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Abstract 

In this study, we comprehensively describe the hotkeys of polytope geometrics in terms of 

heterogeneous and high-index components, surface mobility sites, and hollowness and meso-

grooves in potential buildup lithium-ion battery (LIB) designs.  We have been fabricated 

superscalable half-, full-, and large-modulated LIB models by using one dimensional nanorod-like 

capsules of TiO2@nanocarbon shells (1D-TO@C) as anodes and a diverse range of multifaceted 

exposure mesopolytopes based 3D-LiFePO4@C (3D-LFPO@C) geometrics as cathodes. Large-

scale, multi-functional 3D-LFPO@C polytope cathodes can tailor function of variable LIB model 

geometrics with a wide range of charging/discharging cycles and excellent energy density. The 

integration of mesopolytope 3D-LFPO@C cathode and sustainable capsule1D-TO@C anode 

enables fabrication of superscalable LIB-CR2032 coin-cell models. Our powerful, full-scale LIB-

CR2032-coin cell models are attained Coulombic performance efficacy of ~99.89%, discharge 

capacity of 93.4% after 2000 cycles, and high specific energy density ≈ 186.98 Wh.kg-1, which 

overrides the requirement for long-driving range of electric vehicles (EVs). Our finding also 

indicates that the large-scale pouch LIB model designed with dense packing of LIB-CR2032 coin-
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cells is technically the first polytope LIB-model that fulfilled the energy storage and tradeoff 

requirements for EVs. 

 

Keywords: Superscalable LIBs; mesopolytopes; high-index surface facets, CR2032-coin LIB cells, 

time-scale life cycles, energy density. 

 

Introduction 

The growing energy crisis is one of the foremost challenges confronting the substantial 

development in 21st century. The development of environmentally friendly and sustainable energy 

sources is essential to fulfill the growing need for energy in modern society, and to address the 

emerging environmental concerns [1]. As a superior reversible energy storage device, rechargeable 

LIBs are extremely advanced, environmentally clean, and serve as sustainable energy power for 

many electronic devices [2]. However, their applications have limitations due to their high capital 

cost and safety problems [1, 3]. Therefore, the electrode fabrication of cathodic/anodic promising 

candidates is needed for substantial LIB safety and for maintaining high energy density. In this 

context, fabrication of positive cathode electrode using lithium iron phosphate (LiFePO4, LFPO) 

has shown a wide range of attention because of its good structural stability, high safety, 

environment-friendliness, and relative affordability [4, 5]. LFPO has shown theoretically a 

discharge capacity of 170 mAh g-1 and stable voltage plateau around 3.5 V. Despite these 

characteristics, LFPO cathodes have low tapped density, poor surface conductivity and rate 

capability, and slow electron/Li+-ion diffusion at LFPO/FePO4 surface interfaces [5-9]. Such 

cathodic feature makes its LIB design difficult in large-scale utilization of EVs. Thus, considerable 

efforts associated with LIB development in terms of the electrode material fabrication have been 

devoted to provide hybrid nano-/micro-structure electrodes for unique electrochemical 
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performances [3,10, 11]. Various synthesis methodologies of LFPO cathode nano-/micro-structures 

were used to control its morphological size and shape [3, 12], conductively-active heterogeneous 

sites [13], and framework composites with other supervalent metals  [14-16]. The surface 

heterogeneity of LFPO composite was improved by decoration of its surface by highly-conductive 

nanocarbon (nano-C) for high performance LIBs [16- 18]. The geometric control of LFPO with 

high-index facets, polytope-structure, and multidiffusive open surface sites would become of 

particular interests for fabrication of variable cathode LIB-electrodes.  

Multiple techniques, such as sol–gel, hydrothermal, solvothermal, emulsion drying, co-

precipitation,  and solid-solid interaction have been used to fabricate  a diverse range of  LFPO 

architects [19-25]. Compared with ordinary synthesis approaches, hydrothermal synthesis was used 

commonly to easily controlled LFPO size, shape and surface reactivity [18, 20]. Recently, LFPO 

super-architects have been fabricated to enhance the electron/Li+-ion diffusivity, specific capacity, 

and rate reversibility and capability [26-28]. In the view of atomic-scale arrangements, the LFPO 

crystal structure is a key for improving the Li+ ion kinetics during the lithiation/delithiation process 

of LIBs [28]. In the ultimate goal of long-term LIB-EVs-driving range with excellent power, control 

fabrication of cathode/anode electrodes with ordering geometrics, heterogeneous and high-index 

components, and modular building blocks is curial to manipulate the LIB models. Therefore, the 

fabrication of polytope LFPO cathode electrodes with multifaceted exposures, a bundle of surface 

vacancies, cavities and windows may offer large-scale surface loads and diffusion of electrons/Li+ 

ions. The desired LFPO crystal orientation with specified high-index facets may improve the 

electron mobility and conductivity, surface motivation capability, and Li+ ion diffusion at interfaces, 

leading to high LIB–EV performances [28, 29]. 

As large-scale modulation of low procurement cost LIB-EVs, nano-sizable transitional metal oxides 

(MOs) are promising anode materials for LIBs [30].  Among these MOs, titanium dioxide structures 
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with anatase-TiO2 phase (TO) are likely to be electro-active hosts for Li+ ion-insertion [21, 31]. 

Furthermore, TO features included high safety, affordability, non- poisonous effects, low 

polarization, and highly reversible property were led to fabricate a negative electrode with excellent 

charge/discharge cyclic stability [32-35].  The flexibility in the structural phase transition of TO 

from I41/amd-tetragonal orientation into lithium-rich Li0.5TiO2 Imma-orthorhombic geometrics was 

supposed to be responsible for long-range reversible systems [36- 39]. The spontaneous conversion 

of Li-poor Li0.01TO phase into Li-rich Li0.5TO offered electrode structure with high flexibility and 

reversibility. Further development of reversible structural TO anode will reduce the LIB 

manufacture burden and procurement costs. As an anodic electrode modulated LIB for high energy 

density, the primary key of one-dimensional (1D)-TO pipe-like tubes may open abundant 

Li+/electron gate-in-transports and occupants, and hops-built-in anode electrodes. The 1D-capsule 

coated nanocarbon (1D-TO@C) electrode array may provide uniform accommodation/storage 

pockets, and geometrical models for massive charge/discharge cycles of LIBs.  

Likely, the current study shows the superscalable modulation of half-, full-, and large-scale 

mesopolytope 3D-LFPO@C cathode // capsule 1D-TO@C anode LIB-CR2032 coin-cell LIB-

models. The heterogeneous high-index 3D-LFPO@C polytopes such as 16-faceted exposure 

polyhedron (SFP@C), octahedron simplex (OS@C), rhombus platelet (RP@C), parallelepiped 

complex object (PC@C), and convex complex (CC@C) cathodes are key candidates for a new 

generation of variable polytope-LIB model geometrics. Our remarkable half-cell polytope 3D-

SFP@C cathode electrode exhibits outstanding discharge capacities of 168.72, 158.62, and 

135.34 mAh g−1 at C-rate of 0.1, 1, and 20 C, respectively, and at potential range of 2–4.3 V (vs. 

Li+/Li). The heterogeneous polytope SFP@C// capsule 1D-TO@C full-scale LIB model sets attain 

93.4% of its 1st discharge capacity (mAh g-1) after 2000 cycles, Coulombic performance efficacy of 

~99.89% at 0.1C rate, and high specific energy density 186.98 Wh kg-1. Significantly, attempts for 
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large-scale modulation have been carried out through a dense packing in a collar fashion of multiple 

LIB-CR2032-coin cells, enabling a design of pouch LIB model. This pouch LIB-model offers 

superb rate capability, charge/discharge cycle stability, high areal discharge capacities and 

remarkable gravimetric and volumetric energy and tap densities for LIB-EV applications. 

 

Experimental 

Design of 1D-TO@C capsule and 3D-LFPO@C polytope materials 

Various combinations of multi-functional heterogeneous high-index mesopolytope LFPO materials 

with 16-faceted exposure polyhedron (SFP@C), octahedron simplex (OS@C), rhombus platelet 

(RP@C), parallelepiped complex object (PC@C), and convex complex (CC@C) geometrics are 

fabricated and used for fabrication of cathodes. The 1D-TO nanorod capsules are fabricated simple 

synthesis condition and used as anodes. All cathode materials are fabricated under control of Li-

anion sources (see supporting information S1). In addition, the carbonization process of the 1D-TO 

capsule and 3D-LFPO polytope materials was simply applied to cover their surfaces by nano-

carbon-shells with 3-5 nm layer dressers. The carbonization methodology of 3D-LFPO@C 

polytopes (cathodes) and 1D-TO@C capsules (anodes) was carried out by using microwave 

radiation technique (see supporting information S1-S12).  

 

Formulated components of mesopolytope 3D-LFPO@C and 1D-TO@C capsules in P- and N-

electrodes and LIB models 

The half-cell anodic-electrode batteries is fabricated by loading special amount of 1D TiO2@C (1D-

TO@C) nanorod-like capsule architects into 8 µm-cupper (Cu) foils (i.e., negative (N) electrodes). 

The half-cell cathodic electrode batteries are successfully designed by loading of specific amounts 

of multi-functional 3D-LFPO@C polytopes such as 16-faceted exposure polyhedron (SFP@C), 
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octahedron simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex object (PC@C), 

and convex complex (CC@C) into 10µm-aluminum (Al) foils (i.e., positive (P) electrodes). The 

integration of heterogeneous mesopolytope 3D-LFPO@C cathodic and capsule 1D-TO@C anodic 

electrodes in coin-shaped like discs leads to fabricate CR2032-coin LIBs. The proposed full-scale 

LIB-model design components are formulated by using heterogeneous mesopolytope 3D-LFPO@C 

cathode / capsule 1D-TO@C anode geometrics. We have carried out a set of electrochemical 

experiments to prove the potential formulation of variable half-, and full-scale LIBs. Our 

measurement sets are built to study the effectiveness of key 3D-LFPO@C structures in the high-

performance storage battery as follows: (i) the formation of surface meso-grooves, caves, 

hollowness-like nests in the core of polytopes; (ii) the well-ordered orientations of 6-, 8-, and 16-

exposed active surface sites; (iii) the regular polytope single-crystal-structure with heterogeneous 

high-index, and homeomorphic facets ; (iv) single crystal defects along kinks, vertices, and ridges; 

and (v) the well-dispersed decoration of with uniform and thin shells of nano-C layers. 

 

Technical and mechanical key control of half- and full-cell polytope CR2032-coin LIB 

formulations  

A setting of effective half- and full-cell LIBs is designed for purposing the low-cost manufacturing, 

ever-decreasing discharge timescale yet maintaining high-energy density. Half-scale capsule 1D-

TO@C anode and mesopolytope 3D-LFPO@C cathode LIBs are explored by using CR2032-coin 

cells (see supporting information). For high electrochemical performances and improving safety 

issues of half- and full-scale LIBs, the technical and mechanical key controls of coin cell LIB 

formulations are essential, according to the following consequence steps:  

First, we used a disc cutter to form well-defined circular electrodes and separator films with 

specific diameters as follows: (i) a 16 mm for Li-foils can be used as counter and reference 
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electrodes, (ii) 16 mm Al- and Cu-foils are used as working electrodes, and (iii) a 20 mm Celgard 

2400TM membrane can be used as microporous polymer separator. Second, the electrolyte used 

with half- and full-CR2032-coin cells can be fabricated as follows; a 1 M conductive lithium 

hexafluoro-phosphate (LiPF6) solution is dissolved in a mixture of (C5H10O3) diethyl carbonate / 

((CH2O)2CO) ethylene carbonate (1:1 v/v). The potential function of highly conductive electrolyte 

(LiPF6/ C5H10O3/(CH2O)2CO) leads to improve the optimization of the electrochemical 

performance and diminishes the loss of reversible capacity of half- and full-CR2032-coin LIB cells.  

Third, the active 1D-TO@C capsule anode and 3D-LFPO@C polytope (i.e., SFP@C, OS@C, 

RP@C, PC@C and CC@C) cathode materials are separately mixed with a component of carbon-

black/polyvinylidene fluoride (PVDF) with mass equivalent ratios of 75: 15: 10, respectively. To 

this heterogeneous mixture, a rational amount of N-methyl-2-pyrrolidone (NMP) is added and 

stirred for 1 h to fabricate the active material slurries. consequence fabrication steps based on we 

fabricate the mesopolytope 3D-LFPO@C and capsule 1D-TO@C in P- and N-working electrodes 

by using the immobilization techniques. The active slurries of mesopolytope 3D-LFPO@C and 

capsule 1D-TO@C (i.e., cathodic and anodic materials) are incorporated into 10 µm-aluminum (Al) 

and 8 µm-cupper (Cu) foils, respectively. The functional anode/cathode disc-like films are then 

dried at 80 °C in a vacuum oven for 12 h.  The resultant mesopolytope 3D-LFPO@C-incorporated 

Al-foils and capsule 1D-TO@C-incorporated Cu-foils are used as working positive (P) and negative 

(N) electrodes, respectively. Note that the loading amount (i.e., mass/electrode area) of the 

active1D-TO@C capsule anode or 3D-LFPO@C polytope cathode materials into 8 µm-Cu or 8 µm-

Al foils is 6.63 or 13.14 mg/cm-2, as reported in supporting information S1.  

 Fifth, the prepared components of the coin-cell batteries are left for 24 hours prior any 

electrochemical measurements. The dryness process is applied to enhance the component stability 

onto electrodes and to reach to the equilibration state between total electrolyte-intake solutions and 



8 
 

N- or P- solid surface electrodes. The dried working electrodes based mesopolytope 3D-LFPO@C-

incorporated Al-foils and capsule 1D-TO@C-incorporated Cu-foils (P- and N-electrodes) are 

compressed between twin rollers in order to achieve the following fabrication keys of cathode and 

anode LIBs: 

i. the dense packing materials onto 10 µm-Al and 8 µm-Cu foil surface interfaces,  

ii. reduction of the voids and spaces along the overall mesopolytope cathode/ capsule anode 

electrode film surfaces for high electric conductivity, and  

iii. to strengthen the diffusivity and surface contact binding between the active 

mesopolytope cathodic and capsule anodic materials and the 10 µm-Al and 8 µm-Cu foil 

electrode collectors, respectively.  

