)3 1O(«d)5 constant5 0,

which together with (A2) yields

uR5u(12 x2 3«u0u00)1 «(u0)3 1O(«d) . (A4)

Finally, (20b) yields

uR5DUR5U3 1 dDU2dU
dx

5 (u0)3 1 duu0u00 ,

which after substitution of (A4) leads to the desired

equation for u:

(12 «)(u0)3 2u[12 x2 (3«1 d)u0u00]1O(«d)5 0,

(A5)

with initial conditions u(0)5u0(0)5 0, that is, zero flux

at the grounding line. It is interesting to note that these

initial conditions impose an inherent singularity in the

problem at x5 0 when trying to solve for u00 because
physically there is always a small nonzero meltwater flux

required to generate the plume. The current situation can

be considered as the limit in which this initial flux goes

to zero.

For simplicity, we can assume d5O(«2) instead of the

more general d,O(«) and focus on the small parameter

«. We can then construct an (approximate) analytical

solution to (A5) by using an asymptotic expansion:

u(x; «)5u
0
(x)1 «u

1
(x)1O(«2) . (A6)
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The zeroth-order equation for u0 is obtained by taking

the limit «/ 0 in (A5):

(u0
0)

3
5 (12 x)u

0
, u

0
(0)5 0, (A7)

again reducing the order of the system but with the con-

dition u0
0(0)5 0 implied by the equation. Equation (A7)

can be solved analytically by standard methods. For-

mally, we can obtain both positive and negative real-

valued solutions of (A7), as well as the trivial solution

u0(x)5 0. The occurrence of these different branches

can be understood by considering that (A7) holds in the

limit «/ 0, hence the limit of zero slope, in which there

is no longer a distinction between upward and down-

ward moving plumes. Hence, an additional causality

condition u0(x). 0 for 0, x, 1 is required to obtain

the true physical solution.

For 0# x# 1, the positive real-valued solution of (A7)

has the following form:

u
0
(x)5

1

2
ffiffiffi
2

p [12 (12 x)4/3]3/2 . (A8a)

From u0 we can directly obtain the expression for the

leading-order velocity:

U
0
(x)5u0

0(x)5
1ffiffiffi
2

p (12 x)1/3[12 (12 x)4/3]1/2 . (A8b)

Furthermore, the leading-order plume thickness, den-

sity difference, temperature difference andmelt rate are

given by

D
0
(x)5u

0
/U

0
5

1

2
(12 x)21/3[12 (12 x)4/3] , (A8c)

R
0
(x)5U2

0/D 0
5 12 x , (A8d)

T
0
(x)5 3u0

0(x)u
00
0(x)5

1

2

"
3(12 x)2

1

(12 x)1/3

#
, and

(A8e)

M
0
(x)5U

0
T

0 5
1

2
ffiffiffi
2

p [3(12 x)4/32 1][12 (12 x)4/3]1/2 .

(A8f)

Note that, since the expression for M0 is equivalent to

d[(u0
0)

3]/dx, the leading order balance (A7) simply ex-

presses the integrated meltwater flux (u0
0)

3 as a function

of the total plume volume flux u0. Their ratio (12 x) is

the volume fraction of meltwater within the plume, and

that determines the plume properties relative to the

ambient. Thus, the (12 x) term appears repeatedly in

the expressions for U0, D 0, and T 0, while the scaled

density differenceR0 is exactly equal to (12 x) because

it arises directly from the admixture of meltwater in the

plume. Adding stratification to the model likely changes

the latter expression so that it decreases to zero more

quickly, modifying the (12 x) terms in the other

expressions accordingly. Another interesting point is

that U0 includes (12 x)1/3, which is the analog of the

standard plume scaling (Jenkins 2011) in which the ve-

locity scales as the buoyancy flux to the third power.

