
Northumbria Research Link

Citation: Reichert, Tim (2011) A Pattern-based Foundation for Language-Driven Software
Engineering. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
https://nrl.northumbria.ac.uk/id/eprint/4385/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

Northumbria Research Link

Citation: Reichert, Tim (2011) A Pattern-based Foundation for Language-Driven Software
Engineering. Doctoral thesis, Northumbria University.

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/4385/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

http://nrl.northumbria.ac.uk/policies.html

A PATTERN-BASED FOUNDATION FOR
LANGUAGE-DRIVEN SOFTWARE

ENGINEERING

TIM REICHERT

A thesis submitted in partial fulfilment
of the requirements of the

University of Northumbria at Newcastle
for the degree of

Doctor of Philosophy

Research undertaken in the
School of Computing, Engineering

and Information Sciences

August 2011

Abstract

This work brings together two fundamental ideas for modelling, programming and ana-
lysing software systems. The first idea is of a methodological nature: engineering software
by systematically creating and relating languages. The second idea is of a technical nature:
using patterns as a practical foundation for computing. The goal is to show that the sys-
tematic creation and layering of languages can be reduced to the elementary operations of
pattern matching and instantiation and that this pattern-based approach provides a formal
and practical foundation for language-driven modelling, programming and analysis.

The underpinning of the work is a novel formalism for recognising, deconstructing,
creating, searching, transforming and generally manipulating data structures. The formal-
ism is based on typed sequences, a generic structure for representing trees. It defines basic
pattern expressions for matching and instantiating atomic values and variables. Horizon-
tal, vertical, diagonal and hierarchical operators are different ways of combining patterns.
Transformations combine matching and instantiating patterns and they are patterns them-
selves. A quasiquotation mechanism allows arbitrary levels of meta-pattern functionality
and forms the basis of pattern abstraction. Path polymorphic operators are used to specify
fine-grained search of structures. A range of core concepts such as layering, parsing and
pattern-based computing can naturally be defined through pattern expressions.

Three language-driven tools that utilise the pattern formalism showcase the applica-
bility of the pattern-approach. Concat is a self-sustaining (meta-)programming system
in which all computations are expressed by matching and instantiation. This includes
parsing, executing and optimising programs. By applying its language engineering tools
to its own meta-language, Concat can extend itself from within. XMF (XML Modeling
Framework) is a browser-based modelling- and meta-modelling framework that provides
flexible means to create and relate modelling languages and to query and validate models.
The pattern functionality that makes this possible is partly exposed as a schema language
and partly as a JavaScript library. CFR (Channel Filter Rule Language) implements a
language-driven approach for layered analysis of communication in complex networked
systems. The communication on each layer is visible in the language of an “abstract pro-
tocol” that is defined by communication patterns.

i

Contents

1 Introduction 2
1.1 Problem Description . 2
1.2 Background . 3

1.2.1 Computing with Patterns . 3
1.2.2 Language-Driven Software Engineering 4
1.2.3 Challenges and Guiding Principles 6
1.2.4 Concatenative Programming . 7

1.3 Methodology: Language Layering . 9
1.4 Hypothesis and Approach . 13
1.5 Scientific Contribution and Novelty . 14
1.6 Relevant Publications . 15
1.7 Overview . 16

2 Related Work 18
2.1 Pattern Matching . 19
2.2 Program Transformation Systems . 21
2.3 Pattern Calculus . 22
2.4 Uniform and Homoiconic Languages . 23
2.5 Recognition Systems . 24
2.6 Language-Driven Approaches . 27
2.7 Concatenative Programming . 29
2.8 Self-Sustaining Systems . 29
2.9 XML Validation and Manipulation . 30
2.10 Layered Analysis and Protocol Re-Engineering 31
2.11 Conclusions . 31

3 Pattern Core 32
3.1 Fundamentals . 33

3.1.1 Data Language . 33

ii

CONTENTS

3.1.2 Pattern Language . 34
3.1.3 Operational Semantics . 37

3.2 Matching Semantics . 38
3.2.1 Helper Functions . 39
3.2.2 Fundamental Pattern Expressions 40
3.2.3 Hierarchical Matching . 43
3.2.4 Horizontal Matching . 44
3.2.5 Vertical and Diagonal Matching 47

3.3 Instantiation Semantics . 51
3.3.1 Fundamental Pattern Expressions 51
3.3.2 Hierarchical Instantiation . 53
3.3.3 Horizontal Instantiation . 54
3.3.4 Vertical and Diagonal Instantiation 55

3.4 Transformations and General Purpose Patterns 55
3.4.1 Unconditional Transformations 55
3.4.2 Definition of General Purpose Patterns 56

3.5 Path Polymorphic Matching . 57
3.5.1 Finding Instances of a Pattern in a Sequence 58
3.5.2 Finding or Replacing All Instances 58
3.5.3 Traversing Hierarchical Structures 58

3.6 Meta-Patterns . 59
3.6.1 Pattern Representation . 59
3.6.2 Patterns on the Data Level . 60
3.6.3 From Data to Pattern Level . 60
3.6.4 Quasiquotation . 61
3.6.5 Partial Instantiation and Pattern Refinement 69

3.7 Pattern Abstraction . 70
3.7.1 References . 71
3.7.2 Statically Parameterised References 71
3.7.3 Dynamically Parameterised References 72

3.8 Summary and Conclusions . 74

4 Towards Pattern-based (Meta-)Programming 75
4.1 Motivation . 76
4.2 Pattern-based Rewriting Systems . 76

4.2.1 From Transformations to Rewriting Systems 77
4.2.2 Subterm Rewriting Strategies 78

iii

CONTENTS

4.2.3 Purely Concatenative Rewriting Systems 81
4.2.4 Concatenative Rewriting with Patterns 82

4.3 Computing with Patterns . 84
4.3.1 Formalising Pattern-based Computing 84
4.3.2 Conditional Transformations . 84

4.4 Parsing and Unparsing with Patterns . 88
4.4.1 Unifying External and Internal Representation 88
4.4.2 Grammar as Meta-Patterns . 88

4.5 Staged Processing and Views . 90
4.5.1 Internalisation, Computation and Externalisation 90
4.5.2 Staging as Vertical Combination 90
4.5.3 Structural View Abstraction . 91
4.5.4 Extensible Syntax for Programs and Data 93
4.5.5 Extensible Syntax for Patterns 95
4.5.6 Temporal Views on Computations 96

4.6 Elliptical Patterns: A Practical Extension 98
4.6.1 Matching Semantics . 99
4.6.2 Instantiation Semantics . 102

4.7 Summary and Conclusions . 104

5 Language Engineering with Concat 106
5.1 Syntactic Framework . 107

5.1.1 Typed Sequence Notation . 107
5.1.2 Syntactic Layering . 108
5.1.3 Unified Program Representations 110
5.1.4 Standard Notation for Patterns 110

5.2 Concepts of Core Concat . 112
5.2.1 Abstracting Patterns with Productions 112
5.2.2 Creating Syntactic Interfaces with Views 114
5.2.3 Defining Semantics with Operations 115
5.2.4 Program Transformation with Macros 118
5.2.5 Pattern Matching with Concrete Syntax 120

5.3 Case Study: Implementing Combinatory Logic 121
5.3.1 Definitions . 121
5.3.2 Basic Implementation . 123
5.3.3 Concrete Syntax for SKI Terms 125
5.3.4 Concrete Syntax for Operations on SKI Terms 128

iv

CONTENTS

5.4 Language Layering in Concat . 130
5.5 Metacircular Implementation . 133

5.5.1 Implementation Alternatives . 134
5.5.2 Internalising the Pattern Language 136
5.5.3 Implementing Pattern Operators 138

5.6 Summary and Conclusions . 140

6 XMF: A Pattern-based (Meta-)Modelling Framework 142
6.1 Meta-Architecture . 143

6.1.1 The UML Meta-Architecture . 143
6.1.2 A Pattern-based Meta-Architecture 145

6.2 XMF Overview . 147
6.2.1 Defining Models, Meta-Models and Views 147
6.2.2 User Interface . 149

6.3 The XPLT Language . 150
6.3.1 XPLT Patterns . 150
6.3.2 Transformation Engine . 154

6.4 Modelling with XMF . 157
6.4.1 Model Representation . 157
6.4.2 Relationships between Models 160

6.5 Creating Modelling Languages . 160
6.5.1 Internal XML Representation 161
6.5.2 Display Views . 162
6.5.3 Edit Views . 162

6.6 Relationships and Constraints . 164
6.6.1 Defining Intra- and Inter-Model Constraints 164
6.6.2 Interactive Modelling . 167

6.7 Summary . 168

7 Analysing Communication Systems 170
7.1 Complexity in Automotive Networks . 171

7.1.1 Protocols, Layering and Underspecification 171
7.1.2 Underspecification: An Example 173

7.2 Abstract Protocols and Complex Scenarios 175
7.2.1 Abstract Protocols . 175
7.2.2 Complex Scenarios . 176

7.3 Defining Layers with CFR Models . 177

v

CONTENTS

7.3.1 Channels, Filters and Rules . 177
7.3.2 Models, Abstraction and Interpretation 178
7.3.3 Example: A CFR Model for the Notification Protocol 179

7.4 Pattern-based Formalisation . 180
7.4.1 Messages and Channels . 180
7.4.2 Message Filters . 181
7.4.3 Communication Rules . 182
7.4.4 Application to the Notification Protocol 183

7.5 Applications . 185
7.5.1 Specifying and Monitoring Complex Scenarios 185
7.5.2 Reproducing Complex Scenarios for Test Automation 187
7.5.3 Relevance for Different Stages of the Development Process 187

7.6 A DSL for Protocol Re-Engineering . 188
7.6.1 Syntax and Semantics . 189
7.6.2 Implementation . 191

7.7 Summary and Conclusions . 193

8 Conclusions and Future Research 195
8.1 Review of Key Pattern Concepts . 195
8.2 Language Creation and Layering . 198
8.3 Limitations . 200
8.4 Final Evaluation of the Hypothesis . 201
8.5 Future Research . 202

vi

List of Figures

1.1 Interface Refinement as a Commuting Diagram 10
1.2 Language Layering . 12

2.1 Binary Tree Example . 19

3.1 Data Language . 33
3.2 Illustration of Horizontal Matching . 45
3.3 Illustration of Vertical and Diagonal Matching 48

4.1 Illustration of the Abstract Machine’s Rule Core 79

5.1 Syntactic Framework for Programs . 107
5.2 Parse Tree for SKI Terms . 127
5.3 Black-Box View on Reduction of an SKI Term 130
5.4 Internal Reduction of an SKI Term . 131
5.5 Layered Computation of an SKI Term 131
5.6 Extending the Meta-Language with SKI Syntax 133

6.1 Two Competing Presentations of the 4-Level Meta-Architecture 143
6.2 Alternative Presentation of the UML Meta-Architecture 144
6.3 A Pattern-based Meta-Architecture . 147
6.4 Models, Views and the User Interface 148
6.5 Screenshot of XMF . 150
6.6 HTML User Interface for Displaying and Editing Classes 158
6.7 HTML User Interface for Displaying Relationships 159

7.1 Typical Communication Context in a Modern Automotive Network 172
7.2 Protocol Abstraction: Defining an Abstract Notification Layer 174
7.3 Relating Abstract Protocol Layers . 179
7.4 Two Scenarios based on the Adaptive Brake Light Use Case 186
7.5 Identification of Possible Application Areas using the V-Model 188

vii

LIST OF FIGURES

7.6 CFR Model for the Notification Example in Visual Notation 190
7.7 Partial Meta-Model of CFR . 191
7.8 CFR Implementation Overview . 192
7.9 Screenshot of the Editor Prototype . 193

viii

Source Code Listings

1 Basic Rewriting System Algorithm . 78
2 Subterm Rewriting System Algorithm 80
3 Examples of Productions . 113
4 View Definition for Rational Numbers 115
5 Basic Sequence Operations . 116
6 Mapping over Sequences in Concat . 117
7 Example for using Typed Sequences in Operations 118
8 Example of an Internalisation Macro . 119
9 Example of a Computation Macro . 120
10 Concrete Syntax Manipulation of Strings 121
11 Reduction in the SKI Combinator Calculus 123
12 Derivation in the SKI Combinator Calculus 124
13 Grammar for Internalising SKI Terms 126
14 Grammar for Externalising SKI Terms 128
15 Defining the Meta-Language Syntax for SKI Variables 129
16 Reduction and Derivation in Concrete Syntax 130
17 Sequential Matching (Compilational Approach) 134
18 Schema for Match and Instantiate Implementation 135
19 Pattern Language Grammar in Concat (excerpt) 137
20 Internalising Definitions of Operations 138
21 Metacircular Implementation of Sequential Instantiation 139
22 Metacircular Implementation of Unconditional Transformations 139
23 Constraints for InstanceOf Relationships 166
24 Request/Reply Message Format . 180
25 Definition of Message Filters . 181
26 Definition of Communication Rules and Channels 182
27 Pattern-based Definition of the Notification Layer 184

ix

List of Tables

3.1 Pattern Language . 35
3.2 Overview of the Notation . 38

4.1 Execution Scheme for Conditional Transformations 85
4.2 Pattern Definitions for the natListV iew Example 92
4.3 Internalising an Alternative Syntax for Typed Sequences 94

5.1 Layers of Syntax in Concat . 109
5.2 Concrete Syntax for Pattern Expressions 111
5.3 Rules of the SKI Calculus . 122

x

Acknowledgements

My deepest gratitude goes to my external supervisor, mentor and friend Prof. Dr. Do-
minikus Herzberg. I am forever indebted to him for his unwavering support through all
the ups and downs, for sharing with me his deep insights into informatics and for always
being there when I needed his help. Without Dominikus, this document would not exist.

I am very grateful to Dr. Nick Rossiter, my supervisor at Northumbria University, who
gave me the chance to do highly interesting research, supported me throughout the years
and gave valuable feedback on a draft of this thesis. Prof. Dr. Ahmed Bouridane, Prof. Dr.
Maia Angelova and David Livingstone at Northumbria University were very supportive
at different stages of my project and I am very thankful for that.

During active research and write up, I could always rely on the sharp mind of my
friend and great software engineer Robert Skarwecki to produce tremendously valuable
feedback on all levels, from big picture stuff to source code details and wording issues.
Thank you so much for all the unbilled hours you spent on my project ;)

When studying Software Engineering at Heilbronn University, I became deeply inter-
ested in programming languages and the “big” questions in computing. After graduation,
it was Prof. Dr. Nicola Marsden who encouraged me to follow my passion and who helped
me with finding a suitable PhD programme. I am deeply grateful to her for all the support
she gave me over the years.

Aaron Müller, Florian Eitel, Wolfgang Schoch and Edmund Klaus helped validate
and inspire my own research on Concat and CFR through their excellent bachelor and
diploma thesis work. Manuel Sontag and Markus Willinger gave useful comments on a
draft version of this document. Benjamin Sommerfeld assisted me with proofreading.

For support in the form of scholarships, I would like to thank the Robert Bosch Foun-
dation, Gustav Berger-Stiftung and Thomas Gessmann-Stiftung. The XMF project was
partially funded by the Ministry of Education Baden Württemberg, Germany.

Socialising with a PhD student can be quite tough, as my family and friends have
experienced over the years and especially in the last few months. All the more I would
like to thank all of you for the love and support I received.

1

Declaration

I declare that the work contained in this thesis has not been submitted for any other award

and that it is all my own work.

Name: Tim Reichert

Signature:

Date: 24 August 2011

Chapter 1

Introduction

This PhD thesis combines two fundamental ideas for modelling, programming and ana-
lysing software systems. The first idea is of a methodological nature: engineering software
by systematically creating and relating languages. The second idea is of a technical nature:
using patterns as a practical foundation for computing. The result is a unified approach to
software engineering that methodologically and technically scales from machine language
to user interface. The research described in this thesis is both theoretical and practical. It
formally defines a core of pattern functionality and a precise notion of language layer-
ing and then applies this foundation by creating three tools: a sustainable programming
framework for experimenting with language designs, a web-based meta-modelling envi-
ronment and a protocol language for analysing modern automotive networks in layers of
languages.

1.1 Problem Description

Millions of lines of source code that are hard to maintain and out of date with respect to
the newest implementation technologies appear to be a quasi-standard in large software
projects [96]. Language-driven approaches to software engineering promise a drastic re-
duction in program size, more readable code and less platform-dependence [30, 35, 149].
The key to achieve this is a shift of focus in software development from programs to
languages [49, 50]. Software engineering becomes an activity driven by the quest for the
“right” means of expression [61]. While this view on software engineering has gained
prominence in recent years and several approaches exist that can be called language-
driven, there is still a need for a solid foundation for language-driven engineering.

Patterns are a promising candidate for providing this foundation. Pattern matching has
been studied for a long time in different fields of computer science, see Chapter 2. Re-

2

1.2 Background

cently, patterns have been investigated as a practical foundation for programming [9, 89].
This thesis is an attempt to capture the essence of Language-Driven Software Engineering
(LDSE) and to define a pattern-based foundation for LDSE that is both formally sound
and useful in practice.

Combining the unifying power of patterns and the unifying power of languages pro-
mises to bridge a wide gap between the theoretical possibilities and practical actualities of
the software field. Theoretically, computing can be captured by a few deduction rules of a
calculus [33] and the ability to create abstractions based on other abstractions is a source
of nearly unlimited expressive power [1, 22, 51]. Practically, mainstream programming
languages require hundreds of pages of specifications [60] and applications consist of
vast amounts of unreadable and redundant source code [92, 149].

1.2 Background

This section provides an introduction to the core concepts underlying the thesis and dis-
cusses challenges for supporting a language-driven approach.

1.2.1 Computing with Patterns

Patterns play an important role in different fields of computing [166]. Regular expres-
sions use patterns for manipulating text [158]. Functional programming languages con-
struct and deconstruct algebraic data types and express conditional execution with patterns
[122]. Logic programming languages use patterns – terms with variables – and their uni-
fication to query knowledge bases and for implementing deduction [153]. Pattern-based
schema languages for XML restrict valid documents to those that match the schema [126].

The defining property of patterns is that they describe operations on particular data
structures, e.g., strings, algebraic types, terms and XML documents, in a declarative man-
ner. Patterns mix elements of a data language with elements of a meta-language to define
these operations. The simplest patterns are expressions of the data language, i.e., patterns
that do not contain meta-language elements. More interesting are patterns that intersperse
data language expressions with variables. More expressive power is provided by patterns
that use operators to express optionality, recurrence or alternatives of patterns in a struc-
ture [178]. Pattern operators can be used to define deeper concepts such as traversing,
transforming or querying data [9]. Ultimately, the amount of expressive power and con-
trol a pattern language requires is application-dependent.

The declarative nature of patterns allows their interpretation in different ways. Recog-
nition uses a pattern to validate that data corresponds to a schema. Matching combines

3

1.2 Background

recognition with decomposition of structures through variable bindings. Instantiation cre-
ates data structures based on a pattern and variable bindings. Pattern-based transformation
is defined by first matching a pattern that is the source of the transformation and then in-
stantiating a pattern that is the target of the transformation. Querying a structure with
patterns involves searching for occurrences of a pattern along paths in the structure. Re-
fining patterns involves replacing a subset of meta-elements with data elements.

It shall be noted that in software engineering the term pattern is also used in a different
sense, namely in the context of design patterns [57]. Design patterns are reusable solutions
to common problems in designing and programming systems. In contrast to that, the pat-
terns in this work are expressions in a pattern language that are interpreted as operations
on data structures.

1.2.2 Language-Driven Software Engineering

Meta-linguistic abstraction – the creation of new languages through the use of existing
ones – is a recognised principle for controlling complexity in engineering [1]. Through-
out science, engineering and mathematics, specialised languages are used and invented
to tackle problems more efficiently; examples include architectural diagrams, electric cir-
cuit models and logics [50]. Specialist terminology is introduced constantly in natural
language to make communication effective and efficient. In software development, the
systematic creation and use of languages by engineers is still not an established prin-
ciple. This is surprising to some degree, as software engineering is inherently concerned
with language: all software is description based on language. This includes programs and,
therefore, also compilers and interpreters. In a wider sense, it includes all communication
with a computer or between computers via a syntactic interface.

Software engineers have the power to not only invent but also implement languages.
In the early days of computing, it was necessary for engineers to manually translate to
machine language solutions expressed in natural language, mathematics or through dia-
grams. The introduction of high-level languages abstracted practical computing from the
computer itself. Programming in a high-level language does (at least in theory) not require
knowledge about the underlying machine, machine code being executed and the relation-
ship between expressions and machine code. The general principle is that of hiding the
actualities of a system behind a syntactic interface and to substitute them for a conceptual
model that explains the system behaviour.

This approach scales because a language resulting from the abstraction process can be
utilised to implement a new language that again provides its own conceptual model [177].
The principle can be illustrated using the example of one general purpose programming

4

1.2 Background

language implementing another: a functional programming language implemented using
a compiler to machine code abstracts from the actual machine. Users of the language
think in terms of a conceptual model of functions and their application to arguments.
Using this language to implement an object-oriented language again abstracts from this
implementation and replaces it with a model of objects sending messages [59].

The abstraction principles just described are powerful in the sense that every new
language not only introduces its own notation, but also its own way of thinking [7]. A
syntactic interface must be designed in such a way that it reflects the conceptual model
and not the actual implementation. For example, if objects are implemented as dispatch
tables [123], this detail must not be visible at the syntactic interface.

The need to find suitable software languages is not limited to programming. Modern
software systems are more and more interconnected and communicate using different
protocols. This is true not only for personal computers and mobile devices but also for
embedded systems. For example, modern cars contain up to 100 microcomputers that
communicate via several bus systems [23]. The communication behaviour exposed by
these systems is complex. Analysing this behaviour in a meaningful way requires means to
render it in a language that reflects how application developers think about the problems.

What distinguishes language abstractions from other abstraction techniques, e.g., pro-
cedural or object-oriented, is the focus on the syntactic interface and the ability to create
conceptual models (execution models) independent of an implementation language. The
concept of language also has associated with it a larger scope than that of function or
object. By applying meta-linguistic abstraction to the creation of software, engineers can
build languages that reflect the way they think about (parts of) a system and that – at
the same time – are executable. This also blurs the boundaries between programming
languages and user interfaces [84]: the system itself becomes the implementation of the
language with its user interface being the syntax. The creation of a system can, therefore,
be understood entirely in terms of creating and relating languages.

The overall goal of introducing new languages is to provide engineers with the most
suitable means for creating, viewing and exploring a system [148]. What the most suitable
language is depends on the particular system. This entails that new languages have to be
created constantly using a combination of existing ones. All these observations lead to
a view on software engineering that not only emphasises the importance of language but
also considers the constant creation of new languages as the driving force of development.
Software engineering becomes language engineering and thus is language-driven.

This work defines language layering (Section 1.3) and patterns as the methodological
and technical foundation for LDSE and introduces tools for engineering languages buillt
upon this foundation. In Section 2.6, several existing approaches that can be considered

5

1.2 Background

language-driven will be discussed and contrasted to this work. All these approaches make
the constant creation of new computer languages with the goal of achieving better means
of expression a central theme and provide necessary methodologies and tools. Examples
include Language-Oriented Programming [177] and Generative Development [35].

1.2.3 Challenges and Guiding Principles

One of the great challenges for realising a language-driven approach is the provision of
tools for creating and relating languages. Key requirements are means for defining syntax
and dealing with syntactic ambiguities. At the same time, the tools have to be highly
flexible and must not unnecessarily restrict freedom of expression, e.g., by defining strict
syntactic boundaries. Mainstream programming languages are not designed to be such
tools. They are based on a design philosophy that strictly separates between language-
and user-abstractions and, therefore, between language designer and language user.

While it is theoretically possible to introduce new languages by creating an interpreter
or compiler [110], this approach is impractical when new languages are created, related
and combined constantly, as in LDSE. Research on Domain-Specific Languages (DSLs)
[163] has provided numerous examples of how expressive specialised computer languages
with their own syntax and semantics can be and how generative techniques can be used
to implement them [35]. However, the ability to create DSLs alone is not what LDSE is
about. A language should not be a dead-end, but a tool that can be used to create new
languages based on it [61].

Systems that are highly flexible may provide guiding principles for implementing
language-driven tools. Examples are Smalltalk [59], Lisp [61] and Forth [21]. While these
languages are not widely used in mainstream programming, the mere fact that after 30-
50 years they are still in use and have the ability to adapt to new paradigms is a sign
that they have strong means to sustain themselves [56]. The design philosophy behind
these systems is to provide a small kernel of powerful abstractions and strong means of
extensibility. This approach can also be applied to development environments and appli-
cation software: Squeak, a Smalltalk IDE (Integrated Development Environment) written
in Smalltalk, provides highly flexible means for evolution from within [85]. TEX [106],
a typesetting system designed by Donald E. Knuth in the 1980s, provides a high level of
typesetting quality and is widely used in academia and publishing. TEX is based on a lan-
guage kernel with primitives for typesetting and it can be extended via its macro system.
Besides bug fixes, the TEX kernel has been kept stable for almost 30 years. Nonetheless,
the system adapted constantly via its macro system to growing demands and new tech-
nologies.

6

1.2 Background

Another design principle that provides a promising model for how to implement
language-driven systems can be found in the telecommunications domain. Telecommu-
nication systems are among the largest, most reliable and scalable systems that have ever
been built [71]. It is a well known fact that telecommunication systems, like computer
networks, are designed in layers [69]. The protocols which are used on each layer con-
stitute a language. This enables engineers to view the operation of a system at different
levels of abstraction through different forms of expression. A key design principle is that
the encodings of these languages in the form of protocols have to be conflict free [68].
Applying layering does not necessarily mean defining ever higher levels of abstraction.
It rather ensures that communication is at the right level of abstraction, i.e., the level of
abstraction that reflects how an engineer thinks about a system.

1.2.4 Concatenative Programming

Recently, concatenative programming languages have been attracting research interest
because they provide a particularly small core of primitive functionality and a simple, yet
powerful, extension mechanism [45, 70]. Programs are formed by concatenating smaller
programs based on a set of primitive programs. The only abstraction mechanism is that
of associating an atomic program with a program that is its implementation; there are
no variables involved. Concatenative programming can be seen as a purely functional
version of stack programming [169]. Programs denote functions and the concatenation
of programs denotes the composition of the respective functions they denote. Primitive
programs of a concatenative language are literals and operations that re-arrange data.
The same notation is used for programs and data. The functions denoted by literals and
operations map a sequence rather than individual elements.

For example, the program dup maps a sequence with at least one element to a copy of
that sequence in which the last element of the original sequence is duplicated. Although
not entirely correct with regards to the functional semantics, it is nonetheless intuitive
to think of the behaviour dup in an imperative manner, i.e., to state that dup duplicates
the last element in a sequence. Accordingly, the program drop removes the last element
and swap re-arranges the order of the last two elements in a sequence. Literals, such as
numbers and strings, append their representation to a sequence. For understanding the
execution of a compound program, it is useful to think about its execution in terms of the
individual programs it consists of. For instance, the result of the concatenative program
1 2 drop can be determined by applying the functions denoted by individual program
parts to an initially empty sequence in the order in which they appear in the program. The
literal 1 denotes a function that appends 1 to a sequence. Given the empty sequence [],

7

1.2 Background

the result of 1 is [1]. Applying the function denoted by 2 to this result yields [1 2]

and subsequently applying drop yields [1].
Because programs and data have the same representation, appending the elements

of the current result sequence and the remaining program always results in a valid pro-
gram and applying the function denoted by that program to an empty sequence always
produces the same result as applying the function denoted by the remaining program
to the current result sequence. In other words, the execution state can always be repre-
sented by a program. This makes program rewriting of concatenative programs partic-
ularly easy [170]. Literals remain in place and the leftmost operation in the program is
applied to the data sequence proceeding it. For example, the execution of the program
1 2 3 drop swap dup consists of a sequence of steps that define the application of
the leftmost operation to data. The first step is the application of drop which produces
the new state 1 2 swap dup. Next, swap is applied which results in state 2 1 dup.
The application of dup produces the final state 2 1 1. In effect, the literals before the
leftmost operation in the program serve as a stack.

Given a primitive program * that multiplies two numbers, a program that calculates
the square of a number can be defined by concatenating the program dup with the pro-
gram * to form the new program dup *. The square program is abstracted by the defi-
nition square = dup *. The program square is atomic, because it is not formed by
concatenating other programs, i.e., it consists of a single element. It is, however, not prim-
itive, as its behaviour can be expressed by program dup *. Indeed, the semantics are that
every occurrence of square can be replaced with dup *. Accordingly, the execution of
program 3 square consists of the state 3 dup *, the state 3 3 * and the final result
9. The basic idea is to replace all atomic, non-primitive programs with their definition,
until the resulting compound program consists of primitive programs only. The resolution
process entails that the order of individual programs in the program text of a compound
program is transferred to the implementation level. Even after an arbitrary number of res-
olution steps, sub-programs on a lower-level of abstraction can directly be associated with
the atomic high-level programs they implement.

In concatenative programming, quotations serve as both data structures and code con-
tainers. They have the same syntax as programs but are surrounded by brackets. The
semantics of quotations are the same as for all data: each quotation denotes a function
that appends the quotation to a sequence. For example, the execution of the program
[2 *] 3 swap that contains a quotation as the first element has the result 3 [2 *].
The interesting part of quotations is implemented by the program call that “unquotes” a
quotation by removing the surrounding brackets. For example, the concatenative program
[2 *] 3 swap call has the execution state 3 [2 *] call, followed by 3 2 *

8

1.3 Methodology: Language Layering

and the result 6. When combined with call and operations to manipulate their internal
structure, quotations provide a particularly simple form of meta-programming. A Turing-
complete concatenative programming system can be built on quotations, a call mech-
anism, an operation for testing equality and a few primitive operators for re-arranging
elements such as dup and swap [99].

For this work, concatenative programming is of interest because concatenative pro-
gram execution, meta-programming and abstraction can be expressed particularly well
through pattern-based transformations. The reason for this is that (1) the complete state of
the program execution can be represented as a program, (2) the effect of individual oper-
ations is local, i.e., operations affect data elements in their proximity in the program text,
(3) the quotation mechanism provides a structural distinction between passive and active
code and (4) the variable-free abstraction and resolution mechanisms can be expressed
through simple substitution operations. Concat, the programming and meta-programming
system that will be presented in Chapter 5, is based on a combination of concatenative
programming and pattern matching.

1.3 Methodology: Language Layering

Language-driven software engineering (LDSE) is based on the notion of creating lan-
guages using other languages. This idea can be captured by the methodological framework
of language layering. In this section and in the remainder of this work, it will be demon-
strated that layering, and more generally LDSE, can be built upon a simple methodologi-
cal principle: behavioural equivalence. The approach is based on the notion of refinement;
the idea dates back to the late 1960s and was formalised in the early 1970s ([77,91,121]).
Refinement in its most general form is also called behavioural refinement. It states that
a specification S1 is behaviourally refined by a specification S2 (both having the same
syntactic interface) if the denotation of S2 implies the denotation of S1. The following
presentation is based on the FOCUS formalism (a stream-based algebra for components)
as described by Broy and Stølen [25]:

(S1 S2) , ([[S2]]) [[S1]])

In other words, S2 refines S1, if an and only if the implementation S2 guarantees to
be a valid behavioural substitute for the implementation of S1. Behavioural equivalence
S1! S2 demands that

(S1! S2) , (S1 S2) ^ (S2 S1)

9

1.3 Methodology: Language Layering

Figure 1.1: Interface Refinement as a Commuting Diagram

A more interesting form of behavioural refinement is interface refinement. Interface
refinement generalises behavioural refinement since it allows changes to the external in-
terfaces of the specifications. Given two more specifications, namely D (the so-called
downwards relation) and U (upwards relation), interface refinement is defined as

S1 D � S2 � U

The composite specification D � S2 � U is a behavioural refinement of S1. Figure 1.1
is a graphical representation of interface refinement. The operator “�” denotes piped
composition, see [25]; a more precise definition will be given below.

As is shown by Herzberg and Broy [69], a variant of interface refinement called com-
munication refinement is the basis of layering as it is used as the predominant design
principle in telecommunication systems and computer networks. Communication refine-
ment constrains interface refinement by the requirement that the downwards and upwards
relation in combination behave transparently. With Id being the specification of the iden-
tity function, it holds that

D � U , Id

Engineers of distributed communicating systems have impressively demonstrated that
layering is an important and fundamental design principle for the systematic and robust
design of large-scale systems [68, 71]. The key insight in the context of this work is that

10

1.3 Methodology: Language Layering

protocols constitute languages and that protocol layers constitute language layers. It is
all about protocols (read “languages”) and their interrelation. The basis of a protocol or
language-driven approach is rooted in communication refinement and – less restrictively
– in interface refinement.

For relating languages in programming, modelling and analysis, the primary inter-
est is in equivalence relationships, not in refinement relationships. Protocol engineering
brings with it unreliability, loss of messages and jitter – aspects which are irrelevant when
a software system is viewed as a “stack” of languages. Another reason being that the key
idea of abstraction and substitution in computing demands behavioural equivalence and
not behavioural refinement. However, the methodological aspect of how to decompose
behaviour and its description remains unaffected. This work reuses the compositional ap-
proach of interface refinement and communication refinement for the purpose of relating
computational processes and their descriptions. Interface relations can be seen as language
relations because any computational process can be seen as an interpreter of a language
with regards to its syntactic interface. Therefore, a computational process is at the same
time an interpreter of a description and a description being interpreted. This fundamental
duality of computations needs to be reflected by language layering.

To ease the definition of language layering, the assumption will be made that both
the descriptions of computational processes and the data processed by computational pro-
cesses are based on a uniform representation. As described in the previous section, this is
the case for concatenative languages. Let ⌃ be an alphabet and let V ✓ ⌃

⇤, where ⇤ de-
notes the Kleene closure, be a vocabulary of words. Let S be the set of all sequences that
can be formed of words from V , including nested sequences up to an arbitrary depth. In
the following, any description of a computational process, say F, is given by a sequence
F 2 S, with the function f : S ! S denoting the computational process itself, [[F]] = f .
Functions representing computational processes work on sequences as well. Concatena-
tion of sequences is denoted by “�”, which above was called “piped composition”. On
a descriptional level, the meaning of concatenation is given by function composition:
[[F � F

0
]] = f � f 0 with [[F]] = f and [[F

0
]] = f

0.

Definition 1 (Language Layering). Let Cmp 2 S and Cmp

0 2 S be two descriptions of
two computational processes (functions) cmp : S ! S and cmp

0
: S ! S with [[Cmp]] =

cmp and [[Cmp

0
]] = cmp

0. Furthermore, let Int 2 S and Ext 2 S be descriptions of
two computational processes int : S ! S and ext : S ! S called internalisation
and externalisation; it holds that [[Int]] = int and [[Ext]] = ext. Given the following
arrangement, the languages realised by Cmp and Cmp

0 are said to be layered:

(Cmp! Int � Cmp

0 � Ext) , (cmp = int � cmp

0 � ext)

11

1.3 Methodology: Language Layering

Figure 1.2: Language Layering

The description on the “upper” computational layer is represented by Cmp whereas
Cmp

0 represents the description on the “lower” computational layer. Descriptions Int and
Ext describe layer adaptions, an internalisation process and an externalisation process.

Similarly to communication refinement, language layering can be restricted by the
requirement that int � ext = id (id stands for the identity function). In this case, internal-
isation and externalisation define a bidirectional encoding relation called view.

The relation between Cmp and Cmp

0 in language layering can also be defined by two
relations map and map

�1 with Cmp � map = Cmp

0 and Cmp

0 � map

�1
= Cmp, thus

map � map

�1
= id. The mappings map and map

�1 can be described by corresponding
descriptions. It is possible to set up language layering in such a way that map = int and
map

�1
= ext.

The principle of language layering is pictured in Figure 1.2. Boxes represent compu-
tational processes, document icons represent descriptions. A document icon inside a box
represents a description of a computational process. Language layering can be recursively
applied to any box in Figure 1.2.

Language layering provides the methodical framework for language-driven software
engineering. It will be investigated further in the context of pattern-based computing (Sec-
tion 4.5), language engineering (Section 5.4), modelling (Section 6.1) and system analy-
sis (Section 7.3).

12

1.4 Hypothesis and Approach

1.4 Hypothesis and Approach

This work is based on two foundational approaches. The goal of Language-Driven Soft-
ware Engineering is to control complexity by making the theoretical potential of syntactic
and semantic abstraction a practical reality in software engineering. Pattern-based com-
puting aims to define a unified foundation for LDSE by focusing on the formal nature
of computing [120]: a computing system processes symbols and through an interface it
implies a model of computation by means of syntactic encodings of symbolic structures
and operational input/output relations between symbolic structures. Patterns are natural
tools to define, recognise, (de-)construct, transform and search symbolic structures [9].

Hypothesis The systematic creation and layering of languages can be reduced to the el-
ementary operations of pattern matching and instantiation. This pattern-based approach
provides a formal and practical foundation for language-driven modelling, programming
and analysis.

This hypothesis is impossible to prove in general as there is no accepted consensus of
what a language-driven foundation for the problem domains should be. What can be done,
however, is (1) to assure that the pattern foundation is solid, (2) to support the hypothesis
through the application of the foundation to the three problem domains and (3) to critically
evaluate the results. The soundness of the pattern basis is assured by defining precise
operational semantics for pattern matching and instantiation. The application part of the
research consists of the implementation of three tools that support the language-driven
approach. The evaluation is performed based on a range of examples to which these tools
are applied.

The research approach taken can be summarised as follows:

1. Analysis of the problem domain and hypothesis building (Chapter 1)

2. Literature study (Chapter 2)

3. Formalisation of a framework that can support the hypothesis (Chapters 3 and 4)

4. Application of the approach to different domains (Chapters 5, 6, 7)

5. Evaluation of the results (Chapter 8)

13

1.5 Scientific Contribution and Novelty

1.5 Scientific Contribution and Novelty

In the last few years, several approaches have emerged that can be considered language-
driven, including Generative Programming [34], Model-Driven Engineering [151] and
Domain-Specific Languages [55]. The novelty of the approach presented in this thesis is
to provide a foundation for language-driven engineering based on patterns and language
layering. The ensuing chapters demonstrate the applicability of this approach to core as-
pects of software engineering: modelling, programming and analysis. The concrete out-
comes of this work are three tools that are novel in themselves. All three tools are based
on the formal foundation of patterns and the methodology of language layering:

Concat A self-sustaining, language-driven programming system based on tagged struc-
tures and a mechanism for hiding these structures behind a user-definable syntactic in-
terface. All aspects of the system – parsing its own character-representation into an in-
ternal structure, program execution, meta-programming, rendering of output – is based
on pattern matching and instantiation and on language layering. This includes not only
the program-level but also the meta-level: Concat is defined using itself by means of a
meta-circular implementation and thus is its own engine of evolution.

XMF (XML Modeling Framework) A web-based modelling- and meta-modelling
framework that demonstrates how language-driven concepts can be applied to modelling
and tooling. The framework uses patterns to define modelling languages, relate different
models, create model instances, query models and to implement constraints. Bidirectional
transformations map between models and their external representation. This view mech-
anism provides visual means that can be used to create, edit and display models.

CFR (Channel Filter Rule Language) The realisation of a language-driven approach
for the layered analysis of communication behaviour in complex networked systems. The
system extends traditional protocol analysis in order to capture communication at the level
of abstraction that reflects application design. This is achieved by abstracting communi-
cation patterns on an existing protocol layer as messages on a new abstract protocol layer.
The abstract protocol provides its own language for describing the communication of the
system. This technique can be used to specify, monitor and test complex communication
scenarios.

Theoretical Contribution In addition to these three tools, the theoretical contribution
of the work comprises:

14

1.6 Relevant Publications

• A unifying foundation for language-driven software engineering through patterns

• A formal definition of operations for matching and instantiating (meta-)patterns in
horizontal, vertical and diagonal manner

• A novel way of defining path polymorphic operations through pattern operations

• A pattern-based approach for defining execution models using structural and tem-
poral views

• A pattern-based meta-architecture for modelling and meta-modelling

• Application of a single formalism to define, transform, query, constrain and relate
models

• A methodological approach for layering languages that guided the design process
for the above mentioned applications

• A novel approach for the specification of analysers for recovering communication
design intentions and communication scenarios

With a mathematically defined set of primitive patterns and pattern combinators, as well as
a range of tools and techniques based on them, the work provides theoretical and practical
contributions that are relevant for research on self-sustaining systems, (meta-)programm-
ing, (meta-)modelling and analysing complex systems.

1.6 Relevant Publications

The language layering techniques underlying this thesis and the protocol re-engineering
approach of Chapter 7 are based on the author’s research on telecommunication systems
that was published as a book chapter in the Wiley Encyclopedia of Computer Science and
Engineering [71]. The research on concatenative programming and a purely concatenative
version of Concat are described in a paper that was presented at the International Con-
ference on Software and Data Technologies (ICSOFT) [70]. Two publications describe
CFR and its application in the automotive domain: a full paper presented at the Interna-
tional Conference on Software Engineering (ICSE) [144] and a short paper presented at
the Software Engineering (SE) conference [142]. XMF, its underlying pattern language
and its utilisation for teaching language-driven software engineering are detailed in a
paper presented at the International Conference of Education, Research and Innovation
(ICERI) [143]. The meta architecture underlying XMF is formalised in an article that was
published in a research report of Heilbronn University [72].

15

1.7 Overview

1.7 Overview

This section provides a short overview of the chapters that make up the rest of this thesis.

Chapter 2 The work presented in this thesis is related and compared to similar work
by other researchers. The chapter surveys approaches to software engineering that can
be seen as language-driven. It compares this work to other work on pattern matching and
related subjects such as recognition systems. Concat is related to other self-sustaining sys-
tems, metacircular interpreters and highly flexible programming languages. The pattern
language underlying XMF is compared with schema, transformation and query languages
and the approach underlying CFR is related to work on forward engineering protocols.

Chapter 3 The chapter is the formal foundation of the thesis. It defines operational se-
mantics of the core pattern formalism underlying Concat, CFR and XMF. Pattern match-
ing is defined in a unified manner on typed sequences. Horizontal combination of patterns
includes sequencing, repetition and choice. Vertical combination defines staged applica-
tion of patterns. Diagonal combination enables the combination of patterns and results to
provide stack-like matching semantics. Transformations are based on the combination of
matching and instantiation. Searching, querying and collectively transforming structures
can be expressed by path polymorphic operators. A quasiquotation mechanism allows
arbitrary meta-levels and is the foundation for pattern abstraction and self-referential def-
inition of the pattern system.

Chapter 4 This chapter connects the core pattern approach to its application for pro-
gramming. It defines rewriting as a composition of transformations and patterns that ex-
press a strategy for applying transformations. Restrictions to rewriting systems are dis-
cussed that produce a concatenative system. The notion of pattern-based computing is
formalised based on rewriting. Conditional rules are defined as transformations that can
initiate computational processes. Structural and temporal views define mechanisms to
hide internal representations and certain computational steps. Grammars are defined as
meta-transformations on a unified representation of strings and trees. Elliptical patterns
are a practical extension for programs that manipulate nested structures.

Chapter 5 Concat and its programming and meta-programming features are introduced
as a practical application of the pattern approach. Concat is a highly-extensible framework
for creating and relating software languages. Concat defines a program-level and a meta-
level and allows arbitrary extensions of both levels. Core Concat provides operations,

16

1.7 Overview

productions and macros for defining computation, parsing and program transformation.
New computational concepts can be introduced by applying the meta-language not only
to the program-level, but also to itself.

Chapter 6 XMF, a tool and tool infrastructure for modelling and meta-modelling based
on patterns is introduced. XMF applies the ideas of Concat to XML and Web-based tech-
nologies. Partial instantiation is utilised to query and constrain models. Class and object
models are introduced as examples and a mechanism based on HTML that provides visual
means of creating, editing and viewing models is discussed.

Chapter 7 The chapter presents a language-driven approach for the analysis of com-
munication behaviour in automotive networks. Roots of complexity and challenges in
automotive applications are introduced. The presented approach is based on filtering to
find dispersed communication patterns and on the abstraction of these patterns. Abstract
protocols are used to define new language layers. A domain-specific language is presented
that implements the approach and it is discussed how the language can be formalised with
patterns.

Chapter 8 The final chapter evaluates the theoretical and practical results of the work
and shows directions for future research.

17

Chapter 2

Related Work

This chapter relates and compares the research described in this thesis to existing re-
search. Pattern matching has been a subject of study in many sub-fields of computing
(Section 2.1) and is the basis of several program transformation systems (Section 2.2).
Recently, patterns have been investigated as a unifying framework for programming (Sec-
tion 2.3). The pattern approach presented in this work is based on a uniform representa-
tion for programs and data, a feature found in homoiconic languages (Section 2.4). The
uniform representation makes it possible to naturally express various structural transfor-
mations. These includes parsing which gives pattern an interpretation as grammars that
define recognisers (Section 2.5). The goal is to utilise patterns for language engineer-
ing. Several approaches have emerged in recent years that view language creation as the
driving force of software development (Section 2.6). Concat is a pattern-based implemen-
tation of a language-driven system inspired by concatenative languages (Section 2.7). Its
extensibility mechanisms supports change from within, which make it a self-sustaining
system (Section 2.8). XMF is based on the XPLT language which is at the same time
schema, transformation and query languages for XML (Section 2.9). The abstract proto-
cols in CFR and their bottom-up definition describe a protocol-re-engineering approach
based on layering (Section 2.10)

18

2.1 Pattern Matching

2.1 Pattern Matching

Matching and instantiating patterns is certainly not a new idea. It underlies the replace-
ment rules in rewriting systems [12, 16, 46] and has been extensively studied in computer
science for various data structures, including strings [107], trees [78] and objects [48].
Algebraic datatypes lend themselves naturally to pattern matching because values are de-
scribed as terms built from data constructors [93, 109]. In fact, pattern-matching on alge-
braic data types is a common technique in functional programming languages [108] where
it is sometimes referred to as “ML-style pattern matching” because of its importance in
the ML programming language [122].

For instance, in ML a type for possibly empty binary trees with integers as leafs can
be defined as follows:

datatype itree =

Empty | leaf of int | node of itree * itree;

The 0-ary constructors Empty creates an empty tree. The unary constructor leaf creates
a leaf node and the binary constructor node creates a node with two children. For exam-
ple, the term node (node (leaf 2, leaf 3), leaf 4) represents the tree in
Figure 2.1.

node
HHH

���
node
cc##

leaf

2

leaf

3

leaf

4

Figure 2.1: Binary Tree Example

Pattern matching is defined on the nested structure of compound values. The type
constructors can be used to distinguish cases when defining functions. For instance, the
following function definition adds up the numbers at the leafs of a tree recursively:

fun addup Empty = 0

| addup (leaf n) = n

| addup (node (n, m)) = addup n + addup m;

The three cases of the function are defined by patterns on the left-hand side. The patterns
make use of the three data constructors as well as variables n and m in order to extract
parts of the compound value. The resulting variable bindings are used in computations on
the right-hand side.

19

2.1 Pattern Matching

Concat’s operation definitions are similar to ML function definitions on tuples of al-
gebraic types. Nevertheless, Concat provides a more expressive pattern language and im-
plements operator definitions as a syntactic layer on rewriting. The view mechanism de-
scribed in this work can be seen as an application of the ideas outlined by Wadler [175]
to layered computation and syntactic extension.

Logic programming languages such as Prolog [153] use patterns (terms with vari-
ables) to implement a procedural semantics for derivation. The conditional rules of Con-
cat are similar to productions in Prolog, but provide a functional rather than relational
semantics and define the evaluation of conditionals as invocations of a rewriting system.
Macro systems in various languages are based on patterns, either on strings, as in C pre-
processor macros [100], or on structured representations as in Lisp [61]. The hygienic
macro system of Scheme provides an elliptical pattern operator that serves as a founda-
tion for intelligently transforming nested structures containing repeated occurrences of
patterns [44]. The operator � (see Section 4.6) implements elliptical pattern matching. It
is the basis of structural transformations in XMF.

Various Lisp dialects provide a quasiquotation mechanism to construct lists from tem-
plates. A quasiquote expression describes a list as a mix of static structures (quoted parts)
and dynamic computations (unquoted parts). For example, the following S-Expression
uses the backquote to declare the structure as a template and two commas for unquoting:

‘(node (leaf ,n) (leaf ,(+ n 1)))

If this S-Expression is evaluated, only the two parts that are unquoted by the commas
are executed while the surrounding parts of the expression are treated as list structures.
During evaluation, the unquoted parts of the expression are replaced with the results of
the respective computations. For instance, evaluation of the example in an environment
where n is bound to 2 yields the result (node (leaf 2) (leaf 3)).

The quasiquotation mechanism defined in the pattern core and utilised in Concat is
inspired by that of Scheme [98], but provides functionality for instantiation and matching.
It is utilised not only to create patterns using meta-patterns, but also to match the internal
structure of patterns – including arbitrary quasiquoted and unquoted patterns.