In the regard of environmentally-friendly LIB packaging, the dense packing of LIB coin-cell 

components, electrolytes and electrodes becomes compulsory to improve LIBs with safety 

betterment. However, the safe-type LIBs should also attain the ever-decreasing discharge timescales 

and high-energy density that required for longest LIB-EVs driving range. The compression of the 

CR20XX series coin cells is occurred by using crimper machine. The compressing process is 

carried out inside glove box under argon gas for further measurements and tests (see supporting 

information S1-S13). 

The rational controls of polytope SEP@C (P-electrode) and capsule 1D-TO@C (N-electrode) mass 

ratios (.i.e., the balancing (P/N)Cap ratio ≈1.0: 1.07-1.14) that loaded onto 10 µm-Al-foils  and 8 µm-

Cu-foils are significant for full-cell LIB safety concerns, and sustainability of its performance 

against long-period cycles. The specific (P:N)Cap ratio with optimal ≈1.0: 1.09 leads to  optimal 

tradeoff LIB models, in which provide better cell battery safety with preserving an excellent energy 

density, see supporting information S13. 
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Ordered sets of mesopolytope SFP@C // capsule 1D-TO@C CR2032-coin cells in pouch LIB 

models  

The ever increasing demands of large scale LIB pouch models in EVs, control over the required 

high areal discharge capacities and remarkable gravimetric and volumetric energy and tap densities 

are urgently needed. For example, the tap density is mainly influenced by the heterogeneous 

cathode/anode materials and their high-index components, active surface mobility sites, 

multifaceted exposures and the distribution of powder particles along the electrode surfaces. Our 

experimental finding of polytope electrode design indicates that the dense packing SFP@C-Al-foil 

P-electrodes show higher tap density values of ~1.55 g cm-3 than that of other 3D-LFPO@C-Al-foil 

electrodes. Therefore, we used mesopolytope SFP@C cathode as P-electrode in the full design of 

polytope CR2032 coin-cell LIB-models.  

Aiming to multi-scale implementations, ordered sets of multiple rolls of coin cells are packed-up in 

a collar fashion to form pouch LIB models. In this pouch design, the working electrode components 

are formulated with stacked-layers of 1D-TO@C nanorod-like capsule (anode), and 3D-LFPO@C 

mesopolytope (cathode). To practically-designed pouch-type LIBs, a set of stacked layers of 

mesopolytope SFP@C cathode P-electrode // capsule 1D-TO@C anode N-electrode that oriented in 

full-scale LIB-CR2032-coin-cell components (Figure S13). The stacking layers of mesopolytope 

SEP@C cathode P-electrode // capsule 1D-TO@C anode N-electrode are arranged layer-by-layer 

with 6-//5-layer numbers, respectively. The resultant 6-layers of mesopolytope SFP@C-

incorporated 10 µm-Al-foils and 5-layers of capsule 1D-TO@C-incorporated 8 µm-Cu-foils are 

oriented consecutively in 12 sides, respectively; see supporting information S13, S14. According to 

these ordered layer sets, the mass stacking of mesopolytope SEP@C cathode P-electrode // capsule 
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1D-TO@C anode N-electrode is 13.14 and 6.63 mg/cm2, respectively. Our finding indicates that the 

areal discharge capacity of the stacking mesopolytope SEP@C cathode P-electrode // capsule 1D-

TO@C anode N-electrode is 1.144 and 1.145 Ah/cm2, respectively. The experimental fabrication 

sets are studied for the building of large-scale mesopolytope SFP@C // capsule 1D-TO@C LIB-

CR2032 coin-cell models, see supporting information (S1-S16)  

 

Results and Discussion 

Fabrication of mesopolytope 3D-LFPO@C and capsule 1D-TO@C as P- and N-electrode 

materials 

In terms of anode/cathode electrode material costs, the proposed electrode battery model system is 

based on the simple fabrications of following (i) high-index mesopolytope LFPO cathode materials, 

(ii) 1D-TO nanorod capsule-like anode materials, (iii) multi-functional heterogeneous 

anode/cathode materials via coating of nano-carbon layers onto their outer surfaces, and (iv) 

mesopolytope 3D-LFPO@C and 1D-TO@C capsules in P- and N-electrodes, respectively. Control 

engineering of unique geometrics, nanoscale vaccinates and multiple crystal facets creates 1D and 

3D open-end directional gates along 1D-TO@C nanorod capsules and superscalable mesopolytope 

3D-LFPO@C electrode surfaces, respectively. The incorporation of these heterogeneous 

mesopolytope 3D-LFPO@C cathode and capsule 1D-TO@C anode onto 10 µm-Al and 8 µm-Cu 

foils would lead to fabricate spatial P- and N-electrodes.  The electrode surface topologies with 

multidirectional gates, heterogeneous high-index components, active mobility sites, meso-grooves, 

and multifaceted polytope exposures are affected the anode/cathode potential. The architectural 

geometrics of P- and N-electrodes affect the diffusion capability and electrochemical reactivity of 

their potential half- and full-scale LIBs.  
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3D-LFPO polytope-modified nanocarbon architectures, such as high-index, sixteen (16)-faceted 

polyhedron-crystal-structure SFP@C, octahedron simplex (OS@C), rhombus platelet (RP@C), 

parallelepiped complex object (PC@C), and convex complex (CC@C) polytopes, are used as 

cathodes in half-, full-, and large-scale LIB models. These cathode materials are synthesized by 

varying the lithium-compound sources (such as Li-acetate, -chloride, -hydroxide monohydrate, -

nitrate, and -carbonate, respectively). In addition, a control over seed (particle) growth time at high 

temperature treatment is necessary (see supporting information S1). The growth mechanism of 

LFPO particle crystals leads to tailor various 3D geometric architects. Typical polytope mechanism 

can be achieved through (i) nucleation-growth building agent (such as Li-anions) and (ii) auxiliary 

structure reagent (such as ethylene glycol/ ethanol mixture). Both key synthesis factors can 

significantly reduce nucleation surface curvature and suppress the Fe3+/Fe2+ active surface, thereby 

resulting in thermodynamically formulated variable 3D-LFPO geometries and simplex, convex, and 

homeomorphic polytopes.  In this Li-anion-assisted polytope nucleation-growth, the alteration from 

the high potential reduction of Li-anion precursors (such as Li-carbonate and -nitrate) to low 

potential reducers (such as Li- hydroxide monohydrate, -acetate dihydrate, and -chloride) can 

control the changes of the polytope model geometrics from a convex complex structure (CC), which 

passes through a parallelepiped complex structure (PC), rhombus platelets (RP), and octahedron 

structure (OS), to a high-index 16-faceted polyhedron structure (SFP), respectively. The low 

reducing potential power of the Li-anion precursor would likely provide sufficient time for the 

effective growth and then development of high-index facet building units, such as SFP polytopes. 

By contrast, Li-anion precursors of high-potential reducing agents accelerate reaction kinetics, 

thereby leading to a formation of convex complex CC structures. Furthermore, the open-end tubular 

structure of 1D-TO nanorod-like capsule can be controlled under high-temperature treatment of 

titanium (IV) ethoxide Ti(OC2H5)4 composite domains.   
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To tailor the surface heterogeneity, electronic conductivity and geometric stability of 1D-TO 

capsules and 3D-LFPO mesopolytopes (such as SFP, OS, RP, PC, and CC structures), sustainable 

~5 nm C-shell dot-dressers are coated the outer surface layers of both anode and cathode materials 

without changes in the structural ordering, and atomic scale geometrics of resultant 1D-TO@C 

anode and polytope 3D-LFPO@C cathode materials (see supporting information S2-S9). In 

anode/cathode electrode designs, the decoration of 1D-TO capsule and LFPO polytope with nano-

C-dot as mat layers coverage the 1D-TO capsule and LFPO polytope electrodes would enhance 

anisotropic heterogeneity, reactive mobility, electronic conductivity of their surfaces. These 

heterogeneous mesopolytope SFP@C (cathode) and capsule 1D-TO@C (anode) electrodes can be 

promising for next-generation LIB-EVs due to its multiple 1D and 3D directional transport gates, 

diffusion dynamics, and structural stability. The buildup of heterogeneous 1D-TO@C anodes and 

polytope 3D-LFPO@C cathodes in half-, full-, and large-scale LIB models are promising hybrid 

designs for higher gravimetric and volumetric energy and tap densities, rate capability, and areal 

discharge capacities than that of non-coated carbon parent capsule (anode) or polytope (cathode) 

electrodes-modulated LIBs (i.e., TO-anode// LFPO-cathode). The electrode stability inside the 

integral LIB-CR2032-coin cells will maintain the heavily-loaded occupants of Li+-ions and 

continuous electron/ Li+ ion movements along the anode/cathode surfaces, even after a massive of 

lithiation/delithiation processes, leading to optimal requirements of an ageless reachable battery. 

Fig. 1 

 

Geometrical orientations of 3D-LFPO@C and capsule 1D-TO@C along P-, and N-electrodes   

Nanoscale geometric structures of 1D-TO@C nanorod-like capsules (anode) and 3D-LFPO@C 

polytope cathodes were examined by using microscopic analyses patterns of (FE-SEM)  field 

emission scanning electron microscopy, (EDX) energy-dispersive X-ray spectroscopy, (EM) elemental 
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mapping, (ED) electron diffraction, and (HR-TEM) high-resolution transmission electron microscopy  

(Figs. 1, 2, and S2–S5). In general, our findings show evidence of control engineering of well-

ordered geometric shapes, high-index components, active surface mobility sites, multifaceted 

polytopes, and 1D and 3D directional gates throughout the hollowness and meso-grooves, and one-

open-end capsules. For example, Figs. 1(A–D) provide a schematic configuration of SFP@C 

polyhedron with multifaceted exposure {101} and {105} facets. This mesopolytope SFP@C 

consists of typically-truncated shape at medium of tetragonal bipyramids with exposed {101} and 

{001} facets. In addition, two pudgy tetragonal pyramids with dominantly exposed high-index 

{105} facets are oriented on opposite sides of the truncated tetragonal bipyramids. Figure 1D shows 

the EDX and EM analyses of SFP@C polyhedron components of O: Fe: P: C with percentage ratios 

of 56.8: 21.7: 19.6: 1.9 %, respectively. Figure 1 (A–C) shows a clear evidence of the formation of 

(i) 3D directional pathways along the interior hollowness and meso-grooves of SFP@C, and (ii) the 

multi-diffusive accommodation storage through nanogrooves, cages, and geodes. These 

mesopolytope geometric structures, and surface topographies enable multiple directional gates and 

pathways, a decrease in the distance of electron transport, and multidiffusible Li+ ions. Figures 1 

(E–H) clearly illustrate the formation of large-scale polytope geometrics with heterogeneous high-

index, homeomorphic simple and complex shapes, including OS@C, RP@C, PC@C, and CC@C 

morphologies, as clearly illustrated in supporting information, Figs. S2–S5. These variable model 

geometrics, surface heterogeneities,  and multi-facets with 8- and 6-exposure sites of mesopolytopes 

are used to tailor the function of cathode electrodes in the fabrication of half-, full-, and large-scale 

LIB models.  

The atomic-scale ordering structures of 3D-cathodic mesopolytope SFP@C, OS@C, RP@C, 

PC@C, and CC@C architectures are evidence from HR-TEM patterns (see Figs. 1(I–L), S2(D–F), 

S3(E–G), S4(D–F), and S5(E–G), respectively). All mesopolytope cathodic SFP@C, OS@C, 
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RP@C, PC@C, and CC@C samples show crystal planes with interatomic d-spacing values of 

(0.39, 0.98), (0.39, 0.98), (0.41, 1.01), (0.39, 1.01), and (0.39, 1.03) nm, in agreement with (001) 

and (100) planes of orthorhombic 3D-LFPO mesocrystals, respectively. The ED pattern images of 

single crystals of SFP@C, OS@C, RP@C, PC@C, and CC@C geometric blocks are shown in Figs. 

1(L), S2(F), S3(G), S4(F), and S5(G), respectively. Our microscopic analysis reveals that the 

exposure [010] ac-plane sites are predominant and low surface energy sites of such 3D-LFPO 

mesopolytopes. These nanoscale geometric mesopolytopes enable suitable accommodation objects 

of electrons/Li+ ions during lithiation/delithiation processes. The crystal growth orientations of all 

heterogeneous mesopolytope cathode composites are prominently preferable along the [010] plane, 

thereby leading to high-rate capability [18,28,40, 41]. The lattice patterns in Figs. 1(K), S2(E), 

S3(F), S4(E), and S5(F) show clear, thin, and smooth 4–5 nm layers of C-shell dressers at the 

surface edges, vertices, and faces of mesopolytope cathodes. The well-ordered, thermally stable, 

and sustainable coating layers by C-shells along these mesopolytope structures were characterized 

via thermogravimetric analysis, Raman spectra, X-ray photoelectron spectrometry, and Fourier 

transform infrared spectra, as shown in the supporting information (Figs. S6–S9). 

Fig. 2 

Figure 2 shows 1D object of TO@C nanorod-like capsules (anode). The capsules have open-end 

channel-like gates and an abundance of mesopores along surface frameworks, as evidence from FE-

SEM, EDX, ED, EM, and HR-TEM microscopic analyses. Figures 2(a–b) verify the 

interior/exterior ordering of nano-C-dot layers organized along the entire anatase 1D-TiO2 nanorods, 

thereby leading to from sustainable 1D-TO@C capsules. Figure 2(C) shows the 3D projections of 

anodic capsules with 1D channel that exhibits open-end hole-like mouth in its both sides. Well-

ordered coverage layers of nano-C dots are oriented along the nanorod channels, leading to create 

multiple directional gates, active surface mobility sites, and meso-grooves. Well-dispersed element 
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components of O, Ti, and C with amount ratios of 70.3:28.4:1.3, respectively, are characterized the 

1D-TO@C capsule anode (Figure 2d).  HR-TEM and ED microscopic patterns (Fig. 2e,f) show 

evidence of the formation of (i) crystal structure oriented along [101] plane direction, (ii) 3 nm 

shell-layered dressers of nano-C-dot along all the TO nanorod surfaces, and (iii) 1D open-end 

directional gate of 1D-TO@C capsules oriented in anodic electrode.  

