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SolarSLAM: Battery-free Loop Closure for Indoor Localisation

Bo Wet' , Weitao Xif, Chengwen Lud, Guillaume Zopgi, Dong M&, Sen Wan§

Abstract—In this paper, we propose SolarSLAM, a battery- Lighting (%) & & / /
free loop closure method for indoor localisation. Inertial Mea-
surement Unit (IMU) based indoor localisation method has o0 User holding a mobile device with a solar panel
been widely used due to its ubiquity in mobile devices, such —> and walking in an indoor environment
as mobile phones, smartwatches and wearable bands. However,
it suffers from the unavoidable long term drift. To mitigate Photocurrent/\/\/\ . .
the localisation error, many loop closure solutions have been
proposed using sophisticated sensors, such as cameras, laser, (a) Spatial variation (b) Trajectories
etc. Despite achieving high-precision localisation performance,
these sensors consume a huge amount of energy. Different from loft) and recovered traiectory (right
those solutions, the proposed SolarSLAM takes advantage of (left I y (r!g ) . .
an energy harvesting solar cell as a sensor and achieves effec-[l]_[?’]' Among the ,SOIUt'OnS’ Inert!al Measurement l'!n_'t
tive battery-free loop closure method. The proposed method (IMU) based pedestrian dead reckoning (PDR) is a promising
suggests the key-point dynamic time warping for detecting technique due to the ubiquity of IMUs in mobile devices.
loops and uses robust simultaneous localisation and mapping By using this method, only one IMU is carried by the

(SLAM) as the optimiser to remove falsely recognised 100p sy 1o |ocalise itself. However, the localisation drift always
closures. Extensive evaluations in the real environments have d by the i itable IMU bi Theref
been conducted to demonstrate the advantageous photocurrent occurs caused by the inevitable sensor bias. Therelore,

characteristics for indoor localisation and good localisation €Xtra sensors are usually required for data fusion, which

Fig. 1. Feasibility Study (a) Spatial variation (b) Ground truth trajectory

accuracy of the proposed method. corrects the errors generated from the IMU sensor and
Index Terms—Indoor localisation, SLAM, Solar cell provides accurate localisation performance. Popular data
fusion methods for mobile devices are camera based [1]

|. INTRODUCTION , WiFi based [2], Ultra-wide Band (UWB) based [3], etc.

The proliferation of wearable devices and wireless techthese sensors can be used for fusing with inertial data,
nologies in the last decade has resulted in a wide range Which signi cantly improves the IMU based localisation
mobile and ubiquitous services, including indoor localisatiorPerformance and provides fairly good accuracy in the indoor
Indoor localisation has a huge potential for many applicatioBnvironment. However, those sensors cost a massive amount
scenarios, e.g. navigation in of ce areas, shopping malls, arff energy, which limits their long term use in mobile devices.
museums. However, despite signi cant research progress, dextensive research has been conducted towards improving
veloping an ef cient and practical indoor localisation systenjocalisation accuracy, but limited attention has been paid
remains a challenge. to reduce the energy consumption of an indoor localisation

Since the Global Positioning System (GPS) fails to offefyStem.
accurate localisation information without good reception of In this paper, we present a battery-free loop closure
its signal in an indoor environment, various indoor localmethod for indoor localisation system, which is named
isation systems have been developed in the past decadarSLAM. The key feature of SolarSLAM is the use of an

off-the-shelf solar cell. The advantage of the use of solar cells

This research was funded by the Engineering and Physical Sciencgger existing sensors is the capability of energy harvesting
Research Council (EPSRC) Robotics and Arti cial Intelligence ORCA Hub,

(Grant EP/R026173/1), EPSRC North East Centre for Energy Materia'Elnd photocurrent generation even with indoor illumination

(NECEM, Grant EP/R021503/1) and EU H2020 Programme under Deepé]- Furthermore, the amplitude of its generated photocurrent
Field project (ID 857339). is extremely sensitive to different lighting conditions, while
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Different from the existing applications, we are the rst Mobie evice
to use one solar cell as a sensor for closing loops in an/ws """ 1
indoor localisation application. In the near future, we can | [ Acceerameer ] poweon | | - eximan

Motion
. K : SLAM
envision that solar panel-based energy harvesting can b623 [ Kaiman Fiter ] [

Pesdresian Dead Rechonking

integrated into wearable devices [8]. Thus, our solution [ wegnetometer_J; for Heading Estimation

can take advantage of this technique to achieve battery-free 1 Resamniing aceord
A R . . i . . Energy * esampling according to steps
indoor localisation. Even though the lighting condition in  Harvestng; L.