Attempts have been made to integrate pattern matching into object oriented program-
ming languages that do not provide built-in pattern support [167]. The recently devel-
oped Scala programming language incorporates a match statement that allows prioritised
matching on objects and types [127]. Concat follows a different approach that does not
start with a language and integrates pattern matching, but starts with pattern matching and
builds a language with its own syntax and semantics on top of it. The language designer
controls how much of its pattern-based foundation is exposed by the language and which

20

2.2 Program Transformation Systems

parts are replaced with a direct semantics [101].

2.2 Program Transformation Systems

Program transformation systems define the manipulation of programs as data [10,74,166].
Transformations are typically specified by a set of rules. ASF+SDF [41] is a generic
toolset for defining programming language manipulation tools such as parsers, transform-
ers, and analysers based on the Syntax Definition Formalism (SDF) [66]. SDF is also
used by the Stratego/XT [165] framework for specifying parsers. A separate language
in Stratego defines pattern-based rewriting rules and strategies for application of these
rules. Concat on the other hand defines a single pattern formalism for parsing, rewriting
and defining rewriting strategies. This provides a more elementary and yet highly flexible
basis for programming and meta-programming.

Concat allows the extension of its pattern-language to include concrete syntax of pro-
grams with which these patterns are matched. Sellink and Verhoef call patterns that are
based on the concrete syntax of the data they transform “native patterns” and describe an
approach that generates such patterns from context free grammars [147]. Similar meta-
language extensibility is also supported by Stratego/XT and the TXL [32] source trans-
formation language. Concat goes a step further systems in that it allows not only the use
of literal syntax in patterns and the definition of patterns based on literal syntax, but a
complete replacement of the meta-language syntax.

OMeta is an object-oriented language for pattern matching [180] designed for exper-
imentation with programming languages [178]. It generalises Parsing Expression Gram-
mar (see Section 2.5) so that patterns can operate on list structures and defines a rule-based
language for transformations. In addition to that, it implements memoization and directly
supports left-recursion [179]. Concat and the pattern formalism presented in this work
provide similar operations to that in OMeta. However, details of the core semantics, es-
pecially result combination in horizontal matching are different. More profoundly, this
work is based on typed sequences while OMeta is based on S-Expression-like structures.
The formalism in this work is based on matching and instantiation and transformations
are pattern expressions. In OMeta, transformations are implemented using semantic ac-
tions defined in a host language. For example, the following OMeta parser defined by
Warth [178] binds the results of individual parsers exp and fac to variables x and y; the

21

2.3 Pattern Calculus

bindings are then used in semantic actions to create JavaScript arrrays:

exp = exp:x ’+’ fac:y -> [’add’, x, y]

| exp:x ’-’ fac:y -> [’sub’, x, y]

| fac

OMeta’s goal of language experimentation is similar to that of Concat, but OMeta
relies primarily on a transformational approach, where a language is transformed into a
target language for which an implementation exists. Concat on the other hand attempts to
define a self-contained computational framework, which is reflected in the design of the
core pattern formalism with its vertical and diagonal operators.

In Context-Oriented Programming (COP) [76], parametric method dispatch is gener-
alised to arbitrary contexts so that code executed may depend on arbitrary system state. In
Concat the range of computational concepts can be the entire program state, which makes
Concat a natural choice for COP. In Core Concat, concepts such as operations and macros
are implemented by separating transformation rules into an operational part (rules) and a
contextual part (operator symbol, start- and end-tags) in the user interface.

2.3 Pattern Calculus

While patterns have been studied in many different sub-fields, there are few approaches
that attempt to define a foundation for practical computing on patterns. The most compre-
hensive work in this direction is that of Barry [9]. It is an attempt to provide a unifying
framework for programming through pattern matching according to the principle “com-
putation is pattern matching”. The work is based on a set of pattern calculi and a pro-
gramming language named bondi based on it. Patterns are defined to match on arbitrary
data structure and path polymorphism supports traversal of these data structure for search-
ing or querying. Pattern polymorphism allows free variables in patterns for dynamically
assembling and evaluating them.

All these techniques are implemented in the pattern system presented in this work
as operators on typed sequences. Hierarchical matching defines pattern operations on the
type and content component of typed sequences which are a uniform data representation
for strings and trees. Traversal of typed sequences, as defined by path polymorphism, is
expressed by the find, findall and find in operators that allow fine-grained control over
the type of data items that contain or surround the searched data. Pattern polymorphism is
implemented by partial instantiation and used extensively in XMF to modularise schemas,
querying data and defining constraints. While the pattern calculus seeks a foundation for

22

2.4 Uniform and Homoiconic Languages

programming by providing means to express programming paradigms such as OO and
functional programming using patterns, the focus of this thesis is to provide a foundation
for language-driven engineering. Therefore, the focus is on means for creating syntax and
defining systems in layers of languages.

2.4 Uniform and Homoiconic Languages

Typed sequences and their notation define a uniform syntax for representing programs and
data. This greatly simplifies the specification of structural patterns. Bachrach and Playford
use the term “Skeleton Syntax Tree Representations” for such uniform syntaxes for pro-
grams [6]. Uniform representations are the basis of homoiconic languages, i.e., languages
that use the same notation for programs and data and thus provide means for program
manipulation [95, 116]. S-Expression are primarily used in Lisp [114] and Scheme [98].
In contrast to typed sequences, S-Expressions specify untyped lists structures and use
encoding conventions to express typing.

For example, in the S-Expression ’(node (leaf 2) (leaf 3)), the symbols
node and leaf are used in a prefix position to indicate the type of data. However,
this is merely a convention, i.e. the “special” meaning of the first element in the list
is defined by the functions interpreting the data. Therefore, a postfix syntax such as
((2 leaf) (3 leaf) node) would be conceivable if the functions operating on
the data follow that schema. Similarly, in concatenative languages, words and quotation
provide a nested sequence representation for programs and data.

Compound terms in Prolog consist of a functor and a fixed number of arguments
that are atomic terms or compound terms. The functor can be used to encode the type
of data. In this respect, terms in Prolog define compound values in a structurally similar
way to algebraic datatypes. For example, the tree in Figure 2.1 can be represented by
the term node(node(leaf(2), leaf(3)), leaf(4)). The use of lists as argu-
ments allows the representation of arbitrary length data, as is exemplarily shown by the
term leaves([leaf(1),leaf(2),leaf(3)]). Therefore, a Prolog term with a
single list argument closely corresponds to a typed sequence. XML (Extensible Markup
Language) defines a structured representation that, at its core, is based on a mix of element
tags and text in between. A subset of XML with elements that do not contain attributes
corresponds very closely to typed sequences (see Section 3.1).

The advantage of uniform syntaxes is a syntactic layer that is shared by all languages
based on the uniform syntax that can be used for structural manipulation. The drawback is
the resulting lack of syntactic freedom. Common Lisp reader macros provide a controlled
way to break out of the syntactic restrictions by defining Lisp functions that transform

23

2.5 Recognition Systems

character data into S-Expressions during parsing [111]. For example, as defined by Gra-
ham [61], the following reader macro allows to write quoatations using a quote character
as prefix instead of using the quote macro explicitly.

(set-macro-character #\’

#’(lambda (stream char)

(list ’quote (read stream t nil t))))

The above reader macro defines a function that is called by the Lisp reader whenever
the quote character appears in the stream. This function then calls read on the character
stream without the quote character and wraps the result in a list structure. This list struc-
ture represents code that explicitly makes use of the quote macro. For example, reading
’x with the reader macro activated yields the result (quote x).

The Factor programming language [45] provides a similar mechanism based on parse
words. A parse word is a stack-based function that can explicitly manipulate program text.
It gains control over the parser when a certain trigger is detected in the program text. The
example

SYNTAX: ADD

scan-word suffix!

scan-word suffix!

\ + suffix! ;

defines a parse word ADD that allows a simple form of prefix notation to be used for addi-
tion instead of the standard postfix notation. Whenever the substring ADD is encountered
in the character stream the general parser calls the parse word which then reads in the
next two words, adds them to the end of the parse result using the suffix! word and
finally also adds the symbol +. This means that the program ADD 2 3 is transformed
into 2 3 + during parsing.

The view mechanism in Concat provides a more comprehensive approach that hides
an internal representation behind a syntactic interface by defining transformations for
internalisation and externalisation of programs and meta-programs. In Concat, even basic
literals and the notations for lists are not hard-coded into the parser, but defined by the
view mechanism.

2.5 Recognition Systems

This work defines a pattern-based foundation for various manipulation tasks for struc-
tures of which character strings are one kind. When interpreted as grammars, pattern

24

2.5 Recognition Systems

expressions define unambiguous parsers for strings. Hence, this work is related to pars-
ing techniques and grammar formalisms in general and analytical or recognition-based
formalisms and parsing techniques in particular.

Regular expressions [158] recognise strings based on operators that express concate-
nation, repetition and alternation. For example, the expression a(b|c)* matches all
strings starting with a followed by an arbitrary number of bs and cs. Parsing Expres-
sion Grammars (PEGs) [52] can be regarded as an extension of regular expressions to
a more expressive parsing language. Prioritised choice (expressed using the /-operator)
and greedy repetition make PEG grammars unambiguous. For example, the PEG gram-
mar fragment Exp <- (’ab’ / ’a’) Rest clearly defines a parsing strategy for a
string such as “abc”. Even though both choices ’ab’ and ’a’ match the beginning of
the string, it is the lefttmost choice ’ab’ that is always tried first. In case ’ab’ succeeds
’a’ will never be tried – not even if Rest fails.

The unambiguity of PEGs make the formalism especially suitable for defining analyt-
ical (rather than generative) grammars [64]. The theory of PEG parsing is based on the
parsing algorithms described by Birman and Ullman [14]. First practical implementations
of PEG-like operators go back at least to Schorre’s META II system in which the basic
operations of PEGs are compiled into recursive-descent parsers [146].

Restricting the pattern core of Chapter 3 to horizontal operators, atoms, negation and
references to define production rules yields the core PEG formalism. The use of a PEG-
style grammar formalism to parse not only strings, but also nested sequences, is described
by Baker [8]: the META II approach is used to parse S-Expression. Concat applies this
approach to typed sequences. Because characters are also encoded as typed sequences,
there is no conceptual difference between parsing and structural pattern matching.

A similar unification of parsing strings and pattern matching on nested structures can
be realised with Definite Clause Grammars (DCGs) [19]. DCGs are a grammar formalism
built into Prolog and other logic programming languages [150]. DCGs are syntactic sugar
for regular Prolog rules. For example, the DCG grammar

as --> [a].

as --> [a], as.

recognises atomic sequences of as, such as [a] or [a,a,a]. It is equivalent to the
following standard Prolog definition:

as([a|R],R).

as([a|Ri],Ro) :- as(Ri,Ro).

25

2.5 Recognition Systems

In contrast to PEGs, DCGs undo choices and try alternatives in case parsing fails. For
instance, by forcing Prolog to backtrack, a query as([a,a,a],R) produces three dif-
ferent result values R: the sequences [a,a], [a] and the empty sequence [].

DCGs can be used to parse strings, which in Prolog are lists of atoms, and structured
terms. DCGs do not provide syntactic meta-operators for repetition or alternation. How-
ever, those can be implemented using Prologs abstraction mechanism [11]. In contrast to
PEGs and the pattern expressions presented in this work, DCGs support full backtracking
and ambiguous grammars.

Parser combinators are a technique for implementing top-down parsers in functional
languages [38, 82, 176]. Parsers are implemented as functions and larger parsers are built
from smaller parsers by functional composition using higher-order functions [83]. For ex-
ample, the following Scheme code defines a parser a-or-b that recognises either token
a or token b.

(define a-or-b

(alternate

(token "a")

(token "b")))

A parser is a function that when applied to a string yields a pair containing the parse
result and the rest of the string. The function token yields such a parser that recog-
nises a single token. For example, the application ((token "a") "abc") yields
("a" . "bc"). The higher-order function (parser combinator) alternate combines
two parsers. The result is a parser that attempts the first parser and in case of success yields
its result, otherwise it attempts the second parser and yields its result.

Because a-or-b is a parser, it can again be combined using parser combinators.
Parser combinators typically implement basic features such as sequencing, repetition or
look-ahead but might provide more advanced functionality. An important feature of most
combinator libraries is to give users control over the combination of parse results. This
typically involves host-language interaction – at least on the level of result data types. For
example, in a Lisp parser combinator library parse trees are represented by list structures
and the user must have a way to express how results of individual parsers are arranged in
the list structure.

While the sematincs of the operators presented in this work can be implemented using
combinatory techniques the goal is to define an extensible formalism with stand-alone
syntax, semantics and meta-functionality. This goes beyond what parser combinator li-
braries are used for. The into combinator defined by Hutton [82] allows results of previous
parsers to be passed on to following parsers as arguments. Result passing is implemented

26

2.6 Language-Driven Approaches

by the vertical operator presented in this work. However, the vertical operator passes the
result of a match to the following pattern as the input sequence. The passed result is thus
treated in the same way as any other parsing input. This allows the vertical combination
of parser that were not specifically designed for receiving parameters.

One of the core features of Concat is a unfication of all stages of program execu-
tion through pattern-based transformations. Piumatra uses a pattern-based transformation
language is used to define front-, middle- and backend of a simple compiler that gener-
ates machine code for a Lisp-like programming language [137]. In Concat such a com-
piler could be realised using internalisation macros and computation macros with typed
sequences being the representation for program text, abstract syntax trees and machine
code.

2.6 Language-Driven Approaches

Several modern approaches to software development are language-driven in the sense
that they focus on the importance of languages and their systematic creation and use.
Favre [49, 50] proposes two new fields of research for the systematic study and engi-
neering of languages: Software Linguistics and Software Language Engineering. Gener-
ative Programming [34, 35] divides the software development process into two stages:
domain engineering and application engineering. Languages are created during domain
engineering and used during application engineering. Software Factories [62] is a gener-
ative approach where languages are used to describe the variations in product families.
The approach is neutral with respect to methodology and process and can be seen as a
contribution to these areas.

Model Driven Development [104,151] aims at generating executable code by the step-
wise transformation of models that are typically expressed using visual languages. Model
Driven Architecture (MDA) can be seen as a particular realisation of Model Driven De-
velopment around a set of technologies that were developed in the context of the Unified
Modelling Language (UML) [13], in particular Meta Object Facility (MOF) [129]. Clark
et al. propose meta-modelling as a foundation for language driven development and dis-
cuss syntax and semantics based on meta-modelling [30].

Several model-driven tools exist that generate code for the .NET and Java platforms
[26]. Intentional Software [149] focuses on technologies for creating and integrating lan-
guages with natural notations, so do several other approaches to language extension [182].
Tools for language prototyping focus on generating programming language implementa-
tions from higher-level specifications [41]. Language workbenches [43, 94, 105] are tools
for systematically creating languages and development environments.

27

2.6 Language-Driven Approaches

Many of the existing tools and frameworks mentioned above are rather large and com-
plex. One aim of the work presented in this thesis is to provide simpler, more lightweight
tooling based on an extensible core of pattern functionality. This is eminent in all three
tools that will be presented in the following chapters. Based on a core of pattern function-
ality, Concat provides means for parsing, programming, meta-programming and is highly
extensible. Similarly, XMF uses a small pattern core for defining schemas, transforma-
tions, querying, views and even constraints. In CFR, analysis and scenario specification
is based on just three concepts derived from the pattern approach.

The STEPS project [96] undertaken by Kay et al. takes the question of how large
software systems need to be literally. The goal is to build a complete personal computer
operating system with applications in under 20.000 lines of source code. The systematic
use of languages and tools for creating and relating languages is the fundamental approach
that underlies this endeavour.

Concat and CFR (Channel Filter Rule Language) provide means to build or analyse
systems in layers of languages. The notion of language layering is propagated in several
other works. Graham advocates a bottom-up approach in which new languages are created
incrementally inside a host-language using existing languages – with the user interface of
the system forming the topmost language layer [61]. Language-oriented programming
[177] on the other-hand propagates a “middle-out” approach where development starts
with the definition of a domain-specific language that forms the middle-layer that links an
application with an implementation language.

Domain Specific Languages (DSLs) [55] are a topic of growing research interest and
questions such as how to create, maintain, and integrate languages are studied in the
context of DSLs. In the Lisp community, the idea of developing specialised languages
that are embedded in Lisp is widespread [61]. The use of DSLs has a tradition in the
Unix community where they are called “little languages” [145]. A discussion of popular
DSLs available under Unix is given by Raymond [141]. There is a plethora of literature
that describes the implementation and use of DSLs, an annotated Bibliography is pro-
vided by Deursen et al. [163]. Much of the research on DSLs is concerned with how to
build DSLs using specific technologies, e.g., specialised parsing techniques and frame-
works [20, 133, 134], code generation [67] or the meta-programming facilities of specific
languages [37, 47, 103, 160]. Less work exists on techniques for creating and relating
DSLs. Methodologies for developing DSLs are proposed in [117] and [113]. The former
includes a broad study of DSLs, the latter focuses on formal methods for creating DSLs.
Concat and XMF are tools that can be used for creating domain specific programming,
specification and modelling languages.

28

2.7 Concatenative Programming

2.7 Concatenative Programming

The execution mechanism of Core Concat restricts rewriting in such a way that it con-
forms to a concatenative programming language. Concatenative languages can be re-
garded as a purely functional version of stack languages. The interesting aspect of con-
catenative languages for this work is that these languages provide a simple computational
foundation that – unlike lambda calculus – is not based on the concept of variables and
their substitution. The simple structure and the non-existence of variables makes transfor-
mations of concatenative programs particularly simple [70].

Much of the foundational work on concatenative languages was performed by Man-
fred von Thun in conjunction with the development of the Joy programming language
[169]. Cat [42] is a concatenative language that – unlike Joy – supports static type check-
ing. Factor [45] is a programming language designed for use in practice. It has a concate-
native core, but also supports object-oriented programming and a macro system.

Concatenative languages are closely related to stack languages. The former are char-
acterised by the homomorphic relationship between programs and functions, the latter by
the use of a stack as the central concept in the execution model. A language may be both
stack-based and concatenative, but this must not necessarily be the case. Forth [140] and
PostScript [2] are popular “high-level” stack-based languages that are not concatenative.
Several assembly and intermediate languages also use a stack-based model of execution.

In a concatenative language, even those words that may intuitively be perceived as
data, for example numbers and strings, denote functions. Thus, concatenative languages
are not only functional in the sense that functions have no side effects, but also in the sense
that “everything is a function”. This form of purity and the non-existence of variables
relates them closely to function-level programming as defined by Backus [7] and the
point-free style of functional programming [58].

2.8 Self-Sustaining Systems

Concat provides means to evolve its syntax and semantics. In the extreme case this al-
lows Concat to replace itself by its own means. Systems that enable such change from
within are studied as self-sustaining systems [56]. Examples include classic programming
languages with small kernels and strong extension mechanisms such as Squeak/Smalltalk
[59,85], Klein/Self [161,162] and Lisp [115], self-implementations of scripting languages
such as PyPy (Python) [15] and highly flexible frameworks for creating language para-
digms such as the Combined Object Lambda Architecture (COLA) [136].

Metacircular definitions of programming languages are common in the Lisp family

29

2.9 XML Validation and Manipulation

of languages [115] and discussed extensively by Abelson and Sussman [1]. Meta Object
Protocols (MOPs) [103] provide means to extend and overwrite selected aspectes of the
semantics of a programming language by implementing objects and methods. This can be
seen as a more gradual form of language evolution compared to metacircular interpreters.
The ability to introduce new syntax and semantics of individual pattern operations in
Concat is in effect a meta-pattern protocol.

2.9 XML Validation and Manipulation

The XML Pattern Language for Transformations (XPLT) which was developed as a basis
for XMF can be seen as a schema language that defines a set of valid XML documents.
Popular schema languages for XML include Document Type Definition (DTD), XML
Schema and RELAX NG (REgular LAnguage for XML Next Generation), see [126] for
a taxonomy based on formal language theory. Relax NG is closest to XPLT. It is based
on regular expression operators that are represented as elements and mixed with regu-
lar elemenents to form patterns. Like XPLT, it also provides a reference mechanism for
defining schemas in a modular way [168].

Nevertheless, XPLT is more than a schema language. Using variables, it defines sche-
mas in such a way that given two schemas that follow certain name conventions, (bi-
directional) transformations can be derived. XSLT [172] is the W3C standard language
for transformation of XML documents. Its syntax is like that of XPLT based on XML,
but transformations are described explicitly in a procedural manner using constructs such
as loops and branching. Closer to XPLT are transformation languages based on grammar
formalisms. Huang et al. [81] use the pattern calculus-based bondi programming language
for transforming XML. Pierce formalises pattern matching on XML structures based on
regular expression operators [80].

XPLT provides a declarative formalism for defining bidirectional transformations even
over recurring patterns. However, because of the expressiveness of the formalism, bidirec-
tional transformations cannot be guaranteed. Foster et al. present a formalism that can only
express transformations for which bidirectional transformation can be guaranteed [53]. It
would be interesting further research to investigate if a subset of XPLT exists for which
bi-directional transformations can be guaranteed or at least checked statically.

The query facility of XPLT relates it also to query languages. XQuery (XML Query)
[174] provides advanced querying capabilities based on path expressions and predicates.
XPLT on the other hand uses pattern refinement to query and search documents for in-
stances of a pattern. More advanced mechanisms of XQuery include result ordering or
predicates such as selecting all nodes with a value smaller than a threshold. Such features

30

2.10 Layered Analysis and Protocol Re-Engineering

are currently not implemented in the pattern core of XPLT but can be expressed using the
provided JavaScript library. For example, by implementing complex predicates as func-
tions. Overall, XPLT does not claim to provide all the features of specialised, feature-rich
schema, transformation and query languages. Instead, it provides a single pattern lan-
guage based on a small core and JavaScript as an extension mechanism. The advantage
of using XPLT instead of separate language for schemas, transformations and querying is
not only its simplicity, but the amount of reuse possible: a single pattern can be used for
schema validation, as a source or target for a transformation, in a query or as a constraint.

2.10 Layered Analysis and Protocol Re-Engineering

The basic idea of the CFR language is to extend protocol analysis to the abstract lay-
ers of a communication system so that communication scenarios can be described in a
specialised language that bridges heterogeneity gaps. This approach can be related to the
large body of work done in forward engineering and analysing protocols. Indeed, pro-
tocol analysers are a standard technique for monitoring, testing and reverse engineering
systems and many academic and commercial implementations are available [181], e.g.,
Ethereal [132]. The aim of the CFR approach is not to implement another protocol anal-
yser that understands a set of predefined protocols. Instead, the aim is to provide an elegant
specification mechanism that makes protocol analysers programmable and extends their
scope to include abstract protocols and scenarios – not only standard protocols.

Extending a protocol analyser with features to capture abstract protocols is essen-
tially a reverse engineering activity. It is, in principle, the reverse of approaches such
as OSI [87]. The attempt to use just three basic concepts to reverse engineer protocol-
based systems is closely related to approaches in forward engineering protocols, protocol
stacks and protocol-based services that aim to base formalisms on a few basic concepts.
For instance, Herzberg and Broy [69] provide a formal approach to modelling layered
distributed communication systems with a small number of concepts only.

2.11 Conclusions

This thesis brings together two topics that are of current interest in computer science
research: attempts to define a pattern-based foundation for programming (“computing is
pattern matching”) and language-driven engineering techniques (“computing is creating
languages”). The approach draws on experience from and contributes to disparate areas of
research, including analytical grammars, self sustaining systems, program transformation,
concatenative programming and layering.

31

Chapter 3

Pattern Core

This chapter lays the foundation for the rest of the work. It formally defines a core of
application-neutral pattern functionality for recognising, deconstructing, creating, search-
ing and generally manipulating data structures. The approach is based on composition
which applies to both the way data structures and patterns are defined. Typed sequences
compose data to form compound data, starting with the elementary atom type. Opera-
tors compose patterns to form compound patterns, starting with elementary patterns (Sec-
tion 3.1). Patterns are interpreted in two fundamental ways: as recognisers that deconstruct
data and as templates that construct data. A formal operational semantics for matching and
instantiation defines these interpretations (Sections 3.2 and 3.3). Transformations com-
bine matching and instantiation by first matching data with a recogniser pattern and then
instantiating a template pattern to produce a result (Section 3.4). Based on core opera-
tors, path polymorphic traversal of structures can be expressed in a flexible way. This
is the basis for querying and searching data with patterns (Section 3.5). Meta-patterns
are patterns that can manipulate patterns. They are based on a quasiquotation mecha-
nism that allows the separation of “active” and “passive” patterns (Section 3.6). Based on
meta-transformations, parameterised references define a pattern abstraction mechanism
that makes the pattern core extensible (Section 3.7).

32

3.1 Fundamentals

3.1 Fundamentals

This work builds a pattern-based foundation for language-driven programming, modelling
and analysis. The approach is to (1) define a generic data representation and a core of
pattern functionality that is a basis for all application domains, (2) add strong extensibil-
ity mechanisms to the core and (3) extend the pattern foundation to satisfy the require-
ments of each application domain. The advantage of this approach is that a wide range of
application-specific techniques can be formalised using a small kernel of functionality. To
provide a sound foundation, the core functionality and the extensibility mechanisms are
defined using formal operational semantics. The definitions are based on a term notation
for data and patterns. Concat defines an alternative character-based notation in Chapter 5.

3.1.1 Data Language

This work is concerned with a wide range of data types, including programs, models
and messages. This requires a data representation mechanism that is highly flexible and
and at the same time suitable for pattern matching. The arrangement of atomic values
in sequences is the fundamental technique of data encoding found basically everywhere
in computing, from describing a memory as a sequence of binary values to encoding a
program as a sequence of characters. Explicit nesting can be expressed by allowing se-
quences inside sequences. This leads to a uniform data representation that distinguishes
between elementary data (atomic values) and compound data (sequences) [9]. Types clas-
sify, define or restrict data structures [27]. Typed sequences encode the association be-
tween structures and types explicitly. Typed sequences consist of a sequence of data (the
content) and an atom (the type).

exp ::= atom | tseq
seq ::= [exp

⇤
]

type ::= atom

tseq ::= ⌧(seq, type)

Figure 3.1: Data Language

The grammar in Figure 3.1 defines the term notation for typed sequences. The con-
structor ⌧ constructs a typed sequence from a sequence and an atomic type identifier. A
sequence consists of zero or more atoms or typed sequences surrounded by brackets. In
the following, concrete notations for atoms will be introduced when required. The basic
idea underlying typed sequences is to (1) provide a means for defining nested structures

33

3.1 Fundamentals

and to (2) unambiguously declare how these structures should be interpreted. For exam-
ple, if a and char are atoms, the typed sequence ⌧([a], char) explicitly states that its
content [a] is a character encoding or, in other words, that the data is of type character.
An example for nested typed sequences is the encoding of the string “ab” with the atom
string as the type: ⌧([⌧([a], char), ⌧([b], char)], string). Typed sequences represent tree
structures in which all nodes except the atomic leafs carry type information. The patterns
defined in the following can be applied to both the type and the content component. In
Section 4.5 a view mechanism will be introduced in order to define arbitrary syntax based
on typed sequences.

3.1.2 Pattern Language

Pattern expressions define structural operations on data by mixing concrete data with
meta-language expressions. The data language introduced in the previous section forms a
subset of the pattern language. Thus, all expressions of the data language are also valid
patterns. This section defines the meta-expressions that can be interspersed with the data.
Pattern expressions are either primitive patterns or compound patterns composed from
simpler ones by means of an operator. Table 3.1 gives an overview of the pattern language.
The pattern expressions are divided into categories according to their functionality. The
rightmost column defines pattern expression recursively. Let p denote a pattern expres-
sion and let P denotes a sequence of pattern expressions [p1, ..., pn]. Let n denote an atom
representing the name of a variable. More convenient infix notations are defined for se-
quencing (concatenation), choice (|) and vertical composition (!) as these operators will
be used regularly in the definitions that follow.

As previously stated, the data language defined in the previous section forms a subset
of the pattern language: atoms are primitive pattern expressions and there is an operator
to construct typed sequence patterns from a sequence of patterns and a type pattern. This
entails that every data expression is also a valid pattern expression.

Pattern expressions have two fundamental interpretations: matching and instantiation.
Matching is the process of recognising and deconstructing data. Instantiation is the pro-
cess of creating and assembling data. Let Seq be the set of all data sequences as defined
by the non-terminal seq in Figure 3.1 and let ✏ denote the empty sequence. Let A be the
set of all atoms and let Tseq be the set of all typed sequences as defined by tseq in Fig-
ure 3.1. The set of all values is defined as V al = A [Tseq [Seq. Let the store Sto be a
set of pairs (n, v) with n 2 A and v 2 V al, each pair representing a variable binding, and
let the empty store " denote the empty set. Let Ptn be the set of all pattern expressions
as defined in Table 3.1. Ignoring the failure case for the moment, the matching operation

34

3.1 Fundamentals

Category Pattern Syntax

Basic

atom a

anything ↵

variable n:p
reference ref(p)

Hierarchical typed sequence ⌧(P, p)

Modifying

negation !p

maybe p?

all all(p)

ignore ign(p)

Horizontal

sequencing ⇠
(P) or p p

choice or(P) or p | p
repetition p

⇤

repetition > 0 p

+

Two dimensional

vertical ⇤(P) or p ! p

vertical repetition p

⇤v

diagonal �(p)

diagonal’ �

0
(p)

Transformative unconditional transformation p) p

Quoting

quote quote(p)

i-activate i-unquote(p)
quasiquote qq(p)

unquote uq(p)

Searching

find find p among p

findall findall p among p

replaceall replaceall p among p

findall nested find p among p in p

Table 3.1: Pattern Language

has the following signature:

match : Ptn⇥ Seq ⇥ Sto ! V al ⇥ Seq ⇥ Sto

A pattern expression and a data sequence are matched in the context of variable bindings
that are contained in a store. Matching yields a result value, a data sequence and a store.
The operational semantics is that matching may change the data sequence and the store:
values might be removed from or added to the data sequence; the store may be extended
with bindings created during the matching. In the following, the matching and instan-
tiation semantics of selected pattern operations will be discussed informally before full
formal semantics will be presented in the next section.

An atom only matches a data sequence if a syntactically equal atom is the first ele-
ment of the sequence. Accordingly, matching the primitive atom pattern a with sequence

35

3.1 Fundamentals

of atoms [a, b, c] and the empty store " yields result a, remaining sequence [b, c] and store
". The notation ha, [a, b, c], "i m�! ha, [b, c], "i will be used to express a successful match
with these inputs and outputs. The pattern ⇠

([a, b]) is a composition of two atom patterns a
and b using the sequence operator ⇠. The operator has the semantics that the patterns in its
argument list are matched with the data sequence in the order in which they appear. The in-
dividual matching results are combined into a sequence. Matching this pattern with the in-
puts from above is described by: h⇠([a, b]), [a, b, c], "i m�! h[a, b], [c], "i. The variable oper-
ator : combines an atom representing a variable name with an arbitrary pattern expression.
Its semantics is to match the pattern expression with the data sequence, return the result
and to add to the store a binding from the variable name to the result. Matching a variable
pattern is illustrated by the example hx:⇠([a, b]), [a, b, c], "i m�! h[a, b], [c], {(x, [a, b])}i
in which the atom x is the variable name. The matching semantics of typed sequences
demands that the first element of the data sequence is a typed sequence. The result is con-
structed from the individual matching results of the type and content parts. Accordingly,
h⌧([a, x:↵], t), [⌧([a, b], t)], "i m�! h⌧([a, b], t), ✏, {(x, b)} where ↵ is a pattern that matches
any atom or typed sequence and t is an atom.

The instantiation semantics of patterns can be defined by an operation with the signa-
ture:

instantiate : Ptn⇥ Seq ⇥ Sto ! Seq

A pattern expression is instantiated in the context of a data sequence and a store. It
yields an updated data sequence. The operational semantics is that the data sequence
is modified by the instantiation operation. An example is the instantiation of the primitive
atom pattern c with the sequence of atoms [a, b] and the empty store ". An atom is in-
stantiated by adding it to the input sequence. Accordingly, the result is [a, b, c], which
is expressed by the notation hc, [a, b], "i i�! h[a, b, c]i. The instantiation semantics of
the sequence operator is to instantiate the patterns in its argument list in order, with
each instantiation working on the result of the previous one, as shown in the following
example: h⇠([b, c]), [a], "i i�! h[a, b, c]i. While the matching interpretation of variables
is to add a name-value binding to the store, the instantiation semantics is to look up
the value from the store and replace the variable with the bound value. For example,
h⇠([a, x:↵]), ✏, {(x, b)}i i�! h[a, b]i. Instantiating a typed sequence pattern yields the re-
sult of instantiating the type and content parts and combining them with the ⌧ operator.
For example, h⌧([a], x:↵), ✏, {(x, t)}i i�! h[⌧([a], t)]i.

36

3.1 Fundamentals

3.1.3 Operational Semantics

The matching and instantiation of patterns is defined by an operational semantics based
on the structure of pattern expressions [138]. The behaviour of a compound pattern is
described in terms of the behaviour of its parts in the form of a set of transition relations.
The transition relations are defined as inference rules that have the following form:

premise1 ... premise

n

conclusion

NAME

The name of a rule is used for reference purposes. By convention, rules resulting in failure
contain the symbol ? in their name. Each primitive pattern and each operator is defined by
a set of such rules. The rules describe the operation of abstract machines for matching and
instantiation. Each conclusion describes the overall result of a matching or instantiation
operation.

A premise or conclusion of the formhp, s
in

, �

in

i m�! hr, s
out

, �

out

i denotes a successful
match of pattern p 2 Ptn with sequence s

in

2 Seq and store �

in

2 Sto, the outcomes
of which are result r 2 V al, sequence s

out

2 Seq and store �

out

2 Sto. Accordingly,
hp, s

in

, �i i�! hs
out

i denotes a successful instantiation of pattern p 2 Ptn given sequence
s

in

2 Seq and store � 2 Sto, the result of which is the sequence s

out

2 Seq. The failure
state ? indicates failure of matching or instantiation. Let result denote the outcome of
matching and instantiation. For all s 2 Seq and � 2 Sto the following is true: h?, s, �i m�!
? and h?, s, �i i�! ?.

Let �[n := v] denote the set � [{(n, v)}. Let �[n] denote v if (n, v) 2 � and ?
otherwise. Let the operator = denote syntactic equality and let the operator 6= denote
syntactic inequality. Two atoms are syntactically equal if they have the same symbolic
representation. Two typed sequences are syntactically equal, if they have a syntactically
equal type and syntactically equal content. Two sequences are syntactically equal if all of
the atoms or typed sequences they contain are syntactically equal.

The infix operator :: denotes a function that expects an element on the left and a possi-
bly empty sequence on the right and prepends the element to the sequence. For instance,
v::s denotes a sequence with v as the first element followed by the elements of sequence
s. The binary function append maps arguments s1 and s2 to a new sequence that contains
the elements of s1 followed by the elements of s2. The unary predicate atom? is true if its
argument is an atom and false otherwise. The unary predicate seq? is true if its argument
is a sequence (not a typed sequence) and false otherwise. The prefix-operator not negates
a truth value. Table 3.2 gives an overview of the notation just introduced and defines

37

3.2 Matching Semantics

Notation Denotation
hp, s

in

, �

in

i m�! hr, s
out

, �

out

i successful match of pattern p

hp, s, �i m�! ? failure matching pattern p

hp, s, �i m�! result success or failure matching pattern p

hp, s
in

, �i i�! hs
out

i successful instantiation of pattern p

hp, s, �i i�! ? failure instantiating pattern p

hp, s, �i i�! result success or failure instantiating pattern p

f(args) 7! v successful application of function f

f(args) 7! ? failure applying function f

(n, v) a binding of name n to value v

�[n := v] adding a binding (n, v) to store �

�[n] the value of n in store �

v::s a sequence with first element v
[x1,x2, ...] a sequence of elements x1,x2, ...

v1 = v2 syntactic equality of v1 and v2

v1 6= v2 syntactic inequality of v1 and v2

not pred(..) negation of predicate pred

a or a
x

an atom 2 A

s or s
x

a sequence 2 Seq

✏ the empty sequence
p or p

x

a pattern 2 Ptn

P or P
x

a sequence of patterns
� or �

x

a store 2 Sto

" the empty store
r or r

x

a result of a matching operation 2 V al

n or n
x

a variable name 2 A

v or v
x

a value 2 V al

e or e
x

a value 2 A [Tseq

Table 3.2: Overview of the Notation

what kind of data is represented by symbols with and without subscript in the following
definitions, unless it is stated otherwise.

3.2 Matching Semantics

In this section, the matching semantics of patterns will be defined. Matching is the oper-
ation of deconstructing and recognising data. Matching operates on a data sequence and
a store that contains variable bindings. The semantics define the modification of both and
the derivation of a matching result.

38

3.2 Matching Semantics

3.2.1 Helper Functions

Consistent Binding The function cbind (for consistently bind) ensures that the mapping
from name to value defined by a store is injective. The parameters of cbind are a name,
a value and a store �. Function cbind fails if � already contains a binding with the same
name and different value.

�[n] = ?

cbind(n, v, �) 7! �[n := v]

CBIND NEW

�[n] = v

cbind(n, v, �) 7! �

CBIND EQUAL

�[n] 6= v �[n] 6= ?

cbind(n, v, �) 7! ?
CBIND ?

Combination The function combine defines the combination of data into a sequence.
This functionality is required as part of several of the following definitions, for example to
define the combination of individual matching results into a compound result. In contrast
to append, which requires both its arguments to be sequences, combine defines combina-
tion also for non-sequence arguments, i.e., atoms and typed sequences. For example, if a
and b are atoms, combine(a, [b]) has the result [a, b]. In addition to that, combine performs
an implicit flattening if its first argument is a sequence. For example, combine([a], [b])

has the result [a, b]. This entails that empty sequences disappear when being combined:
combine(✏, [b]) has the result [b].

seq?(r1) seq?(r2)

combine(r1, r2) 7! append(r1, r2)

COMBINE SEQUENCES

not seq?(r1) seq?(r2)

combine(r1, r2) 7! append([r1], r2)

COMBINE PREPEND

39

3.2 Matching Semantics

seq?(r1) not seq?(r2)

combine(r1, r2) 7! append(r1, [r2])

COMBINE APPEND

not seq?(r1) not seq?(r2)

combine(r1, r2) 7! append([r1], [r2])

COMBINE VALUES

3.2.2 Fundamental Pattern Expressions

Atom An atom matches an input sequence if the first element of that sequence is the
same atom. In this case, the result is the atom and the output sequence is the input se-
quence without the first element. Matching fails if the first element is different from the
atom or if the input sequence is empty. Matching an atom has no effect on the store.

ha, a::s, �i m�! ha, s, �i
ATOM SUCCESS

a 6= e

ha, e::s, �i m�! ?
ATOM DIFFERENT ?

ha, ✏, �i m�! ?
ATOM EMPTY ?

Anything The pattern expression ↵ matches an input sequence if that sequence con-
tains at least one value. The result is the first value of the input sequence and the output
sequence is the input sequence with the first value removed. Matching fails for empty
input sequences. Matching ↵ has no effect on the store.

h↵, e::s, �i m�! he, s,�i
ANY SUCCESS

40

3.2 Matching Semantics

h↵, ✏, �i m�! ?
ANY EMPTY ?

Negation The negation operator ! implements a form of negation as failure [29]. Match-
ing !p succeeds if p fails, and fails if p succeeds. In case of success the result is ✏ and the
data sequence and store remain unchanged.

hp, s
in

, �

in

i m�! ?

h!p, s
in

, �

in

i m�! h✏, s
in

, �

in

i
NEGATION SUCCESS

hp, s
in

, �

in

i m�! hr, s
out

, �

out

i

h!p, s
in

, �

in

i m�! ?
NEGATION ?

The rule NEGATION SUCCESS defines that in the case of failure of p, !p yields an empty
result and an unmodified sequence and store. This behaviour can be utilised to express
lookahead, i.e., to test if a pattern matches [52]. To achieve this, the pattern must be
negated twice: the pattern !!p succeeds if p succeeds but ignores its effect [178].

Variable The variable pattern n:p adds to the store a binding from n to the result of
successfully matching p. Matching fails if p fails or a binding already exists for n with a
value that is not equal to the result of matching p. In case the binding is equal the store
remains unchanged.

hp, s
in

, �

in

i m�! hr, s
out

, �

m

i
cbind(n, r, �

m

) 7! �

out

hn:p, s
in

, �

in

i m�! hr, s
out

, �

out

i
VARIABLE SUCCESS

hp, s
in

, �

in

i m�! ?

hn:p, s
in

, �

in

i m�! ?
VARIABLE MATCH ?

41

3.2 Matching Semantics

hp, s
in

, �

in

i m�! hr, s
out

, �

m

i
cbind(n, r, �

m

) 7! ?

hn:p, s
in

, �

in

i m�! ?
VARIABLE INCONSISTENT ?

The variable binding behaviour allows the expression of syntactic equality of values by
using syntactically equal variable names. For instance, the pattern ⇠

([x:↵, x:↵]) matches
an input sequence only if that sequence starts with two identical values. The atom x is a
variable name. The pattern uses the sequential matching operator that will be defined in
Section 3.2.4.

All The pattern all(p) succeeds if the data sequence is empty after matching p, otherwise
it fails. The intent of all is to express that input must be matched completely by a pattern.

hp, s
in

, �

in

i m�! hr, ✏, �
out

i

hall(p), s
in

, �

in

i m�! hr, ✏, �
out

i
ALL SUCCESS

hp, s
in

, �

in

i m�! hr, s
m

, �

m

i s

m

6= ✏

hall(p), s
in

, �

in

i m�! ?
ALL INCOMPLETE ?

hp, s
in

, �

in

i m�! ?

hall(p), s
in

, �

in

i m�! ?
ALL PATTERN ?

Ignore The pattern ign(p) (for ignore p) succeeds if p succeeds. In this case, the result is
✏. However, only the result of p is ignored, not its effect on the store and the data sequence.

hp, s
in

, �

in

i m�! hr, s
out

, �

out

i

hign(p), s
in

, �

in

i m�! h✏, s
out

, �

out

i
IGNORE SUCCESS

42

3.2 Matching Semantics

hp, s
in

, �

in

i m�! ?

hign(p), s
in

, �

in

i m�! ?
IGNORE ?

Operators that construct compound results from the results of matching individual patterns
discard empty sequences. Therefore, the empty sequence result of ign actually disappears
when combined with other results.

3.2.3 Hierarchical Matching

Typed Sequence The typed sequence pattern consists of two patterns that are to be
matched with the type and content parts of a typed sequence. The result is a typed se-
quence constructed from the results of each part. Matching fails if matching either the
content or the type pattern fails. It also fails if the type pattern yields a value that is not
an atom. The following definition uses the sequential horizontal operator ⇠ that applies
a sequence of pattern in order and combines their results. A definition of this operator is
part of the following section.

hp, [a], �
in

i m�! hr
t

, ✏, �

t

i
atom?(r

t

)

h⇠(P), s

c

, �

t

i m�! hr
c

, ✏, �

out

i

h⌧(P, p), ⌧(s
c

, a)::s
out

, �

in

i m�! h⌧(r
c

, r

t

), s

out

, �

out

i
TSEQ SUCCESS

hp, [a], �
in

i m�! hr
t

, ✏, �

t

i not atom?(r

t

)

h⌧(P, p), ⌧(s
c

, a)::s, �
in

i m�! ?
TSEQ ATOM ?

hall(p), [a], �
in

i m�! ?

h⌧(P, p), ⌧(s
c

, a)::s, �
in

i m�! ?
TSEQ TYPE ?

43

3.2 Matching Semantics

hp, [a], �
in

i m�! hr
t

, ✏, �

t

i
atom?(r

t

)

hall(⇠(P)), s

c

, �

t

i m�! ?

h⌧(P, p), ⌧(s
c

, a)::s, �
in

i m�! ?
TSEQ CONTENT ?

Together, the primitive atom pattern introduced in the previous section and the typed se-
quence operator make it possible to use any typed sequence as a pattern for matching data
literally. Because typed sequences may contain other typed sequences, the combinator
defines hierarchic matching on arbitrary tree structures.

For example, the pattern ⌧([⌧([c], char), (⌧([↵], char))

⇤
], string) matches typed se-

quences of type string that contain at least one typed sequence of type char. The first
typed sequence must contain an atom c. When this pattern is matched with the input
sequence [⌧([⌧([c], char), ⌧([a], char), ⌧([t], char)], string)], the type pattern string is
successfully matched with [string]. The content part of the typed sequence pattern is
matched sequentially with the content part of the typed sequence. The third premise in rule
TSEQ SUCCESS creates the pattern ⇠

([⌧([c], char), (⌧([↵], char))

⇤
]) which is matched

with [⌧([c], char), ⌧([a], char), ⌧([t], char)]. This process of matching type and content
is continued recursively for the characters contained in the string. For both characters and
strings, the results of matching the type and the content are reassembled to form a typed
sequence. Therefore, the overall result of the example is the single element of the input
sequence.

3.2.4 Horizontal Matching

The patterns described so far process data sequences in a linear manner, removing zero
or more elements but never adding elements. That is, if hp, s

in

, �

in

i m�! hr, s
out

, �

out

i
then there is an s

r

so that append(s
r

, s

out

) = s

in

. The horizontal operators preserve this
linear consumption property if all their arguments fulfil this property. This entails that the
horizontal operators match their arguments in such a way that the result of one match is
invisible to the next match. This is illustrated by Figure 3.2: the input elements a, b and
c on level L0 are transformed in a stepwise fashion into results x, y and z on L1. The
parsing processes (illustrated by numbered circles) have no access to the results on L1. In
general, all input is processed on the same horizontal level L

n

.

Sequencing The sequential operator ⇠ expects a sequence of pattern expressions and
matches the expressions in the order in which they appear in the sequence. The first pattern

44

3.2 Matching Semantics

a b c

1 2 3

x y z

L0

L1

Figure 3.2: Illustration of Horizontal Matching

is matched to the input data sequence and each following pattern to the data sequence and
bindings produced by the previous match. The results of all matches are combined into a
sequence.

hp, s
in

, �

sin

i m�! hr
p

, s

p

, �

p

i
h⇠(P), s

p

, �

p

i m�! hr
P

, s

out

, �

out

i
combine(r

p

, r

P

) 7! r

out

h⇠(p::P), s

in

, �

in

i m�! hr
out

, s

out

, �

out

i
SEQUENCE SUCCESS

h⇠(✏), s
in

, �

in

i m�! h✏, s
in

, �

in

i
SEQUENCE EMPTY

hp, s
in

, �

in

i m�! ?

h⇠(p::P), s

in

, �

in

i m�! ?
SEQUENCE MATCH ?

The sequencing operator creates a compound result from individual results by using the
helper function combine defined in Section 3.2.1. The advantage of combining results in
this way is that in most cases there is no need to express explicit flattening of results in
the pattern expressions. If nesting is explicitly desired, it can be expressed using typed
sequences which are not automatically flattened. Therefore, combine can distinguish be-
tween an intended nesting or a nesting that is used to pass a sequence of results. Wrapping
of a result into a typed sequence can be expressed using transformations, as defined in
Section 3.4.

45

3.2 Matching Semantics

For example, if a, b, c and d are atoms, matching the pattern ⇠
([

⇠
([a, b]),

⇠
([c, d])])

with input [a, b, c, d] produces intermediate results [a, b] and [c, d] for the two inner se-
quential patterns. However, the overall result is the sequence [a, b, c, d] in which the
nesting is invisible. A pattern that expresses result nesting explicitly is the following:
⇠
([

⇠
([a, b])) ⌧([a, b], list),

⇠
([c, d])) ⌧([c, d], list)]). Matching it with the input from

above produces the result [⌧([a, b], list), ⌧([c, d], list)] in which the nesting is explicit.

Choice The choice operator or matches its arguments in order until one of them suc-
ceeds. Changes made by unsuccessful matching attempts have no effects on the result,
the data sequence or the store. Only the first successful match has an effect. Matching a
choice pattern fails if there is no choice that can be matched successfully.

hp, s
in

, �

in

i m�! hr, s
out

, �

out

i

hor(p::P), s

in

, �

in

i m�! hr, s
out

, �

out

i
CHOICE SUCCESS

hp, s
in

, �

in

i m�! ?
hor(P), s

in

, �

in

i m�! result

hor(p::P), s

in

, �

in

i m�! result

CHOICE RECURSE

hor(✏), s
in

, �

in

i m�! ?
CHOICE NONE ?