 

Surface characteristics of mesopolytope 3D-LFPO@C and capsule 1D-TO@C geometrics   

Figures 3(a) and S10 show the X-ray diffraction patterns (XRD) of the 3D-LFPO@C cathode and 

1D-TO@C anode structures. Figure 3a exhibits the XRD peaks and profiles (lattice parameters of a 

= 9.962 Å, b = 6.080 Å, and c = 4.678 Å, in addition to the unit volume of 286.95 Å3) of 3D-LFPO 

orthorhombic olivine with Pnma symmetry group (JCPDS Card No. 83-2092) [28,42]. All SFP@C, 

OS@C, RP@C, PC@C, and CC@C geometric structures showed structural stability 3D-

LiFePO4@C without any competitive phase formations such as Li3PO4, Li3Fe2(PO4)3, conductive 

FeP, and Li4P2O7. The representative 3D-LFPO [010]-orthorhombic olivine structure shows 

evidence of the atomic-scale arrangements along its surface direction (Fig. 3b). The 3D-LFPO@C 

crystal orientation with a highly exposed a-c plane has optimal surface energy for (i) fast 

electron/Li+-ion diffusion dynamics and (ii) superb kinetics of lithiation and delithiation. Figure S10 

exhibits the XRD peaks and profiles (lattice parameter of a= 3.789 Å, b= 3.789 Å, and c = 9.489 Å) 

of anatase 1D-TO@C tetragonal structure with the I41/amd symmetry group (JCPDS 21-1272). The 

crystal structure stability of 1D-TO@C anode renders the regularity of the electron/Li+-ion 

movements along axial and frontal crystal planes.   

Fig. 3 

The textural surface parameters of mesopolytope 3D-LFPO@C and capsule 1D-TO@C geometrics 

such as dynamic arrangement of space holes, mesogrooves, and surface coverage areas enable the 
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formulation of missive diffusion gateways for fast charge–discharge capability rates of LIBs [43-

47]. We have measured the N2 isotherms of mesopolytope cathodes to determine the specific 

surface areas (SBET m2/g) of mesoporous polytope structures (Figs. 3[c,d). The N2 isotherms 

featured a type IV with H2 hysteresis loop for all tested SFP@C, OS@C, RP@C, PC@C, and 

CC@C cathode samples, indicating the formation of mesocage caves and high surface coverages of 

the entire mesopolytope structures. The mesopolytope-type orientation, variable model geometrics, 

and multifaceted surfaces affected the key factors of textural surface parameters. For example, the 

(SBET m2/g) values decreased in this order: SFP > OS > RP > PC > CC geometric blocks. The 

calculated BET surface areas are 346.8, 217.2, 107.7, 84.1, and 15.5 m2.g−1, and the corresponding 

pore size diameters are 11.1, 12.1, 12.0, 14.1, and 19.0 nm for SFP@C, OS@C, RP@C, PC@C, 

and CC@C cathode samples, respectively. Among all mesopolytope structures, the SFP@C cathode 

surface electrodes are candidate for long-term storage cycles, continuous rate capability and 

charging/discharging stability, and excellent energy density. 

 

Key fabrication profiles of half-, full-, and large-scale LIB-CR2032 coin-cell models 

Together, for a new generation of heterogeneous half-, full-, and large-scale LIB models, the unique 

structures of the cathodic mesopolytope 3D-LFPO@C morphologies of SFP@C, OS@C, RP@C, 

PC@C, and CC@C geometrics prove the potential cathode candidate in the integral and outstanding 

LIBs. In these powerful LIB models, multiple mass transports along the 1D open-end directional 

gates of 1D-TO@C nanorod capsules (anode) and 3D superscalable mesopolytope crystal facets 

(cathode) mainly depends on the geometric unit blocks of polytope structures, hollowness grooves, 

and multifaceted exposures. Along all used 3D-LFPO@2C polytope cathodes designed LIB models, 

the high-index exposure sites and surface anisotropicity, heterogeneity and conductivity of SFP@C 

geometrics may produce extra-ordinary transportation, diffusion dynamics, and storage 
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accommodation of electrons/Li+ ions. The SFP@C mesopolytope may be considered a demanded 

cathode to meet the requirements of high energy density and long-term rate cycling of LIB-EVs. 

The key fabrication points of half-, full-, and large-scale mesopolytope SFP@C // capsule 1D-

TO@C LIB-CR2032 coin-cell models are as follows: (i) formation of grooves and hollowness-like 

geode caves in the core, (ii) distribution of highly dense exposure active surface sites of multiple 

polygon tetragonal and triangular facet components, and (iii) surface heterogeneity, and 

conductivity of cathode/anode electrodes, (iv) flexible mobility sites along accommodated 

vicinities, edges, incidence focal cages, vertices, and terraces for boosting the electron/Li+-ion 

diffusivity, and (v) movement of electrons/Li+ ions along axial, and frontal crystal planes for 

remarkable specific cycle capacity, and rate reversibility and capability. To gain a full 

understanding of these hotkeys in the buildup of large-scale LIBs, we intensively studied the 

electrochemical performance of variable cathode model geometrics, such as homeomorphic 

SFP@C, OS@C, RP@C, PC@C, and CC@C mesopolytopes designed half-cell cathode LIBs (see 

Figures 4-6). The electrochemical performance of half-scale capsule 1D-TO@C LIB-anode model 

is also investigated (see Figure S12). Remarkably, superscalable, full-, and large-scale 

mesopolytope SFP@C// capsule 1D-TO@C LIB-CR2032 coin-cells packed in pouch-type models 

are technically the first studies of polytope LIB-geometrics.   

 

Half-cells: mesopolytope 3D-LFPO@C half-scale cathode LIB-CR2032 coin-cells 

The electrochemical performances of mesopolytope 3D-LFPO@C half-scale cathode LIB-CR2032 

coin-cells based on variable homeomorphic electrode surfaces such as SFP@C, OS@C, RP@C, 

PC@C, and CC@C mesopolytopes are designed and measured, as shown in Figures. 4–6. 

Fig. 4 
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The cyclic voltammogram (CV) curves are determined at potential region of 2–4.3 V vs. Li/Li+ and 

at a sweep rate of 0.1 mV/s for variable homeomorphic cathode electrode surfaces such as SFP@C, 

OS@C, RP@C, PC@C, and CC@C mesopolytopes (Fig. 4a). The defined reduction/oxidation 

peaks are observed at 3.28/3.48, 3.23/3.51, 3.17/3.57, 3.23/3.68, 3.10/3.67, and 3.04/3.76 V of 

mesopolytope SFP@C, OS@C, RP@C, PC@C, and CC@C half-cell cathode electrodes, 

respectively. The 1st cycle CV curves of mesopolytope SFP@C cathode are recorded at C-rates of 

0.1, 0.5, 1, 5, and 10 C/ mVs-1 and at potential range of 2–4.3 V vs. Li/Li+ (Fig. 4b). Figure 4b 

shows that with the increasing in C-rates, (i) the voltage values for oxidation peaks increase, 

whereas the voltage values for reduction peaks are decreased, and (ii) the current values (mA) for 

both oxidation/reduction peaks are increased. Figure 4c shows the cyclic stability profiles of the 

mesopolytope SFP@C cathode with 1st, 2nd, 3rd, 50th, and 100th cycles determined at C-rate of 

0.1 mVs-1 and at a 2.0 - 4.3 V potential range. The Fe3+/Fe2+ symmetric and spiculated peak profiles 

for 3D-LFPO@C with mesopolytope SFP@C cathode are observed at 3.28/3.48 V within 1st, 2nd, 

3rd, 50th, and 100th cycles. The similarity in oxidation/reduction peak profiles (i.e., different cycles at 

one potential range) indicates the excellent reversibility of 3D-LFPO@C with mesopolytope 

SFP@C cathode. The effective cathode reversibility leads to the facile lithiation (reduction) / 

delithiation (oxidation) processes at cathode/anode surfaces (i.e., Li+-insertion/ Li+-extraction 

mechanism), respectively [48]. The considerable overlapping of Fe3+/Fe2+ symmetric and spiculated 

peaks in the 1st-100th cycling CV curves is attributed to the excellent charge–discharge process and 

a high reversible capacity within multiple cycles. Figure 4(d) shows the 1st discharge capacity for 

mesopolytope 3D-LFPO@C half-scale cathode LIB-CR2032 coin-cells based on variable 

homeomorphic electrode surfaces such as SFP@C, OS@C, RP@C, PC@C, and CC@C 

mesopolytopes. The discharge capacity profile (mAh/g) is determined at various C-rates (mV/s) in 

the range of 0.1–20 C and at potential region of 2.0- 4.3 V vs. Li/Li+. The 1st discharge capacity 
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values at overall scan rates are decreased in this direction: SFP@C >OS@C >RP@C >PC@C 

>CC@C cathodes along. This result indicates that among all mesopolytopes of SFP@C, OS@C, 

RP@C, PC@C and CC@C half-cell cathodes, the sixteen-faceted exposure polyhedron (SFP@C) 

cathode exhibits high cycling stability and discharge capacity at several scan rates in the range of 

0.1–20 C. 

Fig. 5 

Variable 3D-LFPO@C homeomorphic electrode geometrics such as SFP@C, OS@C, RP@C, 

PC@C, and CC@C mesopolytopes that fabricated with wide range varieties in orientations, multi-

facets of 6-, 8-, and 16-exposed sites, and surface heterogeneities and interfaces are significantly 

affected the performance of half-scale cathode LIB-CR2032 coin-cells (Figure 5A). For example, 

Figure 5 B show a clear evidence of the key clues of the cathode geometrics such as SFP@C, 

OS@C, RP@C, PC@C, and CC@C mesopolytopes on the charging/discharging cycles. Figure 

5(Ba) exhibits the charge/discharge cycling performance for polytope SFP@C, OS@C, RP@C, 

PC@C, and CC@C half-cell cathode electrodes at a potential region of 2–4.3 V vs. Li/Li+ at a C-

rate of 0.1C (mV/s). As experimental sets, the 3D superscalable polytope 3D-LFPO@C half-cell 

cathodes are charged to 4.3 V at 0.1 C, and then retained at 4.3 V for 1 h. After that the 3D-

LFPO@C cathodes are then discharged to 2.0 V at 0.1 C. Among all half-scale cathode LIB-

CR2032 coin-cells, the SFP@C half-cell cathode showed a higher storage capacity compared with 

all mesopolytope cathodes. For example, the SFP@C cathode shows the highest discharge capacity 

of 168.72 mAh g-1 at 0.1 C-rate. However, the other polytope OS@C, RP@C, PC@C, and CC@C 

cathodes provide high discharge capacities of 158.9, 147.9, 136.6, and 125.5 mAh g-1 at 0.1 C-rate, 

respectively. Figure 5B-b exhibits typical 1st cycle charge/discharge curves of SFP@C half-scale 

cathode LIB-CR2032 coin-cells at different sweep C-rates (i.e., 0.1, 0.2, 0.5, 1, 5, 10, and 20 C 

(mV/s)) over the 2–4.3 V (potential range) vs. Li/Li+. The result reveals that the SFP@C cathode 
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with 16-facets and high-index exposure surfaces, active surface mobility sites, hollowness and 

meso-grooves, and window gateways exhibits excellent behavior for high discharge capacity 

(mAh/g) at overall C-rates (i.e., 0.1–20 C range) compared with other polytope half-cell cathodes 

designed with low-index-facets of 6-, and 8-exposed sites, such as OS@C, RP@C, PC@C, and 

CC@C mesopolytopes (Figure 5A). Figure 5(B–c) exhibits the charging/discharging capacity 

profiles and the long-term cycling performance (1st-100th range of cycle numbers) of the high-index 

exposure sites and 16-facets of SFP@C half-scale cathode LIB-CR2032 coin-cells at a C-rate of 

1.0 C. Furthermore, the cycling performance of all half-cell cathode geometrics such as SFP@C, 

OS@C, RP@C, PC@C, and CC@C mesopolytopes is shown in Figure 5B-d. The SFP@C half-

scale cathode LIB-CR2032 coin-cells exhibit superiority in the retention rate of 98.6% of its 1st-

cycle discharge capacity after 100 cycles and at 1 C. In turn other half cell cathode geometrics with 

OS@C, RP@C, PC@C, and CC@C mesopolytopes retain about 97.2%, 96.8%, 94.4%, and 89.5% 

of their initial discharge capacities after 100 cycles and at 1 C, respectively. These results indicate 

the cycling sustainability in high discharge capacity over the 100th cycle with high-index exposure 

sites and 16-facets of SFP@C half-scale cathode LIB-CR2032 coin-cells at a C-rate of 1.0 C 

compared with other variable cathode model geometrics that have low index 8- or 6-faceted 

mesopolytopes (Figure 5A). This finding emphasizes that the 3D-mesopolytope SFP@C cathode 

has excellent electrochemical reversibility during lithiation/delithiation processes. 

Further related to the effectiveness of variable 3D LFPO@C cathode model geometrics in the long-

period stability of half-scale cathode LIB-CR2032 coin-cells in terms of (i) charging/discharging 

capacity cycling, and (ii) the capability performance rate is shown in Figure S11a. The cycling 

capacity performance (1st-100th range of cycle numbers) of polytope SFP@C, OS@C, RP@C, 

PC@C, and CC@C half-cell cathode electrodes at a potential region of 2–4.3 V vs. Li/Li+ at C-rates 

of 0.1, 0.2, 0.5, 1, 2, and 5 C (mV/s). To evaluate the rate capability all half-cell cathode 
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geometrics, the discharge capacities at C-rates of 0.1C-5.0C are back to 0.1C and 10 C, and then 

followed by returning back to 1.0C and 20 C at 25 oC. We also preform the discharge capacity 

pattern of all polytope 3D-LFPO@C half-cell cathode electrodes at each C-rate (mV/s) within 10th 

cycles until reaching to 100th cycles. 