Figure A1 shows u0, U0, D 0, R0, T 0, and M0 as

functions of x. These curves have several interesting

properties. At x5 0, we have u0 5D 0 5U0 5M0 5 0,

as desired, whileR0 5 T 0 5 1. Note that this alsomeans

that u00 and all higher derivatives are singular at x5 0,

since u0 5 0 but 3u0u00 5 1. This singularity is caused by

the fractional exponents present in (A8). In particular,

by applying the relation (12 x)n ’ 12nx to (A8a), we

obtain the asymptotic relations [up to O(1) prefactors]

u; x3/2, u0 ; x1/2, and u00 ; x21/2, revealing the singu-

larity in u00 at x5 0. A similar singularity is present at

x5 1, where u0 again goes to 0 and u00 to 2‘, but here
the product ofu0 andu00 is not sufficient to cancel out the
singularity, causing T 0 to go to2‘ as well. On the other

hand, the melt rate M0 is well behaved at x5 1, as the

singularity is cancelled in the product of (u0)2 and u00,
causing M0 to go to a finite value here.

To summarize, we have found a zeroth-order approx-

imation of the solution of (A5) and, as a direct conse-

quence, a closed expression for the melt-rate curve. This

solution is only valid for 0# x# 1 and contains inherent

singularities at x5 0 and x5 1 (although it remains pos-

sible to construct a second real-valued branch for x. 1,

this solution will not be physical because it represents

negative velocities). Near x5 0, the curves provide a

close approximation to the full solution (Fig. 3a), with

the desired behavior of the melt rate: a positive peak

near x5 0:2 and transition to refreezing further on.

The biggest discrepancy occurs around x5 1, where

the zeroth-order solution becomes singular, whereas the

full solution continues beyond x5 1 depending on the

value of «. Finally, note that the approximate solution

can potentially be improved by including the first-order

term u1 and using u’u0 1 «u1, which also depends on

«. The expression for u1 is

u
1
(x)52

1

24
ffiffiffi
2

p [12 (12 x)4/3]1/2 3 [32 3(12 x)1/3

1 3x(12 x)1/3 1 4 log(12 x)] , (A9)

which was found by substituting u’u0 1 «u1 in (A5),

collecting the O(«) terms, and solving the resulting

differential equation for u1 using computer algebra

software. It turns out that by using u1, the discrepancy
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between the approximate solution and the full solu-

tion indicated in Fig. 3a is improved in a large part of

the domain, including the position of the transition

point. However, the inherent singularity at x5 1 re-

mains in the form of the logarithmic term in (A9), and

no higher-order approximation is able to cancel it.

Physically, the singularity at x5 1 can be traced back

to neglecting the temperature gradient [see (20d) with

«/ 0]. A possible way to get rid of the singularity might

be a boundary layer around x5 1 where the temperature

gradient is taken into account at leading order. This is

discussed in appendix B.

APPENDIX B

Boundary Layer Solution around x = 1

In perturbation theory, boundary layers typically occur

in higher-order problems with multiple boundary condi-

tions, for which an asymptotic expansion [e.g., (16)] found

by standard methods turns out to satisfy only a subset of

these boundary conditions (see, e.g., Mattheij et al. 2005).

The most well-known example of such behavior is fluid

flow close to a solid wall or object, where a boundary

layer region close to the surface is required to adapt the

essentially inviscid outer flow to the viscous boundary

conditions at the surface. In other words, a straightfor-

ward asymptotic expansion in the limit of small viscosity

will fail close to the surface because viscosity becomes

dominant here.

A similar situation occurs in our asymptotic approxi-

mation of (20) and (23): in the limit of small «, we are

essentially neglecting the temperature gradient in (20d),

but this terms turns out to be dominant in a region around

x5 1, where our approximation appears to fail (see also

Fig. A1), not only in the zeroth-order term but in

higher-order terms as well. A possible solution might

be to consider a second asymptotic expansion in the

region around x5 1 (the boundary layer) where the

temperature gradient is not neglected.