The semantics of the choice operator defines a clear left-to-right order in which patterns
are matched. Although definitions may be ambiguous, i.e., more than one pattern of the
choice can match an input, the result is always unambiguously defined to be that of the
first pattern that matches starting from the left. For instance, if b is an atom the pattern
or([b,↵]) has a clear matching semantics even though both choices match a sequence
that starts with b: choice ↵ is only tried if matching b fails. Once the matching of one of
the choices is successful, there will be no backtracking. This semantics is crucial when
patterns are used to express computations and grammars (see Chapter 4). For example,
putting the base case of a recursive definition before the recursive case in the choice
pattern ensures that the recursive case is only tried if the base case fails. In the follow-
ing, the alternative notation p1|...|pn will be used where appropriate to denote the choice
or([p1, ..., pn]).

46

3.2 Matching Semantics

Repetition The matching semantics of the pattern p

⇤ is to match p repeatedly to the
input until matching p fails. The result is the combined result of all successful matches
and an empty result if there are no successful matches. This means that p⇤ never fails.

hp, s
in

, �

in

i m�! hr
p

, s

p

, �

p

i
hp⇤, s

p

, �

p

i m�! hr
p⇤, sout, �out

i
combine(r

p

, r

p⇤) 7! r

out

hp⇤, s
in

, �

in

i m�! hr
out

, s

out

, �

out

i
REPEAT GREEDY

hp, s
in

, �

in

i m�! ?

hp⇤, s
in

, �

in

i m�! h✏, s
in

, �

in

i
REPEAT NO MATCH

The ⇤ operator has greedy semantics as it attempts to consume as many elements from the
data sequence as possible. Care must be taken when using the operator with patterns that
do not consume from the data sequence as this leads to infinite regress, as in the case of
the pattern (

⇠
(✏))

⇤.

3.2.5 Vertical and Diagonal Matching

The patterns defined so far consume the input sequence from left to right; results of pre-
vious matches are invisible to following matches. Data can be mapped onto a different
representational level, e.g., by transformations, but the result cannot be further processed
and thus matching is restricted to a single level. The following operators define forms of
matching in which the result of a previous match is available to the following match.

Vertical The vertical operator ⇤ matches a sequence of patterns. Only the first pattern
is matched with the data sequence. All other patterns are matched with the results of
their predecessors and they have to consume that result entirely. If all patterns match suc-
cessfully the result of vertical matching is the result produced by the last pattern in the
sequence. This is illustrated by the left-hand side of Figure 3.3. Each process transforms
between L

n

and L

n+1 and has no access to data on other levels. In other words, the pro-
cessing progresses vertically between levels. In the example, the transformation from a to
z has x and y as intermediate results.
The first rule matches p1 and then recurses using the all operator. This way the first pattern
must not match the entire data sequence, but all others have to match the entire result of

47

3.2 Matching Semantics

a b c

1

2

3

x

y

z

L0

L1

L2

L3

a b c

1

2

3

x

y

z

L0

L1

L2

L3

vertical diagonal

Figure 3.3: Illustration of Vertical and Diagonal Matching

their respective successor. In conjunction with transformations (see Section 3.4), vertical
matching can be used to define multiple stages of processing. For instance, if a, b and c

are atoms, matching pattern ⇤([a) b, b) c]) with sequence [a] yields the result c.

h⇠([p1]), sin, �in

i m�! hr
p

, s

out

, �

p

i
h⇤(all(p2)::P), r

p

, �

p

i m�! hr
out

, ✏, �

out

i

h⇤(p1::p2::P), s

in

, �

in

i m�! hr
out

, s

out

, �

out

i
VERTICAL SUCCESS

hp, s
in

, �

in

i m�! result

h⇤([p]), s
in

, �

in

i m�! result

VERTICAL SINGLE

h⇤(✏), s
in

, �

in

i m�! h✏, s
in

, �

in

i
VERTICAL EMPTY

h⇠([p1]), sin, �in

i m�! ?

h⇤(p1::p2::P), s

in

, �

in

i m�! ?
VERTICAL MATCH ?

48

3.2 Matching Semantics

h⇠([p1]), sin, �in

i m�! hr
p

, s

p

, �

p

i
h⇤(all(p2)::P), r

p

, �

p

i m�! ?

h⇤(p1::p2::P), s

in

, �

in

i m�! ?
VERTICAL RECURSE ?

As defined in Section 3.1.2, the alternative notation p1 ! p2 can be used to express
vertical combination of patterns p1 and p2.

Vertical Repetition Vertical repetition applies a pattern to the input sequence and then
repeatedly to its result. The semantics can be expressed based on the vertical combination,
choice and sequencing operators introduced above.

h((p ! p

⇤v
) | p |⇠(✏)), s

in

, �

in

i m�! result

hp⇤v , s
in

, �

in

i m�! result

VERTICAL REPEAT

The choice pattern defines a recursive case and two base cases. The recursive case ex-
presses vertical repetition of a pattern p as repeated vertical combination of p. Two base
cases are necessary because the result of vertical combination is defined to be the result
of the last pattern matched. In case p can be matched at least once, the result must be that
of p. Nevertheless, the empty sequence pattern expresses that p⇤v succeeds even if p does
not match the input sequence.

Diagonal Matching The concept of diagonal matching can be understood as a combi-
nation of horizontal and vertical matching. The horizontal operators match a sequence of
patterns successively to an input sequence. Each match removes zero or more items from
the input sequence and produces a result. A pattern is never matched with the result of
a previous match, only with the resulting output sequence. The vertical operator on the
other hand matches patterns successively with the result of a previous match. A pattern
is never matched with the output sequence of a previous match, only with the result. The
diagonal operator allows the combination of patterns in such a way that they are matched
successively to the input sequence and to the result of the previous match.

Diagonal matching is illustrated by the right-hand side of Figure 3.3. While data pro-
cessing in horizontal matching is restricted to a single level and in vertical matching to
transformations between adjacent levels L

n

and L

n+1, diagonal matching allows to pro-
cess data from different levels because the result and the output sequence of a match are
available to the next match. For example, the second parsing process uses both the result
x and the element b to produce y.

49

3.2 Matching Semantics

Making result and output sequence of a match available to the next match can be
achieved in two different ways.The output and result of a match are either combined
to form a compound output sequence or to form a compound result. In the following,
the former will be defined and it will be shown how the latter can be derived from this
definition.

hp, s
in

, �

in

i m�! hr, s
p

, �

out

i
combine(r, s

p

) 7! s

out

h�p, s

in

, �

in

i m�! h✏, s
out

, �

out

i
DIAGONAL SUCCESS

hp, s
in

, �

in

i m�! ?

h�p, s

in

, �

in

i m�! ?
DIAGONAL ?

The first variant of the operator yields ✏ as the matching result. Its output sequence is a
combination of the result and the output sequence obtained from matching its operand.
For instance, matching pattern �([a) x]) with input sequence [a, b, c] yields output
sequence [x, b, c] and result ✏. To express diagonal combination of multiple patterns, the
horizontal operator ⇠ can be used: matching ⇠

([�([a) x]),�([x) y])]) yields output
sequence [y, b, c] and result ✏.

The alternative operator �0 can be expressed in terms of �.

h⇠([�p,↵

⇤
]), s

in

, �

in

i m�! result

h�0
p, s

in

, �

in

i m�! result

DIAGONAL VARIANT

The matching semantics of �0
p is to first match �p which produces the compound result

as the output sequence and then to match ↵

⇤ with that output sequence. Because repetition
is greedy and ↵ matches any element, the overall result of the match is the content of
the input sequence; the output sequence is empty. To express diagonal combination of
multiple patterns, the vertical operator ⇤ can be used: matching ⇤([�

0
([a) x]),�

0
([x)

y])]) yields result [y, b, c] and output sequence ✏.

50

3.3 Instantiation Semantics

3.3 Instantiation Semantics

In this section, the instantiation semantics of patterns will be described. While matching
is the operation of deconstructing data and possibly adding new bindings to the store, in-
stantiation is the operation of constructing data by possibly using bindings from the store.
Not all of the patterns that have a matching semantics also have meaningful instantiation
semantics. Instantiation of such patterns fails.

3.3.1 Fundamental Pattern Expressions

Atom An atom pattern is instantiated by appending its literal value to the data sequence.
Instantiating an atom never fails.

combine(s

in

, a) 7! s

out

ha, s
in

, �

in

i i�! hs
out

i
ATOM SUCCESS

Anything The pattern ↵ has an instantiation semantics in the context of variables, as
will be described below. Instantiating ↵ outside of the context of variables is ambiguous
as it is unclear which value to instantiate for it and, therefore, instantiation fails.

h↵, s
in

, �

in

i i�! ?
ANY INSTANTIATION ?

Ambiguity might be an interesting feature for some applications and, therefore, a different
semantics is conceivable.

Negation The unary negation operator succeeds if its argument fails, and fails if its
argument succeeds. In case of success, it has no effect on the data sequence.

hp, s
in

, �

in

i i�! ?

h!p, s
in

, �

in

i i�! hs
in

i
NEGATION SUCCESS

hp, s
in

, �

in

i i�! hs
out

i

h!p, s
in

, �

in

i i�! ?
NEGATION ?

51

3.3 Instantiation Semantics

Variable The variable pattern n:p is instantiated by retrieving the value bound to n from
the store, matching p with that value and instantiating the result with the input sequence
and input store. The use of combine in the second premise has the effect of wrapping
lookup results into a sequence if they are not already a sequence so that the ensuing
matching operation is guaranteed to work with a sequence.

�

in

[n] 6= ?
combine(�

in

[n], ✏) 7! s

c

hall(p), s
c

, "i m�! hr, ✏, �
p

i
combine(s

in

, r) 7! s

out

hn:p, s
in

, �

in

i i�! hs
out

i
VARIABLE SUCCESS

�

in

[n] = ?

hn:p, s
in

, �

in

i i�! ?
VARIABLE UNBOUND ?

�

in

[n] 6= ?
combine(�

in

[n], ✏) 7! s

c

hall(p), s
c

, "i m�! ?

hn:p, s
in

, �

in

i i�! ?
VARIABLE MATCH ?

In the following example a, b, c and x are atoms: hx:or([b, c]), [a], {(x, b)}i i�! h[a, b]i.
The variable is instantiated by first looking up the name x in the store. The lookup result
is atom b. Next, the combine function yields [b] which is matched with all(or([b, c])). The
match is successful and produces the result value b. The input sequence [b] is combined
with this value, which yields the output sequence [a, b].

Ignore Instantiating ign(p) succeeds if p can be instantiated, otherwise it fails. Even in
case of success no changes are made to the data sequence.

hp, s
in

, �

in

i i�! hs
p

i

hign(p), s
in

, �

in

i i�! hs
in

i
IGNORE SUCCESS

52

3.3 Instantiation Semantics

hp, s
in

, �

in

i i�! ?

hign(p), s
in

, �

in

i i�! ?
IGNORE ?

All The operator all is ignored during instantiation. The result of instantiating all(p) is
the result of instantiating p.

hp, s
in

, �

in

i i�! result

hall(p), s
in

, �

in

i i�! result

ALL SUCCESS

3.3.2 Hierarchical Instantiation

Typed Sequence A typed sequence pattern is instantiated by instantiating its type pat-
tern and its content pattern. The type pattern must instantiate to a sequence containing an
atom. This is, for example, the case if the type pattern is an atom.

hp, ✏, �
in

i i�! h[r
t

]i
atom?(r

t

)

h⇠(P), ✏, �

in

i i�! hs
c

i
combine(s

in

, ⌧(s

c

, r

t

)) 7! s

out

h⌧(P, p), s
in

, �

in

i i�! hs
out

i
TSEQ SUCCESS

hp, ✏, �
in

i i�! ?

h⌧(P, p), s
in

, �

in

i i�! ?
TSEQ INST ?

hp, ✏, �
in

i i�! hs
p

i length(s

p

) 6= 1

h⌧(P, p), s
in

, �

in

i i�! ?
TSEQ LENGTH ?

hp, ✏, �
in

i i�! h[r
t

]i not atom?(r

t

)

h⌧(P, p), s
in

, �

in

i i�! ?
TSEQ ATOM ?

53

3.3 Instantiation Semantics

h⇠(P), ✏, �

in

i i�! ?

h⌧(P, p), s
in

, �

in

i i�! ?
TSEQ CONTENT ?

3.3.3 Horizontal Instantiation

Sequence The sequence operator instantiates a sequence of patterns in order. The output
data sequence of a pattern is the input data sequence of the following pattern. Therefore,
it is not necessary to express the combination of results explicitly in the definition of the
sequence operator. Sequential instantiation fails if any of the patterns matched in sequence
fails.

hp, s
in

, �

in

i i�! hs
p

i
h⇠(P), s

p

, �

in

i i�! hs
out

i

h⇠(p::P), s

in

, �

in

i i�! hs
out

i
SEQUENCE SUCCESS

h⇠(✏), s
in

, �

in

i i�! hs
in

i
SEQUENCE EMPTY

hp, s
in

, �

in

i i�! ?

h⇠(p::P), s

in

, �

in

i i�! ?
SEQUENCE ?

Choice Instantiation of a choice pattern attempts to instantiate a sequence of patterns
in order until one of them succeeds. Instantiation fails for the empty sequence. The in-
stantiation semantics of or are most useful in conjunction with alternatives that contain
variables. The chosen alternative may depend on variables. This can be used for express-
ing conditions such as “if variable v1 is bound, instantiate pattern p1, else if variable v2

is bound, instantiate pattern p2”. Because instantiation of variables entails matching their
pattern component when instantiating, it is possible to make successful instantiation de-
pendent on the type of the variable.

hp, s
in

, �

in

i i�! hs
out

i

hor(p::P), s

in

, �

in

i i�! hs
out

i
CHOICE SUCCESS

54

3.4 Transformations and General Purpose Patterns

hp, s
in

, �

in

i i�! ?
hor(P), s

in

, �

in

i i�! hs
out

i

hor(p::P), s

in

, �

in

i i�! hs
out

i
CHOICE RECURSE

hor(✏), s
in

, �

in

i i�! ?
CHOICE NONE ?

Repetition The pattern p

⇤ is ambiguous as it lacks information on how often p should
be instantiated. Therefore, its instantiation fails. In the next chapter an extended version
of repetition will be presented in the form of the � operator. This operator has useful
instantiation semantics. It is the basis for expressing complex restructuring operations.

3.3.4 Vertical and Diagonal Instantiation

The vertical and diagonal combinators do not have meaningful interpretations for instan-
tiating. Their instantiation fails.

3.4 Transformations and General Purpose Patterns

This section extends the core pattern semantics defined in the previous sections with trans-
formations and a number of general purpose pattern operators that can be described in
terms of existing ones.

3.4.1 Unconditional Transformations

Matching patterns is a means to recognise and deconstruct data structures. Instantiating
patterns is a means to create data structures. Transformations combine matching and in-
stantiation to express restructuring of data. Variables are crucial in the transformation
process as bindings are used to transfer data from the matching to the instantiation phase.

Unconditional transformations have the notation p

l

) p

r

with p

l

and p

r

being pat-
terns. Pattern p

l

is matched with the input sequence and pattern p

r

is instantiated with the
resulting bindings. The result of matching p

l

is discarded. Transformations create a local
name space: bindings created during the matching phase are only used for instantiation
and are not part of the output store. A transformation fails if either matching the left-hand
side or instantiating the right-hand side fails.

55

3.4 Transformations and General Purpose Patterns

hp
l

, s

in

, �

in

i m�! hr
m

, s

out

, �

m

i
hp

r

, ✏, �

m

i i�! hr
out

i

hp
l

) p

r

, s

in

, �

in

i m�! hr
out

, s

out

, �

in

i
TRANSFORMATION

hp
l

, s

in

, �

in

i m�! ?

hp
l

) p

r

, s

in

, �

in

i m�! ?
TRANSFORMATION MATCH ?

hp
l

, s

in

, �

in

i m�! hr
m

, s

out

, �

m

i
hp

r

, ✏, �

m

i i�! ?

hp
l

) p

r

, s

in

, �

in

i m�! ?
TRANSFORMATION INST ?

For example, the transformation ⇠
([x:↵, y:↵])) ⇠

([y:↵, x:↵]) matches two elements
from the input sequence and swaps their position in the result. Matching this pattern with
the input sequence [a, b, c] produces result [b, a] and output sequence [c]. The bindings for
x and y are temporarily created during matching and not kept in the store.

Defining transformations as patterns and giving them a matching semantics has the
advantage that they can be used as parts of compound patterns. For example, the pattern
(a) b)

⇤ greedily matches a sequence of as and in the result produces a b for every
a. In the rest of this work, patterns containing transformations are used extensively. For
instance, such patterns are used to define pattern-based rewriting systems, see Section 4.2.
A conditional version of transformations where matching a transformation depends on the
results of other matches will be introduced in Section 4.3.

3.4.2 Definition of General Purpose Patterns

This section defines patterns that are useful for general purposes and that can be defined
in terms of existing patterns. This is expressed by syntactic rewrite rules of the form
ptn

l

=) ptn

r

where ptn

l

and ptn

r

are meta-patterns. The symbol p is a meta-variable
that ranges over pattern expressions. In Section 3.7.1 a mechanism will be introduced to
express rewriting of patterns in the pattern formalism using meta-transformations.

Empty Matching the pattern empty succeeds with no effects on the store and data se-
quence if the data sequence is empty, otherwise it fails. Instantiating empty succeeds with

56

3.5 Path Polymorphic Matching

no effect on the data sequence.

empty =) !↵

Nothing Matching and instantiating the pattern nothing always succeeds without hav-
ing an effect.

nothing =) ⇠
(✏)

Maybe Matching and instantiating the pattern p? always succeeds. If p succeeds it has
the same effect as p, otherwise it has no effect.

p? =) p |nothing

Repetition � 1 p

+ attempts to match p with the input sequence as often as possible. It
succeeds if p can be matched at least once and returns the combined result of all matches.

p

+
=) ⇠

([p, p

⇤
])

Unwrap Matching the pattern unwrap(p) succeeds only if matching p has a sequence
with one element as a result. In this case, the element is returned.

unwrap(p) =) p ! ↵

3.5 Path Polymorphic Matching

The operators in this section provide a flexible mechanism for defining matching of pat-
terns along arbitrary paths in (nested) structures [89]. The basic idea is to define a pattern
p

f

that matches data of interest, a pattern p

a

that defines data that might be interspersed
between instances of p

f

and – for nested structures – a pattern p

t

that defines which typed
sequences will be traversed. The resulting patterns can express searching, querying and
collectively transforming sequential or hierarchical data.

57

3.5 Path Polymorphic Matching

3.5.1 Finding Instances of a Pattern in a Sequence

The pattern expression find p

f

among p

a

looks for the first instance of a pattern p

f

in
a sequence of elements that match the pattern p

a

. It succeeds if p
f

matches an element
and yields the match result otherwise it matches p

a

and recursively find p

f

among p

a

in sequence. The pattern fails if the input sequence is empty. The semantics of find is
defined by the following rule:

find p

f

among p

a

=) p

f

| ⇠([p
a

, f ind p

f

among p

a

])

The result of matching a find pattern is not only the result of successfully matching
the second argument to an element, but also the result of all sequential matches of the
first argument that lead up to this match. For example, matching find c among ↵ with a
sequence of atoms [a, b, c, d] yields [a, b, c] as the result and [d] as the rest of the input
sequence. A compound result without the results of matching p

a

is obtained by using the
ignore operator: find c among ign(↵) yields the result [d].

3.5.2 Finding or Replacing All Instances

A successful match of the find pattern yields as the result the first occurrence of a pattern
in a sequence. The findall pattern returns all instances of a pattern in a sequence.

findall p

f

among p

a

=) empty | ⇠([(p
f

| p
a

), f indall p

f

among p

a

])

An empty result is returned if no pattern is found. Because p

f

is applied to all items and
because it can be any pattern including a transformation, findall can be used to replace
all occurrences of a pattern in a sequence. This is expressed by the following introduction
of the alias replaceall:

replaceall p

f

among p

a

=) findall p

f

among p

a

For example, matching the pattern replaceall (x) b) in↵ with [a, x, a, x] yields the
result [a, b, a, b].

3.5.3 Traversing Hierarchical Structures

The previous two versions of find operate on a sequence in a horizontal manner, attempt-
ing to match the items contained in the sequence sequentially. The following pattern finds

58

3.6 Meta-Patterns

occurrences of patterns in nested structures. It expects a third argument p
i

which is a
pattern that defines which typed sequences are searched.

findall p

f

among p

a

in p

t

=) empty |
⇠
([⌧([x:(findall p

f

among p

a

in p

t

)], p

t

)) x:↵⇤
,

f indall p

f

among p

a

in p

t

]) |
⇠
([(p

f

| p
a

), f indall p

f

among p

a

in p

t

])

Because pattern matching progresses from left to right and the search descends imme-
diately when a typed sequence of type p

t

is found, the above rule defines a depth-first
recursive descent search in which the search path is controlled through the patterns p

a

and
p

t

.

3.6 Meta-Patterns

Meta-patterns are patterns that match or instantiate other patterns. Recognising, creating
and manipulating patterns using patterns is a key concept underlying this work. It is the
foundation of partial instantiation (Section 3.6.5), pattern abstraction (Section 3.7) and
pattern grammars (Section 4.4).

3.6.1 Pattern Representation

In order to make the definition of the meta functionality in this section independent of a
particular pattern representation, a set of functions for constructing, deconstructing and
type testing patterns will be used. By abstractly viewing patterns as terms, patterns that
have arguments, e.g., the sequence pattern ⇠, can be distinguished from patterns that do
not have arguments, e.g., ↵. The predicate zeroary? yields true for the latter. The abstract
structure of a pattern with arguments can be divided into an operator part and an argument
part. The accessors operator and args yield the respective parts of a pattern as suggested
by their names. The pattern constructor pattern is used to build a pattern given an operator
and arguments.

Chapter 5 discusses a meta-circular implementation of pattern matching that uses
typed sequences and atoms to represent patterns. For this representation, the implementa-
tion of the functions just discussed is straightforward. The zeroary? function corresponds
to atom? and disassembling a pattern into its operator and argument part consists of sep-
arating the type and the content part of a typed sequence.

59

3.6 Meta-Patterns

3.6.2 Patterns on the Data Level

Meta-patterns match and instantiate patterns with patterns. Because the data consists of
patterns it is impossible to refer to a pattern on the data level without invoking its matching
and instantiation semantics. A mechanism is required to distinguish between “passive”
patterns as data and “active” patterns that match or instantiate data. This mechanism is
based on operators that explicitly declare patterns as data. The simplest of these operators
is data.

Matching pattern data(p) succeeds if the first element of the input sequence is a syn-
tactically equal pattern, otherwise matching fails.

p1 = p2

hdata(p1), p2::sout, �in

i m�! hp1, sout, �out

i
DATA SUCCESS

p1 6= p2

hdata(p1), p2::sin, �in

i m�! ?
DATA ?

hdata(p1), ✏, �in

i m�! ?
DATA EMPTY ?

Instantiating pattern data(p) appends data(p) to the input sequence.

combine(s

in

, data(p)) 7! s

out

hdata(p), s
in

, �

in

i i�! hs
out

i
DATA INSTANTIATE

It shall be noted that the instantiation semantics entail that the pattern remains explicitly
marked as data.

3.6.3 From Data to Pattern Level

Declaring a pattern as data enables pattern manipulation without invoking usual pattern
semantics. The data operator explicitly declares a pattern to be on the data level. Moving
patterns from the “passive” data level to the “active” pattern level corresponds to removing
the data wrapper. The critical question is when this transformation is performed. The

60

3.6 Meta-Patterns

i-activate operator removes the data declaration of the pattern during instantiation in
such a way that the pattern is part of the result. The next time the pattern is matched
or instantiated it is “active”. Instantiating i-activate fails if its pattern argument is not
marked as data.

combine(s

in

, p) 7! s

out

hi-activate(data(p)), s
in

, �

in

i i�! hs
out

i
ACTIVATE INST SUCCESS

operator(p) 6= data

hi-activate(p), s
in

, �

in

i i�! ?
ACTIVATE INST ?

The matching semantics of i-activate is failure.

hi-activate(p), s
in

, �

in

i m�! ?
ACTIVATE MATCH ?

Declaring a pattern as data means that it remains data until it is explicitly activated. As
the rule ACTIVATE SUCCESS suggests, i-activate and data can be combined. This is
expressed by the following definition of quote:

quote(p) =) i-activate(data(p))

The instantiation result of quote(p) is p, which means that the pattern is treated as “pas-
sive” data by the instantiation process but is “active” in the result and will thus have its
usual pattern semantics when matched or instantiated.

3.6.4 Quasiquotation

Patterns are based on the idea of interspersing literal data with expressions of the pat-
tern language. The mechanism introduced in the previous sections makes manipulation
of patterns as data possible. However, there is no way to intersperse “passive” patterns
with “active” patterns. In this section a quasiquotation mechanism [98] is introduced that
allows the declaration of patterns as data with “active” sub-patterns. The quasiquote op-
erator is qq and the unquote operator is uq. The following rules define matching and
instantiation semantics that allow arbitrary levels of meta-manipulation, i.e., patterns that

61

3.6 Meta-Patterns

manipulate meta-patterns. This is possible because quasiquotation can be used to create,
recognise and deconstruct arbitrary patterns – including quasiquoted patterns.

Instantiation Semantics The difference between the quasiquote operator qq and the
quote operator introduced in the previous section is that the instantiation semantics of
qq is not simply to append the pattern to the result sequence. Instead, a search is per-
formed inside the pattern for “active” parts to be instantiated. For example, if the pattern
qq(⌧([uq(x:↵), x:↵], list)) is instantiated with a store that contains the binding (x, b), the
result is ⌧([b, x:↵], list). That is, the pattern is instantiated literally with exception of the
variable surrounded by uq. This variable is treated as “active” and thus the value is in-
serted. Nesting quasiquotes allows the treatment of quasiquoted patterns as data and also
the expression of different levels of “activeness”. Surrounding the pattern above with qq

and instantiating it yields the pattern without changes to it as a result, i.e., no part of the
data would be treated as an “active” pattern. A part of a quasiquoted pattern is activated
if for every quasiquote surrounding it, there is a matching unquote. For example, instanti-
ating qq(qq(uq(⌧([uq(x:↵), x:↵], list)))) yields the result qq(uq(⌧([b, x:↵], list))).

The formalisation of quasiquote instantiation is based on a binary version of qq that
carries an additional integer argument used for counting the amount of quasiquotes sur-
rounding a pattern. The count is incremented for each quasiquote and decremented for
each unquote. A pattern becomes “active” if it is surrounded by an unquote and the count
is 1. In this case. the pattern has its usual instantiation semantics. If the count is greater
than 0 and there is no unquote, two cases are distinguished. If the pattern is atomic, it is
instantiated as data, i.e., appended literally to the result sequence. In case of a compound
pattern, the overall pattern is considered to be data. However, the data may contain more
unquotes that activate some of its parts. To take these unquotes into account, all parts have
to be traversed and individually instantiated.

Rule QQI FIRST defines the behaviour for the outermost quasiquotation. It instanti-
ates the binary version of qq with a count of 1.

hqq(1, p), s
in

, �

in

i i�! result

hqq(p), s
in

, �

in

i i�! result

QQI FIRST

Instantiating a qq or uq inside a qq leads to incrementation or decrementation respectively.
Quasiquotes that occur unquoted inside quasiquotes are added to the result. This makes it
possible to instantiate patterns containing quasiquotes.

62

3.6 Meta-Patterns

n1 = n+ 1

hqq(n1, p), ✏, �in

i i�! h[r]i
combine(s

in

, qq(r)) 7! s

out

hqq(n, qq(p)), s
in

, �

in

i i�! hs
out

i
QQI INCREMENT

n > 1

n1 = n� 1

hqq(n1, p), ✏, �in

i i�! h[r]i
combine(s

in

, uq(r)) 7! s

out

hqq(n, uq(p)), s
in

, �

in

i i�! hs
out

i
QQI DECREMENT

Pattern activation is performed when the quotation count is 1 and the pattern is surrounded
by an unquote. In this case, the instantiation result is the result of instantiating the un-
quoted pattern.

hp, s
in

, �

in

i i�! result

hqq(1, uq(p)), s
in

, �

in

i i�! result

QQI ACTIVATE

The traversal of patterns is described on their abstract structure because this does not
require separate rules for all types of patterns. A quasiquoted pattern with arity 0 cannot be
further traversed and is added to the result sequence. Quoted patterns with arity > 0 are
disassembled, each part is instantiated separately and the results are reassembled to form
the instantiation result. This is expressed using the constructor and destructor functions
described above.

n > 0

zeroary(p)

combine(s

in

, p) 7! s

out

hqq(n, p), s
in

, �

in

i i�! hs
out

i
QQI 0-ARY

63

3.6 Meta-Patterns

n > 0

operator(p) 7! o

args(p) 7! C

o 6= qq o 6= uq

hqq(n, o), ✏, �
in

i i�! h[o
i

]i
qqinst(C, ✏, �

in

, n) 7! C

i

pattern(o

i

, C

i

) 7! p

i

combine(s

in

, p

i

) 7! s

out

hqq(n, p), s
in

, �

in

i i�! hs
out

i
QQI N-ARY

The entire instantiation process fails if instantiating either the operator or the argument
part of the quasiquoted pattern fails.

n > 0

operator(p) 7! o

o 6= qq o 6= uq

hqq(n, o), ✏, �
in

i i�! ?

hqq(n, p), s
in

, �

in

i i�! ?
QQI OPERATOR ?

n > 0

operator(p) 7! o

o 6= qq o 6= uq

hqq(n, o), ✏, �
in

i i�! hsi
length(s) 6= 1

hqq(n, p), s
in

, �

in

i i�! ?
QQI OPERATOR NO TERM ?

64

3.6 Meta-Patterns

n > 0

operator(p) 7! o

args(p) 7! C

o 6= qq o 6= uq

qqinst(C, ✏, �

in

, n) 7! ?

hqq(n, p), s
in

, �

in

i i�! ?
QQI CONTENT ?

The instantiation of the arguments using the correct quasiquotation nesting level is defined
by the function qqinst.

hqq(n, c), ✏, �
in

i i�! hri
combine(s

in

, r) 7! s

i

qqinst(C, s

i

, �

in

, n) 7! s

out

qqinst(c::C, s
in

, �

in

, n) 7! s

out

QQINST RECURSE

qqinst(✏, s

in

, �

in

, n) 7! s

in

QQINST EMPTY

hqq(n, c), ✏, �
in

i i�! ?

qqinst(c::C, s
in

, �

in

, n) 7! ?
QQINST ?

The instantiation semantics of an unquote outside of a quasiquote is to instantiate the ar-
gument of the unquote and to surround the result with an unquote. This behaviour enables
patterns to create patterns containing unquotes.

hp, ✏, �
in

i i�! h[r]i
combine(s

in

, uq(r)) 7! s

out

huq(p), s
in

, �

in

i i�! hs
out

i
UNQUOTE SUCCESS

65

3.6 Meta-Patterns

hp, ✏, �
in

i i�! ?

huq(p), s
in

, �

in

i i�! ?
UNQUOTE PATTERN ?

hp, ✏, �
in

i i�! hs
i

i
length(s

i

) 6= 1

huq(p), s
in

, �

in

i i�! hs
out

i
UNQUOTE NOTERM ?

Interestingly, the quasiquote mechanism can also be utilised to define the internal structure
of an unquote. For example, instantiating the pattern uq(x:↵) with a store that contains a
binding (x, b) yields [uq(b)] while instantiating uq(qq(x:↵)) yields [uq(x:↵)].

Matching Semantics Using patterns to match patterns requires a mechanism to declare
which parts of the pattern-level pattern should match the data-level pattern literally, i.e.,
should be treated as data, and which parts should have their usual matching semantics.
This can be expressed using quasiquotation. For example, the pattern qq(

⇠
([↵, uq(↵)]))

matches a sequential pattern that literally contains ↵ followed by a second element that
can be anything.

A quasiquote that occurs inside another quasiquote requires that the first element of the
input is a quasiquote. For example, the only data the pattern qq(

⇠
([↵, qq(↵)])) matches is

⇠
([↵, qq(↵)]), i.e., a sequential pattern that literally contains qq(↵) as the second element.

On the other hand, the pattern qq(

⇠
([↵, qq(uq(↵))])) allows an arbitrary pattern inside

the quasiquote of the second element. For instance, it matches qq(

⇠
([↵, qq(uq(x:↵))])).

Based on this semantics, a counting of nesting levels is not necessary as comparisons with
the input are performed directly.

A pattern inside a quasiquote becomes “active”, i.e., has its usual matching semantics,
if it is surrounded by an unquote.

hp, s
in

, �

in

i m�! result

hqq(uq(p)), s
in

, �

in

i m�! result

QQM ACTIVATE

Quasiquoted patterns are matched with the first element of the input sequence. If the pat-
tern is 0-ary, this element must be syntactically equal to the pattern. In case of a compound
pattern, the first element of the input sequence also has to be a compound pattern. The op-

66

3.6 Meta-Patterns

erators have to match literally and the content of the pattern-level pattern must match
the contents of the data-level pattern. The rule QQM N-ARY defines disassembling and
reassembling of the patterns.

zeroary(p)

hqq(p), p::s
out

, �

in

i m�! hp, s
out

, �

in

i
QQM 0-ARY

operator(p) 7! o

operator(p

d

) 7! o

d

args(p) 7! C

args(p

d

) 7! C

d

hqq(o), [o
d

], �

in

i m�! ho
m

, ✏, �

o

i
qqmatch(C,C

d

, �

o

) 7! (C

m

, ✏, �

out

)

pattern(o

m

, C

m

) 7! p

i

hqq(p), p
d

::s
out

, �

in

i m�! hp
i

, s

out

, �

out

i
QQM N-ARY

Matching a quasiquoted pattern with an empty input sequence fails. If the first element
in the sequence is a compound pattern, matching fails in case the operator and argument
parts of the pattern-level pattern cannot be matched with those of the data-level pattern.

hqq(p), ✏, �
in

i m�! ?
QQM EMPTY ?

operator(p) 7! o

operator(p

d

) 7! o

d

hall(qq(o)), [o
d

], �

in

i m�! ?

hqq(p), p
d

::s
out

, �

in

i m�! ?
QQM OPERATOR ?

67

3.6 Meta-Patterns

operator(p) 7! o

operator(p

d

) 7! o

d

args(p) 7! C

args(p

d

) 7! C

d

hqq(o), [o
d

], �

in

i m�! ho
m

, ✏, �

o

i
qqmatch(C,C

d

, �

o

) 7! ?

hqq(p), p
d

::s
out

, �

in

i m�! ?
QQM N-ARY

The helper function qqmatch matches the content of the pattern-level pattern with the
content of the data-level pattern. For example, matching qq(

⇠
([↵, uq(ign(x:↵⇤

))])) with
input [⇠([↵, y, z])] results in a call to qqmatch with C = [↵, uq(x:↵⇤

)] and C

d

= [↵, y, z],
as defined by rule QQM N-ARY. In qqmatch, the pattern qq(↵) is matched with [↵], which
results in a literal comparison according to rule QQM 0-ARY. Next, qq(uq(ign(x:↵⇤

)))

is matched with [y, z]. The surrounding unquote activates the ignore-pattern as defined
by rule QQM ACTIVATE. This leads to a match of ign(x:↵⇤

) with [y, z]. The matching
consumes y and z, creates a binding (x, [y, z]). Because of the surrounding ign, an empty
sequence is the result. The overall outcome of qqmatch is an empty output sequence, a
store updated with the binding and the result [↵]. From the result of qqmatch, the pattern
⇠
([↵]) is assembled as defined by rule QQM N-ARY. This pattern is the overall matching

result.

hqq(c), s
in

, �

in

i m�! hr
c

, s

c

, �

c

i
qqmatch(C, s

c

, �

c

) 7! (r

C

, s

out

, �

out

)

combine(r

c

, r

C

) 7! r

qqmatch(c::C, s
in

, �

in

) 7! (r, s

out

, �

out

)

QQMATCH RECURSE

qqmatch(✏, s

in

, �

in

, ni 7! h✏, s
in

, �

in

i
QQMATCH EMPTY

Matching a pattern uq(p) succeeds if the first element of the input has the form uq(p

d

) and
p matches [p

d

]. The result of this match is wrapped into an unquote. This behaviour makes
it possible to use quasiquote and unquote to match patterns that contain quasiquotes and
unquotes.

For example, in the pattern qq(uq(b)), the atom b is surrounded by one quasiquote
and one unquote. The pattern qq(uq(x:↵)) binds x to qq(uq(b)) because the effect of

68

3.6 Meta-Patterns

the quasiquote is neutralized by the unquote. However, pattern qq(qq(uq(x:↵))) binds x
to uq(b) because the inner qq is matched with the qq on the data level and the unquote
activates the variable. To create a binding from x to b, the pattern qq(qq(uq(uq(x:↵))))
adds another unquote. The outer unquote is matched with the unquote on the data level,
as define by rule UQM SUCCESS. The inner unquote activates the variable.

hp, [p
d

], �

in

i m�! hr, ✏, �
out

i

huq(p), uq(p
d

)::s
out

, �

in

i m�! huq(r), s
out

, �

out

i
UQM SUCCESS

hall(p), [p
d

], �

in

i m�! ?

huq(p), uq(p
d

)::s, �
in

i m�! ?
UQM PATTERN ?

operator(e) 6= uq

huq(p), e::s, �
in

i m�! ?
UQM OPERATOR ?

huq(p), ✏, �
in

i m�! ?
UQM EMPTY?

Combined with the transformations introduced in Section 3.4, the quasiquotation mech-
anism allows the definition of arbitrary transformations on patterns. Because transforma-
tions are patterns as well and quasiquotation works on quasiquoted patterns, these meta-
transformations can be transformed by meta-meta-transformations. An arbitrary number
of meta-levels can be defined. Meta-transformations are used in Section 3.7 to implement
an abstraction mechanism for patterns.

3.6.5 Partial Instantiation and Pattern Refinement

The instantiation semantics of variables introduced in Section 3.2 define failure in case
that a variable is unbound in the store. Altering this semantics in such a way that the un-
bound variable itself is the result gives rise to the notion of partial instantiation of patterns.
The modified semantics replace the rule VARIABLE UNBOUND ? with the following rule:

69

3.7 Pattern Abstraction

�

in

[n] = ?
combine(s

in

, n:p) 7! s

out

hn:p, s
in

, �

in

i i�! hs
out

i
PARTIAL INSTANTIATION

Partial instantiation can be used to refine a pattern in a step-wise fashion by replacing
variables with concrete values in each step. An example of partial instantiation that refines
a pattern is the following specialisation of a general typed sequence pattern to one that
matches only lists:

h⌧([c:↵⇤
], t:type), ✏, {(t, list)}i i�! h⌧([c:↵⇤

], list)i

The result of instantiating a pattern with a store that does not include bindings for all
variables results in a pattern on the data level. This means that partial instantiation is a
meta-operation.

Partial instantiation can be used in combination with the path polymorphic patterns
defined in Section 3.5 to query structures. The idea is to define general search patterns
and to refine these patterns before a query using bindings that may be the result of pre-
vious matches. For example, the general query find ⌧([c:↵⇤

], t:type) among ign(↵)

that finds all typed sequences in a sequence can be restricted to the more specific query
find ⌧([c:↵⇤

], list) among ign(↵) that finds only lists. This can be achieved using par-
tial instantiation as shown in the example above. Similarly, refinement of the “among”
pattern and the “in” pattern (of the hierarchical find operator) can be used to refine the
search path of a query. These techniques are used extensively by the query and constraint
language of XMF, see Chapter 6.

3.7 Pattern Abstraction

The operational semantics in this chapter formalise a set of core pattern abstractions. Pat-
tern expressions can be created by combining these abstractions. So far, the only way for
abstracting these pattern expressions, i.e., to hide their implementation and make them
appear as built-in patterns, is through a meta-language that is different from the pattern
formalism. This section extends the pattern formalism with a mechanism for pattern ab-
straction.

70

3.7 Pattern Abstraction

3.7.1 References

References provide a simple form of pattern abstraction: a name is associated with a pat-
tern in such a way that the occurrence of the name is resolved to the pattern before match-
ing or instantiation. An example is the pattern empty which was defined in Section 3.4 as
a reference to the pattern !↵.

There are several ways to implement references in the pattern formalism. One way is
to define the mapping between a name and a pattern as part of the operational semantics:
every reference is defined as an inference rule with a conclusion hname, s, �i m/i��! result

and a single premise hpattern, s, �i m/i��! result. This means that a name is replaced
with a pattern by an operational rule of the system. Using this technique implies that the
concept of reference is not part of the formalism. Adding new references means extending
the formalism.

An alternative is the use of a meta-language to define references directly as trans-
formations. Above, the meta-language operator “=)” was used for this purpose. The
meta-language expression name =) pattern means that an occurrence of name can
be rewritten to pattern. The extensibility mechanism defined in this section makes ref-
erences explicit in the pattern formalism so that no external meta-language is needed –
the pattern formalism is the meta-language. This means that the formalism can be ex-
tended from within. Reference resolution is a pattern-based meta-transformation with the
left-hand side naming the pattern on the right-hand side.

The meta-functionality introduced in Section 3.6 enables transformations of patterns
using patterns. Such meta-transformations are a suitable basis for implementing mappings
from pattern references to patterns. For instance, the meta-transformation

empty) quote(!↵)

implements the above example using the quotation functionality described in the pre-
vious section. The left-hand side matches the atom empty and the right-hand side pro-
duces the pattern !↵.

3.7.2 Statically Parameterised References

Formalising references as transformations provides not only the advantage that the ref-
erence resolution is defined by means of the pattern formalism but also that, in addition
to simple name to pattern mappings, more powerful pattern abstractions can be defined.
Parameterised references allow the passing of arguments during reference resolution. The
arguments are used as values to instantiate variables in the meta-pattern on the right hand

71

3.7 Pattern Abstraction

side of the transformation. For example, the pattern operator ? which tries to match its
argument can be defined as an unconditional transformation on a reference that consists
of the operator name and a variable:

qq((uq(p:↵))?)) qq(or([uq(p:↵), ⇠(✏)]))

A reference to this pattern is ref((b)?) which is transformed into or([b,

⇠
(✏)]). The un-

quote on the right-hand side leads to the instantiation of the variable during the trans-
formation. Otherwise, the variable itself would be part of the transformation result. The
arguments passed to a parameterised reference are static in the sense that the argument
values are contained literally in the pattern expression. The semantics of the ref operator
will be defined in the next subsection.

3.7.3 Dynamically Parameterised References

Dynamically parameterised references contain variables that are instantiated in the con-
text of the current store before resolution. This enables values created from a previous
match to be used as reference arguments. For example, matching the reference containing
pattern ⇠

([f :↵, ref(rest(uq(f :↵))) first yields a binding for the variable f which is then
passed to the referenced pattern rest. The definitions in this subsection not only formalise
dynamically parameterised references but also parameterless and statically parametrised
references as these are special cases of the former.

The ref operator surrounds its operand with a quasiquote before instantiating it. Parts
surrounded with an unquote, such as the variable in the example above, are “activated”
which means that variables are replaced with values bound in the current store. This im-
plements the dynamic parametrisation. The actual reference resolution is performed by
a meta-pattern that defines meta-transformations from references to patterns. Such a pat-
tern can be constructed from individual meta-transformations using choice. It has the
form or([m1, ...,mn

]) where m1, ...,mn

are meta-transformations such as those for ? and
empty defined above. Creating and manipulating this pattern, e.g., in order to add new
references, can be expressed using meta-meta-transformations. The actual process of ref-
erence definition and manipulation is, however, outside the scope of this formalisation.

To be able to define reference resolution, let the pattern p

refs

refer to the meta-pattern
that defines how to resolve references. This pattern is matched with the result of instan-
tiating the reference; the matching result is the outcome of the resolution process. It is
matched with the input sequence to produce the overall result of matching the reference.

72

3.7 Pattern Abstraction

hqq(p), ✏, �
in

i i�! hs
i

i
hall(p

refs

), s

i

, �

in

i m�! hr
ref

, ✏, �

ref

i
hr

ref

, s

in

, �

in

i m�! result

href(p), s
in

, �

in

i m�! result

REFERENCE SUCCESS

hqq(p), ✏, �i i�! ?

href(p), s
in

, �

in

i m�! ?
REFERENCE DYNAMIC ?

hqq(p), ✏, �i i�! hs
i

i
hall(p

refs

), s

i

, �

in

i m�! ?

href(p), s
in

, �

in

i m�! ?
REFERENCE RESOLVE ?

The instantiation semantics of references are very similar to the matching semantics. The
actual reference resolution follows the same steps as in the matching case, the only dif-
ference is that the result of resolving the reference is instantiated rather than matched.

hqq(p), ✏, �
in

i i�! hs
i

i
hall(p

refs

), s

i

, �

in

i m�! hr
ref

, ✏, �

ref

i
hr

ref

, s

in

, �

in

i i�! result

href(p), s
in

, �

in

i i�! result

REFERENCE INST

hqq(p), ✏, �i i�! ?

href(p), s
in

, �

in

i i�! ?
REFERENCE INST DYNAMIC ?

hqq(p), ✏, �i i�! hs
i

i
hall(p

refs

), s

i

, �

in

i m�! ?

href(p), s
in

, �

in

i i�! ?
REFERENCE INST RESOLVE ?

73

3.8 Summary and Conclusions

In the next chapter references will be used extensively to define productions of grammars.
Chapter 5 provides examples of using dynamically parameterised references to avoid left-
recursive definitions.

3.8 Summary and Conclusions

This chapter formalised recognising, creating, transforming and searching structures. The
formalisation is based on elementary patterns and means to horizontally, vertically and
diagonally combine them. In conjunction with transformations, diagonal combination is
an important step in the direction of pattern-based computing. It gives rise to a staged
processing of data, where each stage is defined by a pattern. Typed sequence patterns
allow manipulation of arbitrary tree structures. Path polymorphic operators give fine-
grained control for traversing structures. Meta-patterns apply the pattern functionality
self-referentially. This is facilitated by a quotation and quasiquotation mechanism that
separates between “active” and “passive” patterns.

Interestingly, the quasiquotation mechanism can be used to match and instantiate data-
level patterns that contain quasiquotes and unquotes. This is the key to arbitrary lev-
els of meta-functionality. One application of meta-patterns is pattern abstraction. Meta-
transformations are used for resolving references. Dynamic references define a kind of
“function call” mechanism for patterns where parameter passing and variable substitution
in the body are defined entirely through matching and instantiation.

The functionality defined so far provides a versatile and extensible framework for
structural manipulation. With regards to the hypothesis, the definition of an operational
semantics ensures that the pattern approach provides a solid formal foundation. The aim
of the next chapter is to utilise this foundation to show that “the systematic creation and
layering of languages can be reduced to the elementary operations of pattern matching
and instantiation”.

74

Chapter 4

Towards Pattern-based
(Meta-)Programming

This chapter provides a formal foundation for programming and meta-programming based
on the pattern core introduced in the previous chapter. The first step in this direction is
the definition of rewriting systems. A rewriting system consists of transformations and
a strategy for applying these transformations – both are expressed as patterns. The path
polymorphic find operator plays a key role in the formalisation of subterm rewriting. Dif-
ferent kinds of rewriting systems can be distinguished based on strategies and the way they
constrain transformations. Purely concatenative rewriting systems restrict transformations
to mappings from names to programs with the goal of giving transformations a purely
functional semantics. Less restrictive pattern-based definitions combine the benefits of
functional semantics with powerful means for defining functions (Section 4.2). Based on
the foundation of rewriting systems, the notion of pattern-based computing is formalised
in such a way that the pattern system has the ability to invoke itself. Self-invocation is
utilised by conditional rules whose results depend on the execution of dynamically cre-
ated programs. Temporal views define a mechanism to hide certain computational steps
of a rewriting system (Section 4.3). Pattern-based (un-)parsing is based on a unified repre-
sentation of character strings and syntax trees as typed sequences. Grammars are defined
by a set of meta-transformations (Section 4.4). Individual stages of parsing, computation
and unparsing define staged processing of programs. Staged processing is formalised us-
ing vertical combination. Structural views allow the introduction of arbitrary layers of
program representation beyond the syntactic limitations of typed sequences (Section 4.5).
Together, structural and temporal views are the formal foundation for “illusionising” exe-
cution models. Finally, elliptical patterns are a practical extension for programs that trans-
form repetitive structures (Section 4.6).

75

4.1 Motivation

4.1 Motivation

The previous chapter formalised fundamental operations on structures in terms of pattern
matching and instantiation. It also defined a meta-functionality and an abstraction mech-
anism for patterns. How can these concepts be used to formally define a programming
and meta-programming system? Building a programming language based on the pattern
formalism poses more detailed questions. How does the character-based syntax of a lan-
guage relate to the typed sequence data representation? What is the execution model of
the language and how is this execution model implemented through pattern matching and
instantiation? What infrastructure does the language provide and how are programs writ-
ten? A meta-programming system demands that these questions do not have fixed answers
but that syntax and execution mechanisms are adjustable. The following sections provide
the necessary operators, techniques and infrastructure to define languages using patterns.
The result is the formal foundation of the meta-programming system Concat that will be
introduced in the next chapter.