 Figure S11(a) also shows evidence that specific capacity performance is decreased, whereas the C-

rate (mV/s) for all polytope SFP@C, OS@C, RP@C, PC@C, and CC@C half-cell cathode 

electrodes is gradually increased from 0.1 C to 20C. The 16-faceted SFP@C half-scale cathode 

LIB-CR2032 coin-cells exhibit long-period cycle stability in terms of a remarkable cycle capacity 

performance, and an outstanding rate capability at overall C-rates (i.e., 0.1 C-20C range) of over 

cycle numbers (i.e., 1st-100th range). Our finding indicates that the 16-faceted SFP@C half-scale 

cathode LIB-CR2032 coin-cells show excellent dischargeable and reversible capacity, 

approximately of 126.4 mAh g−1 at a 20 C sweep rate and after 100th cycles. The discharge capacity 

of other polytope OS@C, RP@C, PC@C, and CC@C half-cell cathode electrodes is dropped 

markedly to 103.6, 75.5, 42.3, and 6.5 mAhg−1 at a 20 C sweep rate and after 100th cycles during 

reversible Li+-inclusion/-exclusion cycling processes.  

Figure S11(b) shows evidence of the effectiveness of variable 3D LFPO@C cathode model 

geometrics in the electrochemical impedance spectroscopy (EIS) results.  The Nyquist plots for 

polytope SFP@C, OS@C, RP@C, PC@C, and CC@C half-cell cathode electrodes are determined 

(see Figure S11b and its magnification). At high-, and low- frequency regions, all Nyquist graphs of 

polytope SFP@C, OS@C, RP@C, PC@C, and CC@C half-cell cathode electrodes show sizable 

semicircle curvatures, and diagonal lines, respectively. On the basis of EIS result and its equivalent 

circuit (see supporting information S1 and Fig. S11-b), the resistance of the charge (–ve/+ve) 

transfer of each polytope SFP@C, OS@C, RP@C, PC@C, and CC@C half-cell cathode electrodes 

(Rct) is related to the diameter of semicircular curvatures on the real Z [18,49, 50]. The actively 
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reactive electrode surfaces are represented by the small diameter of its semicircular curvatures, 

indicating the low Rct value. Among all half-scale cathode LIB-CR2032 coin-cells, the SFP@C 

half-cell cathode showed a lower Rct value compared with all mesopolytope cathodes. This finding 

indicates that the sixteen-faceted exposure polyhedron (SFP@C) cathode exhibits rapid 

electrons/Li+ ions diffusion kinetics. Figure S11d shows evidence of the long-term cycle stability of 

the electrons/Li+ ions movements along all polytope SFP@C, OS@C, RP@C, PC@C, and CC@C 

half-cell cathode electrode surfaces, as evidenced from the slight increase of Rct values with 200th 

cycles. Significantly, due to the stability of the electron/Li+-ion diffusivity and transportation 

kinetics of 3D SFP@C cathode polytope, this electrode attains lowest Rct value among all OS@C, 

RP@C, PC@C, and CC@C half-cell cathode electrodes within 200th cycles. This finding indicates 

that the 3D SFP@C cathode electrode maintains its remarkable features in terms of (i) distribution 

of highly dense exposure active surface sites along multiple polygon tetragonal and triangular facet 

components, and (ii) high flexibility and mobility sites along edges, vertices, and terraces, and (iii) 

rapid transport and movement of electrons/Li+ ions along axial, and frontal crystal planes during 

lithiation/delithiation processes. 

Furthermore, the sustainable ~5 nm C-shell dot-dressers the outer surface layers of cathodes assist 

the structural electrode stability of mesopolytope geometrics during the high-temperature treatments. 

The retention geometrics and its topographic surfaces and multi-facet crystals improve the 

sustainability of electronic conductivity and transportation kinetics to withstand against high-

temperature treatments (i.e., ~250–455 K) [51].  To check the thermal stability of all polytope 

SFP@C, OS@C, RP@C, PC@C, and CC@C half-cell cathode electrodes within temperature, we 

study the temperature dependence functionality vs the electrical conductivity for mesopolytope half-

cell cathodes (Fig. S11c). Each polytope cathode electrode sustains its electronic conductivity and 

surface mobility at a wide range of temperature treatments. Among all polytope electrodes, the 16-
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faceted SFP@C cathode shows high dynamic sustainability of atomic-scale crystallization along 

polygon facet components and then excellent conductivity at all exposed temperature ranges (~250–

455 K). 

 

Overall, the SFP@C electrode modulated in half-cell LIBs exhibit high Li+ ion specific capacity, 

excellent rate reversibility and capability performance, and long-term cycle stability, and 

sustainability of electronic conductivity against highly-treated heating. These excellent 

electrochemical performances of the SFP@C half-cell cathode electrode are attributed to its 

polytope-key factors, as follows:  

I. The vicinity formation of topographic surfaces such as meso-grooves, hole-mouth caves, and 

hollowness-like geodes in its mesopolytope crystal cores, thereby improving efficacy in Li 

insertion/extraction reaction for an 3D-LFPO@C electrode; 

II. The well-ordered single-crystal-structures and orientations along 16-exposed active surface 

sites, thereby leading to the creation of high indices of truncated tetragonal and triangular facets, 

edges, vertices, and terraces for the open and wide potential ranges and high specific LIB-

cathode capacities; 

III. The heterogeneous high-index, and homeomorphic facets along axial, and frontal crystal planes 

enabled the mounting of 3D multi-diffusive directional gates for high gravimetric cell energy 

(Wh/kg), see supporting information S14. 

IV. Defects along kinks, vertices, and ridges along the exterior SFP@ cathode surfaces might lead 

to facile electron/Li+-ion movement during lithiation/delithiation processes;  

V. The well-and large-coverage surface dispersion of thin nano-C dot shells along polygon SFP@C 

cathode layers plays an important role in preventing Fe dissolution or atomic dislocation (i.e., 
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well-structured robustness) against severe treatment conditions, thereby enabling excellent 

sustainability of the electronic surface mobility and conductivity. 

 

Half-scale 1D-TO@C capsule anode LIB-CR2032 coin-cells  

The effectiveness of 1D-TO@C capsule geometrics as a potential anode electrode in the 

formulation of long-period cycle stability of half-scale anode LIB-CR2032 coin-cells in terms of (i) 

charging/discharging capacity cycling, and (ii) the capability performance rate is shown in Figure 

S12. The typical CV cell stability of half-scale 1D-TO@C anode LIB-CR2032 coin-cells within a 

potential window range of 1.0 V – 3.0 V vs. Li/Li+ at 0.1C mV/s of a sweeping rate is studied at 

various cycling numbers (i.e., 1st - 500th cycles), as shown in Figure S12(a). The CV curves show 

two reduction/oxidation peaks at potential of 1.64 V and 2.1 V, indicating the cathodic (reduction of 

Ti4+ to Ti3+) and anodic (oxidation of Ti3+ to Ti4+) sweeps, respectively. The symmetric and 

spiculated peak profiles at 1.64 V and 2.1 V can be attributed to the Li+-insertion (lithiation) and 

Li+-extraction (delithiation) of 1D-LixTiO2@C capsules, respectively. The sequential 

lithiation/delithiation cycles indicate the excellent cycling performance and high reversibility of 1D-

TO@C anode despite the multiple-examined 500 cycles.  

The potential charging/discharging curves of the 1st cycle capacity are recorded at at C-rates of 0.2, 

0.5, 1, 5, 10, and 20 C mVs-1 and at potential range of 1.0–3.0 V vs. Li/Li+. According to the 

Galvanostatic charging/discharging patterns, each discharge profile is firstly specified with a rapid 

decrease in potential from OCV–3 V (open circuit voltage) to 1.7 V vs. Li (Figure S12b).. Second, a 

linear plateau step of discharge pattern is distinct at 1.7 V, which refers to the lithiation process. 

Third, the gradual decrease in potential from 1.7 V (plateau linear zone) to cut-off voltage of 1.0 V 

vs. Li, thereby indicating the large amount of lithiation into interfacial Li+ ion storage 
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accommodation along the interior open-end mouth hole channels and mesogroove vicinities of 1D-

TO@C-anode capsule.  

The 1st cycle potential charging profiles are firstly increased in specific capacity at potential range 

of 1 V- 1.85 V vs. Li/Li+(Figure S12b).  The increase in charging pattern is indicated the monotonic 

Li+-extraction (delithiation) process.  Second, the continuous Li+-extraction (delithiation) regime at 

potential range of 1.85 V- 2.1 V vs. Li/Li+. Third, the curvature regime up to 3.00 V indicates the 

facile delithiation from solid electrode surface to electrolyte solution.  

The 1st cycle discharge specific capacity values (mAh/g) of half-scale capsule 1D-TO@C anode 

LIB-CR2032 coin-cells at various C-rates (mV/s) in the range of 0.2C- 20C/ mVs-1 and at potential 

region of 1.0–3.0 V vs. Li/Li+ (Figure S12c). The 1st discharge capacity values of half-scale capsule 

1D-TO@C anode is decreased from 276.9 to 127.4 mAh/g by increasing the scan rates from 0.2 to 

20C (mV/s).  Figure S12d shows the Nyquist plot of half-scale capsule 1D-TO@C anode LIB-

CR2032 coin-cells. This EIS result indicates the facile electron/Li+-ion diffusivity and 

transportation kinetics along 1D-TO@C anode capsules. 

The influence of structural stability of 1D-TO@C capsule geometrics in the rate capability 

performance of half-scale anode LIB-CR2032 coin-cells is shown in Figure S12e. The cycling 

discharge capacity performance (1st-100th range of cycle numbers) of 1D-TO@C capsule anode 

electrode at a potential region of 2–4.3 V vs. Li/Li+ at C-rate range of 0.1C-20C (mV/s). The rate 

capability performance of half-scale 1D-TO@C capsule anode LIB-CR2032 coin-cells can be 

control under the following patterns: the discharge capacities at C-rates of 0.1C-5.0C are back to 

0.1C and 10 C, and then followed by returning back to 1.0C and 20 C at 25 oC. We also preform the 

discharge capacity pattern of half-scale 1D-TO@C capsule anode LIB-CR2032 coin-cells at each 

C-rate (mV/s) within 10th cycles until reaching to 100th cycles. This rate capability profile of half-

scale 1D-TO@C capsule anode indicates that first; the specific capacity (mAh/g) performance is 
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decreased with the increase in C-rates (mV/s). Second, half-scale 1D-TO@C capsule anode shows 

excellent dischargeable and reversible capacity, approximately of 115.7 mAh g−1 at a 20 C sweep 

rate and after 100th cycles during reversible Li+-inclusion/-exclusion cycling processes. 

 

Superscalable polytope SFP@C // capsule 1D-TO@C CR2032-coin cells and pouch LIB 

models 

The key design of full-scale CR2032-coin LIB cells is based on mesopolytope SFP@C cathode with 

sustainable 1D-TO@C nanorod-like capsules (anode). The superscalable cathode/anode electrodes 

may offer multiple mass transports of electrons/Li+ ions along their configuration and manipulation 

of formulated complex shapes, 1D and 3D directional gates (Figures 6, S1 and Scheme 1). In 

particular, the 3D SFP@C cathode polytopes also offer multiple polygon facet components along 

edges/vertices/ terraces, actively-reactive heterogeneous surface mobility sites, multi-grooves/caves, 

and coverage surface exposures. 

In this full-scale CR2032-coin LIB cells, the reliable design is based on the excellent trade-off 

factors, in which a set of LIB-manufacture can be achieved with betterment safety without loss of 

the high energy density. The rational design of optimal tradeoff polytope SEP@C (P-electrode) and 

capsule 1D-TO@C (N-electrode) LIB model is mainly based on the mass ratios (.i.e., the balancing 

(P/N)Cap ratio ≈1.0: 1.07-1.1) that loaded 10 µm-Al-foils  and 8 µm-Cu-foils. The key design 

configuration is achieved at specific (P:N)Cap ratio ≈1.0: 1.09, see supporting information S13. 

Fig. 6 

 The specific discharging capacity (mAhg-1) of full-scale mesopolytope SFP@C // capsule 1D-

TO@C CR2032-coin cells is determined as a function of current C-rates at 0.1, 0.2, 0.5, 1, 2, 5, 10, 

and 20 C and at potential range of 0.9-3.5 V (Figure 6[A]).  The discharge capacity profiles show 

excellent behavior along all C-rate ranges. The specific discharging capacity (mAhg-1) is decreased 
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with increasing C-rates, and attains a value of 132 mAhg-1 at 20 C. Our mesopolytope SFP@C 

cathode electrode is provided an excellent specific energy density of 426.9 Wh kg-1. This value is 

effectively influenced by the specific key quantity-based mass fraction of P-electrode. For example, 

the mass% of SFP@C-material-based P-electrode cathode in full-scale LIB-CR2032-coin cells is 

approximately 43.8 % of the whole mass used for LIB components (see supporting information 

S13-S15).  According to this mass fraction of cathode, the specific energy density of full-scale 

mesopolytope SFP@C // capsule 1D-TO@C LIB-CR2032-coin cell model is 186.98, and 177.81 

186.98 Wh kg-1 at 0.1 C, and 1C, respectively (see supporting information S13). The high energy-

density is a mandatory of long-driving range EVs.   

The rate capability performance of full-scale mesopolytope SFP@C // capsule 1D-TO@C CR2032-

coin cell design is evident, as shown in Figures 6(B) and (C). The rate capability profile is recorded 

along a wide potential range of 0.9–3.5 V and at various C-rate values of 0.1, 0.2, 0.5, 1, 2, and 5 C. 