In this case, a boundary layer solution can be found by

rescaling the distance as follows:

x5 11 «mj , (B1)

where «m is the (still unknown) boundary layer thickness

and j can have either positive or negative values. A first

guess of the behavior of the solution can be found by

substituting the rescaled x in (25) and expanding it in a

Taylor series around «5 0:

u
0
(11 «mj)5

1

2
ffiffiffi
2

p 2
3(2j)4/3

4
ffiffiffi
2

p «4m/3 1O(«8m/3) , (B2)

where (2j)4/3 should be interpreted as a positive real

number. We see that u0 tends to a finite value around

x5 1 (j5 0) for «/ 0, and the next term in the expan-

sion is of order «4m/3. Hence, we can try the following

ansatz for the behavior of u in the boundary layer:

u(x)5A
0
1 «4m/3Y

1
(j) , (B3)

with constant A0. This ansatz is substituted in (23) to-

gether with the rescaled x5 11 «mj. After some tedious

algebra and bookkeeping of the various terms, it turns

out that a meaningful balance in (23) that retains the

second-order derivative is achieved for m5 3/4. Hence,

we find a boundary layer thickness «3/4 and the new

approximation involving Y1 is simply a term of O(«).

Taking «/ 0 in the rescaled equation turns out to give

(Y 0
1)

3
52A

0
(j1 3Y 0

1Y
00
1 ) . (B4)

Comparing (B4) with (A7), we see that there is indeed

an additional term Y 0
1Y

00
1 related to the temperature dif-

ference. Through (A1)–(A3), it is straightforward to show

that the leading-order velocity in the boundary layer is

equal to «1/4Y 0
1 and the leading-order temperature dif-

ference is equal to 3«21/4Y 0
1Y

00
1 . Hence, the leading-order

melt rate is again the product of the two, 3(Y 0
1)

2
Y 00

1 .

In principle, one can now solve (B4) for Y 0
1. This will

add an additional degree of freedom [e.g., Y 0
1(0)5A1]

because the boundary conditions of this equation are

still unknown. Together with the still unknown constant

A0, this gives two degrees of freedom (a third degree

of freedom is obtained when integrating Y 0
1 to find Y1).

In theory, suitable values of A0 and A1 could be found

by matching the boundary layer solution with the outer

solution u0 [(25)] in the overlap region. Unfortunately,

(B4) has no analytical solution, so this exercise can only

be done numerically. Fig. B1a shows an example of a

FIG. A1. Zeroth-order solutions for volume flux u0, velocityU0,

temperature difference T 0, melt rate M0, density difference R0,

and plume thickness D 0 given by (A8).
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numerical matching for «5 0:005, which also uses the de-

rivative of u1 given by (A9). Clearly, the boundary layer

solution exists in a small region around x5 1 and causes the

velocity to go to zero at a new endpoint x5 11O(«3/4). As

« goes to zero, the endpoint will move closer to x5 1 and

the solution closer to the outer solutionu0. In this particular

case, it appears possible to match the boundary layer

solution with the first-order outer solution in an overlap

region around x5 12O(«3/4).

The previous discussion provides more theoretical

insight in the solution of (23), especially around x5 1

and in the limit «/ 0. It also sheds more light on the

analytical solution presented in section 2d and the rea-

sons why it is valid in a large part of the domain, except

around x5 1. Although it is theoretically possible to

match the boundary layer solution with the outer

solution, this does not directly provide a practical im-

provement for the melt-rate curve given by (26), because

(B4) cannot be solved analytically. Furthermore, we ex-

plained in section 2d why the region around x5 1 has

only a very limited physical meaning in practical simula-

tions. However, we can make use of the boundary layer

scaling found in the aforementioneddiscussion, as it follows

that the endpoint of the plume scales as x5 11O(«3/4).

This suggests the ad hoc correction in (27) aimed at

constraining x to values between 0 and 1, which indeed

improves the agreement between the curves in Fig. 3.

Not directly captured in this way is the behavior of the

melt rate in the boundary layer, where it decreases until

reaching zero at the endpoint of the plume (Fig. B1b).
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