4.2 Pattern-based Rewriting Systems

Rewriting systems are generic tools for describing the stepwise, formal manipulation of
structures. A rewriting system consists of a set of formal rules that define how (part of)
a given structure is reduced to a new structure. The application of rules is defined by
strategies. The goal is to derive a normal form, i.e., a structure that cannot be reduced
any further. A rewriting system can be used to formalise the operation of a programming
system: the structure manipulated by the rewriting process is the program; the rewriting
rules and their application strategy define the interpreter for the program [40]. The aim
of this section is to show how such interpreters can be defined with the patterns already
introduced and how different strategies and rule restrictions lead to different programming
models.

Based on the types of structures they process, rewriting systems can be classified into
string, graph or term rewriting systems [5,12]. The rewriting systems that will be defined
in this section rewrite typed sequences. Section 4.4 will show how strings can be repre-
sented as typed sequences in order to provide a uniform notation enabling rewrite rules to
be defined on strings. However, this is just a special case and in general the hierarchical
semantics of typed sequence patterns allows rewriting of structured data. Typed sequences
can be viewed as terms constructed by the binary operator ⌧ and the operator :: over the
set of atoms and ✏. In this sense, the rewriting systems that will be introduced below can
be seen as term rewriting systems.

76

4.2 Pattern-based Rewriting Systems

4.2.1 From Transformations to Rewriting Systems

The pattern-based transformations defined in the previous chapter are a powerful means
for defining a single step of restructuring data. A key design decision is that unconditional
transformations are not only based on pattern expressions but are themselves pattern ex-
pressions. The closure property of pattern composition entails that arbitrary compound
patterns can be built from transformations.

For instance, the pattern p

l1) p

r1 |...| p
ln) p

rn expresses that there are several
alternative transformations. The left-to-right semantics of the choice operator defines a
clear order in which the transformations are applied. A pattern of the form (p

l

) p

r

)

⇤v

uses the vertical repetition operator to express repeated application of transformations.
Combining both choice and repetition and assuring that the entire sequence is rewritten
yields patterns that have the following schema:

all((p

l1) p

r1 |...| pln) p

rn)
⇤v
)

Such patterns define rewriting system: rules are transformations and the strategy is de-
fined by the composition of prioritised choice, vertical repetition and the all operator.
The strategy consists of trying the rules in the order in which they appear, applying the
first rule that matches. After successful application this process is repeated on the results.
Repetition terminates if no more rules apply.

An example for the definition of a rewriting system is the pattern all((a) b | b)
c)

⇤v
) in which a, b and c are atoms. When matching the pattern with input [a], the first

transformation is applied and rewrites the input to the result [b]. Next, the vertical repeti-
tion operator matches this result with the choice operator, which for this input applies the
second transformation that rewrites [b] to [c]. After that, rewriting terminates as none of
the rules matches [c].

The algorithm in Listing 1 illustrates the basic rewriting strategy expressed by the
above patterns. The function rewrite transforms a term by repeatedly applying rules
until no more rule can be applied. The rules are applied in the order in which they appear
in the list rules. The repeated application of rules is expressed by the outer do-while-
loop starting in line 3; attempting the rules one by one is expressed by the inner for-
loop starting in line 5. The outcome of a rule application (represented by variable aout)
consists of a result part and a rest part. A successful rewriting step was performed if the
result part of aout is not failed and if the rest part is empty. This is expressed by the
conditional part of the if-statement starting in line 7.

77

4.2 Pattern-based Rewriting Systems

Listing 1 Basic Rewriting System Algorithm

1 rewrite(rules, term_in) -> term_out
2 term = term_in
3 do
4 success = false
5 for(i=0; i<rules.count; i++)
6 aout = apply(rules[i], term)
7 if(aout != failed && aout.rest == empty)
8 term = aout.result
9 success=true

10 break
11 while (success)
12 return term

4.2.2 Subterm Rewriting Strategies

The rewriting semantics just defined require that transformations rewrite the entire input
sequence. Subterm rewriting allows transformations that define rewriting on just a part
of the sequence [5]. If lxr is a sequence consisting of subsequences l, x and r and there
is a transformation x ! y, the transformation lxr ! lyr is applied. In other words, the
context of the subsequence affected by the transformation is automatically added to the
result.

Applying a transformation to a subsequence requires finding a reducible subsequence,
applying the transformation and combining the result with the subsequences to the left and
to the right of the result. Part of this can be achieved using the diagonal operator:

(�(p

l1) p

r1 |...| pln) p

rn))
⇤

Systems that follow this schema are a step in the right direction. Rewriting subsequences
is supported as the diagonal operator combines the remaining sequence, i.e., the sub-
sequence to the right of the replaced sequence, with the result. Because the compound
result is returned as the output sequence, repeated application is expressed using the hor-
izontal repetition operator. For example, the system (�(a) b | b) c))

⇤ rewrites the
input [a, b, c] to the result [c, b, c]. However, this strategy is restrictive as it demands that
subsequences matched by the left-hand side of a transformation start at the beginning of
the input sequence. Therefore, only data of the form xr with context on the right can be
rewritten using rule x ! y. The general case lxr, with context to the left and to the right,
can be defined by applying the find operator of Section 3.5.1:

78

4.2 Pattern-based Rewriting Systems

Rule 1

Rule 2

…

Rule n

head current index

actual rule input

current
rule

result rest/tail

termn+1

termn

Figure 4.1: Illustration of the Abstract Machine’s Rule Core

(�find (p

l1) p

r1 |...| pln) p

rn) among ↵)

⇤

The strategy expressed through this pattern is to start from the very left in the input se-
quence and to try applying the transformations in the order in which they appear in the
choice pattern. If none of the transformation can be applied, the same is tried on the in-
put sequence with the first element removed. In case of a successful transformation, find
combines the result with the subsequence to the left of the reducible sequence, i.e., the
part that was skipped when no transformation matched. This result is then combined di-
agonally with the rest of the input sequence unaffected by the transformation.

For instance, matching (�find(a) b | b) c) among ↵)

⇤ with [c, a, b] attempts
matching the first transformation with [c, a, b], which fails and causes find to move on
to [a, b]. Next, transformation a) b rewrites subsequence [a] to [b]. The context to the
left, [c], is added to the result by find which returns [c, b]. This result is combined with
the right context [b] to form the output sequence [c, b, b]. Because a successful rewriting
step was performed, the process is repeated for the updated sequence. The next step yields
[c, c, b] and the final step results in [c, c, c].

Figure 4.1 illustrates the concept of subterm rewriting as the operation of an ab-
stract term rewriting machine. It shows a single rewriting step where term

n

is rewritten

79

4.2 Pattern-based Rewriting Systems

to term

n+1. The current index points to the subterm on which the rules are attempted;
current rule points to the particular rule that is attempted. The current rule pointer is in-
cremented when the application of a rule fails. The current index pointer is incremented
when the application of all rules fails. Rewriting terminates when the current index runs
out of the bounds defined by the input term. The overall result of the rule application
is constructed from the heading subterm, the result of applying a rule on the subterm
following it and the part of that subterm which was not affected by the rule application.

The algorithm in Listing 2 extends that in Listing 1 and details the operation of the
abstract machine. Fundamental to the algorithm is the division of the input term into three
parts: the subterm to which the rule is applied as well as the subterms leading and trailing
it. An index variable is used to keep track of the leading subterm; the function range is
used to get a subterm based on start and end indices. The trailing subterm is the rest part
of the outcome of apply (represented by aout.rest). The if-statement starting in line
15 increases the index variable in case the index is smaller than the length of the term.
To produce the result of a rewriting step the three subterms are appended, as expressed in
lines 10 and 11.

Listing 2 Subterm Rewriting System Algorithm

1 rewrite(rules,term_in) -> term_out
2 term = term_in
3 index = 0
4 do
5 success = false
6 for(i=0; i<rules.count; i++)
7 aout = apply(rules[i],
8 term.range(index,term.length))
9 if(aout!=failed)

10 lterm = append(term.range(0,index), aout.result)
11 term = append(lterm, aout.rest)
12 index=0
13 success=true
14 break
15 if(aout == failed && index < term.length)
16 index++
17 success = true
18 while (success)
19 return term

80

4.2 Pattern-based Rewriting Systems

4.2.3 Purely Concatenative Rewriting Systems

The rewriting systems defined in the previous section allows arbitrary data sequences to
be rewritten by arbitrary transformations. This section explains how restrictions on data
and transformations can be used to implement a concatenative programming system. As
discussed in Chapter 1, the execution state of a concatenative program can be represented
as a program so that the entire program execution can be described by a sequence of
programs. This makes concatenative programs particularly well suited for rewriting.

The basic distinction of program elements is between items (literals and quotations)
and operators. A definition of the execution semantics using the pattern formalism re-
quires that items and operators are structurally distinguishable. This requirement can be
fulfilled by representing both operators and items as typed sequences. Operators have the
operator type and all typed sequences with different types are items as expressed by the
following meta-transformations:

op) qq(⌧([ref(name)], operator))

item) qq(⌧([↵

⇤
], !operator))

The reference name resolves to a pattern that recognises operator names. An example of
an operator is ⌧([swap], operator). The above rules define the set of possible operators
and items. A concrete concatenative rewriting system can restrict this set to exactly those
operators and items available.

Programs are sequences of items and operators. This is defined by the following pat-
tern:

program) (ref(item)|ref(operator))⇤

An item that is of particular importance in concatenative programming is the quotation
that serves as a list structure and program representation at the same time:

quot) qq(⌧([ref(program)], quotation))

To avoid cluttering the presentation, the internal structure of operators and items will be
hidden wherever it is irrelevant to the discussion and where it is clear that an element is
an item or an operator. For instance, instead of ⌧([swap], operator) and ⌧([2, 3], number)

the representation swap and 23 will be used. In Section 4.5.3, a mechanism to define such
structural hiding will be introduced.

Program execution of a concatenative program is performed from left to right. Items
remain in place between rewriting steps unless an operator is applied to them. Hence,

81

4.2 Pattern-based Rewriting Systems

executing a program such as 1 2 3 swap dup from left to right involves scanning
over the numbers and then applying the first operation – in this case swap. Scanning
over items can be expressed with a modification of the more general pattern for subterm
rewriting defined in the previous section.

(�find (p

l1) p

r1 |...| pln) p

rn) among ref(item))

⇤

The search pattern find is configured with ref(item) instead of ↵ which has the effect
that only items are scanned over during matching. A pure concatenative programming
system is defined by transformations that have an operator on the left and a program on
the right. Such transformations can be defined by a meta-pattern:

qq(uq(ref(operator))) uq(ref(program)))

The definition implies that both the left- and right-hand sides of the transformation are
concatenative programs without variables; transformations are context-free substitutions
of a single element program with another program. Primitive programs, i.e., built-in oper-
ators such as dup and swap, perform elementary data restructuring. Each transformation
defines a new operator by mapping it to a program. Program execution consists of replac-
ing non-primitives with definitions until a primitive is reached. For example, the program
[2, square] is rewritten into [2, dup, ⇤] by application of the rule square) ⇠

([dup, ⇤]).

4.2.4 Concatenative Rewriting with Patterns

In a system restricting transformations less severely than the purely concatenative system
above, primitive concatenative words can be defined as transformations. For example, the
definition of the dup operator is:

⇠
([x:ref(item), dup])) ⇠

([x:ref(item), x:ref(item)])

Although this transformation does not follow the strict rule that the only element on
the left-hand side of a transformation has to be an operation, it still defines a functional
semantics for dup. The transformation only affects items appearing to the left of dup in
the program.

In general, transformations that allow patterns different from operators and items and
at the same time preserve the functional property are restricted in the following way: the
left-hand side of the transformation contains only a single operator that needs to be the
rightmost element. The remaining patterns on the left-hand side must only match items
appearing before that operator in the program. The right-hand side is unrestricted. Such

82

4.2 Pattern-based Rewriting Systems

transformations have the form

p

l

operator) p

r

where p

r

is any pattern and p

l

is a pattern for which the following condition holds for
all sequences s:

hp
l

, s

,

�1i
m�! hr, ✏, �2i ` hfind operator among ↵, s, �1i

m�! ?

This condition expresses that p
l

does not match any sequences containing operators. Al-
lowing operator definitions of this form not only for primitive operators but also for user-
defined operators yields a paradigm combining the execution properties of concatenative
systems with the expressive power of pattern matching.

The transformation ⇠
([dup, drop])) ⇠

(✏) violates the restrictions by having two
operators on the left-hand side. This implies that either the result of drop depends on
the operator to its left or that the result of dup depends on the operator on its right. Both
interpretations are non-functional. While illegal on the “regular” programming level, such
transformations are useful for expressing program transformations explicit. In Concat,
they are defined as macros.

Pattern-based manipulation of operators is possible if the operators are contained in-
side quotations. Quotations provide means to manipulate programs as data. A call mech-
anism allows execution of quoted programs. For example, the concatenative program
[2, 3, ⌧([swap, dup], quotation), rest, call] is executed by first applying rest which re-
moves the first element of the quotation. This code manipulation results in program
[2, 3, ⌧([dup], quotation), call]. Next, call executes the content of the quotation, which
yields the program [2, 3, dup]. The final result after applying dup is [2, 3, 3].

The concatenative operators rest and call can be implemented by transformations
which manipulate quotations [170]. The transformation

⇠
([⌧([↵, r:↵⇤

], quotation), rest])) ⌧([r:↵⇤
], quotation)

binds r to a sequence containing all but the first element of the matched quotation; it
instantiates r inside a quotation which yields a new quotation without the first element.
The transformation

⇠
([⌧([p:↵⇤

], quotation), call])) p:↵⇤

binds p to all elements in a quotation and instantiates p outside of a quotation context.
This “unquoting” leads to the execution of the program that was inside the quotation.

Like all concatenative operations, call has a functional semantics: it maps data con-

83

4.3 Computing with Patterns

taining a quotation to data that is the result of executing the program contained in the
quotation. However, based on the above definition, the fine-grained steps of the rewriting
system make it visible that call is actually implemented through program transformation.
This violates the functional principle. To maintain the functional semantics of call, its im-
plementation details have to be hidden. Section 4.5.6 will define a mechanism to achieve
this: temporal views allow “black-boxing” certain operations by hiding steps in the course
of program execution.

4.3 Computing with Patterns

The rewriting systems introduced in the previous section give rise to a notion of pattern-
based computing where the data sequence is a program and the patterns define an inter-
preter for that program. The functionality of the interpreter depends on transformations
defining single computation steps and patterns specifying a strategy for performing these
steps. Constraints on transformations and the application strategy are the basis of differ-
ent computational models, as was demonstrated by two variants of concatenative systems.
In this section, pattern-based computing will be formalised and based on this foundation
conditional transformations will be introduced.

4.3.1 Formalising Pattern-based Computing

A rewriting system is defined by a pattern p

rws

that when matched performs manipulation
of an input sequence. The operator � defines matching of p

rws

.

hp
rws

, s

in

, �

in

i m�! result

h�, s
in

, �

in

i m�! result

COMPUTE

The instantiation semantics of � is failure. A rewriting system can create an instance of
itself if � appears in a transformation. Computations may invoke other computations by
creating programs, computing the results of these programs and matching patterns with
the result. Conditional transformations are based on these techniques.

4.3.2 Conditional Transformations

Conditional transformations utilise the computational mechanism described in the previ-
ous subsection. They resemble a style of definition that is reminiscent of inference rules
such as those used in this and the previous chapter to define the operational semantics of

84

4.3 Computing with Patterns

matching and instantiation. When used in rewriting systems, conditional transformations
provide a foundation for conditional rewriting. The basic syntactic structure of conditional
transformations is p

l

) p

r

(= c1 ... cn. This structure corresponds to inference rules of
the form:

c1 ... cn

p

l

! p

r

The result of a conditional transformation depends not only on the result of matching
and instantiating two patterns, but also on the result of computing programs constructed
through pattern instantiation. The execution semantics of conditionals is based on the
repeated creation and computation of programs and on the matching of program results.

For example, the following conditional rule increments a number contained in a list:
(

⇠
([⌧([x:↵], list), linc])) ⌧([y:↵], list)) (= (

⇠
([x:↵, inc])) y:↵). Assuming that

there is a transformation rewriting [2, inc] to [3], matching the conditional transformation
just defined with ⌧([2], list) yields ⌧([3], list). This result is produced by first matching
the left-hand side ⌧([y:↵], list) of the transformation with the input sequence. This creates
the binding (x, 2). In the context of this binding, the left-hand side ⇠

([x:↵, inc]) of the first
and only conditional is instantiated producing the result [2, inc]. The rewriting system is
invoked with this result as input and produces [3]. Matching the right-hand side of the
conditional y:↵ with this computation result produces the binding (y, 3). In the context
of this binding the right-hand side ⌧([y:↵], list) of the transformation is instantiated and
produces the final result ⌧([3], list).

The transformation in the example contains a single conditional. In general, a trans-
formation may contain an arbitrary number of conditionals. Given input sequence s0 and
state �0, conditional transformations of the form

h

l

) h

r

(= c

l1) c

r1 , cl2) c

r2 , ..., cln) c

rn

produce result r, output sequence s1 and state �0 following the scheme shown in Table 4.1.

hh
l

, s0, �0i
m�! hr0, s1, �1i,

hc
l1 , ✏, �1i

i�! hp1i, h�, p1, �1i
m�! h✏, e1, �c1i, hcr1 , e1, �1i

m�! hr1, ✏, �2i,
hc

l2 , ✏, �2i
i�! hp2i, h�, p2, �2i

m�! h✏, e2, �c2i, hcr2 , e2, �2i
m�! hr2, ✏, �3i,

...

hc
ln , ✏, �n

i i�! hp
n

i, h�, p
n

, �

n

i m�! h✏, e
n

, �

cni, hcrn , en, �n

i m�! hr
n

, ✏, �

n+1i,
hh

r

, ✏, �

n+1i
i�! hri

Table 4.1: Execution Scheme for Conditional Transformations

85

4.3 Computing with Patterns

The left-hand side of the head h

l

) h

r

is instantiated; then the conditionals are processed
by instantiating their left-hand side, executing the instance and matching the right-hand
side with the result. This is repeated for all conditionals. With the bindings created by
the last conditional, the right-hand side of the head is instantiated as expressed by the
following rule in which C is a sequence containing the conditionals of the transformation:

hp
l

, s

in

, �

in

i m�! hr
m

, s

out

, �

m

i
hcexec(C), ✏, �

m

)

m�! h✏, ✏, �
C

i
hp

r

, ✏, �

C

i i�! hr
out

i

hp
l

) p

r

(= C, s

in

, �

in

i m�! hr
out

, s

out

, �

in

i
CTRANS

A conditional transformation fails if matching the left-hand side of the head, executing
the conditionals or instantiating the right-hand side of the head fails.

hp
l

, s

in

, �

in

i m�! ?

hp
l

) p

r

(= C, s

in

, �

in

i m�! ?
CTRANS MATCH ?

hp
l

, s

in

, �

in

i m�! hr
m

, s

m

, �

m

i
hcexec(C), ✏, �

m

)

m�! ?

hp
l

) p

r

(= C, s

in

, �

in

i m�! ?
CTRANS COMPUTE ?

hp
l

, s

in

, �

in

i m�! hr
m

, s

m

, �

m

i
hcexec(C), ✏, �

m

)

m�! h✏, ✏, �
C

i
hp

r

, ✏, �

C

i i�! ?

hp
l

) p

r

(= C, s

in

, �

in

i m�! ?
CTRANS INST ?

The matching semantics of the operator cexec (for conditional execution) formalises the
instantiate-compute-match loop. It adds bindings created from matching the results of
programs to the store. The base case of cexec is an empty sequence of conditions. In
this case the store remains unmodified. This semantics implements the intuitive notion
that a conditional transformation without conditionals corresponds to an unconditional
transformation.

86

4.3 Computing with Patterns

hp
l

, ✏, �

in

i i�! hs
inst

i
h�, s

inst

, �

in

i m�! h✏, s
res

, �

res

i
hall(p

r

), s

res

, �

res

i m�! hr
m

, ✏, �

m

i
hcexec(T), ✏, �

m

i m�! hr
e

, s

e

, �

out

i

hcexec(p
l

) p

r

::T), s
in

, �

in

i m�! h✏, s
in

, �

out

i
CEXEC SUCCESS

hcexec(✏), s, �) m�! h✏, s, �i
CEXEC EMPTY

The helper pattern cexec fails if any of the conditionals fails to instantiate, compute or
match the result pattern.

hp
l

, ✏, �

in

i i�! ?

hcexec(p
l

) p

r

::T), s
in

, �

in

i m�! ?
CEXEC INST ?

hp
l

, ✏, �

in

i i�! hs
inst

i
h�, s

inst

, �

in

i m�! ?

hcexec(p
l

) p

r

::T), s
in

, �

in

i m�! ?
CEXEC COMPUTE ?

hp
l

, ✏, �

in

i i�! hs
inst

i
h�, s

inst

, �

in

i m�! h✏, s
res

, �

res

i
hall(p

r

), s

res

, �

res

i m�! ?

hcexec(p
l

) p

r

::T), s
in

, �

in

i m�! ?
CEXEC MATCH ?

The behaviour in case of failure allows a form of localised backtracking to be expressed
when using conditional rules in a rewriting system. If the conditionals express steps of a
computation towards a final result, steps already performed are undone if a condition that
is subsequently executed fails. Conditional transformations are the primary computational
mechanism of Concat (see Chapter 5).

87

4.4 Parsing and Unparsing with Patterns

4.4 Parsing and Unparsing with Patterns

Parsing is the process of recognising the structure encoded in a linear representation and
generating an internal representation encoding this structure explicitly [64]. The basic idea
is that structured representations are more suitable for most programmatic manipulation
tasks. Unparsing is the opposite process of transforming a structured representation into a
linear representation. From the viewpoint of a system that operates on a parse result, the
linear representation is external, while the structured representation is internal. In the
context of programming, the external representation is typically a character string, while
the internal representation is some system-specific data structure.

4.4.1 Unifying External and Internal Representation

Typed sequences can be arbitrarily nested and thus are a suitable basis for an internal
representation. However, they can also be used to represent strings of characters. This
way, both the external and internal representation can be unified. This means that parsing
can naturally be described as a pattern-based transformation process on typed sequences.

In the following, a character representation is used that encodes characters as atoms
and wraps these atoms in a sequence of type char to make the interpretation explicit.
For instance, the characters ’a’ and ’ ’ (space) are represented as sequences ⌧([a], char)
and ⌧([space], char). Strings are sequences of characters of type string. For example, the
string “abc” is represented as ⌧([⌧([a], char), ⌧([b], char), ⌧([c], char)], string).

4.4.2 Grammar as Meta-Patterns

According to Chomsky [28], a formal, context-free grammar is a tuple (N,⌃, P, S) where
N is a set of nonterminal symbols, ⌃ is a set of terminal symbols, S is a start symbol
from N and P is a set of production rules of the form n ! (⌃ [N)

⇤ where n 2 N

and ⇤ denotes the Kleene closure. The language defined by such a grammar is the set of
sequences L ✓ ⌃

⇤ that can be derived by starting with S and replacing nonterminals
according to the rules.

This style of defining a grammar can be expressed in terms of the pattern formalism
as follows: nonterminals are references, the start symbol is a “start reference”, terminals
are typed sequences or atoms and productions are meta-transformations. The difference is
that productions are not restricted to symbols from ⌃[N but can be defined using pattern
operators. This is akin to grammar formalisms such as Extended Backus Naur Form [86].
However, the productions are not used to generate sentences, but to recognise sentences
and generate results [64]. Parsing starts by applying the “start reference” to an input se-

88

4.4 Parsing and Unparsing with Patterns

quence. Application of a production, i.e., substituting a nonterminal with its definition, is
implemented by the reference resolution mechanism introduced in Section 3.7. A gram-
mar with productions p1, p2, ..., pn corresponds to a pattern p1|p2|...|pn. The sequential
semantics of the choice operator entail that the order of productions is significant.

The following is an example of a grammar fragment that recognises a natural number
consisting of a sequence of digits. The surrounding choice pattern is omitted. Using the
prefix rec is a convention for indicating a recognition process that does not perform any
transformation on the input data.

rec-nat) qq(ref(rec-digit)⇤)
rec-digit) qq(⌧([0|...|9], char))

When matching ⌧([ref(rec-nat)], string) with ⌧([⌧([2], char), ⌧([3], char)], string) the
rec-nat reference is resolved to ref(rec-digit)⇤. The repetition operator matches the pat-
tern ref(rec-digit) greedily with the input. For every successive match, the reference is
resolved to the pattern ⌧([0|...|9], char). The third attempt of matching the pattern fails
because the input is empty. The result is a sequence consisting of the recognised charac-
ters.

The following is a grammar that transforms the string representation of a number into
a typed sequence with the digits as symbols. Using the prefix int is a convention for
indicating that the pattern performs internalisation.

int-nat) qq(ds:ref(digit)⇤) ⌧([ds:↵⇤
], nat))

int-digit) qq(⌧([d:(0|...|9)], char)) ⌧([d:↵)], symbol))

The process of unparsing a natural number, i.e., transforming its typed sequence repre-
sentation into a character representation, can be described as follows. Using the prefix ext

is a convention that indicates the pattern performs externalisation.

ext-nat) qq(⌧([ds:ext-digit⇤], nat)) ds:↵⇤
)

ext-digit) qq(⌧([d:↵], symbol)) ⌧([d:↵], char)

Grammars defining transformations between internal and external representations are a
foundation for syntactic extensibility as will be demonstrated in Section 4.5.4.

89

4.5 Staged Processing and Views

4.5 Staged Processing and Views

Computation and parsing are key components of a pattern-based programming system.
This section describes how these components can be combined to formalise the execution
of programs as staged processing [155].

4.5.1 Internalisation, Computation and Externalisation

The execution process of a program in external representation can be separated into three
fundamental stages: internalising, computing and externalising. This separation is ex-
pressed by the following function definition where the argument of Prog

e

is a program in
external representation and where int (for internalise) maps a program from external to
internal representation, cmp (for compute) maps a program in internal representation to a
modified program in internal representation, and ext (for externalise) maps a program in
internal representation to an external representation:

execute(Prog

e

) = ext(cmp(int(Prog

e

)))

This function definition captures the essence of staged processing of programs but not the
configurability of the stages. The three stages can be configured independently through
patterns. Let PtnInt

i

, PtnCmp

i

and PtnExt

i

be patterns in internal representation de-
scribing internalisation, computation and externalisation respectively. Accordingly, the 3-
tuple hPtnInt

i

, P tnCmp

i

, P tnExt

i

i is a configuration. Each stage of execute is defined
by one part of the configuration:

execute(hPtnInt

i

, P tnCmp

i

, P tnExt

i

i, P rog

e

) =

ext(PtnExt

i

, cmp(PtnCmp, int(PtnInt

i

, P rog

e

)))

This definition captures both the configurability and the sequential execution of the three
stages.

4.5.2 Staging as Vertical Combination

The configuration of each stage is defined by a combination of patterns. The functionality
of each stage is to match the pattern with a program. This unified view is possible when the
external representation of a program (character strings) and its internal representation are
typed sequences, as discussed in Section 4.4.1. Accordingly, the parameterised versions
of int, cmp and ext are merely aliases for a function match that applies a pattern to a
sequence and returns the result. An alternative definition of execute stressing this fact is

90

4.5 Staged Processing and Views

the following:

execute(hPtnInt

i

, P tnCmp

i

, P tnExt

i

i, P rog

e

) =

match(PtnExt

i

,match(PtnCmp,match(PtnInt

i

, P rog

e

)))

The body of the execute function defines execution of three stages as three matches where
the result of one match is the input of another match. This exact semantics is captured by
the vertical combination operator introduced in Section 3.2.5. Thus, the nested application
of match can be expressed by the pattern:

PtnInt

i

! PtnExec

i

! PtnExt

i

This means that the notions of both staging and configuration of stages are expressed by a
single vertically combined pattern. This technique will be used in Section 4.5.3 to define
the view mechanism.

Each stage is defined by patterns that are matched against the program in internal
or external representation. Each pattern describes the complete processing of each stage.
For example, if the execution stage consists of a sequence of rewriting rules that are
repeatedly applied to the program, the pattern for the execution stage must express both
the repeated application of rules and the rules themselves. The separation of the execution
model and the objects being executed can be expressed in the external representation; the
combination is then performed during internalisation.

4.5.3 Structural View Abstraction

Underlying the separation of program execution into internalisation, computation and ex-
ternalisation is the more general concept of transforming data from one representation
schema to another, manipulating it and mapping the result back so that changes are visi-
ble in the original schema. This corresponds to the notion of querying and updating views
in databases [39]. The previous section demonstrated that staged execution can be ex-
pressed through vertical combination. The following meta-transformation uses vertical
combination to abstract computation on a view:

qq(viewcomp([uq(int:↵), uq(ext:↵), uq(comp:↵)])))
qq(uq(int:↵) ! uq(comp:↵) ! uq(ext:↵))

The meta-transformation resolves a reference to viewcomp parameterised with patterns
for internalisation, externalisation and the computation to be performed on the view. The
result is a vertical combination of the three argument patterns.

91

4.5 Staged Processing and Views

To abstract the actual view concept the definition of the internalisation and externali-
sation has to be separated from the definition of the computation performed on the inter-
nalised data. This way a view can be defined independent of a computation. The following
meta-meta transformation implements the view abstraction:

qq(view([uq(int:↵), uq(ext:↵), uq(name:↵)])))
qq(qq(uq(uq(name:↵))(uq(comp:↵))))

qq(uq(uq(int:↵)) ! uq(comp:↵) ! uq(uq(ext:↵))))

The result of matching a reference to the meta-meta-transformation with arguments for
internalisation, externalisation and a view name is a meta-transformation. This meta trans-
formation resolves a reference consisting of the view name and the computation pattern.
The target of the reference is the pattern that combines the view and the computation.

The following example discusses a view that maps between a comma-separated char-
acter representation and a structured representation of a list of natural numbers. The
meta-transformations in Table 4.2 define the patterns involved. The patterns referred to
by ref(int-list) and ref(ext-list) are the two components of the view. The pattern re-
ferred to by ref(rest) removes the first element of the list in internal representation. The
definition of pattern int-nat that is used by int-list to internalise natural numbers can be
found in Section 4.4.2.

int-list) qq(

⇠
([x:⇠([ref(int-nat),

⇠
([ign(⌧([comma], char)), ref(int-nat)])⇤])])

) ⌧([x:↵⇤
], list))

ext-list) qq(⌧([x:↵⇤
], list)

) x:⇠([ref(ext-nat),
⇠
([

⇠
(✏)) ⌧([comma], char), ref(ext-nat)])⇤]))

rest) qq(⌧([↵, r:↵⇤
], list)) ⌧([r:↵⇤

], list))

Table 4.2: Pattern Definitions for the natListV iew Example

The view with the name natListV iew is created through the following reference:

ref(view(ref(int-list), ref(ext-list), natListV iew))

This reference is resolved to the meta-transformation

natListV iew(comp:↵))
qq(ref(int-list) ! uq(comp:↵) ! ref(ext-list))

92

4.5 Staged Processing and Views

which expects a pattern that defines an operation on a list of numbers in internal repre-
sentation. By applying this meta-transformation, the reference

ref(natListV iew(ref(rest)))

is resolved to the actual execution pattern:

qq(ref(int-list) ! uq(ref(rest)) ! ref(ext-list))

If this pattern is matched with the input sequence

[⌧([1], char), ⌧([0], char), ⌧([comma], char), ⌧([2], char)]

matching int-list first transforms the character representation into a structured list repre-
sentation where the digits become symbols:

⌧([⌧([⌧([1], symbol), ⌧([0], symbol)], nat), ⌧([⌧([2], symbol)], nat)], list)

Matching ref(rest) with this list representation yields the computation result in internal
representation:

⌧([⌧([⌧([2], symbol)], nat)], list)

Matching the pattern ext-list transforms the list back into the character representation:

[⌧([2], char)]

Because both the internal and external representation are typed sequences, views can be
defined on views to form an arbitrary number of stacked view layers. This concept is
further explored in the context of Concat’s view implementation, see Section 5.4.

4.5.4 Extensible Syntax for Programs and Data

In this and the previous chapter, a term notation using the constructor ⌧ is used for typed
sequences. Concat, which will be introduced in the next chapter, uses a text-based nota-
tion which is more suitable for actual programming: typed sequences start with a square
bracket, followed by a colon and a type identifier. After a mandatory whitespace, the con-
tent of the sequence follows, terminated by a closing bracket. The content consists of
atoms or typed sequences separated by whitespaces. Accordingly, the list

⌧([⌧([⌧([1], symbol), ⌧([0], symbol)], nat), ⌧([⌧([2], symbol)], nat)], list)

93

4.5 Staged Processing and Views

can be written as:

[:list [:nat [:symbol 1] [:symbol 0]]

[:nat [:symbol 2]]]

The internalisation of this notation can be broken down into two parts: (1) internalisation
of the surrounding brackets and type and (2) internalisation of the content of the sequence.
Both parts are expressed by the two productions in Table 4.3.

int-tseq) qq(

⇠
([⌧([obracket], char), ⌧([colon], char),

ref(type), ref(int-seq), ⌧([cbracket], char)]))
int-seq) qq(

⇠
(✏) | ⇠

([ref(int-elem),

⇠
([ign(ref(white)), ref(int-elem)])

⇤
]))

Table 4.3: Internalising an Alternative Syntax for Typed Sequences

The production int-seq states that a sequence is either empty or consists of elements
separated by whitespaces. The interesting part is the definition of int-elem. The follow-
ing production defines a system where arbitrarily nested typed sequences are the only
elements:

int-elem) qq(ref(int-tseq))

Both typed sequence notations encode the type and structure of data explicitly. The ver-
bosity inherent in this encoding renders it impractical for expressing all parts of a pro-
gram. Section 4.4.2 discussed parsing of character-based notations and introduced the
parser int-nat which transforms a sequence of digits into an internal natural number rep-
resentation. Using this parser, the string 10 is internalised into the same representation as
the string [:nat [:symbol 1] [:symbol 0]].

The following modified version of production int-elem adds int-nat as an additional
choice.

int-elem) qq(ref(int-nat) | ref(int-tseq))

Based on this definition, the parser is able to parse [:list 10 2], a notation which
mixes the standard notation for typed sequences with the special literal syntax introduced
by a parser. The parsing result is the same as for the more verbose definition above that
makes the internal structure of a natural number explicit. The same principle just de-
scribed for parsing also applies for unparsing.

The basic idea is to provide the pattern formalism with means of extending its own
syntax by defining alternative notations for typed sequences. These notations need to en-
code the type and content part in such a way that the resulting notation can be recognised

94

4.5 Staged Processing and Views

by the parser and generated by the unparser. By using a default notation for typed se-
quences, new syntax can be defined as a transformation on typed sequences, one side of
the transformation being concerned with character strings and the other side with direct
encodings of structure using typed sequences.

Several views may be available on different nesting levels. For example, given a nota-
tion in which symbols start with the character ’, the list above can be written as [:list
[:nat ’1 ’0] [:nat ’2]] which allows symbolic manipulation of the structure
of natural numbers without the need to know the internal structure of symbols. Similarly,
there might be a notation for lists in round brackets which allows writing (10 2). All
these syntaxes lead to the same internal representation, i.e., they are just alternatives to
the standard notation for typed sequences. Enabling, disabling or enforcing alternative
representation can be expressed by manipulating the production int-elem.

The prerequisite for this kind of syntactic extension is an interface defining interaction
between the pattern system and external editing and display processes. The communica-
tion is based on sequences of characters that are encoded as typed sequences of type char.
For example, from the viewpoint of the pattern system, the first four items of the exter-
nal representation of [:list 10 2] are [:char obracket] [:char colon]

[:char l] [:char i]. The display process, however, renders all typed sequences
of type char as characters on the screen. The distinction between displaying a character
and displaying a typed sequence of type character does not pose a problem. To display x
on the screen, the representation is [:char x]; to display [:char x], it must be a
character sequence with the first four characters being [:char obracket] [:char

colon] [:char c] [:char h]. The role of the I/O interface is to map between
the character encoding of an external editor and that of the pattern system.

4.5.5 Extensible Syntax for Patterns

The previous section defined a parser for typed sequences and showed how extensions to
the parser allow the definition of alternative syntaxes for typed sequences. Such definitions
are possible because there is a standard notation for typed sequences that can be used to
express internal structures. The same principle can be applied at the pattern level. Given
a standard notation for patterns, meta-patterns can be used to define transformations from
the character representation of the pattern language to the internal representation. The
following production defines a notation in which references are written with surrounding

95

4.5 Staged Processing and Views

inequality signs:

int-ref) qq(([⌧([<], char), p:ref(int-pexp), ⌧([>], char)])

) qq(ref(uq(p:↵))))

The production assumes the existence of a pattern int-pexp that internalises pattern ex-
pressions. The newly introduced syntax allows writing <nothing>, which is equivalent
to ref(nothing). Concat uses this syntactic extension mechanism extensively to define
syntaxes of programs and meta-programs.

4.5.6 Temporal Views on Computations

Two of the main advantages of defining program execution in terms of a rewriting system
are complete access to the program state and fine-grained control over the execution pro-
cess. While rules can be restricted to access only certain parts of a program, as discussed
in Sections 4.2.3 and 4.2.4, it is nevertheless possible to define less restricted access to
the program at a meta-level. This can, for example, be used to implement optimisations
or code injection as in Aspect-Oriented Programming (AOP) [102].

While a detailed view on the structure and behaviour of the program provides an ideal
foundation for pattern operations, this level of detail might be inappropriate for purposes
of programming or analysing a system. For example, users of a language are usually
not interested in the details of internal representation. Viewing the effects of a function
application does not require a view on the internals of the functions. Similarly, an aspect
definition is based on join points – events in an execution model, not in the actual system
implementation – and, therefore, the system must render the execution in terms of the user
model.

The problem of viewing the system execution in terms of a user model can be broken
down into a structural aspect (“how is an execution step visualised?”) and a temporal as-
pect (“which execution steps are visible?”). Section 4.5.3 defined the structural part of the
solution by defining a technique for hiding the internal representation of a program behind
a syntactic interface: views. This section discusses how certain steps in the execution can
be hidden.

The basic idea is to determine visibility by a pattern that is matched after every execu-
tion step. That pattern pattern is connected with the external display process. If matching
succeeds the system state is shown, otherwise it is hidden. The use of temporal views
will be illustrated by “black-boxing” operations in the concatenative rewriting system. As
defined in Section 4.2, concatenative semantics can be enforced on a generic rewriting
system by restricting its transformations through meta-patterns and by defining specific

96

4.5 Staged Processing and Views

application strategies for transformations.
In the concatenative system that allows patterns (see Section 4.2.4), transformations

that only manipulate items and operators inside quotations define a functional semantics
even when all execution steps are visible. An operation such as call, on the other hand,
instantiates operators outside of the quotation context. This seems to violate the concept
that all operations must be functions mapping between data, i.e., between items. However,
if an application of call is viewed from a “black-box” perspective, it maps data containing
a quotation to data that is the result of executing the program contained in the quotation,
which is functional.

For example, the program [2, 3, ⌧([swap], quotation), call] yields [3, 2]. Looking only
at these two execution states, call appears to be mapping from data to data in a single step.
The execution state [2, 3, swap] in between makes an implementation detail of call visible.
The execution of swap again has functional semantics. The crucial point is the shift of the
abstraction levels that occurs when an operator is rewritten to its implementation – in case
of call a program containing operators. Seeing this implementation detail of call destroys
the illusion of functional semantics.

By default, all steps of the rewriting process are visible and there is no explicit distinc-
tion between “black-box” and “white-box” views on the program execution. Hiding the
“internal” execution steps of an operation can be achieved by explicitly marking program
state. For the concatenative system, there also needs to be a way to determine when exe-
cution of the internal steps of an operation have finished and execution resumes with the
next operation on the same abstraction level. Both problems can be solved by explicitly or
implicitly inserting an operation hide as the right-most element of every transformation
that inserts operations into the program. Operation hide has the sole purpose of control-
ling “black-boxing”. The definition of hide is:

hide) ⇠
(✏)

For instance, the program [2, 3, ⌧([swap], quotation), call, dup] is executed from left to
right. The first operation that will be executed is call. The next operation after call, dup,
will be executed only after all operations that call adds to the program have finished. Plac-
ing hide in front of dup makes the point of continuation (the “return address”) explicit.
The first step of call’s execution produces [2, 3, swap, hide, dup]. Next, swap is executed
and yields [3, 2, hide, dup]. Because there are only items before hide, this operation is
executed next. The semantics of hide is to do nothing. The result is [3, 2, dup]. Finally,
dup is executed and yields [3, 2, 2].

This shows how internal execution states of an operation can be explicitly tracked. As

97

4.6 Elliptical Patterns: A Practical Extension

discussed above, to actually hide the states that contain the operator hide, a pattern needs
to be defined. This pattern is !find hide among ↵. The pattern fails to match if there is
a hide operator anywhere inside the program. By applying this technique, the step from
[2, 3, ⌧([swap], quotation), call, dup] to [2, 3, swap, dup] is hidden and, for this reason,
the system provides a functional “black-box” view on the execution of call. Together, the
restriction of transformations, the definition of an application strategy, the structural views
that hide the internals of operators and items and the temporal view mechanism turn the
generic rewriting system into a concatenative programming system. In other words, they
create the illusion of a concatenative system based on a rewriting system.

4.6 Elliptical Patterns: A Practical Extension

Structures that contain several instances of the same pattern are abundant. For example, a
dictionary can be represented as a sequence of key-value bindings like the following:

⌧([⌧([x, a], bnd), ⌧([y, b], bnd), ⌧([z, c], bnd)], dict)

An alternative representation of a dictionary consists of separate sequences of keys and
values. Accordingly, the example dictionary is represented as follows:

⌧([⌧([x, y, z], keys), ⌧([a, b, c], vals)], dict)

The two representations contain the same information, but they structure this informa-
tion differently. The repetition operator is suitable for expressing the repetition in both
structures. The following pattern matches the first representation:

⌧([⌧([↵,↵], bnd)

⇤
], dict)

The wildcard ↵ is used in place of actual keys and values to match arbitrary key-value
pairs. The following pattern matches the second representation:

⌧([⌧([↵

⇤
], keys), ⌧([↵

⇤
], vals)], dict)

While both patterns capture the repetitive structures, they cannot be used to transform
between these structures.There reasons for this are twofold. Firstly, based on the standard
variable binding semantics of the pattern formalism, the use of variables instead of ↵s
in the first pattern would express equality rather than similarity. Secondly, the instantia-
tion semantics of the repetition operator is failure. This section presents an extension for

98

4.6 Elliptical Patterns: A Practical Extension

conveniently transforming repetitive structures. The extension is implemented by the new
repetition operator � that circumvents the aforementioned restrictions. With this operator,
the transformation between the two dictionary representation is defined as follows:

⌧([⌧([k:↵, v:↵], bnd)�], dict)) ⌧([⌧([(k:↵)�], keys), ⌧([(v:↵)�], vals)], dict)

The atoms k and v are names of variables binding keys and values during matching.

4.6.1 Matching Semantics

Variable matching is based on a strict binding strategy, as defined by the function cbind

in Section 3.2.1: the attempt to rebind a variable to a different value fails. When a pattern
containing a variable is matched repeatedly with the input, the values matched for the
variable pattern must be the same for each repetition. In terms of expressive power, repe-
tition can abstractly express syntactic equality in a sequence of values of arbitrary length.
For example, the pattern (x:ref(item))

⇤ defines a sequence of syntactically equal values.
Transforming requires binding similar values to a variable repeatedly during matching,
as this is the only way to carry information over to the instantiation phase. This is where
the semantics of structural equality defined by the pattern above stands in the way. For
example, an attempt to match the first version of the example dictionary with the pattern

⌧([⌧([k:↵, v:↵], bnd)⇤], dict)

fails in the second repetition because binding k to y fails: k is already bound to x. The
first step for realising transformations of repetitive structures is to allow variables inside
a repetition pattern to be bound to multiple values. Based on the new semantics, instead
of failing, repetition creates bindings (k, [x, y, z]) and (v, [a, b, c]).

The goal is to implement this special variable matching semantics of the � opera-
tor without having to change the general variable matching semantics. The basic idea to
achieve this when matching a pattern p

� is to initially match p with the empty store ✏ in
every repetition. This entails that variables from previous repetition steps are invisible and
every repetition step produces a store with bindings of variables in p. After the last rep-
etition step, the individual stores are combined into a single store in which the variables
in p are bound to sequences of values. The resulting store contains the bindings created
during matching p

�. To produce the final store, this store is merged with the store that
existed before the elliptical pattern was matched. This merge is performed in such a way
that bindings created by p

� and previously existing bindings have to be consistent.
The combination of the individual stores of each repetition into a single store is per-

99

4.6 Elliptical Patterns: A Practical Extension

formed by the helper function mbind-all (for multiply bind all). Function cbind-all (for
consistently bind all) performs the merge with the existing store.

hp, s
in

, "i m�! hr, s
p

, �

p

i
hp�, s

p

, "i m�! hr
p

�
, s

out

, �

p

�i
mbind-all(�

p

, �

p

�
) 7! �

mba

cbind-all(�
mba

, �

in

) 7! �

out

combine(r

p

, r

p

�
) 7! r

out

hp�, s
in

, �

in

i m�! hr
out

, s

out

, �

out

i
ELLIPTICAL MATCH

hp, s
in

, "i m�! ?

hp�, s
in

, �

in

i m�! h✏, s
in

, �

in

i
ELLIPTICAL MATCH ZERO

Elliptical matching fails if a pattern matches the input sequence, but the store created
during the matching cannot be merged with the existing store. This occurs when there
is a previous binding with the same name and different value already in the store. By
definition, mbind-all and combine never fail.

hp, s
in

, "i m�! hr, s
p

, �

p

i
hp�, s

p

, "i m�! hr
p

�
, s

out

, �

p

�i
mbind-all(�

p

, �

p

�
) 7! �

mba

cbind-all(�
mba

, �

in

) 7! ?

hp�, s
in

, �

in

i m�! ?
ELLIPTICAL MATCH ?

Function mbind-all combines two stores. The bindings from the first store are added to
the bindings of the second store by applying the function mbind to all bindings in the
first store. Function mbind binds a name to a value wrapped in a sequence if no previous
binding exists. However, if a binding exists, mbind prepends the new value to the existing
one. The definition of mbind entails that variables occurring in nested elliptical patterns
are nested in sequences. The amount of sequences wrapped around a value corresponds
to the number of elliptical operators around the variable pattern that created it.

100

4.6 Elliptical Patterns: A Practical Extension

�[n] = ?
combine(v, ✏) 7! s

mbind(n, v, �) 7! �[n := s]

MBIND FRESH

�[n] 6= ?
combine(v, �[n]) 7! s

mbind(n, v, �) 7! �[n := s]

MBIND EXISTING

The incremental application of function mbind that combines all bindings of a store with
bindings in another store is defined recursively. Let binding be a function mapping a store
with at least one binding to a sequence. The sequence contains an arbitrary binding from
the store and the store with that binding removed.

�

i

6= "

binding(�

i

) 7! [(n, v), �

r

]

mbind(n, v, �

c

) 7! �

u

mbind-all(�
r

, �

u

) 7! �

out

mbind-all(�
i

, �

c

) 7! �

out

MBIND-ALL RECURSE

mbind-all(", �
c

) 7! �

c

MBIND-ALL EMPTY

Similar to mbind-all, the function cbind-all combines two sets of bindings by applying
cbind, which is defined in Section 3.2.1.

�

i

6= "

binding(�

i

) 7! [(n, v), �

r

]

cbind(n, v, �

c

) 7! �

u

cbind-all(�
r

, �

u

) 7! �

out

cbind-all(�
i

, �

c

) 7! �

out

CBIND-ALL RECURSE

101

4.6 Elliptical Patterns: A Practical Extension

cbind-all(", �
c

) 7! �

c

CBIND-ALL EMPTY

Failure of cbind for any of the bindings in the store results in failure of cbind-all.

�

i

6= "

binding(�

i

) 7! [(n, v), �

r

]

cbind(n, v, �

c

) 7! ?

cbind-all(�
i

, �

c

) 7! ?
CBIND-ALL ?

4.6.2 Instantiation Semantics

The instantiation semantics of repetition defined in Section 3.3.3 is failure because there
is no way to determine how often to instantiate its argument. With the matching semantics
defined in the previous section multiple bindings are created for a single variable name.
For patterns depending on the successful instantiation of variables for their own success,
elliptical instantiation can derive the number of instantiation steps from the variable bind-
ings: the number of bindings to the same variable name determines how often a pattern is
to be instantiated.