The discharge profile of full-scale mesopolytope SFP@C // capsule 1D-TO@C CR2032-coin cell at 

C-rate range of 0.1C-5.0C is returned back to 0.1 and 10 C, and then followed by returning back to 

1 and 20 C at 25 oC. At each C-rate (mV/s), the rate discharging capacities (mAhg-1) are recorded 

with 10 cycles up to 100 cycles. Generally, the specific capacity of full-scale mesopolytope SFP@C 

// capsule 1D-TO@C LIB-CR2032-coin cell design decreases with increasing of C-rate values. The 

discharge cycling performance after 40 cycles (i.e., at 1 C-rate), and at 5 C-rate (i.e., after 60 cycles) 

is returned to 1 C-rate (after 90 cycles) and 20 C-rate (after 100 cycles), respectively. This discharge 

capacity at such specific C-rate profiles retains 99.6%, 99.2%, 98.7%, and 98.1% from the initial 

capacity of mesopolytope/capsule LIB-CR2032-coin cell design, respectively. The configuration 

hotkeys formulated with 1D and 3D directional transport gates, high-index components, active 

surface mobility sites, meso-grooved hollowness, and multifaceted mesopolytope exposure are 
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controlled potential LIB-CR2032-coin cell design in terms of high specific energy density and 

outstanding rate capability (Scheme 1). 

To fabricate pouch-type LIB models, ordered sets of multiple rolls of mesopolytope SFP@C // 

capsule 1D-TO@C LIB-CR2032-coin cells are packed-up in a collar fashion to form pouch LIB 

models (Scheme 1). A set of stacked layers of full-scale mesopolytope SEP@C cathode P-electrode 

// capsule 1D-TO@C anode N-electrode organized in pouch LIB-model is designated with specific 

3D dimensions of 35 mm (width), 55 mm (length) and ~2.5-3mm (thickness), respectively. Well-

packed and dense layers of 1D-TO@C-anode (5-layers/12-sides)//SFP@C-cathode (6-layers/12-

sides) oriented in the coin cells are contiguously connected into a series of the built-in stacking 

layer configurations of pouch LIB-types, see supporting information S13, S14.  

In order to optimize the full-cell mesopolytope SEP@C cathode P-electrode // capsule 1D-TO@C 

anode N-electrode LIBs, the total area of the cathode and anode coverage the pouch LIB cells are 

150 and 143 cm2; respectively. Therefore, the mass stacking of mesopolytope SEP@C cathode P-

electrode and capsule 1D-TO@C anode N-electrode is 13.14 and 6.63 mg/cm2, respectively. This 

finding indicates that the areal discharge capacity of the stacking mesopolytope SEP@C cathode P-

electrode and capsule 1D-TO@C anode N-electrode is 1.144 and 1.145 Ah/cm2, respectively (see 

supporting information S14). For practical/large-scale usage, the volumetric energy density of 

overall full-scale mesopolytope SEP@C cathode P-electrode // capsule 1D-TO@C anode N-

electrode organized in LIB-model scales is controlling the preferable key shape-designed fashion of 

pouch models. Our experimental calculation shows that the volumetric energy density of pouch 

LIB-model is 242.83 Wh/L.  

Fig. 7 

Figure 7A shows cycling performance profiles of mesopolytope SFP@C // capsule 1D-TO@C LIB-

CR2032-coin cell design in terms of charge/discharge capacity, and Coulombic performance 
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efficacy. The cycling profiles (i.e., 1-2000 cycles) are carried out at 1 C-rate in a potential region 

from 0.9–3.5 V vs. Li/Li+ at 25 oC. The cycling performance profiles of the first 200 cycles can be 

observed in Figure 7(B). Our mesopolytope SFP@C // capsule 1D-TO@C LIB-CR2032-coin cell 

design sets attain 93.4% from the first discharge capacity of 157.2 mAhg-1 at 1C, even after 

2000 cycles. Long term-stability in the Coulombic performance efficacy of ~99.89% is achieved at 

a rate of 0.1 C at 25 oC.   

In such mesopolytope SFP@C // capsule 1D-TO@C LIB-CR2032-coin cell design systems, the 

superior electrochemical performance indicate the effectiveness of the buildup P-, N-electrodes with 

multiple mass transports along the 1D and 3D open-end directional gates, and multi-diffused 

channels and holes to potential occupant diffusions of Li+ ions during the lithiation/delithiation 

(discharging/charging) cycling process. A high cycle number of full cell LIB-CR2032-coin cell 

design systems demonstrate ~100% of its Coulombic performance efficacy [50-53]. Scheme 1 

shows evidence of the long-term structural stability of P- and N-electrode architectures, investigated 

by using FE-SEM, and elemental mapping analysis images (EDS), See Figure S14. The stability of 

sustainable anode//cathode architectures renders the robust formation of LIB designs after charge-

discharge cycles (see supporting information S15). Thus, the outstanding stability of excellent 

electrochemical performance after 2000 cycles, the ~100% of Coulombic performance efficacy, 

high capacity at high rate capability, and long cycle life may be due to the excellent electronic 

contact, electrical conductivity, and facile transport along sustainable SFP@C//TO@C surfaces, 

compared with other reported LIB-designs using LiFePO4//TiO2 (cathode/anode) electrodes  (See 

supporting information S16).  
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Conclusions 

We design a powerful, full-scale LIB-CR2032-coin cell model that enables long-term storage 

cycles, continuous rate capability and charging/discharging stability, and excellent energy density. 

The superscalable half-, full-, and large-modulated LIB-models are fabricated by using 

heterogeneous mesopolytope 3D-LFPO@C cathode and capsule 1D-TO@C anode geometrics. In 

this LIB model system, multi-functional 3D-LFPO@C polytopes such as SFP@C, OS@C, RP@C, 

PC@C, and CC@C cathodes enabled fabrication of variable LIB model geometrics. We also study 

the hotkeys of mesopolytope 3D-LFPO@C cathode /capsule 1D-TO@C anode geometrics that 

feature 1D and 3D directional transport gates, high-index facets, active surface mobility sites, and 

hollowness and meso-grooves in potential full-scale LIBs. Among all remarkable 3D-LFPO@C 

cathode polytopes, the hybrid SFP@C hierarchy is a favored candidate for new-generation LIBs 

with excellent electrochemical performances. The superscalable polytope SFP@C// capsule 1D-

TO@C  LIB-CR2032-coin cell models are attained Coulombic performance efficacy of ~99.89%, 

discharge capacity of 93.4% after 2000 cycles, and high specific energy density ≈ 186.98 Wh.kg-1, 

which overrides the requirement for long-driving range of EVs. Aside from the successful design of 

full-scale LIB-CR2032-coin cell, our intensive studies offer a control of a large scale pouch LIB 

models. In this pouch model, the P-, N- electrode LIB-CR2032-coin cell packing is designed in a 

collar fashion. Our finding indicates that the pouch-type LIBs offered high areal discharge 

capacities and remarkable gravimetric and volumetric energy and tap densities with high safety 

concerns, thereby configuring the scale-up requirements for next generation of EVs.  

 

 

Associated Content 
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Supporting Information: Electrochemistry details, XRD pattern, FE-SEM and HR-TEM, nitrogen 

adsorption and desorption isotherms, Energy-dispersive X-ray spectroscopy (EDS), Thermal 

Analysis TG and DTA, FT-IR spectra, Raman spectra, X-ray photoelectron spectroscopy (XPS) 

analysis are provided. Electrochemical results of half-scale 1D-TO@C capsule anode LIB-CR2032 

coin-cells (cyclic voltammetry at various sweep rates and cycle number, charge/discharge curves at 

various cycle numbers, Electrochemical impedance spectroscopy (EIS) and C-rate effect on 

discharge capacity) were supplied. Furthermore, key parameters of stacking layers of pouch-type 

LIB models such as (i) P-, and N-electrode cell capacity balancing, (ii) specific energy density, (iii) 

areal discharge capacity of cell battery, (iv) volumetric energy density and (v) stability of the 

mesopolytope cathode geometrics after multiple cycles are also supplied.  
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Fig. 1 (A-a) Low magnification FE-SEM and (B-a) high magnifications FE-SEM of heterogeneous 

high-index sixteen-faceted polyhedron architectures, labeled as (SFP@C), with active espoused 

facets. (C-a) 3D pattern of SFP polytope divided into two lobes at truncated splitting edge. Insets of 

(C-a) show with high magnification FE-SEM image of grooves inside hollowness-like geode caves 

at the core of SFP@C. (D) Energy-dispersive X-ray spectroscopy (EDX) and elemental mapping 
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analysis (mass ratios) of SFP@C mesopolytope of O (56.8%), Fe (21.7%0, P (19.6%), C (1.9%), 

respectively. (E), (F), (G) and (H) High magnification images and schematic drawing of 

mesopolytopes octahedron simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex 

object (PC@C), and convex complex (CC@C) structures; respectively. (I) and (J) Low and high 

magnification HR-TEM micrographs of SFP@C cathode. (K) High magnification HR-TEM of 

polyhedron lattice pattern at edge with clear thin layer 4-5 nm of C-coating on surface of SFP 

crystals. (L) Selected area electron diffraction (SAED) pattern image of SFP@C unit block with 

incident beam along the [010] crystallographic direction indicating the formation of single crystal of 

orthorhombic LFPO olivine mesocrystals with the SFP@C unit blocks.  
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Fig. 2 (a & b) Low and high magnification FE-SEM and interior/exterior order organization of 

nano-C layers along the entire 1D-TO@C capsules. (c) 3D projects of open-end directional gate of 

1D-TO@C capsules oriented in anodic electrode.  (d) Energy-dispersive X-ray spectroscopy (EDX) 

and elemental mapping analysis of top-view surfaces of 1D-TO@C capsules. The elemental 

mapping of 1D-TO@C composite of well-dispersed C-shell like layers along NRs with percentage 

ratio 70.3:28.4:1.4% corresponding to O: Ti: C elements, respectively.  (e) HR-TEM micrographs of 

1D-TO@C capsules. (e-insert) Representative 1D objects of open-end nanorod capsules. (f) High 

magnification HR-TEM pattern at lattice-edge of 1D-TO capsules. The inset of pattern (f) of the 

corresponding electron diffraction (ED) pattern, and (e-inset) schematic illustration of anodic 1D-

TO@C electrodes. 
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Fig.3 (a) XRD patterns of 3D-LiFePO4@C (3D-LFPO@C) mesopolytopes with different structures, 

facets and morphologies: sixteen-faceted exposure polyhedron (SFP@C), octahedron simplex 

(OS@C), rhombus platelet (RP@C), parallelepiped complex object (PC@C), and convex complex 

(CC@C) mesopolytopes. (b) Crystal structure of olivine-LFPO (16-faceted polyhedron architecture 

SFP material) at direction [010] plane. (c) Nitrogen adsorption-desorption isotherms, (inset-c) 

surface areas in m2/g and (d) the corresponding pore-size distribution curves, including summary of 

pore diameter in nm calculated by nonlinear density functional theory (NLDFT) method from the 

adsorption branch for all 3D-LFPO@C mesopolytopes. 
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Fig. 4 (a, b and c) Cyclic voltammograms (CVs) and electrochemical performances of 

mesopolytope 3D-LFPO@C half-scale cathode LIB-CR2032 coin-cells. (a) CV curves of variable 

homeomorphic electrode surfaces such as SFP@C, OS@C, RP@C, PC@C, and CC@C 

mesopolytopes, respectively. (b) CV curves of SFP@C half-cell cathode at different sweep rates of 

0.1, 0.5, 1, 5 and 10 mVs-1. (c) CV curves of SFP@C half-cell cathode at different cycle numbers 

from 1-100 cycles at 0.1 mVs-1. (d) First discharge capacity of 3D-LFPO@C mesopolytopes based 

on SFP@C, OS@C, RP@C, PC@C and CC@C, respectively at a current rate 0.1C -20C of cathode 

half-cell LIBs. All electrochemical measurements for mesopolytope half-cell 3D-LFPO@C 

cathodes were operated within voltage range of (2.0-4.3 V), at 25 oC.  

 

 

 

 

 

 



45 
 

(A) 

(B) 

 
Fig. 5 (A) Design of 3D multifaceted geometrics of variable homeomorphic electrode surfaces such 

as SFP@C, OS@C, RP@C, PC@C, and CC@C mesopolytopes. (B,a-d) Effect of variable model 

geometrics and multifaceted exposure sites of mesopolytopes on the charge-discharge voltage 

profiles. (B-a) First cycle half-cell cathodes of 3D-LFPO@C mesopolytopes based on SFP@C, 

OS@C, RP@C, PC@C and CC@C, respectively at current rate 0.1C. (B-b) First cycle half-cell 

SFP@C cathode at different C-rates (i.e., 0.1C to 20C range). (B-c) The 16-faceted polyhedron 

structure SFP@C half-cell cathode at a current rate 1.0C and at different cycle number up to 100 

cycles. (B-d) Cycling performance stability for variable cathode model geometrics SFP@C, OS@C, 

RP@C, PC@C and CC@C in half-scale cathode LIB-CR2032-coin cells, at rate of 0.1C for 100 

cycles.  
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Fig. 6 (a) Behavior of specific discharge capacity in mAhg-1 versus current C-rates at 0.1C, 0.2C, 

0.5C, 1C, 2C, 5C, 10C and 20C, and between voltage of 0.9 and 3.5 V for mesopolytope SFP@C // 

capsule 1D-TO@C LIB-CR2032-coin cell models. (b) Performance and behavior of the rate 

capability for mesopolytope SFP@C // capsule 1D-TO@C LIB-CR2032-coin cell models over a 

range of 0.9-3.5V at various current rates from 0.1C to 20C. (C) Enlarged the selected part of (b) 

for rate capability performance results of mesopolytope SFP@C // capsule 1D-TO@C LIB-
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CR2032-coin cell models. All electrochemical measurements for full-cell LIB model were operated 

within voltage range of 0.9-3.5 V at 25 oC.  