E—

Loop closeure

an indoor environment is usually not as optimistic as that [__soarcel J———=| Resamping
under direct sunshine on sunny days, it still can generate

a certain level of photocurrent. When a portion of a solaFig. 2. System overview of the battery-free loop closure method for indoor
panel is covered or the lighting condition changes, its outplftcalisation

photocurrent will change accordingly. In an indoor environf11], and the latest Android phones have started to support
ment, the variation of the lighting condition along one patfthis protocol [12]. However, WiFi based localisation would
follows the identical pattern. When one user revisits one arekgquire to install several access points to achieve reasonable
the solar cell can capture the same lighting variance froccuracy. The localisation performance of these systems is
its generated photocurrent and indicate the user's returnis© affected by multipath effect [13]. UWB is a promising
one location. The photocurrent measurements from revisiddoor localisation technique, which is able to offer high
can be taken advantage for loop closures and calibratifjecision centimetre-level accuracy [14]. Roetenberg et al.
the biased IMU based PDR trajectory estimate. Evaluatioised UWB signal with inertial measurements and designed
results show that the proposed method increases localisat@rfontext awareness system [3]. To achieve good accuracy,
performance up to 80% compared with the IMU basedf requires a proper transmitter geometry placed in the
method. The solar cell, as a sensor, is capable of offerirRfriphery of an Area of Interest with a good line-of-sight.
high_precision Signa]s without Consuming any energy, WhiCMagnetiC induction devices were also used with IMU and
can provide the support of long term execution of indoofichieved accurate and robust indoor localisation [15].

localisation. Recently, researchers have taken advantage of solar cells
To summarise, the contributions of this paper are a&S S€Nsors to convert the generated photocurrent to the usable
follows: spatial and temporal information for many context awareness

We are the rst to use solar cells for indoor Iocalisationapplications' Randgll Et_ al. _[5] used the_we_arable solar_ 96”3
because of their stability and sensitivity of indoor Iight-to track the changing lighting for localisation and activity

ing conditions. A key-component dynamic time warpin ecognition. The light emitter model was analysed and used
(DTW) has been proposed to nd loop closures an 0 estimate the distance between the solar cells and the

improve the matching robustness nown lights. Different from this work, our method does
We implement an indoor Iocalis;ation system whicHot need any prior knowledge and the location information

conducts data fusion between inertial measurements aff the I|?ht|ng sdource. Cgetﬂ etl al. ,£.16] usfe(:hthe S|O|ar energ;(;
photocurrent from a solar cell. information and expose e locations of the solar-powere

Extensive experiments have been conducted to evaludt@Me With the assumption of anonymity, which achieved the
accuracy within 20km. Umetsu et al. [17] explored solar

our proposed localisation methods in the real environ® ) . : !
men?s. P cells along with random forest machine learning techniques
: ) for place recognition. The implemented system was able
In the rest_ part of this Paper, Section Il shows the relate distinguish 10 places under different weather and time
\t/)vorks. fSectllon ”: overwewrs] ;hef sys(tjem. IOurI_ Iorf)IOOSE_IIEeriodS. Varshney et al. [7] designed a visible light sensing
attery- ree loop closure met 0ds for indoor loca Isation wi ystem for communication and context awareness, which
be shown in detail in Section IV. In Section V, we conductenabled recognition for 3 gestures. Ma et al. [6] used a
extensive experiments in real environments and evalu nsparent solar panel to conduct gesture recognition and
our proposed methods to show its feasibility, efcacy an chieved the 96% accuracy, and the designed system saved

robustness. more than 40% power compared to the use of a photodiode.
[l. RELATED WORKS

Many localisation methods have been based on various Ill. SYSTEM OVERVIEW

sensors, such as camera [1] and laser [9]. They can achievd-igure 2 shows an overview of the proposed system.
high-precision accuracy in ideal conditions, but they costhe proposed indoor localisation system consists of two
extremely high energy, which makes them infeasible for theensors, i.e. a motion sensor IMU and a solar cell. The IMU
long term use by mobile devices with limited energy. WiFicontinuously provides motion measurements using a PDR
signal is widely available in indoor environments, such amethod. In our system, we use a handheld mobile phone with
of ce building, shopping mall, etc. Therefore, WiFi basedthe integration of an IMU and apply the robust PDR method
indoor localisation systems have been well studied [2], [10}o obtain the initial trajectory estimate from the integrated
The recent wireless communication standard IEEE 802.11naccelerometer, gyroscope and magnetometer. In the robust
has integrated the ranging and localisation into WiFi standafDR, step detection mechanism has been utilised to mitigate



the bias from hardware design. However, suffering fronadds scaling factors for each information matrix of the
biased measurements, the indoor localisation using an IMdop closure constraints. Equation 3 shows the calculation
still fails to achieve a satisfactory localisation performanceof the scaling factor ;,