A record must be kept of how many times a pattern was instantiated in order to de-
termine which binding to use at which repetition step and to find out when there are no
more bindings. This record must be multidimensional because elliptical operators may
be nested. It is helpful in this context to think of variable lookup as access to a multi-
dimensional array. Each elliptical operator corresponds to a loop incrementing an index.
During instantiation, the loop terminates if its index exceeds the number of entries in array
dimensions. For example, to access a, b, c, and d in the binding (x, [[a, b], [c, d]]) the cor-
rect indices are [0, 0], [0, 1], [1, 0] and [1, 1] respectively. A lookup fails for indices greater
than 1. The index [1, 0] indicates that there are two elliptical operators around the pattern
currently being instantiated. The outer operator is in the second repetition while the inner
operator is still in the first repetition.

The sequence of indices is represented by the state ◆. The instantiation semantics of
elliptical matching requires two extensions to the pattern formalism. Firstly, the state of
elliptical instantiation ◆ has to be passed on by all instantiation rules to make it accessible
to variable instantiation. This passing is expressed by adding the state explicitly to all
rules below. Secondly, the variable instantiation has to be modified to take the current
state of elliptical instantiation into account.

102

4.6 Elliptical Patterns: A Practical Extension

When � is instantiated, a new index is added to the sequence of indices and set to 0.
Then the helper pattern rep (for repeat) is instantiated. If rep fails, the input sequence is
the result of elliptical repetition.

append(◆

in

, [0]) 7! ◆

u

hrep(p), s
in

, �

in

, ◆

u

i i�! hs
out

i

hp�, s
in

, �

in

, ◆

in

i i�! hs
out

i
ELLIPTICAL INSTANCE

append(◆

in

, [0]) 7! ◆

u

hrep(p), s
in

, �

in

, ◆

u

i i�! ?

hp�, s
in

, �

in

, ◆

in

i i�! hs
in

i
ELLIPTICAL INST ZERO

The helper rep instantiates its argument and recurses with the current index incremented.
repeat must succeed at least once, otherwise it fails. Let inc be a function that increases
the last index in an index sequence. For example, inc([2, 1, 3]) yields [2, 1, 4]. Increment-
ing the last index reflects that a new repetition caused by the innermost elliptical operator
begins.

hp, s
in

, �

in

, ◆

in

i i�! hs
inst

i
inc(◆

in

) 7! ◆

u

hrep(p), s
inst

, �

in

, ◆

u

i i�! hs
out

i

hrep(p), s
in

, �

in

, ◆

in

i i�! hs
out

i
ELLIPTICAL GREEDY

hp, s
in

, �

in

, ◆

in

i i�! hs
inst

i
inc(◆

in

) 7! ◆

u

hrep(p), s
inst

, �

in

, ◆

u

i i�! ?

hrep(p), s
in

, �

in

, ◆

in

i i�! hs
inst

i
ELLIPTICAL ONCE

hp, s
in

, �

in

, ◆

in

i i�! ?

hrep(p), s
in

, �

in

, ◆

in

i i�! ?
ELLIPTICAL ?

103

4.7 Summary and Conclusions

Looking up variables by indices is defined by the lookup function. It retrieves the nested
structure with the values and applies get-elem to extract the indexed value.

x = �[n]

get-elem(◆, x) 7! result

lookup(�, n, ◆) 7! result

LOOKUP

Function get-elem is the function that actually performs the access by index. Let nth be
a function that maps a sequence s and an index n to the n-th element of the sequence or
to ? in case n is too large for s.

nth(i, s

in

) 7! s

u

get-elem(◆, s

u

) 7! result

get-elem(i::◆, s
in

) 7! result

GET-ELEM RECURSE

get-elem(✏, s

in

) 7! s

in

GET-ELEM DIRECT

nth(i, s

in

) 7! ?

get-elem(i::◆, s
in

) 7! ?
GET-ELEM BOUNDS ?

The function get-elem retrieves the nth value from every sequence. The value retrieved
with the last index is the value that is instantiated.

Elliptical matching and instantiation with arbitrary nesting levels is utilised in XMF
(see Chapter 6) for defining inter-model transformations and transformations between
models and views.

4.7 Summary and Conclusions

Based on the core functionality defined in Chapter 3, this chapter formalised key com-
ponents of a pattern-based programming and meta-programming system. The fact that
fundamental notions of parsing, computing and staged processing of programs can natu-
rally be expressed through pattern operations highlights the expressiveness of the pattern

104

4.7 Summary and Conclusions

formalism. As the aforementioned concepts are fundamental for creating languages, this
chapter strongly supports the first part of the hypothesis, which states that “the systematic
creation and layering of languages can be reduced to the elementary operations of pattern
matching and instantiation”. The layering aspect of the hypothesis is supported by the
pattern-based view mechanisms, which serves as an implementation tool for layering. In
addition to that, a systematic way of building a language on top of a pattern-based rewrit-
ing system is introduced. The steps involved are (1) restricting transformation through
meta-patterns, (2) defining an application strategy for transformations using pattern oper-
ations, (3) using structural views for hiding the internal representation of program state
behind a syntactic interface and (4) using temporal views to select which execution steps
are visible.

Supporting the second part of the hypothesis, which states that the pattern approach
“provides a formal and practical foundation for language-driven modelling, programming
and analysis” is the task of the following chapters. The application of the pattern approach
for language-driven programming is the topic of the next chapter, where the techniques
introduced in this chapter will be utilised to define a highly configurable, self parsing
(meta-)programming system.

105

Chapter 5

Language Engineering with Concat

The previous two chapters formally introduced a core of pattern functionality and ex-
tensions for pattern-based parsing, computing, layering and syntactic abstraction. This
chapter discusses a practical application of this theoretical foundation in the form of Con-
cat, a framework for creating and relating software languages. At its core, Concat is a
pattern-based rewriting system that manipulates programs. A meta-language defines the
rules of the rewriting system and the syntax of the programs being manipulated. This
meta-language is highly extensible. New language abstractions and execution models can
be defined by applying the meta-language to itself.

Concat follows a layered approach to syntax and supports different degrees of syntac-
tic freedom for programs and meta-programs in the form of typed sequences, literals and
special forms (Section 5.1). The default implementation of the meta-language is called
Core Concat. The primary concepts of Core Concat are operations, views, productions
and macros. Operations provide a special syntax for defining pattern-based concatenative
rules. Views are bidirectional transformations that define alternative notations for typed
sequences. Macros provide means to break out of the constraints of operations and views
by allowing non-functional rewriting rules and unidirectional syntactic transformations
(Section 5.2).

The implementation of combinatory logic is a case study that showcases language
creation, especially the use of views to define custom syntaxes on the program and meta-
program levels (Section 5.3). The application of views can be generalised to a layered ap-
proach to computation (Section 5.4). A metacircular implementation of Concat provides
means to change the syntax and semantics of the meta-language from within (Section 5.5).

106

5.1 Syntactic Framework

hprogrami ::= hdatai

hdatai ::= helemi (hsepi+ helemi)⇤ | ✏

helemi ::= hoperatori | hliterali | hsformi

hliterali ::= hchar-not-sepi+

hoperatori ::= hchar-not-sepi+

hsformi ::= htyped-seqi | hstarti hchari⇤ hendi?

htyped-seqi ::= ‘[:’ htypeidi (hsepi+ hdatai)? hsepi⇤ ‘]’

htypeidi ::= hliterali

hsepi ::= hspacei | htabi | hnewlinei

hstarti ::= hchari+

hendi ::= hchari+

hchari ::= any character

hchar-not-sepi ::= any character except hsepi

Figure 5.1: Syntactic Framework for Programs

5.1 Syntactic Framework

Concat provides a great degree of syntactic freedom for creating languages and for ex-
tending its own meta-language. By implementing a layered approach to syntax, Con-
cat combines the advantages of a uniform syntactic framework that serves as a basis for
pattern-based program manipulation with unrestricted syntactic freedom and fine-grained
control on the character-level.

5.1.1 Typed Sequence Notation

In Concat, data is stored internally either as an atomic value or a typed sequence ⌧(S, T)

where T is an atomic type identifier and S is a sequence. Concat exposes its internal rep-
resentation through a uniform notation for typed sequences. The grammar in Figure 5.1
introduces the core syntactic concepts. Its purpose is instructional rather than definitorial
as it is ambiguous and some of its productions have the sole purpose of introducing syn-
tactic concepts. The grammar describes the syntactic boundaries of languages in Concat
and not the syntax of a concrete language, as will be explained below.

The notation for programs and data is a sequence of elements with separators in be-

107

5.1 Syntactic Framework

tween. An element is either an operator, a literal or a special form. A separator is either a
tab, a space or a newline character. Both operators and literals are sequences of characters
that must not contain a separator. The distinction between operators and literals is part of
concrete language grammars that further refine the grammar in Figure 5.1. Defining lit-
eral syntax is a basic mechanism for syntactic abstraction in Concat. As separators are not
allowed in literals, the mechanism is, however, restricted to rather basic syntactic struc-
tures. Therefore, literals are primarily used for syntactically encoding elementary types,
e.g., numbers, characters, symbols. Examples of literals are 23, ’symbol and 1/3.

Special syntactic forms provide more freedom for syntactic extension than literals. A
special syntactic form is an arbitrary sequence of characters including separators. To avoid
ambiguities, a unique start-tag and, in case of variable length content, an end-tag is re-
quired. By convention, the start-tag begins with the character ‘ and the end-tag is the char-
acter ;. Exceptions are possible, for example in the case of strings where both the start and
end-tag is a quotation mark. Examples of special syntactic forms are ‘infix 2 + 3;

and ‘select * from cars;.
Typed sequences are special forms with the start-tag [: and the end-tag]. Between

the two, there is a type identifier followed by data. The definition is indirectly recursive
because typed sequences may contain data, data may contain elements, special forms are
elements and a typed sequence is a special form. The recursive definition allows nesting of
typed sequences up to an arbitrary depth. Furthermore, because elements may be part of
the data, concrete syntax can be mixed with the generic typed sequence syntax; examples
are [:rational 20 3] and [:assoc [:key ’a] [:val 10]].

Typed sequences provide a notation for the internal representations of programs.
Languages using the same representation for programs and data are called homoiconic
[95, 116].

5.1.2 Syntactic Layering

The grammar presented in the previous section does not define the actual literals, special
forms and typed sequences a concrete user-defined language supports. Instead, it defines
on a more abstract level the syntactic boundaries, i.e., the set of possible operators, literals
and special forms shared by all languages. Language definitions refine the above grammar
by restricting these elements to a subset. For instance, a language supporting only numbers
and boolean as data types restricts literals accordingly. In effect, it replaces the abstract
production

hliterali ::= hchar-not-sepi⇤

with the more concrete production

108

5.1 Syntactic Framework

hliterali ::= hnumberi | hbooli

Because the example language contains only numbers and booleans, it also restricts spe-
cial forms to the empty set – with the effect of disallowing the use of any typed sequences
in the language.

Table 5.1 shows the five levels of syntax in Concat. Every level defines a set of possible
representations. Every level R

n

for n > 0 defines a subset of the level R
n�1. The choice of

a character set on Level R1 is the first restriction on the representational capabilities of the
machine to character strings according to an encoding scheme. Representations on level
R2 are sequences of elements. On this level, typed sequences do not exist. The grammar
in Figure 5.1 defines Level R3 through the production typed-seq. On R3, typed sequences
are built-in special forms. Level R4 refines R3 by specifying only those literals, special
forms and typed sequences available in the language. The mechanisms that allow this in
Core Concat are views, operations and macros.

Level Description Restriction
R0 arbitrary representation limited by machine
R1 string character code
R2 elements Concat fixed grammar
R3 elements + typed sequences Concat framework grammar
R4 concrete elements language-specific grammar

Table 5.1: Layers of Syntax in Concat

The stepwise refinement of language syntax just described is a common technique in lan-
guage frameworks based on a uniform syntax, e.g., XML. Instead of defining the grammar
of a language directly as a restriction of the Kleene closure on a character set (R1), an in-
termediary syntactic layer is introduced on which all languages are based. Concat uses a
variation of this technique by defining two separate layers R2 and R3.

The main advantage of this approach is that layer R3 allows a uniform way of struc-
tured access that is independent of the particular grammar of a language on R4. All lan-
guages on R4 can be processed with tools built for R3, e.g., with pattern operations that
work on typed sequences. The disadvantage is that the syntactic freedom of languages is
restricted by the need to conform to the syntactic framework imposed on R3.

Concat utilises the benefits of a uniform syntax while, at the same time, providing a
mechanism to break out of the uniformity. Literals and special syntactic forms defined
on R2 are also part of R3. The syntactic freedom they offer creates, in effect, an escape
mechanism from R4 to R1. Custom grammar based on strings can be combined with
uniform syntax of typed sequences. The fact that in Concat strings and characters are just

109

5.1 Syntactic Framework

certain types of typed sequences allows their manipulation with the same pattern-based
mechanisms defined for typed sequences on R3, as will be shown in the following.

5.1.3 Unified Program Representations

Concat is based on the uniform representation of character strings and tree structures
introduced in Section 4.4. It represents characters and strings as typed sequences. Charac-
ters are typed sequences containing an atom that encodes the character. In Concat, atoms
are literals that start with /a followed by the atomic value in parentheses. Strings are
typed sequences with characters as content. For example, string ”abc” is represented by
the following typed sequence:

[:string [:char /a(a)] [:char /a(b)] [:char /a(c)]]

Concrete syntaxes for characters and strings are views on the internal representation. The
example string can be written as "abc" and character [:char /a(c)] can be written
as ˆc. The fact that characters and strings are just another form of typed sequences is an
important design principle in Concat. It allows a unified treatment of all stages of program
processing through pattern matching.

The distinction between scanning and parsing a character representation is not re-
quired as Concat’s uniform representation naturally supports scannerless parsing [164].
Nevertheless, using the vertical combinator it is possible to introduce these phases as a
pattern of the form (Ptn

scan

! Ptn

parse

) which first matches Ptn

scan

with a string and
then Ptn

parse

with a sequence of tokens.
Concat is designed to recognise, manipulate and create its own character representa-

tion and is thus largely self-contained. What it requires, however, is an interface to the
outside world to display the encoded characters. For example, the character represen-
tation of the number 23 is [:char /a(2)] [:char /a(3)]. In cases where this
representation is not explicitly desired, it must be displayed as 23.

5.1.4 Standard Notation for Patterns

Concat’s meta-language provides a concrete syntax for the pattern expressions defined
in the previous two chapters. Table 5.2 introduces this syntax by example. Sequencing,
choice, and vertical and diagonal combination are defined by left-associative infix op-
erators. Precedence can be expressed by grouping patterns inside parentheses. The vari-
able notations $x, #x and @x are shorthand for x:item, x:any and x:any* respec-
tively. These shorthands are implemented using the meta-level view mechanism, see Sec-
tion 5.5.2. Angle brackets may be omitted for unparameterised references used as the

110

5.1 Syntactic Framework

Category Pattern Examples

Basic
atom /a(b)
any <any>
variable x:any, $x, #x, @x
param. reference <<space> <nat> sep_list>

Types
character ˆa ˆspace
string "concat string"
symbol ’concat_symbol

Hierarchical typed sequence [:rational 1 2]
untyped sequence [1 2 3]

Modifiers
negation !<a>
maybe <a>?
ignore &i(<a>)
escape /p(a:1)
group (| <c>)

Horizontal

sequencing <a> <c>
choice <a> | | <c>
repetition <a>*
repetition � 0 <a>+
characters /s(abc)

Two dimensional vertical <a> -> -> <c>
diagonal <a> /> /> <c>

Transformative uncond. transformation (a => b)
cond. transformation do (a => b)

if c => d && e => f.

Quoting
literal quote &l(a b c)
quasiquote &q(a b c)
unquote &q(a ,b c)

Table 5.2: Concrete Syntax for Pattern Expressions

pattern part of a variable. The pattern <item> matches all elements of a language except
operators. The characters & and / followed by a letter control the recognition process.
Atoms start with /a and /s(abc) is a shorthand for (ˆa ˆb ˆc), i.e., a sequential
pattern that matches three characters. The pattern expression &i(<p>) ignores the result
of the pattern reference <p>, &l and &q are used for quoting. Like regular references,
parameterised references are surrounded by angle brackets and use postfix notation.

Concat allows the use of program-level literals in patterns. For instance, the choice
pattern 1|2 contains number literals. The parser of the meta-language first attempts to
recognise parts of a pattern as meta-elements of the pattern language. If that fails, the
parser attempts to recognise a program-level literal. This may lead to ambiguities between
program and pattern syntax. For instance, literal syntax that represents a key-value pair
with key a and value 1 as a:1 is in conflict with the variable syntax on the meta-level.

111

5.2 Concepts of Core Concat

To avoid that the occurrence of such a literal in a pattern is parsed as a variable, the literal
has to be escaped. The pattern /p(a:1) explicitly states that the content between the
parentheses is a program-level literal.

Section 5.5.2 shows how the standard pattern syntax of Concat can be defined in a
meta-circular way, including the escape mechanism just discussed. Section 5.3.4 defines
a variable notation for terms in combinatory logic that is an example for how alternative
syntaxes for patterns can be introduced. The meta-language of Core Concat defines a set
of computational concepts that are based on the pattern syntax just described.

5.2 Concepts of Core Concat

Core Concat is based on a set of computational concepts and associated syntax and se-
mantics that have proven useful in implementing several languages including Concat it-
self. The concepts of Core Concat are operations, macros, productions and views. Views
introduce new syntax by configuring the stages of internalisation and externalisation. Op-
erations and the associated execution model define the principal means of computation
by configuring the computation stage. Macros add pre-processing to the internalisation,
computation and externalisation stages in the form of unrestricted program transforma-
tions. Productions provide an abstraction mechanism for patterns that is utilised by the
other core concepts. Internally, all these different concepts perform pattern operations.
Nevertheless, the combination of introducing custom syntax (based on the pattern syn-
tax of the previous section) and hiding the actual pattern operations gives the concepts
direct semantics [103]. Transformations, in conditional and unconditional form, play an
important role in Core Concat as they are the basis of operations, macros, productions and
views.

5.2.1 Abstracting Patterns with Productions

Productions define pattern abstractions based on the parameterised references introduced
in Section 3.7. Productions are meta-transformations, i.e., transformations that match pat-
terns with patterns and instantiate patterns with bindings that have patterns as values.
To distinguish between patterns in their role as active code and passive data, the quasi-
quotation mechanism introduced in Section 3.6.4 is used. The right-hand side of a produc-
tion is automatically quasiquoted during internalisation. The unquote operator (written as
a comma) is used to activate parts of passive patterns. Productions are capable of ex-
pressing more than just references to patterns. Parameterised productions may have an

112

5.2 Concepts of Core Concat

arbitrary number of arguments that can be used to construct the pattern on the right-hand
side. Listing 3 shows three examples of productions.

Listing 3 Examples of Productions

1 keyword) ’if | ’do | ’while.

2

3 $x ?) ,$x | <nothing>.

4

5 $sep $elem sep_list)
6 (elems:(,$elem (&i(,$sep) ,$elem)*)) [@elems]).

The first production is unparameterised. It associates the name keyword with the pattern
’if | ’do | ’while. Each occurrence of <keyword> is dynamically resolved to
this pattern during matching or instantiation .

The second production defines the pattern operator ? that expresses that a match-
ing or instantiation is optional. The production is parameterised and expects a single
pattern as argument. The comma preceding the variable $x on the right-hand side of
the rule is concrete syntax for the unquote operator. It has the effect of activating the
variable and turning it into a meta-variable that ranges over patterns. When a parame-
terised reference to the ?-pattern is resolved, the variable is instantiated with the pattern
passed as an argument. For example, the pattern <<item> ?> is resolved to the pattern
<item>|<nothing>. The semantics of the choice operator defines that <item> is
tried first and only if <item> fails <nothing> is tried second – and always succeeds.

The third production abstracts a parser for string encodings of value sequences, e.g.,
comma-separated numbers or white-space separated items. The production expects two
arguments: a pattern that matches the separators and a pattern that matches the elements
being separated. For instance, assuming that the pattern <i_nat> transforms string en-
codings of natural numbers into an internal representation, the following pattern trans-
forms a string of number encodings separated by a comma or semicolon into a list of nat-
ural numbers in internal representation: <(ˆ,|ˆ;) <i_nat> sep_list>. As de-
fined in Section 5.1.4, character literals are prefixed with the symbol ˆ. The pattern is
resolved to the following transformation:

(elems:(<i_nat> (&i(ˆ,|ˆ;) <i_nat>)*)) [@elems])

The left-hand side of the transformation tries to match the first number by matching
<i_nat> with the string. It then repeatedly tries to match one of the separators fol-
lowed by <i_nat>. The compound matching result is bound to the variable elems

113

5.2 Concepts of Core Concat

which is instantiated inside an untyped sequence on the right-hand side to yield the list of
internalised values.

5.2.2 Creating Syntactic Interfaces with Views

The view mechanism of Concat provides means to hide the actual representation of data
types behind a user-defined syntactic interface. This is necessary because of Concat’s
homoiconic nature. Hiding is achieved through a bidirectional mapping between exter-
nal and internal representation. For example, the rational number 1

10 can be represented
internally as a typed sequence ⌧(h1, 10i, rational) which can be written in Concat as
[:rational 1 10]. A view on rational numbers allows programmers to use the lit-
eral syntax 1/10 instead of the generic typed sequence notation. Both the generic typed
sequence notation and the literal notation have the same internal representation. Techni-
cally, the new syntax introduced by the view is just an alternative. Conceptually, it can be
used to hide the actual representation of rationals by making it illegal to write the typed
sequence in a program that uses rational numbers, but legal in a context where basic func-
tions such as addition or multiplication for rationals are implemented.

A view consists of two transformations that map between internal and external rep-
resentation of data. The transformations are defined as a set of productions. A view def-
inition starts with the keyword view followed by the identifier of the type for which
the view is defined. The two blocks that define the transformation for internalisation and
externalisation begin with keywords :int and :ext respectively. Each block consists
of a non-empty set of productions. The first production in each block must be the start-
ing point of the transformation. The following example is a view definition for positive
rational numbers.

114

5.2 Concepts of Core Concat

Listing 4 View Definition for Rational Numbers

1 view rational:

2 :int

3 i_rational)
4 (n:i_nat ˆ/ d:i_nat) [:rational $n $d]).

5 i_nat)
6 (d:i_digit*) [:nat @d]).

7 :ext

8 e_rational)
9 ([:rational n:e_nat d:e_nat]) @n ˆ/ @d).

10 e_nat)
11 ([:nat d:e_digit*] => @d).

In the Listing 4, i_rational internalises rational numbers with a reference to the
production i_nat and e_rational externalises rational numbers with a reference to
the production e_nat. The prefixes i_ and e_ are a convention to distinguish between
productions for internalising and externalising.

By default, syntax defined for the program level is also available at the meta-level.
For example, the concrete syntax for rational numbers, i.e., its external representation,
can be used in a pattern such as (1/3|1/2). In cases where this leads to ambiguities,
the program-level syntax can be explicitly escaped using the program escape operator /p.
With explicit escape, the example above becomes: (/p(1/3)|/p(1/2))

5.2.3 Defining Semantics with Operations

Operations are the main computational mechanism in Core Concat. Operation definitions
consist of a number of cases that define a mapping between arguments and a result in a
functional way. Each case is defined by an unconditional or conditional transformation.
Executing the operation corresponds to trying the cases in order on the input until one
succeeds and produces the result of the operation.

Operation definitions start with the keyword opdef followed by the operator symbol,
a colon and a sequence of transformations terminated with a full stop. In case there is only
a single transformation with an empty left-hand side, the colon in the operation definition
may be omitted. Listing 5 shows examples of simple operations on sequences.

115

5.2 Concepts of Core Concat

Listing 5 Basic Sequence Operations

1 opdef first:

2 [$x @y]) $x.

3 []) ’error.

4

5 opdef rest:

6 [$x @y]) [@y].

7 []) ’error.

8

9 opdef second) rest first.

The operation first returns the first item in a sequence and the operation rest returns
the sequence with the first item removed. Both return the symbol ’error if the argument
sequence is empty.

Operations are purely functional in the sense that their results depend solely on argu-
ment values that need to be items. However, the application of operations in Core Concat
is not based on function calls with a fixed number of individual arguments, but on a single
argument that is a sequence. Programs are executed strictly from left to right with each
operation working on the results of previous operations. Data that is unaffected by an
operation is passed on to the next operation together with the result. Syntactically, this
means that programs are written in postfix notation. Macros are built-in means to break
out of this syntactic and semantic scheme. Operators may occur on the right-hand side
of transformations within operation definitions. This corresponds to “calling” other op-
erations. The definition in line 9 of Listing 5 abstracts the program rest first by
introducing the operator second. The following lines show the stepwise execution of a
program where rest and first are applied to a sequence:

[1 2 3] second

[1 2 3] rest first

[2 3] first

2

Internally, operations are rewritten into rules of a pattern-based concatenative rewriting
system as defined in Section 4.2.4. An operation definition of the form

opdef name:

(lhs1) rhs1).

....

(lhsN) rhsN).

116

5.2 Concepts of Core Concat

is transformed into a sequence of choices. Each choice is a transformation:

lhs1 name) rhs1 | ... | lhsN name) rhsN

The left-hand side of the transformations have the operator name inserted as the last el-
ement on the left-hand side. In effect, the operation definition ensures that each rule has
an operator name that serves as a dispatch. By checking that the left-hand side does not
contain operators during parsing, the concatenative programming style can be enforced.
Listing 20 in Section 5.5.2 defines the transformation of an operator definition into a
choice pattern.

Listing 6 shows the implementation of map, an operation that applies a program to
each element in a sequence and produces a sequence that contains the results.

Listing 6 Mapping over Sequences in Concat

1 opdef map:

2 do ([$f @r] [@p]) [$f1 @r1])

3 if $f @p) $f1

4 && [@r] [@p] map) [@r1].

5 [] [@p] map) [].

The stepwise execution of the map operation will be discussed by example based on the
program [[1][2][3]] [first] map. This program has the result [1 2 3]. The
first transformation starting in line 2 implements the recursive case of the operation. It has
two conditionals that are defined in line 3 and 4. The application of the operation to the
argument [[1][2][3]] [first] starts by attempting to match the data with the left-
hand side of the operation, which is the pattern [$f @r] [@p]. The result of this match
are the following variable bindings that are added to the store: (f,[1]), (r,h[2][3]i)
and (p, hfirsti). In the context of these bindings, the left-hand side of the first condi-
tional $f @p is instantiated. The result is the program [1] first. This program is
executed and yields the result 1 which is matched by pattern $f1. The resulting bind-
ing (f1,1) is added to the store. With the updated store, the left-hand side of the second
conditional [@r][@p] map is instantiated. The result is [[2][3]] [first] map.

The execution of this resulting program follows the execution pattern just described
and leads to more recursive calls “waiting” for the result, each with its own instance of
a store. The two final recursive calls of the execution are [[3]] [first] map and
[] [first] map. During the execution of the latter, the first transformation fails to
match and, therefore, the second transformation – the base case – is tried. The base case
yields the result [] which, when matched with [@r1], yields a binding (r1, ✏). After

117

5.2 Concepts of Core Concat

this, the instantiation of the pattern [$f1 @r1] results in [3]. This process of returning
the result and instantiating the right-hand side of the transformation header is repeated for
all waiting “calls” which leads to the stepwise construction of the sequence [1 2 3].

The operation map is higher-order in the sense that it takes a program as an argument
and executes it. The execution is expressed by the left-hand side of the conditional in
line 3. The variable p is bound to the content to of the second sequence which, for this
example, is the program first.

The operations examined so far operate on untyped sequences and use generic types
for variables. Listing 7 shows an example of how patterns can be used to ensure correct
types are passed to the operation.

Listing 7 Example for using Typed Sequences in Operations

1 opdef valid_char:

2 do ([:string c:char r:char*]) $c [:string @r])

3 if $c valid?) true.

The operation valid char removes the first character from a string if the operation
valid? yields true for this character.

5.2.4 Program Transformation with Macros

Although operations and views are based on program transformations they restrict the
kinds of transformations that can be defined in order to enforce certain execution seman-
tics, as demonstrated in Section 4.2. Operations associate operator symbols with func-
tional semantics. This implies that the transformations must not “touch” operators unless
these operators are inside a sequence.

Views define alternative representations for a typed sequence. The target of the in-
ternalisation transformation and the source of the externalisation transformation must be
typed sequences. Some useful computations, for example code optimisations or syntax
definitions with programs rather than typed sequences as targets, cannot be expressed
directly with operations or views because of these restrictions.

Macros work around these restrictions by providing a mechanism for defining unre-
stricted transformations. There are two types of macros. Computation macros operate on
programs in internal representation and only work on the outermost nesting level of pro-
grams, i.e., they are not applied to the content of sequences. Internalisation macros trans-
form parts of an external program representation into an internal representation. They are
applied to data at all nesting levels, i.e., also on data contained in sequences.

118

5.2 Concepts of Core Concat

Internalisation and externalisation macros are defined using the keyword imacro

and emacro respectively followed by a pair of parentheses containing a start-tag and,
optionally, an end-tag. The ensuing sequence of transformations defines different cases of
program transformations. After the keyword with, a set of productions may follow. In
Listing 8, a macro allowing simple infix operations is defined.

Listing 8 Example of an Internalisation Macro

1 imacro (% ;):

2 <ws>* x:i_nat <ws>* o:i_op <ws>* y:i_nat <ws>*
3) $x $y #o.

4 :with

5 i_op) ((ˆ+ | ˆ-) -> <to_op>).

The start-tag of the infix operation is the character %, the end-tag is the character ;. The
macro recognises two numbers with either an operator + or an operator - between them
and transforms both the numbers and the operator into an internalised postfix represen-
tation. Whitespaces are recognised by <ws> and may be interspersed arbitrarily. The
production i_op recognises the operators on the character levels and using vertical com-
bination applies the built-in <to_op> pattern to yield an internal operator representation.
Because the resulting value is not an item, a #-variable is used on the right-hand side of
the transformation to instantiate the operator. An example of a macro application is the
transformation of the program 1 % 2 + 3 ; 4 into the program 1 2 3 + 4. In ef-
fect, the macro takes complete control of the parsing process between % and ;.

Externalisation macros allow an unrestricted mapping for programs from internal to
external representation. The difference compared to the externalisation part of views is
that the scope of the macro transformation is not limited to a single typed sequence.

Concat transforms internalisation and externalisation macros into rewrite rules. This is
achieved by a meta-transformation that prepends and appends the start-tag and the end-tag
respectively to the left-hand side of the transformation. For example, the internalisation
macro in Listing 8 is transformed into the rule:

/s(&) <ws>* x:i_nat <ws>* o:op <ws>* y:i_nat <ws>* /s(;)

) $x $y #op.

While internalisation and externalisation macros have external program representations as
source and target respectively, computation macros operate entierely on the internal pro-
gram representation. Syntactically, computation macros start with a keyword cmacro,

119

5.2 Concepts of Core Concat

followed by the macro name and a colon. A set of transformations defines the seman-
tics of the macro. The transformations are unrestricted and can arbitrarily manipulate the
program. The computation macro in Listing 9 defines optimisations for shuffle words.

Listing 9 Example of a Computation Macro

1 cmacro optimisations:

2 dup drop) .

3 swap swap) .

The macro eliminates pairs of operations that have no effect on the result and thus need
not be executed. The optimisations only apply to operations that are not contained in
sequences. The reason for this is that operations might be applied to code in sequences
before that code is executed. Optimisations inside sequences could lead to undesired re-
sults. For example, the program [dup drop] length is expected to yield the result
2 but will yield 0 if the optimisation is performed before execution.

5.2.5 Pattern Matching with Concrete Syntax

A view definition introduces an alternative notation for a typed sequence. The notation
can be used both at the program and at the meta-level. For example, the literal syn-
tax of strings in Core Concat defines a notation that allows writing "abc" instead of
[:string ˆa ˆb ˆc]. When this notation is used in a pattern, it means that the string
is matched or instantiated literally.

Patterns can be defined based on a string’s typed sequence representation. For exam-
ple, the pattern [:string ˆa ˆb @r] matches a string that starts with the characters
ˆa and ˆb followed by an arbitrary number of characters @r.

Core Concat provides a mechanism for defining patterns based on literal syntax. Since
the internalisation at the program level and at the meta-level can be controlled separately,
there is no need to use the same view definition for both levels. Thus, the view defined for
the pattern-level may be based on typed sequence patterns such as the one just described.
For example, instead of defining the internalisation of strings as

ˆ" s:<str-char>* ˆ") [:string @s]

it can be defined to include patterns. The default mechanism to do this is with the
predefined pattern <ptn-esc> (for pattern escape) that matches any pattern between
two backslashes. Changing the above definition to

120

5.3 Case Study: Implementing Combinatory Logic

ˆ" s:(<ptn-esc>|<str-char>)* ˆ") [:string @s]

allows to write a pattern in place of a character. Using this definition, the pattern
[:string ˆa ˆb @r] can be expressed as "ab\@r\". This allows definitions such
as the first version of ab-prepend in Listing 10:

Listing 10 Concrete Syntax Manipulation of Strings

1 opdef ab-prepend:

2 "\@s\" => "ab\@s\".

3

4 opdef ab-prepend:

5 [:string @s] => [:string ˆa ˆb @s]

The internalisation stage of the pattern language actually transforms the operation defini-
tion into the same internal representation as the second version of ab-prepend.

5.3 Case Study: Implementing Combinatory Logic

This section presents a comprehensive case study of implementing a language in Con-
cat: combinatory logic [33]. Combinatory logic was introduced by Haskell Curry and
Moses Schönfinkel in the 1920s. Originally meant for investigating the foundations of
mathematics, combinatory logic is now an important tool in research on programming
languages [75]. It consists of several systems of combinators that, similar to lambda cal-
culi, provide a formal foundation for computing. The difference to lambda calculi is that
combinatory logic is not based on bound variables and thus avoids substitution and ↵-
conversion altogether [75].

Despite its relatively simple syntax and semantics, combinatory logic is well suited to
demonstrate a wide range of Concat’s features: typed sequences as term representation,
operations that work on the term representation, program-level views that define concrete
notations for terms and transform bidirectionally between concrete notation and internal
term representation, meta-level views that allow variables in SKI terms and provide the
basis for defining operations using concrete syntax as well as dynamically parameterised
productions for recognising left-associative combination of terms.

5.3.1 Definitions

This section defines a combinatory logic based on the combinators S, K and I . The
system is also called SKI calculus or SKI combinator calculus. The alphabet of the pure

121

5.3 Case Study: Implementing Combinatory Logic

SKI calculus is: X
= {S,K, I, (,)}

SKI terms are defined recursively as follows:

• S, K and I are SKI terms

• if x and y are SKI terms, then so is (xy)

Examples of SKI terms are ((SK)I)) and ((S(KS))K). Let the concatenation of two
terms x and y to a term xy with no surrounding parentheses be equivalent to (xy) and
let the concatenation operation be left-associative. Accordingly, the two examples can be
rewritten as follows:

SKI ⌘ ((SK)I))

S(KS)K ⌘ ((S(KS))K)

Extending the alphabet by constants that explicitly represent data simplifies reasoning
about the SKI-Calculus. In the following, the symbols a, b and c will be used to refer to
data items. The reduction of an SKI term is defined by the rules in Table 5.3. The symbols
x, y and z stand for arbitrary terms.

Sxyz ! xz(yz)

Kxy ! x

Ix ! x

Table 5.3: Rules of the SKI Calculus

The rules define replacement on subterms within an SKI term. For example, the term aIbc

reduces to abc because the subterm Ib is reducible by an application of the third rule. The
following is an example of a stepwise derivation of a term that has the effect of swapping
the positions of a and b.

(K(SI))Kab ! K(SI)a(Ka)b !

SI(Ka)b ! Ib(Kab) !

b(Kab) ! ba

There is an alternative derivation of this term because in the term Ib(Kab) both Ib and
Kab are reducible expressions. Reducing Kab first, the stepwise derivation is:

Ib(Kab) ! Iba ! ba

122

5.3 Case Study: Implementing Combinatory Logic

5.3.2 Basic Implementation

In the following, the implementation of the SKI combinator calculus in Concat will be
discussed. A representation of SKI terms has to fulfil three requirements:

• encode the atomic terms S, K and I of the pure calculus and all atomic constants
added, e.g., a, b and c

• represent the nested structure of compound SKI terms

• be uniquely identifiable as an SKI term

For the representation of the atomic terms of the calculus, the generic symbol data type
available in Core Concat is used. Symbols start with an apostrophe and may consist of any
characters except separators. The SKI term S is represented by the symbol ’S. Compound
terms are represented by untyped sequences. For example, the content of the term SKI

is represented by the structure [[’S ’K] ’I]. In order to make SKI terms uniquely
identifiable, a sequence of type ski is used to wrap the actual content of the term. The
complete representation of the term SKI is [:ski [[’S ’K] ’I]]. The rules of
the ski calculus are implemented as a reduction operation on this representation as shown
in Listing 11.

Listing 11 Reduction in the SKI Combinator Calculus

1 opdef reduce:

2 [:ski [’I $x]]) [:ski $x].
3 [:ski [[’K $x] $y]]) [:ski $x].
4 [:ski [[[’S $x] $y] $z]]) [:ski [[$x $z] [$y $z]]].
5

6 do ([:ski [$x $y]]) [:ski [$z $y]])

7 if [:ski $x] reduce) [:ski $z].
8

9 do ([:ski [$x $y]]) [:ski [$x $z]])

10 if [:ski $y] reduce) [:ski $z].

The operation reduce consists of three unconditional transformations (lines 2-4) and
two conditional transformations (lines 6-7). The unconditional transformations imple-
ment the reductions for S, K and I as defined in Table 5.3. As these reductions are defined
on subterms, the implementation must provide a mechanism to descend into the nested
structure of the term representation to find reducible subterms. This is implemented with

123

5.3 Case Study: Implementing Combinatory Logic

two conditional rules. If x, y and z are SKI terms, the rule starting in line 6 can be read
as: If term x can be reduced to term z, then term xy can be reduced to term zy. Alter-
natively: The term xy can be reduced to term zy, if term x can be reduced to term z.
The transformation starting in line 9 has similar semantics. The difference is that y is the
reducible subterm. As the definitions are recursive, reducible subterms are found at an
arbitrary depth. The reduction of the term b(Kab) to ba will be discussed as an example.
The program that expresses the reduction of the term is:

[:ski [’b [[’K ’a] ’b]]] reduce

When the program is executed, the first three unconditional transformations in reduce fail
since the term does not begin with S, K or I . The first conditional transformation also
fails because instantiating the left-hand side of the conditional with the binding (x,’b)

yields [:ski ’b] reduce which fails. The last transformation succeeds because the
variable $y is bound to [[’K ’a] ’b]. This leads to the left-hand side of the con-
ditional being instantiated to [:ski [[’K ’a] ’b]] reduce. Executing this pro-
gram yields ’a, which is bound to $z. The resulting term after instantiating the right-hand
side of the transformation header is [:ski [’b ’a]].

The operation reduce defines a single derivation step for SKI terms. A complete
derivation may consist of several steps until a canonical form is reached, which means
that there are no more reducible subterms. This is implemented by the operation derive
as shown in Listing 12.

Listing 12 Derivation in the SKI Combinator Calculus

1 opdef derive:

2 do ([:ski $x]) [:ski $y])

3 if [:ski $x] reduce derive) [:ski $y].

4 [:ski $x]) [:ski $x].

The recursive case of derive succeeds if sequential application of reduce and derive
on a term succeeds. In that case, it yields the result of this application. The base case
always succeeds and does not change the term. The derivation of the term Ib(Kab) to
b(Kab) and finally to ba will be discussed as an example. When the corresponding pro-
gram

[:ski [’I [’b [[’K ’a] ’b]]]] derive

is executed, the first transformation of derive is attempted. This leads to the execution
of

124

5.3 Case Study: Implementing Combinatory Logic

[:ski [’I [’b [[’K ’a] ’b]]]] reduce derive

In reduce the first transformation matches and yields:

[:ski [’b [[’K ’a] ’b]]]

This is the term of the previous example. The operation derive is applied to this term:

[:ski [’b [[’K ’a] ’b]]] derive

Again, the recursive case is attempted:

[:ski [’b [[’K ’a] ’b]]] reduce derive

This time the last transformation of reduce succeeds and leads to the application of
the transformation for K. The result is [:ski [’b ’a]]. The operation derive is
applied to this result and again the recursive case yields:

[:ski [’b ’a]] reduce derive

This time reduce fails and thus the conditional of the recursive case of derive also
fails. Therefore, the base case of derive is tried which terminates the recursion and
yields the final result [:ski [’b ’a]].

5.3.3 Concrete Syntax for SKI Terms

The implementation discussed in the previous section can be used for experimenting with
reductions of the SKI calculus. By introducing new rules, the calculus can be extended
with new combinators. However, the verbosity of the representation of SKI terms makes
this inconvenient. Unlike in the mathematical notation, all parentheses need to be written,
the symbols have to start with an apostrophe and the terms must be surrounded by a typed
sequence. In the following, the introduction of a concrete syntax based on the mathemati-
cal notation will be discussed. The syntax is implemented as a view on the typed sequence
representation. Transformations need to be defined that map bidirectionally between the
mathematical notation and the internal representation used so far.

As discussed in Section 5.3.1, the mathematical notation of SKI terms can be writ-
ten with or without parentheses. If there are no parentheses the concatenation of terms
is left associative. Parsers for left associative operators are typically implemented using
left recursive grammar rules [133]. However, as the execution semantics of Core Concat
imply that patterns are matched strictly from left to right, left recursion leads to infinite

125

5.3 Case Study: Implementing Combinatory Logic

regress. This is a well known problem for top down parsers [3]. In Core Concat, this prob-
lem is solved by providing a mechanism to avoid left-recursion altogether: dynamically
parameterised productions.

The following code defines the internalisation part of the view definition for SKI
terms. It can be understood as a grammar that defines how a term is parsed into an in-
ternal representation.

Listing 13 Grammar for Internalising SKI Terms

1 ski_start) ˆ‘.

2 ski_char) ˆS | ˆK | ˆI | ˆa | ˆb | ˆc.

3 ski_sym) (c:<ski_char>) [:symbol $c]).

4 ski_group) (ˆ(t:<ski_term> ˆ)) $t).

5 ski_item) <ski_sym> | <ski_group>.

6 ski_term) (&i(s:<ski_item>) <$s ski_rest>)

7 | <nothing>.

8 ski_literal) (<ski_start> t:<ski_term>) [:ski $t]).

9 $v ski_rest) ((&i(s:<ski_item>) <[,$v $s] ski_rest>)

10 | (<nothing>) ,$v)).

The only difference between the original mathematical notation defined in Section 5.3.1
and the one introduced in Concat is that every SKI term starts with an apostrophe. This
is defined by ski_literal and ski_start. Production ski_term defines that an
SKI term consists of an ski_item and an ski_rest or is empty. An ski_item

is an ski_symbol or an ski_group. SKI symbols (ski_sym) are represented by
characters S, K, I, a, b and c. An ski_group is an ski_term in parentheses. The
parameterised production ski_rest expects the current result of the matching process.
It attempts to match an ski_item and, if successful, calls itself recursively with a se-
quence that consists of its previous argument and the result of recognising ski_item

– both combined into a sequence. If there is no ski_item to match, i.e., the term is
completely recognised, the argument is returned.

Figure 5.2 depicts the parse tree for the term ‘S(KS)K. To improve the presenta-
tion, the ski_ prefix is omitted from all tree nodes. The parse result is the structure
[:ski [[’S [’K ’S]] ’K]]. The parsing process corresponds to a left-to-right,
depth first traversal of this tree. Without parameterised productions, the data flow for con-
structing the result of a parse is strictly from the leafs upwards to the root, with each
parent node combining or discarding results from its children.

126

5.3 Case Study: Implementing Combinatory Logic

literalXXXXX
⇠⇠⇠⇠⇠

start

‘

term̀
`````̀

       
item

sym

S

restXXXXX
⇠⇠⇠⇠⇠

item

group̀̀
```̀


(term

HHH
���

item

sym

K

rest
ZZ⇢⇢

item

sym

S

rest

✏

)

rest
ZZ⇢⇢

item

sym

K

rest

✏

Figure 5.2: Parse Tree for SKI Terms

Because the grammar in Listing 13 avoids left recursion and thereby automatic as-
sociation to the left, the results need to be combined differently in order to reflect the
left-associativity of concatenating SKI terms. Passing parameters to ski_rest corre-
sponds to sending results downwards in the tree. It is helpful to think about the parsing
process in terms of function calls. For example, the node term that is under the node
group in Figure 5.2 has two children: item and rest. First, term calls item, item calls
sym and finally sym recognizes K. The result K is returned to term, which uses it as a pa-
rameter when calling rest. This is the point where the result is passed downwards. Next,
rest calls item which returns the result S. Results K and S are combined into [K S] and
rest is called again with this result as an argument. Because there is nothing left to parse,
the result [K S] is returned.
With the first part of the view just described, SKI terms in mathematical notation can be
parsed into the typed sequence structure on which the reduction and derivation opera-
tions are defined. To display results of these operations in the mathematical notation, the
reverse operation is required: the internal typed sequence representation has to be trans-
formed into concrete syntax. This is defined by the second part of the view that defines
externalisation, as shown in Listing 14.

127

5.3 Case Study: Implementing Combinatory Logic

Listing 14 Grammar for Externalising SKI Terms

1 e_ski_sym) ([:symbol c:char]) $c).
2 e_ski_group) (t:<e_ski_term>) ˆ($t ˆ)).
3 e_ski_term) ([l:(<e_ski_sym> | <e_ski_term>)

4 r:(<e_ski_sym> | <e_ski_group>)]) [$l $r])

5 | <e_ski_sym> | <nothing>.
6 e_ski_literal) ([:ski x:<e_ski_term>]) ˆ‘ @x).

The conversion between internal and external representation can be broken down into
three parts: recognising the typed sequence that wraps the content, converting symbols
to characters and converting the tree structure expressed by nested sequences into con-
catenated terms or groups. Production e_ski_literal generates the start character
followed by the result of e_ski_term. Production e_ski_sym unwraps characters by
removing the surrounding symbol type. Production e_ski_term distinguishes several
cases: the basic distinction is that a term is either a sequence with two elements, a symbol
or nothing. In case of a sequence, the left element is either a symbol or again a term. The
right element is either a symbol or a group. By being able to recognise a group when
the right-hand element is a sequence, the externalisation manages to generate only those
parentheses that are actually needed.

5.3.4 Concrete Syntax for Operations on SKI Terms

The previous two sections discussed an implementation of the SKI calculus based on
a structured representation and a view definition that hides this representation behind a
mathematical notation for terms. This improves the notation when experimenting with
the derivation of SKI terms. However, the definition of new reductions is still based on
the internal representation of Listings 11 and 12.

128

5.3 Case Study: Implementing Combinatory Logic

A more convenient way is to use the mathematical notation of Table 5.3.Concat supports
pattern matching using concrete syntax by distinguishing between concrete syntax on
program level and concrete syntax on meta-program level. The standard behaviour is to
use the same syntactic definitions for both levels. This means that the view defined in
algorithms 13 and 14 is used to recognise occurrences of SKI literals in programs and
patterns.

By defining a separate transformation for the pattern level, grammar elements can
be mixed into the literal syntax. This results in their insertion into the underlying typed
sequence representation. The standard syntax to do this in Concat is inserting patterns be-
tween backslashes as shown in Section 5.2.5. For the derivation rule Kxy ! x this would
mean writing concrete syntax ‘K\$x\\$y\ => ‘\$x\. This syntax is verbose com-
pared to the mathematical notation.

A more flexible approach is to define new syntax for pattern expressions so that they
fit the syntactical context. The following production transforms the characters x, y and z
into variables, as shown in Listing 15.

Listing 15 Defining the Meta-Language Syntax for SKI Variables

1 ski_var) (n:((ˆx | ˆy | ˆz) -> <to_atom>))
2 [:var $n [:any]]).

First, the characters are converted into symbols by matching a reference to the built-in
pattern <to_atom>, then the result is inserted into the internal representation of vari-
ables (see Section 5.5). Combining this definition with those in Listing 13 and changing
the ski_item production in line 5 to

ski_item) <ski_var> | <ski_sym> | <ski_group>.

makes parsing SKI patterns with variables x, y and z possible. This means that the rules
for SKI can be defined using the concrete syntax of terms as shown in Listing 16.

129

5.4 Language Layering in Concat

Listing 16 Reduction and Derivation in Concrete Syntax

1 opdef reduce:

2 ‘Ix) ‘x .
3 ‘Kxy) ‘x .
4 ‘Sxyz) ‘xz(yz) .
5

6 do (‘xy) ‘zy) if ‘x reduce) ‘z .
7 do (‘xy) ‘xz) if ‘y reduce) ‘z .
8

9 opdef derive:

10 do (‘x) ‘y)

11 if ‘x reduce derive) ‘y .
12

13 ‘x) ‘x .