 
Fig. 7 (a) Long term cycling performance (stability) and Coulombic performance efficacy for 

mesopolytope SFP@C // capsule 1D-TO@C LIB-CR2032-coin cell models, at rate of 1C up to 

2000 cycles, voltage range 0.9-3.5V, and at room temperature. (b) Enlarged cycling performance 

(stability) and Coulombic performance efficacy for mesopolytope SFP@C // capsule 1D-TO@C 

LIB-CR2032-coin cell models at rate of 1C up to 200 cycles.  
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Scheme 1. Heterogeneous mesopolytope SFP@C // capsule 1D-TO@C LIB-CR2032-coin cells that 

packed-up in a collar fashion to form pouch-type LIB models for long term lithiation/delithiation 

cycling process (A-C) for possible application of electric vehicles (LIB-EVs). (B) The wrapping of 

full cell 1D-TO@C nanorod capsules (anode)// mesopolytope 3D-LFPO@C (3D-LFPO@C) 

(Cathode) electrodes. (C) Mechanistic Li-rechargeable battery during lithiation/delithiation cycling 

process of mesopolytope SFP@C // capsule 1D-TO@C CR2032-coin cells in pouch LIB models.  
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Multifaceted geometric 3D mesopolytope cathodes and its directional transport 

gates for superscalable LIB models 
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S1. Materials, electrode synthesis and characterization  

A- Chemicals used for fabrication of mesopolytope cathode and capsule anode 

For the fabrication of fabrication of mesopolytope cathode and capsule anode materials, electrodes,  and 

cells, all chemicals used are high-grade and purified. For example, lithium acetate dihydrate 

(CH3COOLi · 2H2O), lithium chloride (LiCl), Iron II sulfate heptahydrate (FeO₄S.7H₂O), titanium (IV) 

ethoxide Ti(OC2H5)4, hydrogen peroxide solution (H2O2) and ethanol(C2H5OH) were purchased from 

Sigma–Aldrich Company, Ltd., USA. Phosphoric acid (H3PO4) from Tokyo Chemical Industry (TCI) 

Company, Ltd., Tokyo, Japan. Ethylene glycol (C2H6O2), and lithium hydroxide monohydrate 

(LiOH.H2O), lithium nitrate (LiNO3) and lithium carbonate (Li2CO3) from Nacali Tesque Company, 

Ltd., Kyoto, Japan. All the chemicals are quantitatively added in specific and stoichiometric ratios, 

materials 1D-TiO2 anode and 3D-LiFePO4 cathode compositions were synthesized by the hydrothermal 

methods (see below). Carbon coating process of 1D-TiO2 and 3D-LiFePO4 was done by microwave 

irradiation technique. 

Fabrication of multi-faceted mesopolytope 3D-LFPO geometrics (cathode) 

mailto:sherif.elsafty@nims.go.jp
https://samurai.nims.go.jp/profiles/sherif_elsafty
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Anion-assisted synthesis and control formulation of multi-functional polytope LFPO building blocks of 

16-faceted exposure polyhedron (SFP@C), octahedron simplex (OS@C), rhombus platelet (RP@C), 

parallelepiped complex object (PC@C), and convex complex (CC@C) mesopolytopes. For synthesis of 

LFPO 16-faceted polyhedron (SFP) structure; the LFPO component ratio of Li: Fe: P can be determined 

by rational addition of iron sulfate heptahydrate, phosphoric acid, and Li-anion compounds with 

equivalent ratio of 3:1:1. For real fabrication procedure, we have consequently made the fabrication 

pattern as follows: First step is the formation of composition solution. The components of phosphoric 

acid or iron sulfate heptahydrate were stirred for 1 hour in mixed solution of 5ml H2O/ 5ml ethanol 

(C2H5OH)/ 2.5ml ethylene glycol (C2H6O2). However Li-acetate dihydrate solution is formed in 10ml 

H2O/ 10ml ethanol (C2H5OH)/ 5ml ethylene glycol (C2H6O2) mixture under 1h stirring. Second step is 

the mixing the synthesis LFPO (SEP polytope) composition domains of Li: Fe: P. The phosphoric acid 

is added drop wise (with addition rate of 0.5ml/min) to the iron sulfate heptahydrate solution under 1h 

stirring. To this mixture, Li-acetate solution is also added under same rate conditions. Third step is 

growth seed SFP particles. The mixture domains of Li: Fe: P ratios at pH-7 are stirred for 6h. Fourth 

step is the formation of SFP polytope under hydrothermal treatment. The final mixture is transferred to 

autoclaves and treated at 170 °C for 12 h.  The collected and dried powder products are calcined at high-

temperature of 600oC for 6 hours to fabricate single crystal of 16-facets polyhedron labeled as SFP. 

Using the similar four consequence fabrication procedures at pH-7, and composition ratios, the 

octahedron simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex (PC@C), and convex 

complex (CC@C) mesopolytopes can be fabricated by using different Li-anion sources such as lithium 

chloride, lithium hydroxide monohydrate, lithium nitrate and lithium carbonate, respectively.  

 

Fabrication of 1D-TiO2-anatase (1D-TO) nanorod capsules (anode)  
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A homogenous solution of a mixture of 3 ml titanium (IV) ethoxide Ti(OC2H5)4, 20ml milliQ-water, 

20ml ethanol, 20ml HCl, and 300 mg thiouria is formed. To control the growth seed 1D-TO particles, 

the homogenous domains at pH-9.2 is mixed with 4 ml H2O2 solution with addition rate of 0.5ml/min, 

and then the all mixture is stirred for 2h. To form the 1D-TO nanorod geometrics, the hydrothermal 

treatment pattern at 170 °C for 12 h is used. The final power product is thermally treated at 600oC for 3 

hrs, leading to fabricate 1D-TO nanorod geometric capsules. 

 

Fabrication of the mesopolytope 3D-LFPO@C and 1D-TO@C capsules  

The carbonization methodology of 3D-LFPO@C polytopes (cathodes) and 1D-TO@C capsules (anodes) 

was carried out by using microwave radiation technique using the following patterns. First, the powder 

materials are mixed with 5% w/w glucose as carbon source/15ml ethanol (C2H5OH) contents. Second, 

the heterogeneous mixture is treated under microwave irradiation using a temperature at 80 oϹ, and 

maintaining for 0.5 h under irradiation. Third, the resultant black precipitate is calcined in Ar 

atmosphere under the following thermally temperature pattern with heating rate 5oC/min as follows; (i) 

treatment 350oC for 0.5 h, and then (ii) following by high-temperature treatment set at 600oC for 2 h. 

Under this simple procedure, the 3~5 nm carbon-shell dot-dressers are coated the outer surface layers of 

both anode and cathode materials without changes in the structural ordering, and atomic scale 

geometrics of resultant 1D-TO@C anode and polytope 3D-LFPO@C cathode materials.  

 

Formulation of P- and N-electrodes and LIB cells 

The 1D-TO-capsules and 3D-LFPO polytope-modified nanocarbon materials were used for fabrication 

of anode and cathode electrodes. Thus the these 1D-TO@C anode/cathode geometrics such as high-

index, sixteen (16)-faceted polyhedron-crystal-structure SFP@C, octahedron simplex (OS@C), rhombus 
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platelet (RP@C), parallelepiped complex object (PC@C), and convex complex (CC@C) polytopes are 

used in fabrication of half-, full-, and large-scale LIB models. 

B- Characterization of mesopolytope cathode and capsule anode 

To investigate the crystal structures of both 1D-TiO2@C nanorods-like capsules (anode) // 3D-

LiFePO4@C mesopolytope cathode composites, X-ray diffraction (XRD) characterization was 

performed by using a 18 kW diffractometer (Bruker D8 Advance X-ray diffractometer).  

The microscopic patterns of 1D-TiO2@C nanorods-like capsules (anode) and 3D-LiFePO4@C cathodes 

with heterogeneous high-index, homeomorphic sixteen-faceted exposure polyhedron (SFP@C), 

octahedron simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex object (PC@C), and 

convex complex (CC@C) mesopolytopes were investigated by the following techniques: (1) Field 

emission-type Scanning electron microscope FE-SEM (Jeol JSM-Model 7000F, JEOL Ltd) at 20 kV. (2) 

In addition to FE-SEM, the geometric structures were investigated by high-resolution transmission 

electron microscopy (HRTEM) images, electron diffraction (ED), scanning transmission electron 

microscopy (STEM). These HRTEM/ED/STEM techniques were performed at atomic-level imaging, 

structural and chemical analysis field emission-type TEM (JEM-ARM200F) at 200 kV using machine 

model of JEOL 2100F, JEOL Ltd.  

The textural surface properties such as pore size distribution and surface area of LFPO@C (cathode) 

mesopolytope building blocks with heterogeneous high-index, homeomorphic sixteen-faceted exposure 

polyhedron (SFP@C), octahedron simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex 

object (PC@C), and convex complex (CC@C) mesopolytopes and 1D TO@C nanorod-like capsules is 

estimated by N2 isotherms at 77 K using a BELSORP36 analyzer (JP. BEL Co., Ltd.).  

The thermal stability of LFPO@C mesopolytopes (cathode) and TO@C NR capsules (anode) is crucial 

for establish outstanding cycling performance, stability and Coulombic efficiency for 3D super-scalable 
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mesopolytope-built-in SFP@C//TO@C full-scale LIB-model under wide range of temperatures and after 

numerous cycles (ageless life time).  To investigate the thermal stability of cathode//anode samples, the 

weight content loss of heterogeneous mesopolytope building blocks cathode composites were 

determined from the weight loss curve measured under simulated air atmosphere on thermo-gravimetric 

and differential scanning calorimetry (TG/DSC) instrument TG/DSC-60 (Shimadzu, Japan) with a heating 

rate of 10 0C min-1.  

X-ray photoelectron spectroscopy (XPS) analysis (0-1400eV) using Perkin–Elmer Co., USA, Raman 

spectroscopy (HR Micro Raman spectrometer, Horiba, Jobin Yvon), and Fourier transform infrared 

spectroscopy (ATR-FTIR, Spectrum 100, Perkin-Elmer, Inc., USA), respectively, are used for surface 

characterization of . 3D-LFPO@C (cathode) mesopolytopes with heterogeneous high-index, 

homeomorphic sixteen-faceted exposure polyhedron (SFP@C), octahedron simplex (OS@C), rhombus 

platelet (RP@C), parallelepiped complex object (PC@C), and convex complex (CC@C) mesopolytopes 

and 1D TO@C nanorod-like capsules (anode). 

C- Control design of polytope LFPO@C (cathode) and TO@C capsules (anode) 

CR2032-coin LIB formulations 

All consumed chemicals for new generation of heterogeneous mesopolytope 3D LFPO@C// capsule 1D-

TO@C full-scale LIB-model, half-scale 1D-TO@C capsule LIB-anode model, and half-scale 3D-

LFPO@C mesopolytope LIB-cathode model have high analytical grade and without further purification. 

For example, lithium hexafluoro-phosphate LiPF6, carbon black and polyvinylidene fluoride (PVDF) are 

from Sigma–Aldrich Company, Ltd., USA. N-methyl-2-pyrrolidone (NMP) from Tokyo Chemical 

Industry (TCI) Company, Ltd., Tokyo, Japan.  To carry out the electrochemical measurements, the Li-

ion intercalation was performed using CR2032 coin-cells that assembled in a glovebox under pure Ar-

gas (see Figure S1).  
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Within a design of half-scale 1D-TO@C capsule LIB-anode model, and half-scale 3D-LFPO@C 

mesopolytope LIB-cathode model, we used Lithium foil used as reference and counter electrode to 

control the electrochemical performances of the half-scale 1D-TO@C capsule LIB-anode model and 

half-scale 3D-LFPO@C (i.e., SFP@C, OS@C, RP@C, PC@C and CC@C and TO@C) mesopolytope 

LIB-cathode models. In turn, we designed 1D-TO@C//3D-SFP@C as anode//cathode full-cell CR2032-

coin LIB formulations for electrochemical measurements of full-scale LIB-EV model system (Figure 

S1).  

In order to fabricate the 3D-LFPO@C cathode // 1D-TO@C anode full-scale LIB-model, half-scale 1D-

TO@C capsule LIB-anode model, and half-scale 3D-LFPO@C mesopolytope LIB-cathode CR2032-

type coin cells, the liquid electrolyte prepared as a solution of LiPF6 (1 M) conductive salt in ethylene 

carbonate/diethyl carbonate (1:1 v/v). In addition, to fabricate mesopolytope 3D-LFPO@C and capsule 

1D-TO@C in P- and N-working electrodes, we used a mixture of 1D-TO@C capsule anode or 3D-

LFPO@C polytope cathode materials/ carbon-black/polyvinylidene fluoride (PVDF) with equivalent 

mass ratio of 75:15:10, respectively. To fabricate the active material slurries, a rational amount of N-

methyl-2-pyrrolidone (NMP) solvent is added with 1 h stirring. The working electrodes are prepared by 

mixing each active slurry of mesopolytope 3D-LFPO@C and capsule 1D-TO@C (i.e., cathodic and 

anodic materials) into 10 µm-aluminum (Al) and 8 µm-cupper (Cu) foils. The loading amount (i.e., 

mass/electrode area) of the active1D-TO@C capsule anode or 3D-LFPO@C polytope cathode materials 

into 8 µm-Cu or 8 µm-Al foils is 6.63 and 13.14 mg/cm-2  

To investigate the electrochemical performance of the 3D-LFPO@C cathode // 1D-TO@C anode full-

scale LIB-model, half-scale 1D-TO@C capsule LIB-anode model, and half-scale 3D-LFPO@C 

mesopolytope LIB-cathode CR2032-type coin cells in terms of galvanostatic charge/discharge 

characteristics, we used multichannel battery system (LAND CT2001A, Wuhan, China). Cyclic 
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voltammetry (CV) measurements of 3D-LFPO@C cathode // 1D-TO@C anode full-scale LIB-model, 

half-scale 1D-TO@C capsule LIB-anode model, and half-scale 3D-LFPO@C mesopolytope LIB-

cathode CR2032-type coin cells are also tested using (CHI 660c electrochemical workstation). 