One popular calibration method is loop closure to indicate 2

the user revisits one same place, where one auxiliary sensor i =min(1; +7K-2) 3)

is usually required to calibrate the bias. :

In this paper, we propose to use a solar cell as a sensorhere K; = ul ju; is for i-th photocurrent loop closure
close loops. Along with motion measurements from an IMUgonstraint from Equation 2 and is a free parameter. The
the generated photocurrent from the solar cell is measurede of the scaling factor during the optimisation can
simultaneously, which re ects the dynamic lighting conditionsigni cantly and effectively reduce the impact of false-
in different locations. DTW has been explored to determinpositive loop closures, which removes false matching from
the user's revisiting. Our proposed loop closure methods haydotocurrent. More information can be found in [19].
addressed several challenges, such as time unsynchronisaorRobust PDR

and changing walking speed, etc. Simultaneous localisation oy proposed method employs a robust PDR meéthod
and mapping (SLAM) has been used as the optimiser to fugg2]. Using PDR and the ubiquity of IMU, a mobile device
inertial measurements and photocurrent measurements. s aple to offer the user's motion without relying on any
Th.e details of the proposed system will be described igther sensors. As shown in Figure 2, PDR has three key
Section IV. components, i.e., step detection, step length estimation and
IV. METHOD heading estimation. Acceleration measurements are used
In this section, we will show the technical details offor calculating the step length with the use of Weinberg
SLAM, robust PDR, and the proposed loop closure methodlgorithm [23] and step detection with a threshold of signal
A. SLAM Framework amplitude. Heading estimation is gauged from gyroscope
We show the explored SLAM framework in detail in thisMeasurements and magnetometer measurements. The PDR

section. In the proposed architecture, our system usesC@n derive the step lengths as the displacement and the
robust GraphSLAM optimiser [18], [19]. The original Graph_relatlve prlentanon as the heading change with respect to
SLAM optimiser [20], [21] considers all the constraints fromthe previous pose for each step. The use of a robust PDR can

odometry and loop closures with equal weights, as shown ffemendously reduce the localisation error for the movement
Equation 1. X of each step, but it still suffers from the unavoidable long

argmin ul o 1) term Qriﬁ. Figure 5(g) shpws the' trajeptory using PDR in one

Y experiment, and the trajectory is drifted over a long period
here Y is th timated traiect is th traint of time compared with the ground truth in Figure 5(f). To
where Y Is the estimated trajectonf Is the constrain overcome this issue, the proposed method used battery-free

tSr?t’ u land ¢ are (tarrprt te_ltrr?s and tlnfprtmatltCJr) nra(;rlx ftc:r sgolar cells as a sensor, detect loop closures and correct the
e relevant constraint. The constraint set includes bof ng-term PDR drift.

motion and loop closure constraints with equal weighting%_ Loop Closure Method
However, the use of photocurrent from the solar cells for loop i i ] )
closure generates many false positives. Figure 3(a) shows thd" this section, we will show the details of our proposed
similarity of the collected photocurrent measurements alorl§OP closure method using photocurrent measurements from
one corridor, where the intermediate distance between eagplar cells. _
pair of lights are the same. This is very common in the 1) Photocurrent Measurement Resamplinge use a so-
indoor environment. The similarity of the light deployment'ar cell as a sensor to coIIept the photocurr(_ent mga;urements.
will generate false matches because it is dif cult to ascertaif€cause the photocurrent is an analogue signal, it is collected
the differences among these similar instances. from an analogue-to-digital converter (ADC) to convert ana-
To avoid false matching, we use robust SLAM in ourogue signals to digital signals. To synchronise photocurrent
system. Different from the original SLAM, the optimal measurement with IMU measurements, the rst tas_k is to
trajectoryY  will be derived using the following optimiser resample the photocurrent measurements before using them.