The reduce and derive operations are not only equivalent to those in Listings 11 and 12
in the sense that both produce the same results. Moreover, the view mechanism hides the
fact that the very same structures are created internally.

5.4 Language Layering in Concat

The previous section described combinatory logic as a case study for creating a language
in Concat. From an outer perspective, Concat appears to compute, for example, the term
‘a as a result of the input ‘Ia. That is the illusion the system creates for the user. The user
perceives the computation as a “black box” consuming a sequence as input and returning
a sequence as output. The situation is depicted in Figure 5.3 with the computation being
referred to as cmp.

Figure 5.3: Black-Box View on Reduction of an SKI Term

As a matter of fact, the computation cmp is performed by another computational process
cmp

0. Semantically, cmp

0 performs the same computation as cmp does but relies on a

130

5.4 Language Layering in Concat

different encoding of the input; cmp

0 also uses a different encoding for the output. As
Figure 5.4 shows, cmp

0 uses a nested structure to represent ski terms.

Figure 5.4: Internal Reduction of an SKI Term

As indicated, both computations are related to each other. The “upper” layer pictured by
Figure 5.3 can be substituted by the “lower” layer shown in Figure 5.4 if two transforma-
tions are given: one transformation converts the input format of cmp to the input format of
cmp

0 and the other transformation adapts the output format of cmp

0 to the output format
of cmp. The input conversion is an act of internalising an input sequence to the expec-
tations of the “lower” layer, whereas the output conversion is an act of externalising the
output of the “lower” layer towards the demands of the “upper” layer. The arrangement
is shown in Figure 5.5 with int being the internalisation transformation and ext being
the externalisation transformation. These transformations define functional mappings be-
tween representations.

Figure 5.5: Layered Computation of an SKI Term

Formally, both computations are related by

131

5.4 Language Layering in Concat

cmp , int � cmp

0 � ext (5.1)

Since int and ext only relate encodings to each other, they fulfil an important requirement:

int � ext = Id (5.2)

This is the “identity requirement”, which was introduced in Chapter 1 and reflects the
essence of the notion of layering. The kind of bidirectional transformations introduced as
views in Section 5.2.2 always need to fulfil the identity requirement. Views are used to
layer a system in levels of computation. Depending on the perspective, the “upper” layer
computational process is an abstraction of some “lower” layer process, or the “lower”
layer is a realisation of some “upper” layer. The attributes “upper” and “lower” do not
qualify a layer as “superior” or “inferior”; they just refer to relative arrangements in visu-
alisations like Figure 5.5.

The behaviour of int and ext is defined by description Int and Ext. For the SKI cal-
culus, Int is defined by Listing 13 and Ext is defined by Listing 14. As a consequence of
the relations in Figure 5.5 the descriptions of computational processes can be related by
internalisation and externalisation as well. The computational process cmp is described
by the transformation ‘Ix=>‘x. This is the “agreed upon” encoding of computational
processes on this layer. In other words, this is the language (the encoding) a programmer
uses to configure the computation cmp. If cmp is resolved by the composition of int,
cmp

0 and ext, the description of cmp can be translated into the language used to con-
figure the computational process cmp

0. Accordingly, the above computation description
is translated into [:ski [’I $x]] => [:ski $x]. As described in Chapter 1, in
general, the mapping between computation descriptions is defined by processes map and
map

�1. Given that Cmp and Cmp

0 denote the descriptions of cmp and cmp

0, respectively,
the following holds:

Cmp �map = Cmp

0

Cmp

0 �map

�1
= Cmp

This relation is included in Figure 5.6, which is a variant of Figure 5.5. Transformations
map and map

�1 need to obey the law of “descriptional identity”, which resolves to the
identity requirement.

Cmp �map �map

�1
= Cmp , map �map

�1
= Id

In case of implementing cmp via cmp

0, the transformation map is given and map

�1 is

132

5.5 Metacircular Implementation

Figure 5.6: Extending the Meta-Language with SKI Syntax

not explicitly formulated. A definition of map

�1 is required for looking at stages of meta-
system execution in terms of Cmp rather than Cmp

0.
To conclude, any computation can be resolved into another layer of computation in

two ways: functionally and description wise. The transformations required for internali-
sation and externalisation need to fulfil the identity requirement. This is the prerequisite
for layering, computationally and language-oriented. Concat is a demonstration of how
layering can be systematically utilised in the design of a programming system. In Con-
cat, the same language is used for describing all computational processes, including map

and map

�1. As is described in Chapter 1, any computation or computation description,
i.e., any box in Figure 5.6 can be subject of further layering until an elementary level of
computation is reached – or the language describes itself.

5.5 Metacircular Implementation

This section discusses an implementation of Concat’s pattern meta-language in itself.
The two metacircular interpreters [1] for matching and instantiating as well as the parsing
processes are implemented using the same language engineering tools and techniques dis-
cussed in the previous sections. Pattern expressions are represented by typed sequences.

133

5.5 Metacircular Implementation

Views define concrete syntax for these typed sequences and operations implement match-
ing and instantiation. User access to the metacircular implementation allows to change
the semantics of existing pattern operators and to implement new features that cannot
be expressed using pattern abstraction alone. Control over the internalisation process of
the meta-language allows to introduce new language features and to express them using
pattern expressions.

5.5.1 Implementation Alternatives

There are two fundamental approaches to implementing languages in Concat that can be
classified as compilational or interpretational. Below, both approaches will be examined
as candidates for a meta-circular implementation of Concat’s meta language.

Compilational Approach The compilational approach uses the internalisation stage to
transform every concrete syntax expression of a source language directly into an exe-
cutable program of a target language that implements the expression semantics. The tar-
get language is defined by a set of operations. For example, the matching semantics of
sequences can be implemented by the operation match-seq which is shown in List-
ing 17.

Listing 17 Sequential Matching (Compilational Approach)

1 opdef match-seq:

2 do ($sin $bin [[@p1] @pr]) $res $sout $bout)

3 if ($sin $bin @p1) $r1 $s1 $b1)

4 && ($s1 $b1 [@pr] match-seq) $r2 $sout $bout)

5 && ($r1 $r2 combine) $res).

6 ($sin $bin []) [:res] $sin $bin).

The sequential operator matches a sequence of patterns with input data and a store. The
pattern arguments of match-seq are quoted programs. The quoted programs are exe-
cuted in the conditional part of the operation. A sequential pattern any any is, for exam-
ple, transformed into the program [[[match-any] [match-any]] match-seq]

which is called on a sequence and a store.
Because patterns have both matching and instantiation semantics, there are actually

two sets of operations. The advantage of implementing the pattern language with the
compilational approach is the modularity of the code. Each pattern expression is imple-
mented separately and thus changing the implementation is achieved by overwriting sin-

134

5.5 Metacircular Implementation

gle definitions. The disadvantage is that because there are two interpretations, there need
to be unique names for operators which means patterns for matching have a different
representation than patterns for instantiation and the internalisation has to know which
representation to produce depending on the context. Also, the internal representation of
pattern expressions as programs does not directly allow for the view mechanism to trans-
late between concrete and abstract syntax.

Interpretational Approach The metacircular implementation of Concat is based on an
interpretational approach. This approach defines an internal representation for programs
and an interpreter to manipulate this representation. In principle, the same technique was
used in Section 5.3 to implement combinatory logic. For the pattern language, however,
two interpreters are needed for matching and instantiation. Patterns are internally repre-
sented by typed sequences where the operator name corresponds to the sequence type.
For example, the transformation

x:any wrap) [:quot x:any]

has the internal representation

[:utrans [:seq [:var ’x [:any]] [:op ’wrap]]

[:tseq ’quot [[:var ’x [:any]]]]]

The interpreters match and instantiate provide a set of rules that dispatch on these types.
This is shown exemplarily in Listing 18.

Listing 18 Schema for Match and Instantiate Implementation

1 opdef match:

2 do $sin $bin [:seq $f @r]) ...

3 do $sin $bin [:var $n $p]) ...

4 ...

5

6 op instantiate:

7 do $sin $bin [:seq $f @r]) ...

8 do $sin $bin [:var $n $p]) ...

9 ...

The internalisation process of Concat transforms operation definitions into transformation
rules of a rewriting system by adding the name after the opdef keyword as the rightmost
element on the left-hand side of the rule. This implies that the rule for sequential matching
in line 2 is transformed into

135

5.5 Metacircular Implementation

do $sin $bin [:seq $f @r] match => ...

and the rule for sequential instantiation in line 7 into:

do $sin $bin [:seq $f @r] instantiate => ...

This makes it clear that the implementation is basically a rewriting system that dispatches
on four contextual properties: interpretative context (match or instantiate), operator type
(seq, var,...), arguments to the operator and the state of the data sequence and the store.

5.5.2 Internalising the Pattern Language

The internalisation of patterns is defined as a set of views on the typed sequence represen-
tation. Listing 19 is an excerpt of the view definition. The structure of pattern expressions
resembles that of programs defined in Section 5.1.1: a pattern is a sequence of grammar
items. The meta-level grammar actually defines a superset of the program-level grammar
which means that programs are valid patterns. This is because program items (pitem)
are instances of grammar items (gitem) and because typed sequence patterns with atoms
as types and program items as content have the same syntax as regular typed sequences.
To avoid conflicts between program syntax and pattern syntax, parts of a pattern can ex-
plicitly be declared as program literals by surrounding them with /p(...).

A pattern expression (gprog) consists of a sequence of grammar items that are pos-
sibly annotated with a postfix operator (gpost) and are separated by infix operators. Ex-
amples of postfix operators are repetition (*) or elliptical matching (�). Examples of infix
operators are sequencing (white space), vertical combination (->) and choice (|). The
definition of pattern uses a dynamically parameterised reference to the recursive pro-
duction rest. The production rest constructs binary pattern operators by recognising
infix operators. The resulting parsing process prioritises postfix operators and associates
infix operators to the left. Grouping (group) defines priorities explicitly by surrounding
patterns with round brackets. Typed sequence patterns (gtseq) have the same syntax as
regular typed sequences but may contain grammar items as content and a group pattern
in place of the type identifier. Variables (var) consist of a name, followed by a colon and
a grammar item possibly annotated with a postfix operator. The production dvar defines
an alternative variable syntax for writing $x as a shorthand for x:item. The left-hand
and right-hand sides of an unconditional transformation (utrans) are either empty or
consist of a gprog.

136

5.5 Metacircular Implementation

Listing 19 Pattern Language Grammar in Concat (excerpt)

1 gprog) (i:gpost <$i p:grest>) @p) | <nothing>.

2

3 gpost) (i:gitem (t:(ˆ*) /a(rep)) |

4 t:(ˆ�) /a(ell)) | ... | item))
5 ([:($t) $i] | $i)).

6

7 gitem) (<pexplicit> | <group> | <var> |

8 <gtseq> | <utrans> | ... | <pitem>).

9

10 pexplicit) /s(/p() <pitem> /s()).

11

12 group) (ˆ(<ws> g:gprog <ws> ˆ)) $g).

13

14 $e1 grest)
15 (<ws> /s(|) <ws> e2:gpost

16 res:<[:or ,$e1 $e2] grest>) $res) |

17 (<ws> /s(->) <ws> e2:gpost

18 res:<[:vert ,$e1 $e2] grest>) $res) |

19 ...

20 (<ws> sep <ws> e2:gpost

21 res:<[:seq ,$e1 $e2] grest>) $res) |

22 (<nothing>) $e1).

23

24 utrans) (ˆ(lhs:(<gprog> | <nothing>) <ws> /s(=>)

25 <ws> rhs:(<gprog> | <nothing>) ˆ))
26 [:utrans $lhs $rhs].

27

28 var) (n:name /s(:) p:gpost) [:var $n $p]).

29

30 dvar) (ˆ$ n:name) [:var $n ’item]).

31

32 gtseq) (/s([:) t:(<grouping>|<atom>) <sep> <ws>

33 c:<<white> <gitem> sep_list>? ws /s(]))
34 [:tquot $t $c]).

137

5.5 Metacircular Implementation

The fact that the internalisation process of the meta-language is controllable in Concat
provides means to introduce language abstractions that hide the underlying pattern-based
rewriting. The primary abstraction for computing in Core Concat are operations. Oper-
ations are based on rewriting but enforce a functional semantics. The transformations
in Listing 20 implement the internalisation process of operation definitions. An operation
definition consists of a keyword opdef, a symbolic name for the operator, and a sequence
of transformations.

Listing 20 Internalising Definitions of Operations

1 operation) /s(opdef) <ws> n:name <ws> ˆ: <ws>

2 x:((<utrans> -> <$n add-name>) |

3 (<ctrans> -> <$n add-name>))+) [:or @x]

4

5 $n add-name)
6 ([:utrans [@l] $r]) [:utrans [@l ,$n] $r]) |

7 ([:ctrans [@l] $r $c]) [:ctrans [@l ,$n] $r $c]).

The internalisation combines the sequences into a choice operator and appends the opera-
tor name to the left-hand side of each transformation. The appending is performed by the
parameterised production add-name. This production is referenced by a vertical com-
binator in order to define a second stage of processing after an unconditional (utrans)
or conditional (ctrans) transformation was parsed. The parameter to add-name is the
operator name.

5.5.3 Implementing Pattern Operators

Conditional rules can be used to implement matching and instantiation in such a way
that the rules closely correspond to the derivation rules in Chapter 3. Therefore, only
an excerpt of the implementation will be presented. In Listing 21 is an excerpt of the
implementation of instantiate that shows the code for sequential instantiation.

138

5.5 Metacircular Implementation

Listing 21 Metacircular Implementation of Sequential Instantiation

1 opdef instantiate:

2 ...

3 do ($sin $bin [:seq $p1 @pr]) $sout)

4 if $sin $bin $p1 instantiate) $s1

5 && ($s1 $bin [:seq @pr] instantiate) $sout).

6 $sin $bin [:seq]) $sin.

7 ...

The header of the conditional rule binds p1 to the first element of the pattern sequence and
pr to the rest of the pattern sequence. The first conditional instantiates the pattern with
the initial input and binds s1 to the result. The second conditional calls instantiate
on s1, the original bindings and the sequence pattern with the first element removed.
By doing so, the rule manipulates the internal program representation and creates a new
pattern. The result of instantiating this pattern is the end result of the instantiation. The
unconditional rule in line 6 implements the base case of the recursion: in case the sequence
pattern is empty the input sequence sin remains unchanged.

Listing 22 shows the implementation of matching an unconditional transformation.

Listing 22 Metacircular Implementation of Unconditional Transformations

1 opdef match:

2 ...

3 do ($sin $bin [:utrans $lhs $rhs]) $res $sout $bout)

4 if ($sin $bin $lhs match) $res $sout $b1)

5 && ([] $b1 $rhs instantiate) $res).

6 ...

The header binds lhs to the pattern that makes up the left-hand side of the transfor-
mation and rhs to the pattern that makes up the right-hand side. The first conditional
matches the left-hand side with the initial input and the second conditional instantiates
the right-hand side with an empty sequence and the bindings resulting from the match.
The transformation yields the result produced by instantiation and the output sequence
and store produced by matching.

139

5.6 Summary and Conclusions

5.6 Summary and Conclusions

Concat demonstrates the applicability of the pattern core and its programming related ex-
tensions to language engineering. While the previous chapters supported the hypothesis
that pattern matching and instantiation provides a formal foundation for LDSE, Con-
cat supports the hypothesis that this foundation is also a practical for language-driven
programming. Everything in Concat is based on patterns. By applying its language engi-
neering tools to its own meta-language, Concat can hide its pattern-based foundation and
change itself from within. The degrees of change supported are the following:

• New concrete syntax for literals on the meta-level, e.g., a pattern that uses concrete
syntax for rational numbers (1/3|1/2) (views)

• New meta-language syntax. For example, a new syntax for variable bindings such
as $x (meta-views)

• New pattern expressions such as <rational> or <seplist> (productions)

• Modification of pattern semantics and new features that cannot be implemented by
combining expressions, but require access on a lower level, e.g., memoization or
backtracking (metacircular implementation)

The changes supported range from smaller syntactic adjustments to complete replace-
ment of the language syntax and semantics. In this sense, Concat is not only an engine for
creating languages but also an engine for its own evolution. In other words, Concat can
sustain itself [56].

The general philosophy of Concat is to strike a balance between the unambiguity and
ease of structural manipulation a uniform framework provides and the freedom and flex-
ibility needed for implementing a wide range of languages. This philosophy is embodied
in all aspects of the implementation in the form of mutually complementary concepts.
Typed sequences define a uniform syntax and views provide means to break out of the re-
strictions this entails. Operations enforce functional semantics and macros provide means
to circumvent these semantics. Core Concat provides a set of operational concepts and at
the same time the means to replace these concepts with new ones.

Concat is a multi-level framework in several regards. Program syntax can be described
in five layers with refinement relationships between each. A three-level distinction is made
between program, meta-program and meta-meta-program. Views provide a mechanism
to implement a programming system in an arbitrary number of layers where each layer
provides a different perspective on programs and computations.

140

5.6 Summary and Conclusions

An interesting aspect of Core Concat is the way operations and different types of
macros are implemented using the rewriting system. An operation definition associates
an operator with a functional semantics. Internally, the operator is appended to the left-
hand side of each rule in the body of the operation definition. In effect, the operator
defines a context for the rules in the body. Accordingly, the operation definition can be
interpreted as a statement that the rules in the body can be applied in the context of the
operator symbol. For internalisation macros, a start-tag serves as a left-hand context to
the definition to the body. By using start- and end-tags, there is a context to the left and to
the right. The underlying principle is that different kinds of computational entities can be
defined by separating transformations and context.

141

Chapter 6

XMF: A Pattern-based
(Meta-)Modelling Framework

XMF (XML Modeling Framework)1 is a modelling and meta-modelling tool based on
the pattern core introduced in Chapter 3. XMF was initially developed for teaching mod-
elling and language-driven engineering and has been successfully used in university teach-
ing [143]. Its main goals are to provide flexible means to create and relate modelling
languages and to make the modelling process interactive. XMF consists of a browser-
based, integrated development environment, a pattern-based transformation language and
a JavaScript API that exposes pattern functionality. XMF is based on a three-level meta-
architecture in which inter-level relationships are formally defined by pattern instantia-
tion and different kinds of relationships between models are defined by a relationship
language (Section 6.1). XMF implements this meta-architecture and in addition to that
defines a view mechanism for graphical model syntax (Section 6.2). The abstract and
concrete syntax of models are based on XML. Models and views are defined using the
XML Pattern Language for Transformations (XPLT) that implements matching and in-
stantiation on Document Object Model (DOM) trees. Technically, XPLT is a schema lan-
guage. However, schemas are defined in such a way that they form the basis for transfor-
mation, refinement and querying. Based on XPLT patterns, the view mechanism derives
bidirectional transformation between XML model representations and graphical views in
XHTML (Section 6.3). XMF contains two built-in modelling languages for class and ob-
ject modelling (Section 6.4). These are implemented in XPLT (Section 6.5). A JavaScript
API serves as a constraint language for formalising the relationship between models and
modelling languages and for defining semantic model constraints. The API functionality
is based on referencing and refining patterns and querying with patterns (Section 6.6).

1The system discussed in this chapter was created by the author. It is not related to the eXecutable
Metamodeling Facility (XMF) [159].

142

6.1 Meta-Architecture

6.1 Meta-Architecture

In recent years, Domain Specific Modelling Languages (DSMLs) have seen growing in-
terest in research and practice. DSMLs promise the same advantages for modelling that
domain specific programming languages promise for programming: higher expressibility
that leads to more readable and maintainable models. The systematic use of specialised
languages for modelling different aspects of a system requires the ability to create and
relate languages in a flexible manner. For many years, the Unified Modeling Language
(UML) [130,131] has been the most prominent modelling language. Although it is a gen-
eral purpose object-oriented language, it provides a meta-architecture that describes the
relationships between models, languages and meta-languages. In the following, the UML
meta-architecture serves as a starting point for developing a uniform meta-architecture
that supports a pattern-based approach to creating and relating modelling languages.

6.1.1 The UML Meta-Architecture

In the literature, the UML meta-architecture is commonly depicted in the spirit of Fig-
ure 6.1a) [90]. There are four layers, usually labelled M0 to M3 from bottom to top, each
lower layer being an instance of its direct upper layer.

M3

M0

M2

M1

«instanceOf»

«instanceOf»

«instanceOf»

«instanceOf»

M3

M0

M2

M1

«instanceOf»

«instanceOf»

«instanceOf»

a) b)

Figure 6.1: Two Competing Presentations of the 4-Level Meta-Architecture

A competing representation of the architecture includes an additional “instanceOf”-
arrow pointing from M0 to M2 as shown in Figure 6.1b) [73]. While levels M1 to M3 are
defined precisely in the literature, M0 and its relationship to M2 remain unclear. In some
publications, level M0 is even defined to be outside of the modelling system and referring
to the actual “real world” objects being modelled [90]. To clarify the relationships be-

143

6.1 Meta-Architecture

tween the levels, a more detailed version of the architecture is presented in Figure 6.2. The
abbreviation CM stands for class model. A class model consists of classes, associations,
inheritance and other class-specific concepts. These concepts in CM are defined by CL,
the class modelling language. CL is a specification of concepts, of which a concrete CM
is an instance. This is the reason of existence for the arrow labelled “instanceOf” between
CM and CL. The class meta-language (CML) is used to specify the language constructs
available for use on CL. In other words, CL is a concrete specification of a modelling
language in terms of the language CML. In that sense, CL is an instance of CML. All this
is not in conflict with the common understanding of meta-level architectures.

CM

«instanceOf»

CL CML

«instanceOf»

OM

«instanceOf»

OL OML

«instanceOf»

«instanceOf»
is defined by is defined by

M1

M0

M2 M3

Figure 6.2: Alternative Presentation of the UML Meta-Architecture

However, and this fact seems to be overlooked at least in some presentations of the
meta-architecture, the same reasoning holds for the lower half of Figure 6.2. An Ob-
ject Model (OM) consists of objects, values, references and possibly other object-specific
concepts. These concepts are defined by the Object Language (OL). The Object Meta-
Language (OML) specifies the language constructs available for use on OL. The inter-
esting part is that the world of classes and the world of objects are interconnected. This
interconnection is defined through a relationship between the class language (CL) and the
Object Language (OL) that determines how OM and CM are related.

For example, the relationship may be defined by a constraint which states that (1) ev-
ery object needs a class, (2) attribute values of objects must be defined in the correspond-
ing class and (3) actual associations between objects are constrained by the corresponding
multiplicities defined in the class models [88]. The concrete relationship between OM and
CM is defined by the arrow between OL and CL which is in turn defined by the vertical
arrow between OML and CML. The OML-CML arrow defines that there are means to
relate instances of OML and CML. Without this arrow, the upper and lower half of the ar-
chitecture would not be connected and only self-contained models of OM and CM could

144

6.1 Meta-Architecture

be defined.
Object model OM is at meta-level zero (M0) and class model CM at meta-level one

(M1). CL and OL together constitute meta-level two (M2), CML and OML constitute
meta-level three (M3). This completes a coherent description of the meta-level architec-
ture. Figure 6.1b) can be seen as a condensed view of Figure 6.2: The arrow pointing from
M2 to M3 in Figure 6.1b) actually comprises two arrows. Figure 6.1a), however, is ob-
viously incomplete. The “instanceOf” relationship between OM and CM is of a different
kind than the other “instanceOf” relationships. It is the only arrow whose semantics can
be arbitrarily defined in the meta-level architecture by specifying the relationship between
OL and CL on M2. This means that the arrow must not necessarily define an “instanceOf”
relationship but may define any relationship between models. The only reason it is an “in-
stanceOf” relationship in the UML architecture is that the related models are class and
object models.

The reasoning so far suggests that it seems necessary to add ever higher levels to the
architecture infinitely because the meta-languages on M3 need to be defined by meta-
meta-languages which again need to be defined by meta-meta-meta-languages and so on.
A technique to stop the infinite regress is to either predefine M3, i.e., there is no account
of the languages on M3 within the system, or to define the languages M3 in a metacircular
way, i.e., with means of M3. Nevertheless, it is possible to introduce a fixed but arbitrary
number of higher levels if necessary. It shall be noted that the languages CML and OML
on M3 and CL and OL on M2 must not necessarily be separate languages. For example,
if CML = OML, the language for defining CL and ML is the same. This implies that the
relationship language RL relates elements of the same language.

6.1.2 A Pattern-based Meta-Architecture

The discussion of the previous section is abstract in the sense that it does not state how
a language is actually defined. The horizontal arrows between M1 and M2 and between
M2 and M3 define “instanceOf” relationships. So far, the notion of a model being an
instance of a modelling language is vague. In contrast, the notion of instantiating a pattern
developed in the previous chapters defines a clear semantics: data is an instance of a
pattern if there is a set of bindings for which the instantiation of the pattern yields the
data. This syntactic “instanceOf” relationship is adequate to describe the relationships
between M1 and M2 and M0 and M2. Accordingly, if modelling languages CL and OL
are defined by a pattern, the respective models CM and OM are instances.

For example, if the pattern fragment [:class [:name x:string] ...] de-
fines that a class consists of a name, all typed sequences that are instances of this pattern

145

6.1 Meta-Architecture

are valid classes, e.g., [:class [:name "car"] ...]. Section 5.5 demonstrated
that a pattern can itself be represented as a typed sequence which is an instance of a pat-
tern language. If M3 contains one or more pattern languages, the relationship between
M2 and M3 can also be defined as pattern instantiation. Just as the concrete “car” class in
the example above is an instance of the “class” pattern, this pattern is an instance of the
pattern language. In that way, a three-level system M3-M2-M1 is described in terms of
two two-level systems M3-M2 and M2-M1.

By defining – in a metacircular way – that the languages on M3 are patterns that define
a pattern language, the architecture can be described entirely in terms of patterns and
typed sequences. Firstly, the artefacts on all levels are typed sequences (or any structured
representation underlying the pattern system). Secondly, the “instanceOf” relationships
between levels M1 and M2 and M2 and M3 are defined by pattern instantiation. Thirdly,
the relationships between M0 and M1 and the intra-level relationships on M2 and M3 are
structural relationships between typed sequences. The last point requires a more detailed
explanation.

It was stated above that the relationship between models is described by relating ele-
ments on level M2. For the uniform interpretation of the architecture just introduced, this
means that relationships are defined on parts of patterns. For example, the relationship
between an object and a class on the model level may be encoded by adding a class ref-
erence class to each object: [:object [:class x:string] ...]. The knowl-
edge about this encoding can then be defined syntactically on M2 by stating that an object
is an instance of a class if the name of the class and the class reference are the same. The
relationship may be refined by also requiring that an object must contain values for all at-
tributes defined by the referenced class – and its parent classes in case of inheritance. The
pattern functionality introduced in Chapter 3 defines means to transform, refine and query
data that can all be expressed by matching and instantiating patterns. By using this func-
tionality to describe the relationship between M0 and M1, the entire meta-architecture
can be formalised using the pattern approach.

The insights just presented lead to the pattern-based meta-architecture in Figure 6.3.
The architecture consists of three levels: model, language and meta-language level. There
is a single pattern language PL on the meta-language level. Patterns P1 and P2 on the lan-
guage level define modelling languages of which the Data D1 and D2 on the model level
are instances. The architecture generalises the class and object-models of the architecture
in Figure 6.2 to arbitrary models D1 and D2 and instead of the specific “instanceOf” re-
lationship between classes and objects defines an arbitrary relationship RI (relationship
instance) between these models. RI is defined by a relationship R between the patterns P1
and P2.

146

6.2 XMF Overview

D1
«instanceOf»

P1 PL
«instanceOf»

D2
«instanceOf»

P2
«instanceOf»

is defined by is defined by

Model Language Meta-Language

PL

RLRRI

Figure 6.3: A Pattern-based Meta-Architecture

The relationship R is defined using a relationship language RL that relates elements
of the pattern language PL on the meta-language level. Based on the architecture different
kinds of model relationships can be distinguished. R defines an inter-language relationship
if P1 6=P2 and else an intra-language relationship between models that are instances of the
same language. Intra-language relationships can be further sub-divided into intra-model
relationships between elements of a single model (D1=D2) and inter-model relationships
between elements in different models (D16=D2).

6.2 XMF Overview

Starting from the UML meta-model the previous section developed a meta-architecture
describing the relationships between models, modelling languages and meta-languages
on three layers. The key idea is to represent all models in a uniform way and to define all
relationships as pattern operations. The discussion so far was based on typed sequences
and ignored the aspect of concrete model syntax entirely. This section will describe how
the XMF framework implements the pattern-based meta-architecture and provides a view
mechanism allowing graphical syntaxes for models. The main components of XMF are a
browser-based model and meta-model editor, the XPLT pattern language and a JavaScript
API exposing functionality for matching, instantiating, transforming, refining and query-
ing patterns. This API is the basis of the relationship language RL.

6.2.1 Defining Models, Meta-Models and Views

The XMF framework uses XML to store models and XHTML for graphical representa-
tions of models. The XPLT pattern language implements matching and instantiation of

147

6.2 XMF Overview

Figure 6.4: Models, Views and the User Interface

XML documents as operations on Document Object Model (DOM) trees [171]. There is
a close relationship between typed sequences and XML which makes it possible to apply
the pattern concepts introduced so far directly to XML. Both XML and typed sequences
are a notation for tree structures with explicit type information for each node. There is
a straightforward mapping between typed sequences and a subset of XML without at-
tributes, namespaces, mixed content and other more advanced features. For instance, a
typed sequence [:a [:b 1]] corresponds to an XML element <a>1.
In Section 5.5 a typed sequence representation for patterns was introduced where each
expression of the pattern language is represented as a typed sequence of a specific type.
Accordingly, a sequence pattern is represented as [:seq ...]. A similar representation
is used to express patterns in XMF: <sequence>...</sequence>.

A modelling language in XMF consists of a set of XPLT patterns for defining XML-
representations of models, an optional set of XPLT patterns defining an HTML-based
interface language for displaying and/or editing models in a browser and an optional set
of intra- and inter-model constraints for refining modelling language patterns and relat-
ing modelling languages. XMF attempts to derive bidirectional transformations [36] be-
tween models in XML and views in HTML automatically through the variable names
in both patterns. The constraint language (RL in Figure 6.3) is built on the pattern-based

148

6.2 XMF Overview

search mechanism described in Section 3.5. Figure 6.4 illustrates the relationship between
a model in XML and a view in HTML. The patterns for the XML and HTML representa-
tions define a schema for valid models. A valid model is an instance of the model schema
and a valid view on a model is an instance of the view schema. A display process in-
terprets the XML representation and displays the XML text in a code editor with syntax
highlighting. A different display process renders the HTML in the browser using widgets.
The transformation on the display level between XML text and graphical user interface
elements is performed indirectly on the data level. Changes made to the view representa-
tion are mapped back to the model representation. The storage format for models is XML
text while the browser-internal representation on all levels is a DOM tree.

The technique used for introducing graphical syntax in XMF is based on the same
principle as the technique used for introducing textual syntax in Concat. In Concat, ev-
erything is either an atom or a typed sequence and the way to break out of the restrictions
of this syntactic framework is to define a view representation and to “hand over” the view
data to a display process. For Concat, this is any text editor that can, for example, render a
character-based encoding [:char /a(2)] [:char /a(3)] as 23, a syntactic rep-
resentation being neither a typed sequence nor an atom. XMF extends this principle to
graphical representations by transforming data into an HTML representation that will be
rendered by the display process as something outside of the representational possibilities
of XML. The character representation in Concat and the HTML representation in Concat
define the shared space of an interface between a process describing symbolic interpreta-
tion and a process interpreting symbols as rendering information.

6.2.2 User Interface

XMF is a browser-based application. The screenshot in Figure 6.5 depicts the user inter-
face of XMF which is divided into four areas. The upper half of the user interface consists
of two editors for models. There are several reasons for providing two editors. Firstly, by
opening the same model in both editors, XMF provides multiple simultaneous views on a
model. Secondly, editing related models and formulating inter-model constraints is more
convenient this way. The editing of models can be performed in XML representation or
through HTML widgets in the browser. The changes made are propagated to the DOM
tree. The built-in XML editors support syntax highlighting and automatic alignment of
source code. The tabs above each editor allow switching between text-based representa-
tion and graphical view and between the model (data) and the language (pattern) levels.
The lower half of the user interface consists of an editor for model constraints and a log-
ging window. Buttons control constraint checking and allow to clear the log.

149

6.3 The XPLT Language

Figure 6.5: Screenshot of XMF

6.3 The XPLT Language

The central component of XMF is the XML Pattern Language for Transformations (XPLT)
and its underlying transformation engine. XPLT was developed specifically for XMF but
it has since evolved into a stand-alone schema and transformation language for XML.

6.3.1 XPLT Patterns

XPLT implements matching and instantiation of patterns on DOM trees representing
XML or XHTML documents. The XPLT pattern languages is comparable to XML schema
languages such as W3C XML-Schema or Relax NG but provides a more general pattern-
based approach comprising schema definition, document transformation, query and search.
XPLT patterns are based on the matching and instantiation semantics of a subset of oper-
ators defined in Chapter 3. For example, it implements sequencing, alternation and repeti-
tion and supports pattern abstraction and recursive definitions through pattern references.
While the semantics of operators is basically the same, the main difference compared
to the semantics of the pattern core of Chapter 3 and its realisation in Concat is that
transformations are not part of the pattern language. Although transformations are not

150

6.3 The XPLT Language

pattern expressions, pattern-based transformation is an important part of XMF. The view
mechanism relies on two patterns to transform between models and views. Explicit trans-
formation can be expressed by calling an API function.

The same is true for querying models which is not expressed using find, findall and
replaceall operators but through a query function implementing these path polymorphic
patterns. This approach has the advantage that transformations can be triggered by code
associated with the user interface and that constraints can be formulated as scripts defining
matching and instantiation of DOM tree elements. XMF patterns do not return a result
of a match but only bindings that can then be used to instantiate a pattern to define a
transformation. Therefore, vertical and diagonal matching is not possible in XMF. It is
replaced by the notion of conjunctive matching where two patterns are applied to the
same data.

An XPLT pattern is a well-formed XML fragment. It is a mix of the XML ele-
ments contained in the data being matched or instantiated, i.e., elements of the data
language, and elements of the pattern language. The scope of XPLT patterns is not re-
stricted to XML elements but includes attributes associated with a node. In addition to
that, source code fragments can be attached to tree nodes during instantiation. Patterns are
surrounded by a pattern tag. The id attribute may be used to give a pattern a unique
id by which it can be referenced. For example, the following is a pattern with id p1:
<pattern id="p1"><a/></pattern>. The pattern expressions of XPLT will be
introduced by example in the following. The surrounding pattern will be ignored in the
following to shorten the presentation.

Hierarchical Every regular XML element is treated as an element pattern that has the
semantics of matching or instantiating its children sequentially. This ensures that regular
XML can be mixed with the XPLT pattern elements defined in this section. For example,
the pattern <e>$x </e>matches <e><a/></e> by first ensuring equality
of the element <e> and then matching the contained children in sequence; in this case, a
variable and another element pattern. As a result, $x is bound to <e/>.

In XPLT, a variable can be used in place of the element tag id. For example, the
pattern <$x><a/></$x> expresses that the element <a/> has a parent node of variable
type. The variable name in the start-tag must match that of the end-tag. Any binding of
a variable in that position must have a text node as a value, otherwise instantiation fails.
The element pattern corresponds to the typed sequence pattern defined in Section 3.2.3
with the restriction that the pattern in the tag position cannot be an arbitrary pattern but
only a variable.

151

6.3 The XPLT Language

Variable A variable allows an arbitrary structure in the place where the variable occurs
in the pattern. The pattern <a><variable name="var"/> matches any DOM
tree element <a> with a single child and binds the variable name to that child. For ex-
ample, <a> and <a><c/> both match the patterns and yield
bindings from var to and <c/> respectively. As defined in Chapter 3,
variable bindings must be consistent with existing bindings, otherwise matching fails. If
the attribute name in the variable element is empty, no bindings are created. Instantiating a
named variable yields the value of that variable if a binding exists, otherwise instantiation
fails. XPLT provides a shorthand notation for variables: instead of an element, a string
starting with a $ character followed by a variable name may be used to represent a vari-
able. The name must not contain white spaces or any reserved XML characters and may
be empty. For instance, the pattern <a>$var is equivalent to the pattern above.
The XPLT parser transforms the text node with value "$var" into a variable node with
attribute name="var", hence both notations yield the same DOM tree.

Conjunction Variables in the pattern core and in Concat consist of a name and a pat-
tern part. The pattern part can be used to express the type of a variable precisely. An
XPLT variable, on the other hand, matches any node indiscriminately. Nevertheless, there
is a generic pattern providing the same level of control over variable matching as de-
fined in the pattern core. The conjunctive <and> pattern matches patterns sequentially
with the same data and succeeds only if all matches succeed. For example, the pattern
<and>$x <a>$</and> matches only <a> elements. Thus, the pattern matches
<a><a/> but it does not match <c></c>. For the first case, a binding from
x to <a> is created. The instantiation semantics of conjunction yields as a
result the value of instantiating the first element. Accordingly, the example pattern above
may be instantiated to the value of the variable $x.

Choice Choice expresses matching or instantiating alternative structures. For exam-
ple, the pattern <a><choice><c/></choice> matches both fragments
<a> and <a><c/>. Matching and instantiation of a choice pattern is
prioritised, i.e., the alternatives are tried from left to right until one can be matched or
instantiated. In case of a match, no further alternatives are tried. In the example above, the
first choice <a> is instantiated.

Sequencing The sequence pattern matches or instantiates patterns in the order in which
they appear. This translates to a match of the corresponding DOM tree elements from left
to right. For example, the pattern <sequence>$x </sequence> first matches

152

6.3 The XPLT Language

or instantiates a variable and then an element. The sequence pattern expresses sequencing
independent of a parent element. The semantics of the element pattern defined above
makes explicit sequencing superfluous when the parent element is part of the pattern.

Repetition Repetition of patterns is expressed by the greedy repeat pattern. The follow-
ing pattern expresses that element <a> might have any number of children .

<a>

<repeat>

$x

</repeat>

The semantics of the repetition is that of the � operator in Section 4.6. An example of a
fragment that matches the pattern above is:

<a>

<x/>

<y/>

<z/>

Matching the pattern with this data creates a binding from $x to a list of DOM tree
nodes [<x/>,<y/>,<z/>]. Instantiating it creates as many instances of $x
as there are bindings. This means that first matching and then instantiating the pattern
with the example data is an identity operation. The elliptical semantics of repetition are
important for model-view transformations. This will become apparent below when trans-
formations are derived from schemas defining the repeated occurrence of elements in a
model or view.

Text The text element matches and instantiates plain text in text nodes explicitly. It
is used to extract information from a text string. For example, matching the pattern of
<a><text>id:</text>$x with <a>id:1 produces a binding from $x

to a DOM tree text node with value ’1’.

Reference Pattern abstraction and modularisation is implemented through pattern ref-
erences. For example, the pattern <a><pref id="b"/> defines that the child
of an element <a> is the pattern with id b.The resolution of references is performed at
runtime using a lazy semantics: the reference is dynamically replaced with the referenced

153

6.3 The XPLT Language

pattern when it is needed for matching or instantiation. In conjunction with prioritised
choice, the lazy semantics allows recursive pattern definitions.

Attributes XPLT provides support for matching and instantiating XML attributes. How-
ever, patterns are restricted to the value part of attributes and need to be variables, plain
text or code. For example, the pattern matches an element with tag </>
and an attribute b, the value of which is bound to the variable x. Instantiation creates an
element <a> and adds the attribute b with the value of variable $x to the attribute list
of this element. The W3C XML recommendation states that ”the order of attribute spec-
ifications in a start-tag or empty-element tag is not significant’ [173]. XPLT follows this
recommendation and ignores the order in which attributes appear in the DOM tree. The
matching semantics are also not concerned with completeness of attributes but only check
the presence of an attribute.

Code The code pattern allows inserting source code into the DOM tree during instan-
tiation. It may only appear at the value position of an attribute. It starts with an excla-
mation mark, followed by an identifier for the programming language used, a colon and
the source code. Code patterns are ignored during matching. The primary use of this pat-
tern in XMF is for implementing editing functionality in HTML views and for triggering
transformations. The latter usage is exemplified by the following pattern.

<button onclick="!js:transform(this,p1,p2)"</button>

The JavaScript code fragment specifies that the element it is contained in will be trans-
formed using the pattern p1 as the source and p2 as the target.

6.3.2 Transformation Engine

XPLT-patterns are not only used for syntactic validation of XML documents but are the
basis for transforming and querying models. The semantics for the patterns defined in
the previous section correspond to the semantics defined in Chapter 3. However, XPLT
implements only a subset of the pattern functionality as operators and instead provides a
functional interface for performing various pattern-based operations. The core functions
of this interface are match, instantiate, transform, query and refine. In the follow-
ing, these functions will be discussed independent of an implementation language using
concrete XML syntax for parameters and results of functions. The actual API functions
operate on DOM tree fragments and are exposed as a JavaScript API. The use of this
library to define constraints will be presented in Section 6.6.

154

6.3 The XPLT Language

Matching To verify that an XML fragment is an instance of a pattern, it is matched with
the pattern. The result of a successful match is a set of bindings for all the variables in the
pattern. The match function has the following signature:

match(pattern, data) 7! bindings

In the following example, an element pattern <a> containing a variable x is matched with
an element <a> containing the element <c/>. The result is a binding from x to the node
<c/>

match(<a>$x,<a><c/><a/>) 7! {(x,<c/>)}

Instantiation To create an XML fragment based on a pattern, the pattern is instantiated
in the context of bindings. The instantiate function has the following signature:

instantiate(pattern, bindings) 7! data

In the next example, an element pattern <a> containing a variable x is instantiated
in the context of a binding from x to <c/>. The result is an element <a> containing the
element <c/>.

instantiate(<a>$x, {(x,<c/>)}) 7!<a><c/><a/>

Transformation Based on matching and instantiating patterns, a transformation rela-
tionship for patterns can be defined:

transform(pattern1, pattern2, data1) 7! data2

The result data2 is an instance of the argument pattern2 which is instantiated with
bindings created from matching pattern1 with data1. The function transform relates
match and instantiate in the following way:

transform(pattern1, pattern2, data1) =

instantiate(pattern2,match(pattern1, data1))

Unlike in languages such as W3C XSL Transformation language (XSLT) [172], in
XPLT transformations are defined implicitly through naming conventions in the source
and target patterns. For many structurally similar patterns, it is possible to compute trans-
formations automatically. The following transformation is an example:

transform(<a>$x,$x,<a><c/><a/>) 7! </c>)

155

6.3 The XPLT Language

When editing data through a view, it is necessary to have transformations working in two
directions. Whenever the user switches between views on a model, the data has to be
transformed between two representations. As XPLT transformations are not explicitly de-
fined but instead derived from a pair of patterns, there is no problem of the form “calculate
an inverse transformation from a given transformation”. Instead, it is the responsibility of
the language designer to define patterns in such a way that a bidirectional transformation
can be derived. Two patterns p

a

and p

b

define a bidirectional mapping between two data
structures a and b if:

transform(p

a

, p

b

, a) = b

transform(p

b

, p

a

, b) = a

The patterns p
a

and p

b

define two data languages L
a

and L

b

. Every data structure that
matches p

a

or p
b

is an element of L
a

or L
b

respectively. A transformation between two
languages L

a

and L

b

is given if the above equations are true for all a 2 L

a

and all b 2 L

b

.

Refinement The function refine implements partial instantiation of pattens as defined
in Section 3.6. While the instantiate function fails in the case of a missing binding for
a variable, refine returns the variable uninstantiated. The function expects a pattern and
bindings as arguments and returns as a result the pattern with all free variables instantiated
with values from the bindings. If the pattern is refined to a structure that contains only
elements of the data language, the refinement has the effect of instantiating the pattern to
data.

refine(pattern, bindings) 7! pattern/data

The following example shows the refinement of the general pattern that expresses “any
element with a child element” to “any element <a> with a child element”:

refine(<$t>$x</$t>, {($t,a)}) 7!<a>$x

Querying The XPLT query interface allows to express queries against XML data with
patterns. The query function returns all instances of its argument pattern in the data as a
sequence.

query(pattern, data) 7! data-sequence

For example, querying the data

<c>

156

6.4 Modelling with XMF

<a>1

<a>2

</c>

with the pattern $x has the result <res><a>1<a>2</res>. The
query semantics are equivalent to those defined by the findall operator of Section 3.5.1
when it is configured to descent on any node.

6.4 Modelling with XMF

This section shows how XMF uses XML to represent models and to encode intra- and
inter-model relationships.

6.4.1 Model Representation

The XMF framework contains two exemplary implementations of modelling languages,
one for class and one for object modelling. The following XML-fragment is an example
of a class definition in the abstract XML syntax of the class modelling language. It de-
scribes a class with id 1, name Person, a parent class Object, two attributes and one
operation.

<class id="1">

<name>Person</name>

<parent>Object</parent>

<attributes>

<attribute>

<name>name</name> <type>String</type>

</attribute>

<attribute>

<name>age</name> <type>Integer</type>

</attribute>

</attributes>

<operations>

<method>

<name>saySomething</name><params>x</params>

</method>

157

6.4 Modelling with XMF

</operations>

</class>

The XML editor built into XMF allows to create such textual model definitions. The
left-hand side of Figure 6.6 shows the same class in a UML-style box-representation.
This representation is created in the browser by rendering the HTML that results from
model-view transformations. The right-hand side of the figure shows that text boxes and
buttons can be used for adding, modifying and deleting classes, attributes and methods.
The synchronisation between different editing modes is performed automatically when a
user saves the model or changes between views.

Figure 6.6: HTML User Interface for Displaying and Editing Classes

The element <classRelationship> describes relationships between classes. The
following XML fragment defines an association ”supervises” between a professor and an
arbitrary number of students.

<classRelationship>

<type>association</type>

<name>supervises</name>

<source>

<ref>Professor</ref>

<multiplicity>1</multiplicity>

<role>Supervisor</role>

</source>

<target>

<ref>Student</ref>

<multiplicity>*</multiplicity>

<role>Supervised</role>

</target>

</classRelationship>

158

6.4 Modelling with XMF

The relationship is of type association and has the name supervises. A Professor has
the role Supervisor for an arbitrary number of students. Students have the role Supervised
with exactly one professor. The graphical view on this data is shown in Figure 6.7. The
relationship is rendered as an HTML table with similar editing capabilities as described
for the class view above.

Figure 6.7: HTML User Interface for Displaying Relationships

The following XML fragment shows how classes and relationships are integrated into
a class model.

<model id="classModel" name="Class Model">

<classes>

<class>...</class>

...

</classes>

<classRelationships>

<classRelationship>...</classRelationship>

...

</classRelationships>

</model>

The element model must be the root element of all models. The class model contains
an arbitrary number of classes followed by an arbitrary number of class relationships.

The object model representation follows the same principles as the class model rep-
resentation. The following is the representation of an object with id “john” that is an
instance of the Professor class. It contains two attribute values that reference the name
and value attributes defined by this class.

<object id="john">

<class>Professor</class>

<attributeValues>

<attributeValue>

<ref>name</ref>

159

6.5 Creating Modelling Languages

<value>John<value>

</attributeValue>

<attributeValue>

<ref>age</ref>

<value>47<value>

</attributeValue>

</attributeValues>

</object>

6.4.2 Relationships between Models

One way of encoding the relationships between different model elements is by using
references. By convention, references are encoded as a <ref> element containing the
name or id of an element. The target of a reference can be in the same model as the
reference itself or in a different model. For example, the following object relationship is
part of an object model. It is an instance of a supervises relationship in a class model.
This is expressed by a reference inside the instanceof element. In addition to that, the
<source> and <target> elements are intra-model references to objects.

<objectRelationship id="supervises1">

<instanceof><ref>supervises</ref></instanceof>

<source><ref>john</ref></source>

<target><ref>jim</ref></target>

</objectRelationship>

A class model defines not only the structure of individual objects but also possible
associations between objects. For example, the multiplicities of the supervises relation-
ship in the class model define that student objects in the object model must be connected
to exactly one professor object. This kind of relationship is enforced by XMF through
constraint-based model checking as will be described in Section 6.6.

6.5 Creating Modelling Languages

This section shows how XPLT patterns are used to define the abstract and concrete syntax
of modelling languages.

160

6.5 Creating Modelling Languages

6.5.1 Internal XML Representation

The following XML fragment defines a schema for the class representation introduced in
the previous section.