Electrochemical impedance spectroscopy (EIS) was performed using (Zennium/ZAHNER-Elektrik 

GmbH & CoKG, controlled by Thales Z-3.0 software–frequency range from 0.1 Hz to 1 MHz). ZS-102 

tap density meter was used measure the tap density of the electrodes. EIS (electrochemical impedance 

spectroscopy) results can be illustrated on the basis of its equivalent circuit, which is consisted of 

electrolyte resistance (Rs), charge transfer resistance (Rct), and Warburg impedance of representative 

Li+-ion transport along mesopolytope electrodes (Wf), respectively. All the electrochemical performance 

measurements were done at 25 oC.  
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Fig. S1. (a) Illustration of the 3D-LFPO@C cathode // 1D-TO@C anode full-scale LIB-model, half-

scale 1D-TO@C capsule LIB-anode model, and half-scale 3D-LFPO@C mesopolytope LIB-cathode 

CR2032-type coin-cell models. 

S2-S5 Characterization of mesopolytope 3D-LFPO@C geometrics 

The morphologies of large-scale 3D-LFPO@C mesopolytopes with heterogeneous high-index, 

homeomorphic octahedron simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex object 

(PC@C), and convex complex (CC@C) mesopolytopes of variable model geometrics and multifaceted 

exposure sites were investigated using FE-SEM, EDS and HR-TEM pattern images for prepared 

hierarchy samples as shown in Figs S2, S3, S4 and S5; respectively. The morphologies of parent 
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heterogeneous high-index, homeomorphic sixteen-faceted exposure polyhedron (SFP@C), octahedron 

simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex object (PC@C), and convex 

complex (CC@C) mesopolytopes with variable model geometrics and multifaceted exposure sites were 

investigated using low and high magnification FE-SEM, EDS and HR-TEM images for prepared 

hierarchy samples as shown in Figs; S2 (a-b) and S3(a-c), respectively. 

The crystal structures of large-scale mesopolytope building blocks with heterogeneous mesopolytopes of 

variable model geometrics and multifaceted exposure sites were further analyzed by HR-TEM as shown 

in Figs. [S2(d-f), S3(e-g), S4(d-f) and S5(e-g)]; respectively.  All samples exhibit evident crystal planes 

with interatomic spacing of [(0.39,0.98), (0.41,1.01) (0.39,1.01) and (0.39,1.03) nm, identical to (001) 

and (100) planes of orthorhombic polytope building blocks as cathode composites; respectively. SAED 

pattern images of OS@C, RP@C, PC@C and CC@C particles can be shown in Figs.[S1(f), S2(g), S3(f) 

and S4(g)]; respectively. It is evident that, exposed [010] ac-plane are prominent for as prepared 

heterogeneous polytope building blocks. The low surface energy of [010] plane led to form stable 

direction and orientation on surface topology than that of the other crystal planes, indicating that the 

[010] plane is suitable surface for Li+ ion diffusion and accommodation.  

HR-TEM lattice pattern images (Figs. [S2(e), S3(f), S4(e) and S5(f)]) show clear, thin and smoothed 

layer 4-5 nm of C-coating at the surface edge on prepared particles which has been characterized by 

Raman spectra, supporting information (Fig. S8). Our finding indicates that surface coating of prepared 

polytope materials with highly conductive C dots facilitates electron/ion transports that improve the 

electronic conductivity and ionic diffusion dynamics. Moreover, capsulate the electrode material with 

thin layer of conductive C increases the stability of the integral hierarchy structured heterogeneous 

mesopolytope building blocks as cathode composites structures with within high rate cycling. Energy-

dispersive X-ray spectroscopy (STEM-EDS) was performed with high-resolution elemental mapping to 
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investigate Composition distribution of the composite chemical contents along the nanostructures 

morphological hierarchy OS@C, RP@C, PC@C and CC@C unit blocks by using a 200 kV TEM (JEOL 

2100F, JEOL Ltd) field emission-type transmission electron gun microscope as shown in Fig. S2(c), 

S3(d), S4(c) and S5(d). HR-TEM and STEM-EDS results indicate the purity of OS@C, RP@C, PC@C 

and CC@C samples as pure olivine orthomorphic mesopolytope building blocks as cathode composites 

with no present of other foreign elements. 
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S2. Morphological structure of octahedron structure (OS@C) geometrics 

 

Fig. S2 (a) and (b) High magnification of FE-SEM for heterogeneous mesopolytopes as cathode with a 

3-D cross-polytope octahedron simplex (OS) (i.e., eight faces, twelve edges, and six vertices) and 

exposed {111} facets labeled as (OS@C). (c) Elemental mapping of OS@C. (d, e and f) HR-TEM 

micrographs with low and high magnifications. (e) The lattice pattern at edge with clear thin layer 4-5 

nm of C-coating on surface of OS particle. (f) Selected area electron diffraction (SAED) pattern image 

of OS@C unit block with incident beam along the [111] crystallographic direction indicates the single 

crystal of OS@C geometrics.  
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S3. Morphological structure of rhombus platelets (RP@C) geometrics 

 

Fig. S3 (a), (b and c) Low and high magnifications of FE-SEM for heterogeneous mesopolytopes as 

cathode with rhombus platelets particles -like morphological and exposed [010] facets labeled as 

(RP@C). (d) Elemental mapping of RP@C. (e, f and g) HR-TEM micrographs with low and high 

magnifications. (f) The lattice pattern at edge with clear thin layer 4-5 nm of C-coating on surface of RP 

particle. (g) Selected area electron diffraction (SAED) pattern image of RP@C unit block with incident 

beam along the [010] crystallographic direction indicates the single crystal of RP@C geometrics. 
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S4 Morphological structure of parallelepiped complex structure (PC@C) complex geometrics 

 

Fig. S4 (a) and (b) Low and high magnifications of FE-SEM for heterogeneous mesopolytopes as 

cathode composites with parallelepiped complex structure (PC@C). (c) Elemental mapping of PC@C. 

(d, e and f) HR-TEM micrographs with low and high magnifications. (e) The lattice pattern at edge with 

clear thin layer 5-7 nm of C-coating on surface of PC particle. (f) Selected area electron diffraction 

(SAED) pattern image of PC@C unit block with incident beam along the [100] crystallographic 

direction indicates the single crystal of PC@C geometrics.  
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S5. Morphological structure of cuboid complex structure (CC@C) complex 

 

Fig. S5 (a), and (b) Low and high magnifications of FE-SEM for heterogeneous complex 

mesopolytopes as cathodes with dominated convex complex polytopes (CC@C), combinatorial 

manifolds of simple geometric polygons such as triangle, cuboid, pyramid, and tehrahedra objects that 

formed disjoint edges and vertices in non- homogeneous coordinates. (d) Elemental mapping of CC@C. 

(e, f, g and h) HR-TEM micrographs with low and high magnifications. (g) The lattice pattern at edge 

with clear thin layer 4-6 nm of C-coating on surface of CC particle. (h) Selected area electron diffraction 

(SAED) pattern image of CC@C unit block with incident beam along the [100] crystallographic 

direction indicates the single crystal of CC@C geometrics. 
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S6. Thermal Stability of mesopolytope 3D-LFPO@C cathodes 

TG/DSC measurements were performed to 3D-LFPO@C polytope architects cathodes using TG-60 

(Shimadzu, Japan) instrument with a heating rate of 10 oC min-1. Thermal stability and loss in weight 

content of large-scale mesopolytope building blocks with heterogeneous SFP@C, OS@C, RP@C, 

PC@C, and CC@C cathode composites are clearly observed by TG/DSC analyses, Fig. S6. The TG and 

DSC curves of the tested cathode composites are similar with all polytope cathodic samples. Three 

discrete regions of weight loss or heat transfer were found under the temperature ranges 0-1000 oC. The 

weight loss or heat transfer region below 350oC is due to the releasing of absorbed water and 

chemisorbed crystal water (desorption of water). The second weight loss or heat transfer region is from 

350oC to 550oC for the SFP@C, OS@C, RP@C, PC@C, and CC@C mesopolytopes indicates the 

endothermic effects of heating C-shell-dressers onto cathodic LFPO@C samples. The third weight loss 

or heat transfer region above >> 600oC is due to the exothermic crystallization peaks of 3D-LFPO@C 

polytope architects. 
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Fig. S6 TG-DSC curves of the different large-scale mesopolytopes with heterogeneous high-index, 

homeomorphic SFP@C, OS@C, RP@C, PC@C, and CC@C cathode composites.  
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S7. Chemical structure of 3D-LFPO@C mesopolytope cathodes 

The chemical compositions and framework structure of the SFP@C, OS@C, RP@C, PC@C and CC@C 

cathode materials were investigated by Fourier transform infrared spectroscopy. Fourier transform 

infrared (FT-IR) spectra were performed to polytope SFP@C samples, Fig. S7. FT-IR spectrum of 

SFP@C exhibits a peak at 578 cm−1, small intense peak around 1440 cm−1 and peak at 3250 cm−1 that 

attributed to Fe−O, P−C and C=H2 stretching vibrations. Strong band centered at 1090 cm−1 is ascribed 

to −CPO3 group tetrahedral stretching vibration. The weak peak at 1536 cm−1 is due to C=H2 bending 

vibration. Our finding indicates the formation of Fe-P framework with LFPO materials. The C-coated 

materials exhibit characteristic peaks (see star marks), which is belonging to aromatic oxides at 1615 

and 1718 cm-1, respectively. The finding indicates the formation of C=O stretching with the LFPO 

structures. 

 

Fig. S7 FT-IR spectra of 3D-LFPO@C with sixteen-faceted exposure polyhedron (SFP@C), octahedron 

simplex (OS@C), rhombus platelet (RP@C), parallelepiped complex object (PC@C), and convex 

complex (CC@C) mesopolytopes. 
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S8. Framework structures of 3D-LFPO mesopolytope geometrics  

Raman spectroscopy results for SFP@C polytope are shown in Fig.S8. (a and b). The bands at 640.0 

and 940.6 cm−1 indicate the symmetric modes of ofide forms (Fe3O4) and (PO4
3−) groups oriented in the 

framework of 6-faceted exposure polyhedron (SFP@C) polytope. The appearance of these bands under 

Raman conditions indicates that the ~5 nm C-shell dot-dressers coated the outer surface SFP@C layers 

are very thin enough to enable the penetration of the laser beam. Two peaks revealed at 1342.63 and 

1588.52 cm−1 are attributed to D and G bands of carbon in 3D-LFPO mesopolytopes (such as SFP@C, 

OS@C, RP@C, PC@C, and CC@C structures), respectively. The C-D-peak resolutions indicate the 

formation disordered C-shell dot-dressers with highly defective graphite structures. The C-G-peak 

resolutions indicate the formation of graphite structures with orientation of in-plane vibrations with E2g 

symmetry. Our finding indicate that the ~5 nm C-shell dot-dressers coated the outer surface SFP@C 

layers may occurred throughout the cross-linking bonds of C=C, C=N, C=O, respectively.  

 

Fig. S8. (a and b) Raman spectra of 3D-LFPO mesopolytopes such as SFP@C, OS@C, RP@C, 

PC@C, and CC@C structures. 
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S9. Surface binding and chemical composition of 3D-LFPO mesopolytope geometrics 

 

Fig. S9 X-ray photoelectron spectroscopy (XPS) analysis and survey spectrum of 3D-LFPO 

mesopolytopes such as SFP@C, OS@C, RP@C, PC@C, and CC@C structures 

 

XPS spectrum provides the sensitive surface information in terms of compositions, oxidation states and 

valences of SFP@C polytopes, Fig. S9. The XPS spectral peaks at 711.2 and 530.9 eV are assigned to 

the (BEs) binding energies of Fe2p and O1s, respectively. The Fe-BE is related only to its valence state 

(Fe2+) without interference by other valence states. The BEs of P2p, Li1s and C1s peaks are shown at 
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133.4, eV 55.8 and 284.9 eV, respectively. XPS results indicate that the high-index, sixteen (16)-faceted 

polyhedron-crystal-structure SFP@C polytope composites are consisted of all elements of olivine 3D-

LiFePO4@C polytopes, in agreement with XRD profiles. 

 

Together, the XPS, Raman spectroscopy, and FTIR analyses indicate the following findings:  

i. The formulation of 3D-LFPO polytope-modified nanocarbon architectures, such as high-

index, sixteen (16)-faceted polyhedron-crystal-structure SFP@C, octahedron simplex 

(OS@C), rhombus platelet (RP@C), parallelepiped complex object (PC@C), and convex 

complex (CC@C) polytopes, which are used as cathodes in half-, full-, and large-scale LIB 

models.  

ii. The multi-functional heterogeneous anode/cathode materials via coating of nano-carbon 

layers onto their outer surfaces.  

iii. The thermal, chemical and physical stability of homeomorphic sixteen-faceted exposure 

polyhedron (SFP@C), octahedron simplex (OS@C), rhombus platelet (RP@C), 

parallelepiped complex object (PC@C), and convex complex (CC@C) mesopolytopes, 

iv. The formation of variable model geometrics with superscalable mesopolytope 3D-LFPO@C 

crystal facets that have multifaceted exposure sites and anisotropic surface topologies. 

v. The multi-functional surface composites, reactively heterogeneous high-index components, 

active surface mobility sites are probably responsible for efficient electrochemical 

performances of fabricated polytope 3D-LFPO@C cathode // capsule TO@C anode full-

scale LIB-CR2032 coin-cell models, and both half-scales of 1D-TO@C capsule LIB-anode, 

and 3D-LFPO@C LIB-cathode model cells. 
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S10. Crystal structure formation of capsule 1D-TO@C  

 

Fig. S10 XRD patterns of the capsule 1D-TO@C anode in half-cell LIB. (Inset) Anatase crystal structure 

with the I41/amd symmetry group oriented along [101]-plane direction. 
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S11. Effective 3D LFPO@C cathode model geometrics in the long-period stability of half-scale 

cathode LIB-CR2032 coin-cells 

 

Fig. S11 Effect of variable model geometrics and multifaceted exposure sites of mesopolytopes SFP@C, 

OS@C, RP@C, PC@C, and CC@C half-cell cathodes on the electrochemical performance in terms of 

(a) Capability performance rates over a range of 2.0–4.3V at various current rates from 0.1C to 20C; (b) 

the electrochemical impedance spectroscopy (EIS) results; (c) Temperature dependence comparison of 

electrical conductivity; (d) the EIS results after 200 cycles. Among all mesopolytopes cathodes, the 

SFP@C cathode exhibits good conductivity and the high electron transport along tested temperature 

range (~250 to 455K). All electrochemical measurements for half-cell anodes were at room temperature. 
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S12. Electrochemical measurements of half-cell 1D-TO@C LIB-CR2032 coin-cells models 

 

Fig. S12 (a) CV curves of half-cell 1D-TO@C anode LIB-CR2032 coin-cell models at different cycle 

numbers from 1st -500th cycles at 0.1 mVs-1. (b) The charge-discharge voltage profiles of first cycle at 

multi-current rates 0.2C, 0.5C, 1C, 5C, 10C and 20C for half-cell TO@C anode material. (c) First 

discharge capacity of capsule 1D-TO@C anode N-electrode at current rates 0.2C -20C of half-cell LIBs. 