i2s

instead [19], An ef cient resamp_ling method has _been used in our
system [24]. Here we introduce the details of the resampling
argmin UiT il + .ZU.T i Ui (2)  method. The original signalS, has the sampling rates (Hz)
Y ]2 Co {2 } '|2 CL {z } Ro. Our aim is to resampl§, from R, to Ry. To realise this,
1) ©2) Rg 1 samples are interpolated into each pair of samples

The robust SLAM also considers constraints from tWin So samples to create an intermediate siglgl. One
(fow-pass Iter is then used t&; to avoid aliasing, and the

sources as demonstrated in Equation 2, i.e. (C1) motiotered sianal is denoted a&.. . EvervR.+ sample from the
constraints from the IMU trajectory and (C2) loop closures 9 m Y Rd P

from the solar cell, respectively and ~ also represent the intermediate signab,, is selected to obtain the resultz®y.

error terms and information matrix in Equation 2. To remove itpe  ppr = code  can  be  downloaded  from
the outliers and enable a strong optimiser, the robust SLANttps://lopsi.weebly.com/teaching.html
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Fig. 3. Explanation: (a) Example of similarity of the collected photocurrent measurements along one corridor; (b) and (c) are the ground truth and the
trajectory without the use of robust SLAM; (d) Measurements for revisiting one place; (e) The difference between Euclidean distance and DTW

The photocurrent measurements change with the lightimgerformance in two indoor environments with people walk-
condition continuously, which provides the feasibility ofing in the surrounding environment. The lighting condition
interpolation and resampling without violating the usableloes not change signi cantly in these indoor environments.
patterns. In our system, photocurrent measurements are it Hardware

resampled to the same sampling rate as the inertial mea-rigre 4(a) shows the hardware for collecting photocurrent
surements using the discussed resampling method. TheReasurements. In the experiment, we use an off-the-shelf 1V
the step-wise photocurrent measurements will be selectggjay cell to collect the photocurrent measurements. The solar
according to the step detection in the PDR algorithm frorgg|| is attached to the ADC in an mbed FRDM k64f [26] with
IMU measurements. Figure 3(d) shows one user revisits thge sampling rate 75Hz. The mbed FRDM k64f transfers
same area but stops for a period of time. Without the use gfe collected data to one laptop through a USB serial. The

the step-wise photocurrent measurements, the two instan¢ggrtial measurements are recorded from an iPhone using the
cannot match and create a loop closure constraint. On tR@nsorLog App [27].

contrast, the removal of the temporal stopping points and the
selection of photocurrent measurements for each step make Feasibility Study
the two instances virtually matching. Now we are ready to We will investigate the feasibility of the use of solar cell
introduce the instance matching method. for indoor localisation and other context awareness appli-
2) Principle Element Dynamic Time Warping for Effectivecations in three aspects: stability, sensitivity and sequence
Loop Closure : When using DTW, the window size can similarity.
affect the performance signi cantly. When using the original 1) Stability: In this experiment, we put the solar cell in
sampling rate, it is dif cult to match two instances becaus@ne spot and collect the data for approximately 8 minutes.
the user may stop moving for a certain period of time, butigure 4(b) shows the stability of the solar cell. The signal
the solar cells still continue to sense the lighting conditionstrength stays the same when the solar cell stays one position.
To resolve this problem, we use the principle elements of 2) Sensitivity: The photocurrent signal is very sensitive
the resampled photocurrent measurements with the assistgithe position changes. To verify this, we put the solar cell
of an IMU. As introduced earlier, we use each step as @n each corner of one piece of A4 paper with the size 21.0
key point to select the step-wise photocurrent measureme§s 29.7 cm (shown in Figure 4(c)), where the length is
for loop closure. Dynamic Time Warping (DTW) [25] is much shorter than one step length (approximately 70 cm). It
explored for matching two photocurrent measurement irtlearly demonstrates the differences among the photocurrent
stances. DTW is a technique to measure the similarity gheasurements in those four positions in Figure 4(d). The
two time series of signals using dynamic programmingsensitivity, along with the discussed stability, provides unique
Figure 3(e) shows the difference between using Euclideapatial features and thus the feasibility of indoor localisation
distance and DTW for matching. When using a Euclideagsing photocurrent measurements.
distance based method for matching two time-series signals,3) Sequence SimilarityFigure 5(a) shows photocurrent
it calculates the distance between corresponding elemenggeasurements for 5 visits of the same path, i.e. a corri-
By contrast, DTW considers phase misalignment. This igor. We can make a number of observations: (1) When
very important because of varying walking patterns angboking at a sequence of photocurrent samples from that
speed for our application scenario, which helps realise rghe monitored person walking in one corridor, the patterns
bust and effective loop closure detection using photocurregt the photocurrent measurements in 5 visits are similar
measurements. A DTW distance threshold is set to determiagng the whole path and distinguishable in different spots.
the approximation of two instances. This fact makes the loop closure feasible when revisiting
V. EVALUATIONS a location. (2) During collecting the data, the user tried to
In this section, we will conduct evaluations to (1) showmaintain the same speed, but the measurements are still not
the feasibility of accurate loop closure and indoor localisatioexactly the same. Therefore, DTW is more suitable with the
using photocurrent measurements; (2) present the localisatiproposed loop closure systems, which makes the proposed
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Fig. 4. (a) Hardware for collecting photocurrent measurements; (b) Stability of photocurrent measurements; (c) Solar cell put in each corner of a piece
of A4 paper. In the gure, the solar cell is on the position 2; (d) Sensitivity of photocurrent measurements