<pattern id="class">

<class id="$id">

<name>$cname</name>

<parent><ref>$parent</ref></parent>

<attributes>

<repeat>

<pref id="attribute"/>

</repeat>

</attributes>

<operations>

<repeat>

<pref id="method"/>

</repeat>

</operations>

</class>

</pattern>

The class pattern requires a class to have an id, a name, a parent reference, attributes
and methods. The id and name are variables in the pattern. The two repeat elements ex-
press that there may be an arbitrary number of attributes and methods. The actual rep-
resentation of attributes and methods is defined by an attribute pattern that is referenced
using the pref (pattern reference) element. The referenced attribute pattern is the fol-
lowing:

<pattern id="attribute">

<attribute>

<name>$aname</name>

<type>$atype</type>

</attribute>

</pattern>

This pattern defines that an attribute must consist of a name and a type element.

161

6.5 Creating Modelling Languages

6.5.2 Display Views

The graphical representation of classes shown on the left of Figure 6.6 is based on an
HTML representation of the class that defines a class to be rendered as a table. The follow-
ing pattern defines this HTML representation. Together with the pattern for the abstract
syntax of a class defined in the previous section, this concrete syntax pattern defines a
bidirectional view transformation.

<pattern id="classHTML">

<TABLE cellpadding="2">

<THEAD>

<TR><TH colspan="2">

<sequence>

$cname <text>(</text> $id <text>):</text> $parent

</sequence>

</TH></TR>

</THEAD>

<TBODY>

<repeat><pref id="attributeHTML"/></repeat>

</TBODY>

<TBODY>

<repeat ><pref id="methodHTML"/></repeat>

</TBODY>

</TABLE>

</pattern>

The table header is a sequence of class name, opening parenthesis, class id, closing
parenthesis, a colon and the name of the parent class. The rest of the table is defined by
two body elements that list attributes and methods. Attributes and methods are rows in the
table which are defined by the referenced attributeHTML and methodHTML patterns
respectively.

6.5.3 Edit Views

XMF supports not only displaying but also editing of models through HTML user inter-
face elements. These elements include text fields, check boxes and buttons. The editing

162

6.5 Creating Modelling Languages

logic may be added as a separate view definition. Switching between the regular view
and the editing view is defined in a fine grained way manner on the element level. For
example, in Figure 6.6, an attribute is edited by replacing the plain text in the table fields
with input fields. This is done by clicking on the attribute. The display view is defined by
the following pattern.

<pattern id="attributeHTML">

<TR onclick="!JS: transform(this,’attributeHTML’,

’attributeHTMLEdit’)">

<TD>$aname</TD>

<TD>:</TD>

<TD>$atype</TD>

</TR>

</pattern>

The table cells for name and type solely consist of the corresponding variable names.
A code pattern inserts the transformation logic as a JavaScript call to the transform func-
tion with the source and target pattern being the display and edit views for attributes. The
edit view is defined by the following pattern:

<pattern id="attributeHTMLEdit">

<TR>

<TD><input type="text" value="$aname"/></TD>

<TD>:</TD>

<TD><input type="text" value="$atype"/></TD>

<TD>

<button type="text" onclick=

"!JS: transform(this.parentNode.parentNode,

attributeHTMLEdit’,’attributeHTML’)">

ok

</button>

</TD>

<TD>

<button type="text" onclick=

"!JS: removeElem(this.parentNode.parentNode)">

x

163

6.6 Relationships and Constraints

</button>

</TD>

</TR>

</pattern>

A table row in edit mode consists of two text input fields and two buttons ok for
confirming the editing and x for deleting the attribute. The class attribute is edited via the
input fields. The button ok maps changes back to the display view. This is defined by the
JavaScript code fragment that calls transform on the attribute, with the edit view as the
source and the display view as the target. If the transformation would be applied to the
DOM tree representation directly, changes would not be visible. This is because the value
attribute of input elements represents only the initial value and not the current state of the
user interface. To make the current values accessible to pattern matching, XMF traverses
the DOM tree before applying a view transformation and replaces the value of the value
attribute with the current value of the user interface component.

6.6 Relationships and Constraints

Section 6.3.2 discussed a set of functions for matching, instantiating, transforming, query-
ing and refining patterns. These functions are exposed in XMF as a JavaScript API. This
API is used for defining intra- and cross model relationships and semantic rules for pro-
viding modelling feedback.

6.6.1 Defining Intra- and Inter-Model Constraints

Constraints in XMF typically have the form “for all objects of type T in the model M,
condition C must hold” or “for all elements O1 of type T1 in model M1 must exist an
element O2 of type T2 in model M2 where O1.x=O2.y”. Formulating such constraints is
primarily an interplay of the reference, refinement and query functionality: a referenced
pattern is first refined by fixing a subset of its variables and then a query is performed with
the refined pattern.
For example, the following query returns all classes with name “Student” from a given
model:

query(refine(’class’, [{’$name’,’Student’}]),’classModel’)

The parameter ’class’ is a string that references the class pattern. The argument
[{’$name’,’Student’}] is a binding from ’$name’ to ’Student’ using lit-

164

6.6 Relationships and Constraints

eral syntax for an array containing a JavaScript object. The result of refine is the class

pattern with the name fixed to ’Student’. This refined pattern is used for querying
the model referenced by the string ’classModel’. The result is a sequence of class
instances represented as DOM tree fragments. There are further helper functions for for-
mulating constraints. The function queryVar expects a pattern, a model and a vari-
able name from the pattern. It performs a depth-first search for the pattern in the model,
matches the pattern to the first occurrence and returns the value bound to the variable.

The function chain abstracts querying structures that are linked using references.
For example, classes are linked in an inheritance relationship by adding to each child
class of a class a parent reference. Following the parent references from any class to
the root class “object” yields a chain of classes that are in an inheritance relationship.
Retrieving this chain using the basic functions requires repeatedly calling queryVar to
retrieve the reference, refine to refine the class pattern and query with the refined
class to resolve the reference. The chain function hides all this. It expects as arguments
a pattern that defines referencing and referenced objects, the variable that is the source of
the reference, the variable that is the target of the reference (typically the id or name of a
model element), a start value and an end value. It returns all elements between start and
end. An example of the use of chain will be given below. Other functions of the API are
assert which throws an exception if its argument does not yield a truth value and len
which returns the length of a list. The function equalNode checks equality between two
DOM tree nodes.

165

6.6 Relationships and Constraints

Listing 23 Constraints for InstanceOf Relationships

1 function checkInstanceOf(oID,cName){

2 //the object with ID oID

3 var object=

4 query(refine(’object’,[{’$objectID’:oID}]),’objectModel’);

5

6 //assert that the object references the class

7 assert(eqNode(queryVar(’object’,object,’$class’),cName))

8

9 //all classes that are in an inheritance relationship

10 //between cName and Object

11 var classes=chain(’class’,’$cname’,’$parent’,

12 cName,’Object’,’classModel’);

13

14 //attributes of all classes

15 var attributes=query(’attribute’,classes);

16

17 //all attribute values of the object

18 var attribValues=query(’attributeValue’,object);

19

20 //assert that the number of attribute values of the

21 //object equals the number of attributes of the classes

22 assert(len(attributes)==len(attribValues));

23

24 //assert that for every attribute value

25 //there is exactly one attribute

26 for(var i=0;i<attributes.childNodes.length;i++) {

27 var attrib=attributes.childNodes[i];

28 var attribName=queryVar(’attribute’,attrib,’$aname’);

29 var avalue=query(refine(’attributeValue’,

30 [{’$attribName’:attribName}]),attribValues);

31 assert(len(avalue)==1);

32 }

33 return 1;

34 }

The source code in Listing 23 defines a constraint for validating that an object is an in-
stance of a class. The constraint is defined as a JavaScript function that expects an object

166

6.6 Relationships and Constraints

id and a class name as arguments. In lines 3 and 4, the object belonging to the object id
argument is queried from the model. This is done by refining the object pattern with a
binding from $objectID to the argument oID. The first check for the “instanceOf” re-
lationship is performed in line 7 by asserting that the class reference in the object is equal
to the argument cName. In lines 11 and 12, the chain function is used to query the class
referenced by the cName argument and all its superclasses. On this result, a query using
the attribute pattern is performed which yields all attributes of the classes (line 15). In
line 18, the attribute values are queried from the object. Line 22 asserts that the length
of the attributes from classes in the class inheritance chain equals the length of attribute
values in the object. Finally, a for loop is used to check for every class attribute that there
is exactly one attribute value in the object with the same name.

The current implementation of the constraint language as a JavaScript API can be im-
proved by adding a syntactic interface that abstracts from the JavaScript code and defines
an actual constraint language. This remains future work.

6.6.2 Interactive Modelling

In programming, various stages of program execution, e.g., compiling, running and de-
bugging, provide feedback to the programmer as to the correctness of the program. For
the user, this allows an interactive approach where feedback from the system leads to
improvements in the program. Modelling, on the other hand, is a far more static process
that lacks interactivity and feedback. This makes it difficult to grasp the implications of
definitions in a model. One of the goals of XMF is to provide a more interactive mod-
elling process. The use of constraints as defined above plays an important role in this
respect. This is because constraints can be used to guide modelling and provide a basis
for the modelling system to give feedback if a model violates constraints. Overall, XMF
provides the following types of checks on models:

• Well-formedness of XML. Detects syntax errors in XML such as non-matching
start- and end-tags in an element definition.

• Modelling language validity. Detects modelling language syntax errors. For exam-
ple, if an object is missing an object id.

• Intra-model constraint satisfaction. Detects violations of rules in a single model.
For example, if parent relationships between classes are circular.

• Inter-model constraint satisfaction. Detects violations of rules across different mod-
els. For example, that the number of object relationships in an object model exceeds
those defined by the multiplicities in the class model.

167

6.7 Summary

XMF offers feedback for all these errors. The first two checks look for syntactic errors
by attempting to parse the XML (well-formedness) and by matching the XPLT pattern
that defines the language with the model (validity). The latter two checks detect semantic
errors and are based on constraint definitions with the scope of single or multiple models.

6.7 Summary

This chapter applied the pattern foundation not only to a new problem domain – modelling
and meta-modelling – but also to a new technological domain: web technologies. The
modelling and meta-modelling framework XMF uses XML as the internal representation
of models, HTML for viewing and editing models in the browser and a JavaScript API as
a constraint and interaction language. The fact that HTML is a structured representation of
a user interface makes it possible to extend the view principle used in Concat on the text-
only level to graphical user interfaces. The underlying technique is more fundamental:
the HTML representation defines the shared space of an interface. This interface marks
the boundaries between a domain of symbolic manipulation and a domain of symbolic
interpretation outside of the grasp of symbolic manipulation. The pattern approach in this
work can be seen as an attempt to push the boundaries of the symbolic manipulation
domain.

The pattern language XPLT plays a central role in XMF. XPLT can be seen as a
schema language but it defines schemas in such a way that the schema information is
available for more than validating a document. Instead, it is used for transforming and
querying models and for refining patterns. This functionality is the basis of the view mech-
anism and the constraint language. Constraints complement XMF patterns with means to
express complex structural properties. The constraint language fills the role of the relation-
ship language in the XMF architecture by allowing intra- and inter-model relationships to
be formally defined. It also allows to impose arbitrary semantic constraints. This is the ba-
sis of the successful use of XMF as a device for teaching modelling: semantic constraints
are defined by teachers to make design errors for a particular modelling task detectable.
In this case, the system can give interactive feedback to students.

In the last few years, much research has gone into the development of modelling tools
and architectures in the context of model-driven development. The driving force behind
this development is the desire to generate full code from models [97]. This turns mod-
elling languages eventually into visual programming languages. XMF was intentionally
designed with a different kind of modelling in mind: XMF models can be abstract in the
sense that they actually omit irrelevant details and serve as diagrammatic tools for visu-
alising certain structural and operations aspects of systems rather than code. Therefore,

168

6.7 Summary

XMF does not define an executable language as a target for transformations and instead
only provides a view mechanism. However, given the existing functionality for defining
transformations and the generic nature of the XML representation, it would be possible
to add a backend for code generation to XMF. An interesting research direction would be
the integration of Concat in XMF. This way, the execution language can be defined using
Concat and the modelling and editing facilities using XMF.

169

Chapter 7

Analysing Communication Systems

This chapter presents a pattern-based approach that extends the notion of protocol analysis
in automotive networks. The approach is the outcome of a collaboration with the Auto-
motive Competence Center at Heilbronn University. The work is motivated by the grow-
ing complexity of automotive networks and the underspecification of communication be-
haviour (Section 7.1). Abstract protocols are introduced as a tool for making application-
specific communication behaviour and design intentions accessible on the message level.
This allows the specification and analysis of complex scenarios at the appropriate level of
abstraction (Section 7.2). Abstract protocols are defined by a mapping of communication
patterns in a protocol layer to messages in the abstract protocol layer. The mapping is de-
scribed as a configuration of message processing units: channels represent a communica-
tion medium, filters include or exclude individual messages based on a criterion and rules
associacte communication patterns with messages (Section 7.3). These concepts are for-
malised using pattern expressions. Messages are typed sequences and message formats are
typed sequence patterns. Filters are based on typed sequences and pattern-based search.
Rules are transformations with a message pattern as source and a message sequence as
target. Layering is defined as the vertical combination of channels, filters and rules (Sec-
tion 7.4). The approach has several application areas in automotive systems engineering
including re-engineering, system comprehension and automated testing (Section 7.5). A
visual domain specific language based on the approach uses generative techniques to pro-
duce executable protocol analysers for different platforms (Section 7.6).

170

7.1 Complexity in Automotive Networks

7.1 Complexity in Automotive Networks

The amount of electronics and software in vehicles has increased rapidly over the last
three decades. Modern cars contain up to one hundred Electronic Control Units (ECUs)
that are in charge of different subsystems, ranging from motor control to entertainment
[139]. Bus systems connect these distributed ECUs into communication networks and
thus allow previously autonomous subsystems to exchange information in order to provide
more advanced functionality [4].

Coping with the system complexity resulting from highly interconnected software-
intensive subsystems poses one of the great challenges for the automotive industry to-
day [23]. All software running in vehicles has to be reliable as software updates involve
costly maintenance. Crucial subsystems such as brakes, steering and airbags require ut-
most reliability as their failure might cost human lives [18]. Despite that, the millions of
lines of source code running in modern cars have not yet reached a sufficient degree of
reliability [23] and current testing methodologies are reaching their limits [24]. Problems
caused by software are quickly becoming a major reason for car defects.

Figure 7.1 depicts a typical communication context in a modern car. Subsystems in
distinct domains such as drive train or multimedia are connected by specialised bus tech-
nologies, e.g., CAN (Controller Area Network) [17] or MOST (Media Oriented Systems
Transport) [124], to form subnetworks. Communication between components in different
subnetworks is established through gateways that bridge technological differences.

An example of advanced functionality that utilises this heterogeneous communication
architecture is the adaptive brake light: becoming a standard in today’s cars, it warns fol-
lowing drivers through rapid blinking when an emergency brake manoeuvre is executed.
To correctly implement its functionality, data from different subsystems in different sub-
networks has to be exchanged and compared. This is achieved by sending messages over
the communication bus. Among the relevant data might be the speed of the car provided
by the instrument cluster and the reaction of the anti-lock brakes provided by the brake
system. In addition to that, the lighting system has to be instructed to blink rapidly.

7.1.1 Protocols, Layering and Underspecification

As described in the previous section, the different ECUs and buses in modern cars con-
stitute complex, distributed systems of communicating entities [156]. Such systems have
been the subject of much research in the telecommunication and computer networking do-
main and many of the techniques in these domains have been applied to networks in cars
as well. This includes the fundamental concepts of protocols and layering. Layering is a

171

7.1 Complexity in Automotive Networks

Gateway/

Firewall

Navigation Phone AV Internet MOST

Firewire

Gateway

Lights A/C Door
Passive

Safety

Gateway

Gearbox Diagnosis

Multimedia

Drive Train

Chassis

Lock

Mirror

Motor
Sensors

Actuators

CAN

LIN

CAN

TTCAN

TTCAN

FlexrayBrakes Steering Shocks

Body

Figure 7.1: Typical Communication Context in a Modern Automotive Network

basic technique for designing distributed systems. It is a method to provide in a stepwise
fashion higher-level service to users on the layer above, and to separate levels of services
by precisely defined interfaces [71]. This overall design principle is reflected by the use
of protocol stacks [87] where higher layer network services rely on lower layer services
until a physical layer is reached [79].

Protocols define the format and order of messages that can be exchanged between
components. ECUs have to implement these protocols in order to successfully commu-
nicate. Protocol analysers can help both testing and understanding systems that commu-
nicate based on protocols. A protocol analyser scans messages on the network, decodes
the messages in accordance with the protocol standard into a reader-friendly textual or
graphical representation and offers various monitoring functions.

Protocol analysers can monitor system communication on different layers of a proto-
col stack [65]. However, in today’s complex systems, not all communication behaviour
is specified [24]. Instead, communication intentions may be implicit, undocumented or
evolved during implementation – with the design intention hidden in the source code.
Unspecified communication behaviour that is not part of a protocol is invisible during
analysis. Instead, only the effect that the implementation of a design has on a lower pro-
tocol layer can be monitored.

For complex communication scenarios such as a braking manoeuvre with an adaptive
brake light where a sudden event triggers a chain of messages between different com-

172

7.1 Complexity in Automotive Networks

ponents in different subnetworks, underspecification poses a severe problem for system
comprehension and testing: communication not specified in a protocol is shown at the
“wrong” level of abstraction during analysis and thus contains irrelevant details.

7.1.2 Underspecification: An Example

In a request/reply protocol, a valid communication always consists of a request by the
client and a reply by the server. This entails that the server does not possess means to
contact the client directly without receiving a prior request. A common communication
scenario is that a client needs information about a particular state change on the server.
The obvious solution – that the server sends a notification message to the client as soon
as the state changes – seems impossible because of the restriction on initiating communi-
cation of the request/reply protocol.

One solution to this problem is to implement notification services for both the client
and the server. The services encapsulate request/reply-based communication and offer in-
terfaces that provide notification capabilities to the rest of the application. To achieve this,
the service implements a polling strategy. That is, the service on the client periodically
sends requests to the server. Upon receiving a request, the service on the server can reply
and transmit either a negative acknowledgement or deliver the notification message. For
applications using the notification service, communication is based on notifications, not
on requests and replies.

Request/reply protocols and polling techniques for implementing notifications are
widely used in automotive networking. The MOST network uses request/reply mecha-
nisms for communication between clients, e.g., Human Machine Interfaces, and servers,
e.g., radio tuners [119]. For example, to determine the current radio frequency, a message
is sent to the tuner with the content

AMFMTuner.Frequency.Get()

and the reply is sent back with the current value. On an application level, API calls make
it possible to subscribe a client to be notified if a property such as the frequency changes.
CAN, on the other hand, is purely built upon broadcast of signal values. However, the
Remote Transmission Request Bit that is part of the protocol header can be used to stim-
ulate the transmission of a signal value. This is in effect a request/reply mechanism. The
following client-code illustrates how notification based communication may “look like”
from an application perspective:

fmTuner.regForNotification(this.tunerStateChange())

173

7.1 Complexity in Automotive Networks

Client Server Client Server

request(notify?)

reply(notify?=no)

request(notify?)

reply(notificationMsg)

request(notify?)

notification(msg)

request(notify?)

reply(notify?=no)

request(notify?)

reply(notificationMsg) notification(msg)

request/reply
protocol layer

abstract notification
protocol layer

Figure 7.2: Protocol Abstraction: Defining an Abstract Notification Layer

The server object provides a method that allows the client to register a callback for no-
tification in case of a state change. The service on the client starts polling for updates
periodically. In the application running on the tuner, code such as the following is used:

client.notify(ATFrequency,102.6)

The programming interface suggests that the server notifies the client about a change of
frequency. What actually happens is that the service that receives client requests sends
the state update the next time the client requests an update. The client callback function
tunerStateChange() then reacts to the state change. The fact that the underlying
system uses a polling strategy is abstracted through the programming interface server and
client side.

The left sequence chart in Figure 7.2 shows how a possible communication involving
two notifications might be traced with a protocol analyser for the request/reply proto-
col. The communication consists of all request/reply messages between client and server.
However, the notification service layer that was introduced in the software is invisible.
That means, by using the protocol analyser, it is impossible to view the system behaviour
at a level of abstraction where a server sends notifications to a client, although – as just de-
scribed – this is the way application developers think about the communication behaviour.
Viewing communication at this “higher level” is what is typically needed for reasoning
about communication. For instance, when the goal is to determine which notifications are

174

7.2 Abstract Protocols and Complex Scenarios

sent from the server and how the client reacts to them, the implementation of the notifica-
tion mechanism is irrelevant. Instead, the communication behaviour is analysed in terms
of application level abstractions.

7.2 Abstract Protocols and Complex Scenarios

7.2.1 Abstract Protocols

How can application-level abstractions be made accessible during analysis and how can
they be used in describing communication scenarios? The key idea is the introduction of
a separate application-specific protocol layer. A relationship between two layers can be
established by relating messages on one layer with messages on an adjacent layer. For
example, from the viewpoint of the request/reply protocol notification messages do not
exist, they are introduced on the protocol layer above. The term abstract protocol will be
used to refer to such application-specific protocols. The right-hand side of the sequence
chart in Figure 7.2 shows how communication is perceived when analysing the notifica-
tion layer. It is important to understand, that abstract protocols also introduce the idea
of abstract communication channels. That is, the messages shown are independent of the
actual physical media on which lower-level messages are sent. An abstract message may
actually be implemented through a set of different messages in different sub-networks.

To support abstract protocols, an analyser must be aware of the additional service level
introduced by an application. For the notification-example, this means that a notification
protocol is defined where valid communication consists only of a server sending a noti-
fication message to a client. The protocol is then related to the request/reply protocol by
defining how a pattern on the request/reply layer maps to a message on the notification
layer: a request message from a client followed by a positive reply from the server to
the same client should be interpreted as a notification message from server to client. The
notification protocol captures the design intention of the application designer. Abstract
protocols may be stacked in the same way as regular protocols. An abstract protocol can
be stacked on top of another abstract protocol. Indeed, even the request/reply protocol
of the example just discussed may be an abstract protocol based on a yet lower protocol
layer. This approach is open ended and can be used to build levels of abstraction in a
stepwise fashion, thereby mirroring the abstraction process in the application itself.

175

7.2 Abstract Protocols and Complex Scenarios

7.2.2 Complex Scenarios

A complex scenario is a chain of communication events, possibly in different subsystems,
that can be associated with a use case. An example of a use case is a braking manoeuvre in
a car with adaptive brake lights. If the user – a driver in this case – performs a braking ma-
noeuvre that activates ABS (Anti-lock Braking System), the brake light potentially shows
some reaction that deviates from its normal behaviour, depending on speed, strength of
braking and the reaction of the driving assistance systems. The use case can be described
as: The driver performs a hard braking manoeuvre. At the level of ECUs, the following –
simplified – scenario can be derived from the use case:

1. The braking system registers blocking of tires and activates the anti-lock brakes.

2. The braking system notifies other components listening on the bus of the anti-lock
brake activity.

3. The control unit in charge of the adaptive brake light registers the activity of the
ABS and requests the current speed v

c

of the car from the instrument cluster.

4. Because v

c

is higher than the threshold v

t

, the control unit decides to instruct the
brake light system to flash.

A second scenario associated with the same use case shares the first three steps, only
that in step 4 it determines v

c

 v

t

and thus does not interfere with the normal operation
of the brake light. While the above natural-language description of scenarios is rather im-
precise, scenarios can be precisely described at the level of the actual messages exchanged
between components over the communication buses.

Complex scenarios pose a challenge for both specification and testing of ECUs. They
may involve a large number of different messages in different subsystems. In addition
to that, the resulting communication patterns are likely to be interrupted as vehicle com-
munications systems are heavily impacted by stochastic triggers arising from the system
environment [119]. For example, mobile phone calls may appear at any time as well as
warnings and recommendations from driver information and assistance systems. Even for
moderate scenarios, the amount of communication to process may rise to an extent that
makes monitoring and verification of scenarios a complex task. Describing the scenarios
at the right level of abstraction is crucial for reducing complexity.

176

7.3 Defining Layers with CFR Models

7.3 Defining Layers with CFR Models

Abstract protocols can provide a high level of abstraction to specify communication sce-
narios as patterns on abstract application-specific message sequences rather than on highly
interleaved implementation-specific message sequences. The process of creating an ab-
stract protocol can be described in three steps. Firstly, filtering out all messages not per-
taining to the protocol implementation. Secondly, describing rules that relate patterns in
the remaining messages to the abstract protocol layer. Thirdly, joining the resulting mes-
sages from different sources on a new channel.

7.3.1 Channels, Filters and Rules

As explained in the context of the request/reply example, it is a common technique to stack
protocol layers in such a way that each layer interfaces directly adjacent protocol layers
only. In this way, a protocol layer L

n

is described by relating its communication patterns to
the communication patterns on the next lower layer L

n�1. Indeed, that is how the abstract
notification protocol is informally described: a request for notification message from a
client followed by a positive reply from the server to the same client should be rendered
on the next higher layer as a notification message from server to client. Examining this
natural language description of the protocol layer reveals that the following information
is provided:

• Certain messages on the lower protocol layer are identified.

• The sequence in which these messages occur is given.

• A mapping of this message sequence to a message on the higher-level protocol layer
is defined.

The follwing conceptual framework for defining protocol layers is the foundation of
the language formalised and defined in the next sections. It defines three core concepts:

• A channel is a medium that transports a sequence of messages over time. The mes-
sages obey a concrete or abstract protocol. A protocol defines the message format
and optionally a set of legal communication patterns.

• A filter is a passive and stateless message processing unit that redirects messages
from a channel to a positive or negative output channel based on a filter criterion.
The scope of a filter is a single message.

177

7.3 Defining Layers with CFR Models

• A rule is an active and stateful message processing unit that consumes messages
from one or more inputs and emits messages to at least one output. In opposition to
filters, a rule may modify or create messages.

7.3.2 Models, Abstraction and Interpretation

CFR models relate protocol layers by composing channels, filters and rules. The inputs
and outputs of filters and rules are sequences of messages. Theoretically, this allows arbi-
trary interconnection. Nevertheless, for methodological reasons, it is forbidden to directly
connect filters with rules and vice versa. This constraint has the goal of producing more
readable and reusable models by separating the concepts. The restriction does not reduce
the expressive power of CFR models because placing an otherwise unconnected channel
between a filter and a rule is equivalent to connecting the two elements directly. Inputs
and outputs are abstracted by input and output pins. An input pin may be connected to an
output pin using a connector. Channels and rules have an arbitrary number of input and
output pins while filters have exactly one input and two output pins.

CFR models contain an abstraction mechanism for filters and rules. Compound filters
can be defined by connecting existing filters. Rules can be defined by arbitrary CFR mod-
els with defined inputs and outputs. This abstraction mechanism allows to define rules
and filters based on a set of primitive filters and to reuse compound filters as if they were
primitive. Filters and rules that cannot be defined by composition are described using
an external language. The requirement for the filter language is to express criteria on a
message-level and the requirement for the rule language is to express criteria on the se-
quence level.

CFR models can be interpreted in two similar but distinct ways: (1) as a specification
that defines a higher protocol layer through a lower protocol layer or (2) as instructions
for a protocol analyser on how to render communication on a higher layer by observing
communication on a lower layer.

Figure 7.3 shows the basic principle of using filters and rules for relating a protocol on
a channel (Ch) to a protocol on an adjacent channel. The primary interest when analysing
systems is the “bottom-up’ mapping. The goal is to find communication patterns and
make them visible. In principle, a mapping could be defined “top-down” so that abstract
protocol messages can be related to messages on the lower layer. This could for instance
be used for describing a message generator on a high level of abstraction. If filters and
rules are reversible, a mapping in one direction can be derived from a mapping in the
other direction.

178

7.3 Defining Layers with CFR Models

Figure 7.3: Relating Abstract Protocol Layers

7.3.3 Example: A CFR Model for the Notification Protocol

Let C
rr

be a channel over which messages defined by a protocol rr – the request/reply
protocol – are sent. These messages include request and reply messages related to notifi-
cations but also other request and reply messages not related to notifications. Let C

not

be
a channel over which notifications messages are sent. A CFR model that describes how
the message stream on C

rr

can be transformed into a message stream on C

not

is defined
by the following setup: The output pin of channel C

rr

is connected to the input pin of a
Filter F

not

. The positive output pin of F
not

is connected to a channel C
rrf

. F
not

is config-
ured in such a way that it sends all request/reply messages concerned with notifications
to its positive output and all other messages to its negative output. Accordingly, the com-
munication on C

rrf

consists only of the request/replies concerned with notifications and
no other messages. The output pin of C

rrf

is connected to the input pin of rule R

not

. The
first output pin of the rule is connected to the input pin of C

not

. The rule is configured in
the following way: When a requests message from a client occurs, the rule memorises the
request. When a positive reply that fits a previously memorised request is received, a no-
tification message is sent through the output pin onto C

not

. The messages on C

not

are now
notification messages sent from servers to clients. Omitting the filter and rule logic for the
moment, the CFR model can be described as follows, whereby the ! means connected
to and where R

not

(out1) denotes the first output channel of R
not

.

Channel : C

rr

, C
rrf

, C
not

179

7.4 Pattern-based Formalisation

Filter : F

not

Rule : R

not

C

rr

(out) ! F

not

(in)

F

not

(positive) ! C

rrf

(in)

C

rrf

(out) ! R

not

(in)

R

not

(out, 1) ! C

not

(in)

The example indicates that the restriction on combining filters and rules enforces
reusable and clear designs. Channel C

rrf

is introduced as a helper because the output
pin of F

not

must not be directly connected to the input pin of R

not

. The channel C
rrf

defines an intermediate step in the abstraction process. It introduces a sub-protocol on a
layer that is between the request/reply and notification layers. This layer can be used for
monitoring the flow of all messages pertaining to the notification protocol or re-used in
further protocol or scenario definitions.

7.4 Pattern-based Formalisation

This section formalises the basic concepts introduced in the previous sections – messages,
channels, filters, rules and layering – using the pattern approach.

7.4.1 Messages and Channels

A message is a typed sequence that consists of a unique identifier for the message type, a
sender and receiver id and content. A message format is a restriction on both the type and
the content part of a message and is expressed as a pattern on typed sequences.

Listing 24 Request/Reply Message Format
1 rr_message =>

2 [:(request|reply)

3 [:sender <id>] [:receiver <id>]

4 [:content ([<key> <value>])+]].

The recogniser in Listing 24 exemplarily defines the message format for request and reply
messages containing at least one key/value pair as input.

A channel is a sequence of typed sequences that match a certain message format.
The sequence of messages represents a sequentially ordered history of all communication
over the channel. The vertical relationship between a channel C

n

and C

n+1 is defined
by a transformation T(n,n+1) with the source being a sequence of messages on C

n

and

180

7.4 Pattern-based Formalisation

the target being a sequence of messages on C

n+1. The transitive relationship between a
channel C

n

and a channel C
n+m

where m > 1 is defined as the vertical combination of
transformations T(n,n+1) ! ... ! T(n+m�1,n+m).

In order to keep the presentation clear, messages will be represented by items a, b, x
and y instead of typed sequences in some of the examples below.

7.4.2 Message Filters

A filter divides the messages on a channel into those that match certain criteria and those
that do not. In effect, a filter creates two channels whose messages are mutually exclusive.
The criterion is a pattern that matches a single message and has this single message as the
result with no effect on the store. A successful match of the criterion p

c

always has the
form hp

c

,m::C
r

, �i m�! hm,C

r

, �i where m is a typed sequence that encodes a message
and C

r

is the sequence of messages after m.
The findall operator introduced in Section 3.5 provides the foundation to express

filtering. The key for defining both the positive and negative output of the filter is how
the ignore operator &i is used with the search and context patterns. In case the context
pattern finds all messages and the search pattern does not transform the input it matches,
the result of a match is the entire input sequence. For example, matching the pattern
findall a among <any> with input [a, b, a, b] has the result [a, b, a, b]. To obtain
only those elements that match the search pattern a, the ignore operator is used with
the context pattern. Matching findall a among &i(any) yields the result [a, a].
Conversely, the elements not matched by the search pattern can be obtained by ignoring
the result of the search pattern. Matching findall &i(a) among any yields the
result [b, b].

The pattern operators filter-pos and filter-neg in Listing 25 define the pos-
itive and negative output of a filter based on a filter criterion and a message format. The
two productions have two parameters. The format of messages on the channel and the
criterion for accepting and rejecting individual messages.

Listing 25 Definition of Message Filters

1 $format $criterion filter-pos =>

2 findall ,$criterion among &i(,$format)

3 $format $criterion filter-neg =>

4 findall &i(,$criterion) among ,$format

Filters are combined using the vertical combinator. Abstraction of filters is defined by a

181

7.4 Pattern-based Formalisation

production with a filter name on the left and the vertical combination on the right.

7.4.3 Communication Rules

The scope of a filter is a single message only. Rules, on the other hand, have memory,
which means they range over a sequence of messages. A rule recognises communication
patterns and associates them with a message on an abstract communication channel. In
principle, these patterns can be expressed by combining message recognisers with the
horizontal operators and unconditional transformations defined in Chapter 3. For example,
the transformation of the message sequence [a b c] to d is defined by the transformation
(a b c => d).

However, on a communication channel, the messages that make up a communication
pattern are likely to be interspersed with messages not pertaining to the pattern, e.g., mes-
sages with differing senders or receivers or messages that belong to a different aspect
of the systems operation. For example, applying the transformation defined above to the
sequence [a, x, b, x, y, c] results in failure. A general solution is to explicitly express the
possible occurrence of interspersed messages in the pattern. For the example transfor-
mation, this can be achieved by interleaving its left-hand with the pattern (x|y)*. The
result of this is the pattern (a (x|y)* b (x|y)* c => d).

While the approach of explicitly defining message interleaving is possible, it leads
to less readable definitions. Therefore, it is desirable to separate the aspect of message
interleaving from the definition of the communication pattern. This can be achieved by
vertically combining the positive part of a filter that removes interleaved messages with
the transformation that defines the rule in terms of a message sequence. For the above
example, this means that first the filter removes all messages that are not a, b or c and
then applies the transformation. This configuration is exempli by the following pattern:
<<any> (a|b|c) filter-pos> -> (a b c => d). In effect, the transforma-
tion is defined on an abstract layer created through the filtering. While this is a basic
technique for defining rules, the rule-specific filter and the rule are orthogonal concepts.

Listing 26 Definition of Communication Rules and Channels

1 $pattern rule => findall ,$pattern among &i(<any>).

2

3 $filter $rule abs-rule =>

4 (,$filter -> ,$rule).

5

6 $format channel => (,$format)*.

182

7.4 Pattern-based Formalisation

Listing 26 defines a communication rule as a sequence of transformations that are com-
bined by a choice operator and applied to the communication channel with findall.
Because of the importance of the filter/rule combination and the restriction that filters
and rules cannot be directly connected in a model, the concept is explicitly abstracted
as an abstract rule (abs-rule) that has a filter and a sequence of transformation as argu-
ments and vertically combines them. The previous section defined that filters and rules
must not be connected directly but using an intermediate channel. An intermediate chan-
nel can be defined by using the channel abstraction shown in Listing 26. A channel
can be used for checking the communication between adjacent patterns in a vertical
combination. The channel <<any> channel> performs no validation. Accordingly,
the vertical combination <filter> -> <<any> channel> -> <rule> equals
<filter> -> <rule>. In addition to the validation functionality the channel pro-
vides a defined point of access for monitoring the system through side effects such as
logging.

7.4.4 Application to the Notification Protocol

This section uses the pattern-based formalisation of channels, filters and rules to im-
plement the mapping between the request/reply channel C

rr

and the notification chan-
nel C

not

via an intermediate channel C
rrf

that contains only those messages pertaining
to the notification service. The recogniser in Listing 24 defines the message format on
channel C

rr

. The refined message format for notifications is defined by the production
rr_not_message in Listing 27 which also contains the rest of the implementation.

183

7.4 Pattern-based Formalisation

Listing 27 Pattern-based Definition of the Notification Layer

1 not_request =>

2 [:request

3 [:sender <client>] [:receiver <server>]

4 [:content [’type ’notification] [’ref n:<nat>]]]

5

6 not_pos_reply =>

7 [:reply

8 [:sender <server>] [:receiver <client>]

9 [:content [’type ’notification] [’ref n:nat]

10 [’val m:message]]].

11

12 not_neg_reply =>

13 [:reply

14 [:sender server] [:receiver client]

15 [:content [’type ’notification] [’ref n:nat]

16 [’val ’no]]].

17

18 rr_not_message =>

19 <not_request> | <not_pos_reply> | <not_neg_reply>.

20

21 f_not => <<rr_message> <rr_not_message> filter-pos>.

22

23 r_not =>

24 <((<not_request> <not_pos_reply> => m:message) |

25 (<not_request> <not_neg_reply> =>)) rule>.

26

27 c_rr_c_not =>

28 (<f_not> -> <<rr_not_message> channel> -> <r_not>).

The mapping between C

rr

and C

rrf

is defined by the filter f_not. Based on all mes-
sages defined by rr_message, filter f_not returns only those messages that match
the criterion rr_not_message. The rule r_not defines two cases. The first case is a
request followed by a positive reply which produces the notification message contained
in the reply as the result. The second case is a request followed by a negative reply pro-
ducing an empty result. The pattern [’ref n:nat] ensures that a reply is associated

184

7.5 Applications

with the right request. Production c_rr_c_not relates channels C
rr

and C

not

by vertical
combination of f

not

and r

not

with a channel in between.

7.5 Applications

7.5.1 Specifying and Monitoring Complex Scenarios

Rules recognise a communication pattern on a protocol layer L
i�1 and abstract the pattern

as a message on the next higher layer L
i

. By viewing scenarios as communication pat-
terns, it becomes apparent that the approach for specifying protocol layers can be directly
mapped to the specification of scenarios: a scenario is an abstract protocol with a single
message. The messages of a scenario do not necessarily obey the same protocol. Com-
plex scenarios such as those in the context of the brake light involve messages in different
subnetworks. This makes specification using traditional techniques difficult. Abstract pro-
tocols accommodate for the heterogeneity of the messages involved in a scenario: first all
relevant messages are combined onto a single abstract protocol layer and based on this
protocol layer the scenario layer is defined. To define this unifying protocol layer using
CFR models, each combination of a bus and a protocol has to be defined as a channel. A
configuration of filters selects the relevant messages from each channel and rules convert
these messages into messages obeying the protocol of the unifying channel.

What is required is that each scenario is uniquely identifiable via its message se-
quence. Ambiguities have to be resolved at the specification level. While there usually
are a great number of protocol messages on the communication bus, the challenge is to
identify only those messages that are relevant for a specific scenario. After these relevant
messages have been singled out, they need to be assigned to a distinct scenario. This is
the same procedure discussed for protocol abstraction. In this case, the low-level proto-
col layer may be the message transport protocol, e.g., on a CAN bus, and the abstracted
protocol layer is a scenario.

The application of CFR models for defining scenario analysers will be explained
based on the two example scenarios introduced in Section 7.2.2 in the context of the
adaptive brake light. Figure 7.4 shows the message sequence of the two scenarios. Both
scenarios are associated with the use case of a strong brake manoeuvre by the driver. Sce-
nario A describes this use case under high speed, where the brake light flashes. Scenario B
describes the case where the speed is low and the brake light operates normally. The two
scenarios are depicted as sequences of messages whereby both scenarios share a part of
the message sequence. Message B1 marks the starting point for both scenario A and sce-
nario B. Observing the message flow sequentially, starting at B1 there is an ambiguity for

185

7.5 Applications

SCENARIO A SCENARIO B

blink light

SCENARIO�A SCENARIO�B

blink light

speedͲhigh speedͲlow

speed?

ABS

B1

Figure 7.4: Two Scenarios based on the Adaptive Brake Light Use Case

the first three messages. The communication pattern can unambiguously be assigned to
scenarios A or B only after the message speed-high or speed-low can be identified. With
each new message, it has to be checked whether this message is the beginning of a new
scenario or the continuation of one or more scenarios under monitoring. Unless the path
of consecutive messages is not unique, several scenarios remain as candidates.

Under real-world conditions, a large number of different concurrent scenarios may be
monitored simultaneously, some still open to a final decision. For example, each occur-
rence of a B1 message in Figure 7.4 initiates a new instance of a scenario monitor. A
refinement of analysers is the assignment of time intervals to the arrows connecting two
messages. This defines how long the monitor waits for the continuation of a scenario. If
the expected future is not confirmed within a given time frame, tracing of the scenario is
cancelled and an error is reported: Either the scenario has not been specified properly or
the flow of messages between two or more parties is faulty due to misbehaviour of one or
more communication partners. Message sequences that cannot be assigned to scenarios
indicate underspecification.

The composition and abstraction mechanisms of CFR models may not only be applied
to abstract protocols but also to scenarios. A sub-scenario is a communication pattern and
abstracted using a message on a higher level. This approach is open-ended and allows
stepwise definition of more complex scenarios through layering.

186

7.5 Applications

7.5.2 Reproducing Complex Scenarios for Test Automation

The previous subsection described monitoring and verifying complex scenarios. These
techniques may be used to reproduce complex scenarios with the aim to automate system
tests by simulating systems components. The key is to define a trigger message that starts
a use case. For example, in the case of a braking manoeuvre the initial trigger is the anti
lock brake activation. A certain initiation message and system state define the expected
scenario. If this scenario can be reproduced from the messages on the bus the test case
succeeds. The testing process can be divided into the following stages:

1. selecting standard protocols on which abstract protocols are defined

2. defining message interfaces, e.g., the output of a protocol analyser

3. defining abstract protocols based on standard protocols

4. specifying test scenarios as communication patterns on abstract protocols

5. associating triggers and system state with expected scenarios

6. sending triggers and attempting to reconstruct the scenario

7. monitoring of the system in case of failure to discover fault

Setting up the system state for a test scenario may involve the use of message gen-
erators and simulators that replace actual components. As described earlier, this can be
achieved through a “downwards” mapping from an abstract protocol to a concrete proto-
col.

7.5.3 Relevance for Different Stages of the Development Process

The CFR approach provides support for several different stages of the software develop-
ment process. The contributions are visualised using the V-Model, a widely used process
model for software development in the automotive domain in Figure 7.5.

The most apparent contribution of a protocol analyser in the software development
process is message level analysis. The message level can be associated to the Module
level in the V-Model. This is where unit-testing takes place and where it is assured that
system modules act in the desired way. Analysers generated from CFR models validate
the correct communication behaviour between modules.

The approach presented extends the scope of protocol analysis to complex scenarios.
Analysers for scenarios and abstract protocols validate the correct behaviour of system

187

7.6 A DSL for Protocol Re-Engineering

Customer

Requirements

System

Requirements

SW

Requirements

SW Module

Requirements

SW

Component

Requirements

System

Delivery

System Test &

Integration

SW

Subsystem

Test

SW

Component

Test

SW Module

Test

SW

Implementation

SW Design

SW Component

Design

Specification on

message level

A priori specification

on scenario and

abstract protocol level

A posteriori analysis on

message level

A posteriori analysis on

scenario and abstract

protocol level

Figure 7.5: Identification of Possible Application Areas using the V-Model

components and the system itself. This contributes to the system test level and also at
the component test level of the V-Model. With the capabilities of monitoring message
flows and learning from them, it is possible to document and specify different parts of a
distributed system. Network protocols may be specified by observing the communication
on the message level. Complex Scenarios may be specified by monitoring messages in a
broader context, concerning components of a network system or the whole system itself.
Accordingly, there are two different types of analysis:

• Analysis with a priori knowledge

• Analysis with a posteriori knowledge

The challenge in the first case is to uncover underspecification in a given explicit speci-
fication. In the second case, design intentions of an implicit specification, e.g., an imple-
mentation, are made visible.

7.6 A DSL for Protocol Re-Engineering

This section describes the implementation of the CFR approach in the form of a Domain
Specific Language (DSL) that generates full code for protocol analysers that target dif-

188

7.6 A DSL for Protocol Re-Engineering

ferent platforms. The language is based on a visual notation for interconnecting message
processing elements. State diagrams are used for visualising rules that are not created by
composition. The goal is to provide an intuitive notation for experts in the automotive do-
main that have little or no background in general purpose programming languages. One
of the benefits of the visual notation is the use of encapsulation to hide the details of a
filter or rule implementation. This allows working with a model on different levels of
abstraction.

7.6.1 Syntax and Semantics

This section presents the abstract and concrete syntax of the CFR language. Figure 7.6
shows the CFR model for the notification protocol using visual notation. The filter F

not

is implemented using a choice pattern based on the recognisers for notification-related
messages defined in Listing 27. The state machine visualises the definition of the rule R

not

that is also part of Listing 27. The language for defining CFR models actually consists of
three languages:

1. A language that has channels, filters and rules as basic elements and describes their
interconnection. This is the language formalised in this chapter. The other two lan-
guages can be considered as languages embedded in this language.

2. A language for defining primitive filter criteria. This language is formalised in
Chapter 3 and uses the Concat pattern notation introduced in Section 5.1.

3. A language for defining primitive rules. Two alternatives exist for defining rules.
Either using Concat’s pattern notation, as shown in Section 7.4, or as state diagrams
that have patterns as transitions as depicted in Figure 7.6. The syntax and semantics
of the state machine language are adopted from UML state charts [54].

Figure 7.7 shows a partial meta-model that defines the abstract syntax of CFR models.
A model may contain an arbitrary number of processing units. A processing unit may be
a channel, a filter or a rule and may contain at most one model. This containment relation
defines structural embedding of CFR models. As discussed earlier, processing units are
connected through connectors by using the pins of the processing units.

Inherent to the meta-model design is the philosophy to keep the meta-model itself as
simple as possible and to express details with OCL (Object Constraint Language) [128]
constraints. OCL Constraints are part of the Unified Modeling Language (UML) and add
detail to UML (meta-) models [31]. A constraint defines a predicate on model instances.
The constraint that prevents a CFR model from containing its parent model as a child can
be defined as follows:

189

7.6 A DSL for Protocol Re-Engineering

+ -

notification

requested

<not_request>

<not_neg_reply>

start

<not_pos_reply>

 (<not_request>|<not_pos_reply>|<not_neg_reply>)

Crr (request/reply)

Cnot (notification)

Crrf

Fnot

Rnot

Figure 7.6: CFR Model for the Notification Example in Visual Notation

context model:

inv noSelfContainment:

processingUnits->forAll(model <> self)

The first line defines that the following expressions are applied in the context of a model.
The keyword inv in the next line stands for invariant and states that the ensuing expres-
sion must be valid at any time in the system; <> means not equal.

The concrete syntax of the CFR language represents the three basic elements as fol-
lows:

• Channels as pipes; pipes are an intuitive metaphor for expressing the capability of
messages to flow through channels

• Filters as triangles; a triangle is a natural shape for representing a component with
one input and two outputs

• Rules as circles; circles are used because rules can have an arbitrary number of
outputs

190

7.6 A DSL for Protocol Re-Engineering

Model

name: String

Rule

Channel

Filter

ProcessingUnit

name: String

Pin

name: String

Connector

OutPin InPin

connectors

0..*

1

0..1 1

model
owner

procesingUnits

1 0..*

processingUnit

pin1..*

1

11

1..* 1..*

Figure 7.7: Partial Meta-Model of CFR

7.6.2 Implementation

As a proof of concept a prototype implementation of CFR using the meta-modelling and
code generation tools available for the Eclipse [157] platform was created. An overview
of the different parts of the implementation is provided in Figure 7.8. The definition of the
abstract syntax of our language is based on a meta-model created using the Eclipse Model-
ing Framework (EMF) [152]. EMF defines a meta-modelling language and provides a user
interface to create ecore-models based on Essential MOF (Meta Object Facility) [129], a
simple subset of the MOF. EMF also has several built-in facilities for generating code and
for editing and creating models based on a meta-model representation.

To define the language constraints and in order to have error detection at edit-time
for CFR models, oAW (openArchitectureWare)1, a modular Model Driven Architecture
(MDA) generator framework, was used. Among other functionalities, it provides the defi-
nition and checking capabilities for constraints on ecore meta-models. The GMF (Graph-
ical Modeling Framework) [63] was used to create an editor for the CFR language. GMF
is based on EMF and provides functionalities for creating graphical editors for ecore-
models. On the basis of an existing meta-model the following needs to be defined:

1http://www.openarchitectureware.org

191

7.6 A DSL for Protocol Re-Engineering

Meta Model
GRAPHICAL LANGUAGE EDITORGRAPHICAL�LANGUAGE��EDITOR

Constraints

Concrete Syntax/Graphical Representations

Code�
Template

MODEL
CODE�

GENERATOR

Generated
CodeFRAMEWORK

Figure 7.8: CFR Implementation Overview

• Graphical representations for the primitives of the language (concrete syntax)

• A toolbox for using graphical representations in an editor.

• The relationships between toolbox elements and graphical representations of the
meta-model elements.

• Settings for language-specific functionalities of the editor.