(d) The electrochemical impedance spectroscopy (EIS) results of capsule 1D-TO@C anode N-electrode 

in half-cell anode materials. All electrochemical measurements for half-cell TO@C anode material were 

operated within voltage range of (1.0-3.0 V), at 25 oC. (e) Rate capability performance rates for half-

scale 1D-TO@C capsule anode LIB-CR2032 coin-cells at various current rates from 0.1C to 20C.  
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S13. Key parameters of stacking layers of cell battery based pouch-type LIB models 

The mass fraction components of formulated pouch-cell LIB models 

The pouch LIB models are basically designed through a set of stacked layers of mesopolytope SFP@C 

cathode P-electrode // capsule 1D-TO@C anode N-electrode that oriented in full-scale LIB-CR2032-

coin-cell components (Figure S13). The mass fraction of cathode as an individual component in a cell 

battery is approximately 43.8%, where the total cell mass equals 6 g (0.006 kg) see Figs. S13.  

Per of our practical LIB-CR2032-coin cells, the mass composition ratio of active materials used in the 

working cathode electrode (SFP@C: carbon-black: PVDF linker) is 75: 15: 10. Then, the specific energy 

density of mesopolytope SFP@C // capsule 1D-TO@C LIB-CR2032-coin cells is practically equal to 

186.98, and 177.81 Wh/kg at 0.1 C, and 1C, respectively for the SFP@C//TO@C full-scale LIBs (see 

below). 

 

Fig. S13 Schematic diagram of the pouch cell model with its mass fraction of individual components 

used to control formation of stacking layers of mesopolytope SFP@C cathode P-electrode // capsule 1D-

TO@C anode N-electrode into pouch LIB-model.  
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Mass balancing of P-, and N-electrodes in full-cell capacity ((.i.e., the balancing (P/N)Cap ratio)  

The specific mass fraction value of P- and N-electrode materials presented in the mesopolytope SEP@C 

cathode P-electrode // capsule 1D-TO@C anode N-electrode in full-scale LIB-CR2032-coin-cells plays 

a major influence in controlling the cell capacity, energy density, and safety factors. In this key design of 

LIB-tradeoff configuration of the mesopolytope SEP@C cathode P-electrode // capsule 1D-TO@C 

anode N-electrode oriented in full-scale LIB-CR2032-coin-cells, we consider a control of the balancing 

(P/N)Cap ratio. The rational mass ratios of polytope SEP@C (P-electrode) and capsule 1D-TO@C (N-

electrode) enable a reasonable control between these two contrast choices of (i) safety issue and (ii) 

preserving a high specific energy density. One of electrochemical properties firmly dependent of P/N 

proportion is the formation of lithium plating/deposition along anode surfaces during a charging 

procedure. To avoid the negative impact of lithium plating, which is largely a regressive aging and 

safety process, a slight increase in the overall mass loading capacity of the capsule 1D-TO@C anode (N-

electrode) is required for both betterment safety and high specific energy storage [Ref-S7-S8]. It is 

necessary to maintain the balancing (P/N)Cap ratio ≈1.0: 1.07-1.14, as an optimal tradeoff relationship of 

our polytope SEP@C (P-electrode) and capsule 1D-TO@C (N-electrode) full cells (i.e., ensuring cell 

battery safety with production of high energy storage), according to the following key clues: 

(i) To have cell battery safety betterment (i.e., which is practically controlled by increasing the 

mass loading of capsule 1D-TO@C (N-electrode), leading to (P : N)Cap ratio of  <1 : 1), and  

(ii) To keep the high specific energy storage (i.e., which is practically controlled at equal mass 

loading between the polytope SEP@C (P-electrode) and capsule 1D-TO@C (N-electrode), 

leading to equal capacities (i.e., (P:N)Cap ratio  of 1:1).  

Therefore, we fabricate polytope SEP@C cathode P-electrode // capsule 1D-TO@C anode N-

electrode oriented in full-scale LIB-CR2032-coin-cells under optimizing (P:N)Cap ratio of ≈ 1.0: 1.09. 
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Specific energy density measurements of SFP@C //1D-TO@C full-scale CR2032-coin LIB cells 

For the practical LIB-CR2032-coin cells, the mass composition ratios of active material components 

(i.e., SFP@C: carbon-black: PVDF of 75: 15: 10, respectively) play a role in the determination of the 

specific energy density. In galvanostatic charge-discharge test recorded at constant current and average 

voltage of 3.45V, one can determine the specific energy for the SFP@C cathode (Wh/kg) according to 

the following equation: 

The specific energy density of SFP@C cathode P-electrode= the average working voltage (3.45 V) x 

maximum discharge capacity delivered at C-rates by half-cell cathode (Ah/kg) x active material % in 

total components.  

Accordingly, at C-rate 0.1(mV/s);  

The specific energy density of the SFP@C cathode (Wh/kg) = 3.45 * 165*0.75 =426.9 Wh/kg & 

 

Accordingly, at C-rate 1.0 (mV/s);  

The specific energy density of the SFP@C cathode (Wh/kg) = 3.45 *156.9 *0.75=405.97 Wh/kg. 

 

The specific density energy for the mesopolytope SEP@C cathode P-electrode // capsule 1D-TO@C 

anode N-electrode in full-scale LIB-CR2032-coin-cells can be determined according to the following: 

 

Considering the SFP@C cathode weight percentage of the full cell is 43.8 %, then one can consider 

as follows:  

(i) The specific energy density of the full cell LIBs at C-rate 0.1(mV/s) = 426.9*0.438= 186.98 

Wh/kg.  

(ii) The specific energy density of the full cell LIBs at C-rate 1.0 (mV/s) =426.9 * 0.438= 

177.81 Wh/kg. 
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S14. Areal discharge capacity and volumetric energy density of cell battery pouch LIB-models 

To control design of the cell battery pouch LIB-models, mesopolytope SEP@C cathode P-electrode // 

capsule 1D-TO@C anode N-electrode stacked pouch LIB-model is designed with specific 3D 

dimensions of 35 mm (width), 55 mm (length) and ~2.5-3mm (thickness), respectively. The stacking 

sequence of P- and N-electrodes can be designed in well-packed and dense layers of TO@C-anode (5-

layers/10-sides)//SFP@C-cathode (6-layers/10-sides) oriented in coin cells. In our large-scale, stacking-

layer design configurations of pouch LIB-types, we consider the following key factors: 

1. The mass component and fraction are determined along the pouch cell constitutes as shown in 

Figures S13.  

2. The stacking-layer SFP@C (cathode) and TO@C (anode) design indicates that the actively-loaded 

mass of P-electrode cathode and N-electrode anode in the configurations of pouch LIB-types can 

be 1.97 g and 0.949 g; respectively. 

3. Well-packed and dense layers TO@C-anode (5-layers/12-sides)//SFP@C-cathode (6-layers/12-

sides) are contiguously connected into a series for configurations of pouch LIB-types.  

 

In order to calculate the areal discharge capacity of pouch LIB designs, we optimize the electrode area 

of the full-cell mesopolytope SEP@C cathode P-electrode // capsule 1D-TO@C anode N-electrode LIBs 

by selection the following dimensions of (3*5=15 cm2) and (3*4.75 = 14.3 cm2) for SFP@C-cathode 

and 1D-TO@C-anode, respectively. Thus, the total area of the cathode and anode coverage the pouch 

LIB cells are 150 and 143 cm2; respectively. Therefore, the mass stacking of mesopolytope SEP@C 

cathode P-electrode and capsule 1D-TO@C anode N-electrode is 13.14 and 6.63 mg/cm2, respectively. 

Our finding indicates that the areal discharge capacity the stacking mesopolytope SEP@C cathode P-

electrode and capsule 1D-TO@C anode N-electrode is 1.144 and 1.145 Ah/cm2, respectively. The 
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relatively similar values of areal discharge capacity of mesopolytope SEP@C cathode P-electrode and 

capsule 1D-TO@C anode N-electrode in the pouch LIB models indicate the following issues: 

 the equal value of  specific discharge capacity for mesopolytope SEP@C cathode P-electrode 

// capsule 1D-TO@C anode N-electrode, giving a real evidence of reasonable control of the 

(P: N)Cap capacity ratio = 1.0: 1.09, and 

 the optimal tradeoff LIB manufacturing relationship between the safety betterment  and the high 

specific energy density.   

 

To calculate the volumetric energy density of pouch LIB designs, we formulated the full-scale LIB using 

stacked-layers of SEP@C cathode P-electrode // capsule 1D-TO@C anode N-electrode CR2032-coin 

cells oriented in pouch design. Therefore the calculation of volumetric energy density can be as follows:  

- Volumetric energy density = gravimetric cell energy (Wh/kg)* total cell mass (kg)/ cell active area 

volume (L) 

- However, gravimetric cell energy = 186.98 Wh/kg; total cell mass = 6 g = 0.006 kg; active area 

volume = 35 mm (width)* 55 mm (length)* 2.4 mm cell thickness = 4620 mm3 = 0.00462 L 

Then, the volumetric energy density =124.5 * 0.006 / 0.00462 = 242.83 Wh/L 
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S15. Stability of the mesopolytope cathode geometrics after multiple cycles 

The effect of the multiple electrochemical charge/discharge cycling profiles after long-term 2000 cycles 

at rate of 1C on the morphological 3D LFPO@C cathode architects, for example, is investigated by 

using FE-SEM, and elemental mapping analysis images (EDS) Figure S14. The structural 

decomposition/degradation, to some extent, indicates the particular ageing of 3D LFPO@C centering 

components/sites after 2000 cycles of full-scale LIB comparing to pre-cycled LFPO@C electrodes, 

Figures (1, S2-S5). However, the outstanding stability of excellent electrochemical performance after 

2000 cycles, the ~100% of Coulombic efficiency, high capacity at high rate capability, and long cycle 

life may be due to the maintenance of sustainable anode//cathode potentials. The following aspects are 

featured: 

I. rapid electron movement reaction and Li+-ion transportation kinetics along the mesopolytope 

crystal interfaces and facets during lithiation/delithiation processes; 

II. multiple accommodation and storage space-like pockets along 1D and 3D meso/macrodiffusive 

open gates and channels, thereby enabling enable multiple directional electrons/Li+ ion pathways, 

decrease in the distance of electron transport, high tap density, and multidiffusible Li+ ions.; 

III. a wide range of transport pathways of Li+ ions along the 1D open-end directional gates of 1D 

TO@C nanorod capsules and 3D superscalable 3D-SFP@C crystal facets, thereby offering ageless, 

attainable LIBs with superb rate capability and long cycling stability; 

IV. excellent electronic contact, electrical conductivity, and facile transport along sustainable 

mesopolytope SFP@C // capsule 1D-TO@C electrode surfaces; and  

V. reduction of Li+-ion diffusion paths/distances on cathode//anode surfaces during the 

lithiation/delithiation process. 
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Fig. S14 FE-SEM, EDX-elemental mapping analysis of the different large-scale mesopolytope building 

blocks with heterogeneous high-index, homeomorphic sixteen-faceted exposure polyhedron SFP@C, 

OS@C, and RP@C mesopolytopes after long-term 2000 cycles at 1C. EDS elemental mapping analyses 

and images for SFP@C, OS@C, and RP@C, after long-term 2000 cycles at 1C (i-iv). 
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S16. Potential of full-cell mesopolytope SEP@C cathode P-electrode // capsule 1D-TO@C anode 

N-electrode LIBs with other designs 

 

Table S1 A comparison between the full-cell mesopolytope SEP@C cathode P-electrode // capsule 1D-

TO@C anode N-electrode LIBs and the other reported LiFePO4//TiO2 LIBs. 

Cathode 

material 
Anode material 

Nominal 

Voltage 

(V) 

Cycles 

Specific 

Capacity 

mA h g-1 

Coulombic 

efficiency 
Ref 

LiFePO4 TiO2 1.5 
retention of ∼100% 

for 200 cycles 
140 ~100% 

Ref 

[S1] 

LiFePO4 anatase/graphene 1.6 700 127 ~ 100% 
Ref 

[S2] 

LiFePO4@NC 

spinel 

Li4Ti5O12/rutile-

TiO2@C 

1.8 
retention of ∼83.3%  

for 200 cycles 
100.1  

Ref 

[S3] 

LiFePO4 

Anatase TiO2 

hollow 

nanofibers 

1.4 

retained 88% of its 

reversible capacity 

after 300 cycles 

103 > 99 % 
Ref 

[S4] 

LiFePO4 Rutile TiO2 1.8 

retained 50% of its 

reversible capacity 

after 40 cycles 

150 
Not 

mentioned 
Ref [5] 

LiFePO4 
Anatase 

TiO2 
1.6 

81% of its initial 

capacity after 300 

cycles at 20C 

160 
Not 

mentioned 

Ref 

[S6] 

LiFePO4-C TiO2-C 1.5 
retention of ∼77% @ 

higher rate of 7.5 C 
160 - 

Ref 

[S7] 

LiFePO4 
spinel 

Li4Ti5O12/C 
1.8 

Retain 98.1% after 

400 cycles 
167 ~100% 

Ref 

[S8] 

LiFePO4 spinel Li4Ti5O12 1.65 
Retain 98.9% after 

100 cycles 
150 ~100% 

Ref 

[S9] 

3D-

LiFePO4@C 
1D-TO@C 1.78 

Retains 97.2% after 

2000 cycles at 1C 
176.9 ~100% 

Current 

Work 
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