localisation methods robust and effective. (3) Figure 5(d). Experiments in an Open Space Lab

demonstrates a number of examples of correct loop closures;The experiment is conducted in open space lab with
which constructs constraint for the SLAM optimisation. (4)desks, chairs, and computers. The lights in the cell are
Several examples of false loop closures are also markegbstly evenly distributed, which caused excessive similarity

in Figure 5(a), which necessitates the robust SLAM agf lighting conditions. The similarity of the lighting condition
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introduced in Section IV. could result in a huge amount of falsely detected loop
closures, which poses more challenges to the solar cell based
C. Experiments in an Of ce Building indoor localisation. The carrier randomly walks in the 30 m

60 m areas, which leads the trajectory path 381.7 m. In
In this section, we show the performance of the proposaglis experiment, we use the same metrics in Section V-C to
SolarSLAM and compare it with the IMU based PDR.eyaluate the performance of the proposed method.
The goal of this experiment is to localise the monitored Figure 5(f) and Figure 5(g) show the ground truth and the
person who carries the solar cell and IMU and iIIustratcf,rajectory of the IMU based PDR in the experiment. Figure
the ef ciency of the loop closure methods. We consider 23g) shows the severe drifts of IMU based PDR over time.
localisation in the experiments. The proposed method corrects the IMU PDR localisation
The following three metrics are used in this experimentgrift, as shown in Figure 5(h). Therus of IMU and the
(1) Trajectory: the trajectories are able to show the localisgroposed SolarSLAM methods are 10.7843 m and 1.8692
tion performance intuitively ; (2Root Mean Square Error m, respectively. Using the proposed SolarSLAM and Fusing
(RMSEfems ): ems shows the ayerage localisation errormeasurement from the solar cell and IMU, the proposed can
over the whole trajectoryg s = Ee:tbe(t)2:(te tp), achieve 82.67% improvements compared with the IMU based

where e(t) represents the localisation error with respecPDR localisation method. Figure 5(i) shows the tracking
to time t. (3) Cumulative distribution function (CDF) of CDF of errors using IMU based PDR and the proposed
tracking errors The CDF of tracking errors shows the SolarSLAM method. The 80th percentile localisation errors

frequency that a corresponding estimate error is less th#f the IMU based PDR and the proposed SolarSLAM
or equal to the argument of that error. are 15.31 m and 2.507 m, respectively. In this metric, the

The experiment area is 60 m5 m, and the trajectory path proposed method achieves 83.63% improvements compared

is 250.8 m. Figure 5(b) and Figure 5(c) show the ground trutiith the IMU based PDR.
and the trajectory of the IMU based PDR in the experiment. VI. CONCLUSION
Figure 5(c) con rms that the IMU along with the robust PDR |, this paper, we propose the rst system that uses a solar
can localise the user in a certain level, but the IMU basege|| as a sensor for battery-free loop closure detection. An
PDR slowly drifts over time. Figure 5(d) shows the trajectonjndoor localisation system has been implemented using a
after using the proposed SolarSLAM method, which hagolar cell and IMU. The proposed loop closure method has
indistinguishable as the ground truth. This has con rmed thaghethod. Extensive experiments have been conducted to show
loop-closure. localisation and context awareness. Our experiments in the
Theerus of IMU and the proposed SolarSLAM methodsreal environment show that the use of the proposed method
are 2.0733 m and 1.2498 m, respectively. Using the proposkgs increased the indoor localisation performance up to 80%.
SolarSLAM and fusing measurement from the solar cell
and IMU, it can achieve 39.72% improvement compared REFERENCES
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