GMF also provides code generation functionalities. Based on the meta-model and the
graphical definitions and settings, it creates Eclipse plugins that can directly be used as a
graphical editor for models. Figure 7.9 is a screenshot of the graphical editor prototype
that provides “drag&drop” editing of CFR models. A double click on a processing el-
ement displays nested definitions which allows navigating through different abstraction
levels in the model or to open a rule and edit its logic. The back-end of the implementa-
tion is defined using oAW code templates that produce executable analysers from models
based on the underlying meta-model. The generator traverses the tree and instantiates code
templates associated with the node types. For instance, the initialization of all channels is
defined by the following template:

<<DEFINE main FOR Model>>

<<FOREACH procUnits.typeSelect(Channel) AS c>>

192

7.7 Summary and Conclusions

Figure 7.9: Screenshot of the Editor Prototype

<<c.name>> = Channel("<<c.name>>")

<<ENDFOREACH>>

<<ENDDEFINE>>

In the context of a model all processing units are checked for being channels and if they
are, a Channel object is initialized with the name of the channel. For the example tem-
plate, the generated source code is configuration code for a Python-based experimentation
framework [112]. A second target platform is a framework that reads messages from a
MOST network using a commercial protocol analyser [118].

7.7 Summary and Conclusions

This chapter presented a novel approach that extends the scope of protocol analysers to in-
clude application level communication abstractions and complex scenarios. The approach
is implemented by a Domain Specific Language (DSL). The basic idea is to describe
the mapping between two adjacent protocol layers bottom up using three basic concepts:
channels, filters and rules. The resulting models do not only specify a protocol by relating

193

7.7 Summary and Conclusions

its messages to a lower layer but also serve as instructions to a protocol analyser on how
to perform the actual mapping. Both concrete and abstract layers are represented as chan-
nels in the formalism which means that an abstract layer can always be used to define a
yet higher layer.

The DSL presented in this chapter provides an example of how the pattern language
can be embedded into another language. CFR provides visual means for connecting and
abstracting processing units that are either defined using the pattern language or using a
state diagram language. When used with pattern expressions only, the DSL becomes a vi-
sual means for pattern combination and pattern abstraction. In other words, the language
becomes a visual pattern “programming” system for analysers. Further research could ex-
plore a generalisation of this approach to arbitrary application domains – not only analysis
– and arbitrary forms of pattern combination – not only vertical combination.

The idea of abstract protocols is closely related to that of views. Views introduce a
separate layer for defining a computation process while abstract protocols introduce a
separate layer for analysing communication processes. Both layers may be based on their
own language for describing computation or communication. The main difference is that
abstract protocols may be one-way mappings that do not only restructure but also remove
data through filtering. The abstract rule example of Section 7.4.3 suggests a generalisation
of the abstract protocol idea for pattern matching. By vertically combining a pattern with
a filter, the aspect of interleaved data is separated from the aspect of defining the pattern
sequence.

194

Chapter 8

Conclusions and Future Research

The hypothesis underlying this work is that the systematic creation and layering of lan-
guages can be reduced to the elementary operations of pattern matching and instantia-
tion and that this pattern-based approach provides a formal and practical foundation for
language-driven modelling, programming and analysis. The research approach to support
this hypothesis was to define an application-neutral pattern formalism to serve as a foun-
dation and to apply this formalism to three application areas. The previous chapters have
presented the pattern formalism and its applications in detail and each chapter provided
preliminary conclusions. In this chapter, the work performed is reviewed, limitations are
pointed out, final conclusions are drawn with respect to the hypothesis and opportunities
for future research are outlined.

8.1 Review of Key Pattern Concepts

The pattern formalism of Chapter 3 forms the foundation for the entire work. Therefore,
the review of the research starts with a critical reflection of the defining concepts under-
lying the formalism. The impact of the concepts can be regarded from a standpoint of
feature interaction within the formalism, i.e., how core concepts fit together, and from the
viewpoint of the application part of the research, i.e., how the core concepts contribute to
the goal of building a foundation for LDSE.

Matching and instantiation semantics With matching and instantiation, the pattern
formalism defines two separate semantics for pattern expressions. This design choice re-
flects a symmetry underlying the pattern concept: a pattern can be used for the recognition
of existing structures as well as for the creation of new ones. Transformations embody this
symmetry as, descriptionally, they consist of two pattern expressions based on the same

195

8.1 Review of Key Pattern Concepts

language that are merely interpreted differently. With elliptical matching, the core pattern
operators for atoms, variables, sequencing, repetition, choice, quasiquotation and hier-
archy all have matching and instantiation semantics and, therefore, present a significant
subset of the pattern language that can be interpreted both ways. In addition to that, par-
tial instantiation provides a dynamic mechanism for the creation of patterns based on the
current bindings in the store. XMF utilises (partial) instantiation to implement a query
and constraint language. Moreover, in XMF’s schema language XPLT, patterns are de-
fined independently of their interpretation and used as a basis for recognition, creation
and bidirectional transformation of documents.

Typed sequences Typed sequences are the universal data language underlying the pat-
tern formalism. Apart from matching or instantiating the type part, the role of the hier-
archical typed sequence operator is to descent one level into a nested structure on both
pattern and data level and to match or instantiate the pattern-level content with the data
level content. This matching is naturally expressed with the sequential operator. Matching
or instantiating nested structures is then an interplay between the sequential operator that
operates within a single nesting level and the hierarchical operator that descents into struc-
tures. The result is a pattern formalism capable of matching and instantiating arbitrary tree
structured data.

While typed sequences appear verbose at first, Section 4.5 defines a view mechanism
that allows to “break out” of the syntactic framework predefined by typed sequences.
Concat uses the view mechanism consequently. In principle, everything in Concat has to
be expressed using typed sequence notation. However, by extending the (un-)parsers for
program and meta-level, notational alternatives can be defined and arbitrarily mixed with
the default typed sequence notation. The user controls the amount of internal represen-
tation to expose. In the implementation of this mechanism, the type identifiers of typed
sequences play an important role as they serve as an explicit declaration on how to render
the content part and as a dispatch for transformations.

Transformations are patterns The pattern formalism defines transformations as pat-
terns that posses a matching semantics. A case could be made that the inclusion of trans-
formations stretches the pattern concept. However, the fact that transformations consist
of pattern expressions, that they interact naturally with other operators of the formalism
and their importance for formalising core concepts for LDSE makes a convincing case
for the validity of this design decision. Rewriting, grammars and pattern abstraction are
all formalised through sets of individual transformations that are combined with pattern
operators controlling their application. Computation is expressed by matching a compute

196

8.1 Review of Key Pattern Concepts

pattern with a program, reference resolution is expressed by matching a resolution pat-
tern with the reference and parsing is expressed by matching a grammar pattern with with
parser references.

Nevertheless, XMF demonstrates an alternative approach to handling transformations.
While utilising the general matching and instantiation semantics of the pattern formalism
its pattern language does not explicitly contain the transformation concept. Instead, a
JavaScript API exposes a transformation function expecting two patterns and the data to
be transformed as parameters. While this approach is less self-contained, i.e., a host lan-
guage has to be used, it is nonetheless practical because the application of transformations
can be scripted and embedded in the user interface’s event handling. This indicates that
the usefulness of transformations as patterns depends on the purpose. When the goal is, as
in the (meta-)programming part of this work, to define a self-contained system that is able
to express various forms of computations through patterns, “first class” transformations
are crucial.

Vertical and diagonal composition Vertical combination defines a staged processing
of input where a pattern is matched with the result of a previous pattern. This form of
combination is particularly useful in conjunction with transformations. The applications
shown in this work range from the configuration of different stages of program execu-
tion in Concat (parsing, computation and unparsing) to the interconnection of processing
units in CFR. Most profoundly, vertical combination is the key for expressing layering,
as demonstrated by the view mechanism. Diagonal combination gives matching a stack
semantics enabling concatenative operations to be expressed naturally through matching
operations. The result is a particularly concise formalisation of concatenative rewriting
systems.

Arbitrary meta-levels The pattern formalism defines means to match and instantiate
patterns with patterns. To make such meta-manipulation possible, the pattern core defines
an advanced form of quasiquotation that (1) provides matching and instantiation function-
ality and (2) allows manipulation of arbitrarily quasiquoted patterns. The result is a sig-
nificant increase in expressive power. Using this mechanism, the pattern language cannot
only manipulate its own pattern expression but also the pattern expressions which, in turn,
manipulate those pattern expressions, thus allowing arbitrary layers of meta-functionality.

Several key concepts of this work are based on meta-patterns. Meta-transformations
define grammars, pattern abstraction and reference resolution. Meta-meta transformations
can be utilised to manipulate the definitions of abstractions. For example, the view ab-
straction in Section 4.5.3 is defined as a meta-meta-transformation that given internal-

197

8.2 Language Creation and Layering

isation and externalisation patterns creates a meta-transformation abstracting the view.
This meta-transformation can be parameterised by a computation pattern to yield a com-
putation to be performed on the view. Meta-meta transformations can play an even more
profound role, as suggested by Concat: if pattern-based grammars and pattern-based com-
putations define the syntax and semantics of a language, meta-meta transformations can
be used to configure and change the language definition. The result is an utmost degree
of self-description. Regarding the goal of building a foundation for language-driven soft-
ware engineering, the meta-facilities are not merely an extension but a key concept of this
work.

Conclusions The concepts of the formalism can be separated into two categories. Basic
pattern expressions, e.g., atomic values and variables, and the horizontal and hierarchical
combinators form a sub-language implementing functionality associated with recognition
and creation of static structures. Transformations as well as vertical and diagonal combi-
nators extend the language with concepts that are computational in nature, e.g., mapping
inputs to a result and passing the result on to the next process. Orthogonal to these cat-
egories, meta-patterns provide the means for manipulation of patterns with patterns. The
power of the formalism lies in the various ways in which these concepts can be combined
and applied to the flexible data representation underlying it. The result is a powerful sys-
tem capable of expressing structural and computational aspects in a unified way. The
applicability of the system was demonstrated in Chapters 4 to 7.

8.2 Language Creation and Layering

This section reviews the work from a methodological point of view by discussing how
the “creation and layering” of languages is facilitated and utilised in the theoretical and
practical part of the research.

Role of language in the three tools Creating and relating languages is the principle
underlying the three tools presented in this work. In Concat, programming languages are
created by defining their syntax and semantics through views, operations and macros.
In principle, Concat is a direct implementation of the pattern formalism and the pars-
ing, computing and view mechanisms defined in Chapter 4. XMF allows the creation of
modelling languages through schemas, constraints and graphical views. Although XMF
is less self-contained than Concat, as discussed above, it nevertheless defines a pattern-
based meta-architecture in which all relationships are expressed through pattern matching,

198

8.2 Language Creation and Layering

instantiation, transformation, partial instantiation and path polymorphic traversal. The ab-
stract protocols underlying CFR capture the notion of language in a communication net-
work. Abstract protocols are created by specifying message formats and abstraction of
communication patterns on a lower protocol layers. At first, the concepts of channels, fil-
ters and rules seem different from the concepts of the pattern core. However, the approach
is compositional in the sense that a CFR model defines a configuration of processing units.
The data passing semantics between the processing units is captured by vertical combina-
tion. Therefore, if the pattern language is utilised to define message formats and to specify
primitive filters and rules, the CFR language becomes a means of classifying and visually
combining pattern expressions.

Enforcing language semantics and methodology by restriction A recurring theme
in this work is restriction. Rules of a rewriting system are restricted so that transforma-
tions behave like functions, the scope of views is restricted to a single typed sequence,
the scope of CFR filters is restricted to a single message and CFR filters and rules must
not be connected directly. Structurally, the access to the internals of a data type can be
restricted by enforcing the use of concrete syntax. On the system level, temporal views
restrict access to only selected steps of a computational process. Restricting access to
internal structures and processes is a standard technique in software engineering: infor-
mation hiding. Restricting expressive power of an existing formalism to enforce method-
ology or to maintain certain behavioural properties of a system is less common [135].
Concat demonstrates how the combination of restrictions and syntactic abstraction lead to
a form of pattern-based computing where users have access to parts of the pattern func-
tionality but are encouraged to think about the execution of a system in terms of domain
concepts rather than pattern matching and transformations. Internally, the domain con-
cepts of Concat, namely views, internalisation macros, operations, computation macros,
and externalisation macros, are transformed into a single rewriting system defined by a
single pattern.

Language layering The introduction chapter presented a methodological framework
for building language-driven systems through layers of languages. A formal definition of
language layering in terms of behavioural refinement was given. The basic idea is that a
computational process can be decomposed into internalisation, computation and external-
isation. The internalisation and externalisation define a mapping of the input and output
of a computation to and from a lower layer. The computation defines a computational pro-
cess on the lower layer. From a “black box” perspective, the lower layer is invisible which
creates the “illusion” of a high-level computation. If the actual implementation is exposed,

199

8.3 Limitations

the system provides different layers for reasoning about its behaviour. Each layer defines
its own language according to which computation can be described. Language layering
was abstractly defined in Section 1.3 and explored in the application part of the research.

In Section 4.5, it was demonstrated that using meta-transformations and vertical com-
position operators a view abstraction can be defined that embodies the idea of relating two
layers. Arbitrary stacks of layers can be defined by nesting views. Concat utilises views to
implement syntax and semantics of languages, as shown in the context of the SKI calculus
implementation. It also demonstrates an important principle underlying the methodolog-
ical framework: the languages used to relate different language layers can themselves be
subject to layering. In Concat, internalisation and externalisation are described by views
and computations are described by operations. While from the viewpoint of a user these
concepts have their own syntax and semantics, they are internally mapped to pattern-based
transformations of a rewriting system, i.e., they are mapped to the pattern language. Inter-
estingly, the internalisation process performing this mapping is itself described using the
pattern language as shown in Section 5.5.2. Concat is a demonstration of a system that
combines the methodological framework of language layering and the pattern approach
and takes both to the extreme. This is also expressed in the fact that the lowest computa-
tional process for both meta- and program level in Concat is an interpreter for the pattern
language and that this interpreter is defined in itself.

Conclusions The tools presented in this work are all language-driven as they are in-
herently concerned with creating and relating languages. The underlying technical basis
is pattern matching and instantiation. The methodological approach is defined by lan-
guage layering. The versatility and usefulness of language layering as a methodological
framework lies in the fact that (1) decomposition can be applied recursively to create an
arbitrary number of layers and (2) the interpretation of the descriptions of internalisation,
computation and externalisation can themselves be described using a layered approach.
Pattern-based computing is based on the principles of “everything is visible” and “every-
thing is allowed”. Creating languages with syntax, execution models and certain method-
ologies can be expressed by a combination of restricting visibility and expressive power
and introducing a syntactic layer.

8.3 Limitations

Appeal to Mainstream Software Developers The most fundamental possible limita-
tion of the work lies in its appeal to mainstream software developers. Many of the tech-
nologies that inspired this work, e.g., program transforamtion systems, Lisp, Forth or

200

8.4 Final Evaluation of the Hypothesis

Prolog have been around for decades but have not been widely used in the mainstream
programming world. After all, these systems require a way of thinking about software de-
velopment that greatly differs from that of the mainstream languages such as C and Java.
This makes it difficult for software developers to switch and utilise these technologies.
Likewise, Concat, XMF and CFR are conceptually very different from traditional pro-
gramming, modelling and analysis. However, in recent years meta-modelling and meta-
programming techniques have begun to penetrate mainstream software development and
have found their way into more popular programming languages. In the context of these
developments the future appeal of this research seems promising.

Efficiency of Concat A technical limitation of the work presented in this thesis is the
efficiency of the pattern system implementation. The current Concat implementation fol-
lows the rules of Chapter 3 closely. The result is an operational system with a sound
formal foundation, but not a an efficient one. As described in Section 8.5, future work is
required to make Concat sufficiently fast for real world applications.

8.4 Final Evaluation of the Hypothesis

The hypothesis underlying this work consists of two parts. The first part requires showing
that creating and layering languages can be reduced to matching and instantiating patterns.
By utilising the matching and instantiation semantics of Chapter 3, Chapters 4 and 5
defined and implemented fundamental concepts for creating languages including parsing,
rewriting and staged processing that clearly supported the validity of the hypothesis for
programming. Likewise, the chapters on XMF and CFR demonstrated the validity for
modelling and analysis.

As discussed in the introduction chapter of this work, proving the second part of the
hypothesis is hardly possible as there is no agreed understanding on what a formal and
practical basis for LDSE should look like. However, the previous chapters have attempted
to support this part of the thesis by (1) defining a sound foundation for the methodological
and technical aspect of the work and (2) applying this foundation to the key domains rele-
vant for LDSE. The methodological framework was defined based on the well established
principle of behavioural refinement and formally introduced a precise notion of language
layering. The technical framework of the research, the core pattern formalism, was rig-
orously defined using a formal operational semantics. Based on the rigour of definitions
and the wide range of applicability to language engineering, it can be concluded that the
work provides a formal foundation for language-driven software engineering.

201

8.5 Future Research

The most difficult part to show is the practicality of the approach. On the one hand,
patterns are an intuitive concept and the three frameworks apply patterns to problems rel-
evant in practice. On the other hand, the discussed domains are complex and it is difficult
to show the general practicality of the approach in a single research project. To conclude,
both the theoretical and practical part of the research have generated significant evidence
to support the hypothesis. To further support the practicality of the approach, additional
research is required.

8.5 Future Research

The pattern formalism and the existing tools provide a starting point for further research.
Concat’s combination of concatenative programming and pattern matching defines a new
programming paradigm. One possible direction to explore this paradigm is the investiga-
tion of type inference for operations. Existing research on typing stack language [154]
might be applicable but ways have to be found to deal with the dual nature of quotations
representing both data and programs. Furthermore, it would be interesting to determine
a minimal set of concatenative combinators [99] that can efficiently implement matching
and instantiation for this would allow to bootstrap Concat based on a particularly small
kernel. Currently, research on supporting “first class” continuations and parallel execu-
tion in Concat is ongoing and produced promising preliminary results that require further
substantiation [125].

As discussed in Chapter 6, a combination of Concat’s programming facilities with
the visual view mechanism of XMF to form an integrated environment for designing vi-
sual programming languages is conceivable. Bidirectional transformations in XMF are
performed by matching and instantiating the underlying schemas. This entails that two
schemas not defining a bidirectional transformation cause a runtime error. Further re-
search could investigate if bidirectionality of a transformation defined by two schemas
can be determined by static analysis of pattern expressions. A different and equally inter-
esting direction would follow the approach in [53] and try to define a subset of the pattern
formalism for which bidirectionality is guaranteed.

Underlying the CFR approach is the idea of analysing communication by abstract-
ing communication patterns through messages on an abstract protocol layer. As discussed
in Chapter 7, while the basic approach is “bottom-up”, there are various applications
for “top-down” mappings that could be further explored, e.g., specification of message
generators and triggering of test scenarios. Another direction of possible research is the
application of machine learning techniques for the automatic configuration of filters and
rules for complex scenarios. The result could be a valuable technique for re-engineering

202

8.5 Future Research

underspecified systems. Although the resulting models might not define a complete spec-
ification of all possible scenarios between communication partners, the documentation of
valid scenarios is already highly valuable. In the context of CFR, abstract rules operating
on preprocessed input data hint at a more general mechanism for pattern matching on
views. Further research could investigate this mechanism and its applications to separa-
tion of concerns in pattern definitions.

A different area of further research is concerned with efficiency of the pattern system.
Several systems for parsing and pattern matching support techniques for memoization
[11]. These techniques are based on the assumption that an input is consumed in a linear
manner and are thus applicable to the horizontal operators in this work. Further research
in this direction could investigate memoization techniques for vertically and diagonally
combined pattern expressions.

203

Bibliography

[1] Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer
Programs. MIT Press, 2nd edition, 1996.

[2] Adobe Systems Inc. PostScript Language Reference. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1999.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2nd edition, 2006.

[4] Jakob Axelsson et al. Correlating Bussines Needs and Network Architectures in
Automotive Applications - A Comparative Case Study. In Proceedings of the 5th
IFAC Int. Conference on Fieldbus Systems and Their Applications (FET), pages
219–228. Elsevier, 2004.

[5] Franz Baader and Tobias Nipkow. Term Rewriting and all that. Cambridge Uni-
versity Press, New York, NY, USA, 1998.

[6] J. Bachrach and K. Playford. D-expressions: Lisp Power, Dylan Style. http:
//www.ai.mit.edu/people/jrb/Projects/dexprs.pdf, 1999. Re-
trieved 21 January 2011.

[7] John Backus. Can Programming be Liberated from the von Neumann Style?:
A Functional Style and its Algebra of Programs. Communications of the ACM,
21(8):613–641, 1978.

[8] Henry G. Baker. Pragmatic Parsing in Common Lisp. SIGPLAN Lisp Pointers,
IV:3–15, April 1991.

[9] Jay Barry. Pattern Calculus: Computing with Functions and Structures. Springer,
2009.

[10] Ira D. Baxter, Christopher Pidgeon, and Michael Mehlich. Program Transforma-
tions for Practical Scalable Software Evolution. In Proceedings of the 26th Inter-
national Conference on Software Engineering, ICSE ’04, pages 625–634, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[11] Ralph Becket and Zoltan Somogyi. DCGs + Memoing = Packrat Parsing – But
is it worth it? In Paul Hudak and David Warren, editors, Practical Aspects of

204

BIBLIOGRAPHY

Declarative Languages, volume 4902 of Lecture Notes in Computer Science, pages
182–196. Springer, 2008.

[12] Marc Bezem, Jan Willem Klop, and Roel de Vrijer, editors. Term Rewriting Sys-
tems. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 2003.

[13] J Bézivin. On the Unification Power of Models. Journal on Software and System
Modeling, SOSYM 4(2):171-188, 2005.

[14] Alexander Birman and Jeffrey D. Ullman. Parsing Algorithms with Backtrack. In
Proceedings of the 11th Annual Symposium on Switching and Automata Theory,
pages 153–174, Washington, DC, USA, 1970. IEEE Computer Society.

[15] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. Tracing
the Meta-Level: PyPy’s Tracing JIT compiler. In Proceedings of the 4th Workshop
on the Implementation, Compilation, Optimization of Object-Oriented Languages
and Programming Systems, ICOOOLPS ’09, pages 18–25, New York, NY, USA,
2009. ACM.

[16] Ronald V. Book and Friedrich Otto. String-Rewriting Systems. Monographs in
Computer Science. Springer, 1998.

[17] CAN Specification Version 2.0. Technical Specification, Robert Bosch GmbH,
1991.

[18] J. Botaschanjan, L. Kof, C. Kühnel, and M. Spichkova. Towards Verified Auto-
motive Software. In SEAS ’05: Proceedings of the second international workshop
on Software engineering for automotive systems, pages 1–6, New York, NY, USA,
2005. ACM Press.

[19] Ivan Bratko. Prolog: Programming for Artificial Intelligence. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 3rd edition, 2001.

[20] Martin Bravenboer, Eric Tanter, and Eelco Visser. Declarative, Formal, and Ex-
tensible Syntax Definition for AspectJ. A Case for Scannerless Generalized-LR
Parsing. In William R. Cook, editor, Proceedings of the 21th ACM SIGPLAN Con-
ference on Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA’06), pages 209–228, Portland, Oregon, USA, October 2006. ACM.

[21] Leo Brodie. Thinking Forth. Punchy Publishing, 3rd edition, 2004.

[22] Frederick P. Brooks, Jr. The Mythical Man-Month (Anniversary Ed.). Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[23] M. Broy, I.H. Kruger, A. Pretschner, and C. Salzmann. Engineering Automotive
Software. Proceedings of the IEEE, 95(2):356 –373, feb. 2007.

[24] Manfred Broy. Challenges in Automotive Software Engineering. In ICSE ’06:
Proceedings of the 28th international conference on Software engineering, pages
33–42, New York, NY, USA, 2006. ACM.

205

BIBLIOGRAPHY

[25] Manfred Broy and Ketil Stølen. Specification and Development of Interactive Sys-
tems: FOCUS on Streams, Interfaces, and Refinement. Springer, 2001.

[26] Jean Bézivin, Guillaume Hillairet, Frédéric Jouault, Ivan Kurtev, and William Piers.
Bridging the MS/DSL Tools and the Eclipse Modeling Framework. In Proceedings
of the International Workshop on Software Factories at OOPSLA 2005, 2005.

[27] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism. ACM Comput. Surv., 17(4):471–523, 1985.

[28] N. Chomsky. Three Models for the Description of Language. Information Theory,
IRE Transactions on, 2(3):113 –124, sep. 1956.

[29] K. L. Clark. Negation as Failure. Readings in nonmonotonic reasoning, pages
311–325, 1987.

[30] Tony Clark, Paul Sammut, and James Willans. Applied Metamodelling - A Foun-
dation for Language Driven Development. Ceteva, 2008.

[31] Tony Clark and Jos Warmer, editors. Object Modeling with the OCL, The Rationale
behind the Object Constraint Language. Springer, London, UK, 2002.

[32] James R. Cordy. The TXL Source Transformation Language. Science of Computer
Programming, 61:190–210, August 2006.

[33] Haskell Curry and Robert Feys. Combinatory Logic. North-Holland, Amsterdam,
1958.

[34] Krzysztof Czarnecki. Overview of Generative Software Development. In Uncon-
ventional Programming Paradigms, pages 326–341, 2004.

[35] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Meth-
ods, Tools, and Applications. ACM Press/Addison-Wesley Publishing Co., New
York, NY, USA, 2000.

[36] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,
and James F. Terwilliger. Bidirectional Transformations: A Cross-Discipline Per-
spective. In Richard F. Paige, editor, International Conference on Model Trans-
formation, volume 5563 of Lecture Notes in Computer Science, pages 260–283.
Springer, 2009.

[37] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid Taha. DSL
Implementation in MetaOCaml, Template Haskell, and C++. In Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer Science, pages
51–72. Springer, 2003.

[38] Nils Anders Danielsson. Total parser combinators. In Proceedings of the 15th ACM
SIGPLAN international conference on Functional programming, ICFP ’10, pages
285–296, New York, NY, USA, 2010. ACM.

206

BIBLIOGRAPHY

[39] C.J. Date. An Introduction to Database Systems. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2003.

[40] Nachum Dershowitz, Mitsuhiro Okada, and G. Sivakumar. Canonical Conditional
Rewrite Systems. In Ewing Lusk and Ross Overbeek, editors, 9th International
Conference on Automated Deduction, volume 310 of Lecture Notes in Computer
Science, pages 538–549. Springer, 1988.

[41] Arie Van Deursen, Jan Heering, and Paul Klint, editors. Language Prototyping: An
Algebraic Specification Approach: Vol. V. World Scientific Publishing Co., Inc.,
River Edge, NJ, USA, 1996.

[42] Christopher Diggins. Cat: A Functional Stack-Based Little Language. Dr. Dobb’s
Journal, April, 2008.

[43] Sergey Dimitriev. Language Oriented Programming: The Next Programming
Paradigm. JetBrains onBoard Magazine, 2, 2005.

[44] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic Abstraction in
Scheme. Lisp Symb. Comput., 5:295–326, December 1992.

[45] Daniel Ehrenberg, Slava Pestov, and Joe Groff. Factor: A Dynamic Stack-based
Programming Language. In Proceedings of the 6th symposium on Dynamic lan-
guages, 2010.

[46] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Series).
Springer, Secaucus, NJ, USA, 2006.

[47] Andrew D. Eisenberg and Gregor Kiczales. Expressive Programs Through Presen-
tation Extension. In AOSD ’07: Proceedings of the 6th international conference on
Aspect-oriented software development, pages 73–84, New York, NY, USA, 2007.
ACM.

[48] Burak Emir, Martin Odersky, and John Williams. Matching Objects with Patterns.
In ECOOP 2007 - Object-Oriented Programming, volume 4609 of LNCS, pages
273–298. Springer, 2007.

[49] Jean Marie Favre. Language Everyware! - Engineering the Tower of Babel through
Cartography and Software Linguistics. In TOWERS 2007, 1st International Work-
shop on Towers of Models, 2007.

[50] Jean Marie Favre. Software Linguistics and Software Language Engineering. In
2nd International Summer School on Generative and Transformational Techniques
in Software Engineering, GTTSE, 2007.

[51] Matthias Felleisen. On the Expressive Power of Programming Languages. In
Science of Computer Programming, pages 134–151. Springer, 1990.

207

BIBLIOGRAPHY

[52] Bryan Ford. Parsing Expression Grammars: A Recognition-based Syntactic Foun-
dation. In POPL ’04: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 111–122, New York, NY, USA,
2004. ACM.

[53] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. Combinators for Bi-directional Tree Transformations: A Lin-
guistic Approach to the View Update Problem. SIGPLAN Notices, 40:233–246,
January 2005.

[54] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling
Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

[55] Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Addison Wes-
ley, 2010.

[56] Richard Gabriel. On Sustaining Self. In Robert Hirschfeld and Kim Rose, editors,
Self-Sustaining Systems, volume 5146 of Lecture Notes in Computer Science, pages
51–53. Springer, 2008.

[57] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1995.

[58] Jeremy Gibbons. A Pointless Derivation of Radix Sort. Journal of Functional
Programing, 9(3):339–346, 1999.

[59] Adele Goldberg and David Robson. Smalltalk-80: The Language and its Imple-
mentation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1983.

[60] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Speci-
fication. Prentice Hall, 3rd edition, 2005.

[61] Paul Graham. On Lisp. Prentice Hall, 1993.

[62] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools. Wiley,
August 2004.

[63] Richard C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. Addison-Wesley Professional, 1st edition, 2009.

[64] Dick Grune and Ceriel J.H. Jacobs. Parsing Techniques: A Practical Guide. Mono-
graphs in Computer Science. Springer, 2007.

[65] James Hall. Multi-layer Network Monitoring and Analysis. Technical report, Uni-
versity of Cambridge, July 2003.

208

BIBLIOGRAPHY

[66] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition For-
malism SDF. SIGPLAN Notices, 24:43–75, November 1989.

[67] Jack Herrington. Code Generation in Action. Manning Publications Co., Green-
wich, CT, USA, 2003.

[68] Dominikus Herzberg. Modeling Telecommunication Systems: From Standards to
System Architectures. PhD thesis, RWTH Aachen University, 2003.

[69] Dominikus Herzberg and Manfred Broy. Modeling Layered Distributed Commu-
nication Systems. Formal Aspects of Computing, 28(4):751-763, May 2005.

[70] Dominikus Herzberg and Tim Reichert. Concatenative Programming - An Over-
looked Paradigm in Functional Programming. In ICSOFT 2009 - Proceedings of
the 4th International Conference on Software and Data Technologies, Volume 1,
Sofia, Bulgaria, July 26-29, 2009, pages 257–263. INSTICC Press, 2009.

[71] Dominikus Herzberg and Tim Reichert. Software Engineering for Telecommunica-
tion Systems. In Benjamin W. Wah et al. (Eds): Encyclopedia of Computer Science
and Engineering. Wiley, 2009.

[72] Dominikus Herzberg, Tim Reichert, and Nick Rossiter. Towards Modeling Lan-
guage Interoperability – Getting Meta-Level Architectures Right. Forschungs-
bericht der Hochschule Heilbronn 2008/2009, 2008.

[73] Dominikus Herzberg and Lars von Wedel. Erweiterungsmechanismen der UML.
OBJEKTspektrum, pages 56–59, Juli/August (4) 1999.

[74] Mark Hills and Grigore Rosu. KOOL: An Application of Rewriting Logic to Lan-
guage Prototyping and Analysis. In Franz Baader, editor, Term Rewriting and Ap-
plications, volume 4533 of Lecture Notes in Computer Science, pages 246–256.
Springer, 2007.

[75] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators: An
Introduction. Cambridge University Press, New York, NY, USA, 2008.

[76] Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented Pro-
gramming. Journal of Object Technology (JOT) 7(3):125-151, 2008.

[77] Charles Antony Richard Hoare. Proof of Correctness of Data Representations.
Acta Informatica, 1:271–281, 1972.

[78] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern Matching in Trees. J.
ACM, 29:68–95, January 1982.

[79] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,
Englewood Cliffs, NJ, 1991.

[80] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular Expression
Types for XML. ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(1):46–90, January 2005.

209

BIBLIOGRAPHY

[81] Freeman Huang, Barry Jay, and David Skillicorn. Programming with Heteroge-
neous Structures: Manipulating XML Data using Bondi. In Vladimir Estivill-
Castro and Gillian Dobbie, editors, 29th Australasian Computer Science Confer-
ence (ACSC2006), volume 48(1) of Australian Computer Science Communica-
tions, pages 287–296, 2006.

[82] Graham Hutton. Higher-order Functions for Parsing. Journal of Functional Pro-
gramming, 2(3):323–343, July 1992.

[83] Graham Hutton and Erik Meijer. Monadic Parsing in Haskell. Journal of Func-
tional Programming, 8 (4):437–444, 1998.

[84] Dan Ingalls. Design Principles Behind Smalltalk. BYTE Magazine, August 1981.

[85] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
Future: The Story of Squeak, a Practical Smalltalk Written in Itself. In OOPSLA
’97: Proceedings of the 12th ACM SIGPLAN conference on object-oriented pro-
gramming, systems, languages, and applications, pages 318–326, New York, NY,
USA, 1997. ACM.

[86] Information Technology – Syntactic Metalanguage – Extended BNF. International
Organization for Standardization, ISO/IEC 14977:1996, December 1996.

[87] Information Technology – Open Systems Interconnection – Basic Reference Model:
The Basic Model. ITU-T Recommendation X.200, International Telecommunica-
tion Union, July 1994.

[88] Daniel Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press,
2006.

[89] C. Barry Jay and Delia Kesner. Pure Pattern Calculus. In Peter Sestoft, editor, Pro-
gramming Languages and Systems, 15th European Symposium on Programming,
ESOP 2006, volume 3924 of Lecture Notes in Computer Science, pages 100–114.
Springer, 2006.

[90] Mario Jeckle, Stefan Queins, Barbara Zengler, Chris Rupp, and Jürgen Hahn. UML
2 Glasklar: Praxiswissen für die UML-Modellierung und -Zertifizierung. Hanser,
2nd edition, 2005.

[91] C B Jones. Formal Development of Correct Algorithms: An Example based on
Earley’s Recogniser. In Proceedings of ACM conference on Proving assertions
about programs, pages 150–169, New York, NY, USA, 1972. ACM.

[92] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
Do Code Clones Matter? In Proceedings of the 31st International Conference on
Software Engineering, ICSE ’09, pages 485–495, Washington, DC, USA, 2009.
IEEE Computer Society.

210

BIBLIOGRAPHY

[93] Wolfram Kahl. Basic Pattern Matching Calculi: A Fresh View on Matching Fail-
ure. In Yukiyoshi Kameyama and Peter J. Stuckey, editors, Functional and Logic
Programming, volume 2998 of Lecture Notes in Computer Science, pages 1–5.
Springer, 2004.

[94] Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench. Rules
for Declarative Specification of Languages and IDEs. In Martin Rinard, editor,
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, October 17-
21, 2010, Reno, NV, USA, pages 444–463, 2010.

[95] Alan Kay. The Reactive Engine. PhD thesis, University of Utah, Department of
Computer Science, Salt Lake City, 1969.

[96] Alan Kay, Dan Ingalls, Yoshiki Ohshima, Ian Piumarta, and Andreas Raab. Steps
Toward The Reinvention of Programming: A Compact and Practical Model of Per-
sonal Computing as a Self-Exploratorium (Proposal to NSF). VPRI Research Note
RN-2006-002, August 2006.

[97] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley-IEEE Computer Society Press, 2008.

[98] R. Kelsey, W. Clinger, and J. Rees (eds.). Revised5 Report on the Algorithmic
Language Scheme. Higher-Order and Symbolic Computation, 11(1), August 1998.

[99] Brent Kerby. The Theory of Concatenative Combinators. http://tunes.org/
˜iepos/joy.html, 2002. Retrieved 21 January 2011.

[100] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Pren-
tice Hall, 1988.

[101] Gregor Kiczales. It’s Not Metaprogramming. Dr. Dobb’s Journal, November 2004.

[102] Gregor Kiczales et al. Aspect-Oriented Programming. Proceedings of ECOOP,
1997.

[103] Gregor Kiczales, Jim Des Rivieres, and Bobrow Daniel G. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, MA, USA, 1991.

[104] Anneke Kleppe. Software Language Engineering: Creating Domain-Specific Lan-
guages Using Metamodels. Addison-Wesley Professional, 1st edition, 2008.

[105] P. Klint. A Meta-Environment for Generating Programming Environments. ACM
Transactions on Software Engineering Methodolgy, 2:176–201, April 1993.

[106] Donald E. Knuth. The TeXbook. Addison-Wesley Professional, 1986.

[107] Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast Pattern Matching
in Strings. SIAM Journal on Computing, 6(2):323–350, 1977.

211

BIBLIOGRAPHY

[108] Alain Laville. Lazy Pattern Matching in the ML Language. In Proc. of the sev-
enth conference on Foundations of software technology and theoretical computer
science, pages 400–419, London, UK, 1987. Springer.

[109] Qin Ma and Luc Maranget. Algebraic Pattern Matching in Join Calculus. Logical
Methods in Computer Science, 4(1), 2008.

[110] Ronald Mak. Writing Compilers and Interpreters: A Software Engineering Ap-
proach. Wiley Publishing, 2009.

[111] David Editor Margolies. The ANSI Common Lisp Reference Book. APress, 2008.

[112] Alex Martelli. Python in a Nutshell. O’Reilly Media, Inc., Sebastopol, CA, USA,
2nd edition, July 2006.

[113] S. Mauw, W. Wiersma, and T. Willemse. Language Driven System Design. In
HICSS ’02: Proceedings of the 35th Annual Hawaii International Conference on
System Sciences (HICSS’02)-Volume 9, page 280.2, Washington, DC, USA, 2002.
IEEE Computer Society.

[114] John McCarthy. Recursive Functions of Symbolic Expressions and Their Compu-
tation by Machine, Part I. Communications of the ACM, 3(4):184–195, 1960.

[115] John McCarthy. LISP 1.5 Programmer’s Manual. The MIT Press, 1962.

[116] M. Douglas McIlroy. Macro Instruction Extensions of Compiler Languages. Com-
munications of the ACM, 3(4):214–220, 1960.

[117] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-Specific Languages. ACM Computing Surveys, 37(4):316–344, 2005.

[118] Ansgar Meroth and Dominikus Herzberg. An Open Approach to Protocol Analysis
and Simulation for Automotive Applications. In Embedded World Conference,
2007.

[119] Ansgar Meroth and Boris Tolg. Infotainmentsysteme im Kraftfahrzeug: Grundla-
gen, Komponenten, Systeme und Anwendungen. Vieweg, Wiesbaden, 2008.

[120] Bruce Mills. Practical Formal Software Engineering: Wanting the Software You
Get. Cambridge University Press, 2009.

[121] Robin Milner. An Algebraic Definition of Simulation between Programs. In 2nd In-
ternational Joint Conference on Artificial Intelligence, pages 481–489. Kaufmann,
1971.

[122] Robin Milner, Mads Tofte, and David Macqueen. The Definition of Standard ML.
MIT Press, Cambridge, MA, USA, 1997.

[123] John C. Mitchell and Krzysztof Apt. Concepts in Programming Languages. Cam-
bridge University Press, New York, NY, USA, 2001.

212

BIBLIOGRAPHY

[124] MOST Specification Rev. 3.0. Technical Specification, MOST Cooperation, June
2010.

[125] Aaron Müller and Florian Eitel. Funktionale Meta-Programmierung: Umsetzung
eines Konkatenativen Programmiersystems, Bachelor Thesis, Department of Soft-
ware Engineering, Hochschule Heilbronn, Heilbronn, Germany, July 2010.

[126] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi. Taxonomy
of XML Schema Languages using Formal Language Theory. ACM Trans. Internet
Technol., 5:660–704, November 2005.

[127] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Compre-
hensive Step-by-step Guide. Artima Incorporation, USA, 1st edition, 2008.

[128] OCL 2.0 OMG Final Adopted Specification. Technical Specification, OMG, Octo-
ber 2003.

[129] Meta Object Facility (MOF) Core Specification, v2.0. Technical Specification,
Object Management Group (OMG), January 2006.

[130] Unified Modeling Language: Infrastructure, Version 2.3. Technical Specification,
Object Management Group (OMG), May 2010.

[131] Unified Modeling Language: Superstructure, Version 2.3. Technical Specification,
Object Management Group (OMG), May 2010.

[132] Angela Orebaugh, Gregor Morris, and Ed Warnicke Gilbert Ramirez. Ethereal
Packet Sniffing. Syngress, February 2004.

[133] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific Lan-
guages. Pragmatic Bookshelf, 2007.

[134] Terence Parr. Language Implementation Patterns. Pragmatic Bookshelf, 1st edi-
tion, 2009.

[135] Terence John Parr. Enforcing Strict Model-View Separation in Template Engines.
In Proceedings of the 13th international conference on World Wide Web, WWW
’04, pages 224–233, New York, NY, USA, 2004. ACM.

[136] Ian Piumarta and Alessandro Warth. Self-Sustaining Systems. chapter Open, Ex-
tensible Object Models, pages 1–30. Springer, Berlin, Heidelberg, 2008.

[137] Ian Piumatra. PEG-based Transformer provides Front-, Middle- and Back-End
Stages in a Simple Compiler. Technical Report TR-2010-003, Viewpoints Research
Institute, 2010.

[138] Gordon D. Plotkin. A Structural Approach to Operational Semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus,
Denmark, 1981.

213

BIBLIOGRAPHY

[139] Alexander Pretschner, Manfred Broy, Ingolf H. Kruger, and Thomas Stauner. Soft-
ware Engineering for Automotive Systems: A Roadmap. In FOSE ’07: 2007 Fu-
ture of Software Engineering, pages 55–71, Washington, DC, USA, 2007. IEEE
Computer Society.

[140] Elizabeth D. Rather, Donald R. Colburn, and Charles H. Moore. The Evolution of
Forth. History of programming languages, II:625–670, 1996.

[141] Eric S. Raymond. The Art of UNIX Programming. Pearson Education, 2003.

[142] Tim Reichert and Dominikus Herzberg. A Domain Specific Language for Uncover-
ing Abstract Protocols and Testing Message Scenarios. In Proceedings of Software
Engineering 2008 (Workshops), pages 427–430, 2008.

[143] Tim Reichert and Dominikus Herzberg. Teaching Language-Driven Software En-
gineering. In International Conference of Education, Research and Innovation
(ICERI), Madrid, Spain, November 2009.

[144] Tim Reichert, Edmund Klaus, Wolfgang Schoch, Ansgar Meroth, and Dominikus
Herzberg. A Language for Advanced Protocol Analysis in Automotive Networks.
In Proceedings of the 30th International Conference on Software Engineering,
ICSE ’08, pages 593–602, New York, NY, USA, 2008. ACM.

[145] Peter H. Salus. Little Languages and Tools. Macmillan Technical Publishing, 1998.

[146] D. V. Schorre. META II: A Syntax-oriented Compiler Writing Language. In Pro-
ceedings of the 19th ACM national conference, ACM ’64, pages 41.301–41.3011,
New York, NY, USA, 1964. ACM.

[147] Alex Sellink and Chris Verhoef. Native Patterns. In Proceedings of the Fifth Work-
ing Conference on Reverse Engineering, pages 89–103. IEEE Computer Society
Press, 1998.

[148] B. Sheil. Environments for Exploratory Programming. Datamation, February
1983.

[149] Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional Software.
In OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applications, pages 451–
464, New York, NY, USA, 2006. ACM.

[150] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The Execution Algo-
rithm of Mercury, an Efficient Purely Declarative Logic Programming Language.
Journal of Logic Programming, 29 (1-3):17–64, 1996.

[151] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven Software
Development: Technology, Engineering, Management. John Wiley & Sons, 2006.

[152] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

214

BIBLIOGRAPHY

[153] Leon Sterling and Ehud Shapiro. The Art of Prolog: Advanced Programming Tech-
niques. MIT Press, Cambridge, MA, USA, 2nd edition, 1994.

[154] Bill Stoddart and Peter J. Knaggs. Type Inference in Stack based Languages. For-
mal Aspects of Computing, 5:289–298, 1993.

[155] Walid Taha and Patricia Johann. Staged Notational Definitions. In Proceedings
of the 2nd international conference on Generative programming and component
engineering, GPCE ’03, pages 97–116, New York, NY, USA, 2003. Springer.

[156] Andrew S. Tanenbaum. Computer Networks. Prentice Hall PTR, Upper Saddle
River, New Jersey 07458, 4th edition, 2003.

[157] The Eclipse Foundation. Eclipse IDE. http://www.eclipse.org, 2010.

[158] Ken Thompson. Programming Techniques: Regular Expression Search Algorithm.
Commun. ACM, 11:419–422, June 1968.

[159] Paul Sammut James Willans Tony Clark, Andy Evans. An eXecutable Metamod-
elling Facility for Domain Specific Language Design. In The 4th OOPSLA Work-
shop on Domain-Specific Modeling, 2004.

[160] Laurence Tratt. Compile-time Meta-Programming in a Dynamically Typed OO
Language. In Proceedings Dynamic Languages Symposium, pages 49–64, October
2005.

[161] David Ungar and Randall B. Smith. Self: The Power of Simplicity. SIGPLAN
Notices, 22:227–242, December 1987.

[162] David Ungar, Adam Spitz, and Alex Ausch. Constructing a Metacircular Virtual
machine in an Exploratory Programming Environment. In Companion to the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’05, pages 11–20, New York, NY, USA, 2005.
ACM.

[163] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages: An
Annotated Bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

[164] Eelco Visser. Scannerless Generalized-LR parsing. Technical Report P9707, Pro-
gramming Research Group, University of Amsterdam, July 1997.

[165] Eelco Visser. Meta-Programming with Concrete Object Syntax. In Don Batory,
Charles Consel, and Walid Taha, editors, Generative Programming and Compo-
nent Engineering (GPCE’02), volume 2487 of Lecture Notes in Computer Science,
pages 299–315, Pittsburgh, PA, USA, October 2002. Springer.

[166] Eelco Visser. A Survey of Strategies in Rule-Based Program Transformation Sys-
tems. Journal of Symbolic Computation, 40(1):831–873, 2005. Special issue on
Reduction Strategies in Rewriting and Programming.

215

BIBLIOGRAPHY

[167] Joost Visser. Matching Objects Without Language Extension. Journal of Object
Technology, 5(8):81–100, November-December 2006.

[168] Eric van der Vlist. RELAX NG. O’Reilly Media, Inc., 2003.

[169] Manfred von Thun. Joy: Forth’s Functional Cousin. In Proceedings of the 17th
EuroForth Conference, 2001.

[170] Manfred von Thun. A Rewriting System for Joy. http://www.latrobe.
edu.au/philosophy/phimvt/joy/j07rrs.html, 2007. Retrieved 21
January 2011.

[171] Document Object Model (DOM) Level 1 Specification, Version 1.0. Technical
Specification, World Wide Web Consortium (W3C), October 1998.

[172] XSL Transformations (XSLT), Version 1.0. Technical Specification, World Wide
Web Consortium (W3C), May 1999.

[173] Extensible Markup Language (XML), Version 1.1. Technical Specification, World
Wide Web Consortium (W3C), April 2004.

[174] XQuery 1.0: An XML Query Language. Technical Specification, World Wide Web
Consortium (W3C), January 2007.

[175] P. Wadler. Views: A way for Pattern Matching to Cohabit with Data Abstraction.
In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’87, pages 307–313, New York, NY, USA, 1987.
ACM.

[176] Philip Wadler. How to Replace Failure by a List of Successes: A Method for
Exception Handling, Backtracking, and Pattern Matching in Lazy Functional Lan-
guages. In Jean-Pierre Jouannaud, editor, Functional Programming Languages and
Computer Architecture, volume 201 of Lecture Notes in Computer Science, pages
113–128. Springer, 1985.

[177] M. P. Ward. Language Oriented Programming. Software-Concepts and Tools,
15:147–161, 1995.

[178] Alessandro Warth. Experimenting with Programming Languages. Technical Re-
port TR-2008-003, Viewpoints Research Institute, 2008.

[179] Alessandro Warth, James R. Douglass, and Todd Millstein. Packrat Parsers can
Support Left Recursion. In PEPM ’08: Proceedings of the 2008 ACM SIG-
PLAN symposium on Partial evaluation and semantics-based program manipula-
tion, pages 103–110, New York, NY, USA, 2008. ACM.

[180] Alessandro Warth and Ian Piumarta. OMeta: An Object-Oriented Language For
Pattern Matching. In Proceedings of the 2007 symposium on Dynamic languages,
DLS ’07, pages 11–19, New York, NY, USA, 2007. ACM.

216

BIBLIOGRAPHY

[181] Ed Wilson. Network Monitoring and Analysis. Prentice Hall International, 2000.

[182] Gregory V. Wilson. Extensible Programming for the 21st Century. ACM Queue,
2(9):48–57, 2005.

217

