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SolarSLAM: Battery-free Loop Closure for Indoor Localisation

Bo Wei1� , Weitao Xu2, Chengwen Luo3, Guillaume Zoppi4, Dong Ma5, Sen Wang6

Abstract— In this paper, we propose SolarSLAM, a battery-
free loop closure method for indoor localisation. Inertial Mea-
surement Unit (IMU) based indoor localisation method has
been widely used due to its ubiquity in mobile devices, such
as mobile phones, smartwatches and wearable bands. However,
it suffers from the unavoidable long term drift. To mitigate
the localisation error, many loop closure solutions have been
proposed using sophisticated sensors, such as cameras, laser,
etc. Despite achieving high-precision localisation performance,
these sensors consume a huge amount of energy. Different from
those solutions, the proposed SolarSLAM takes advantage of
an energy harvesting solar cell as a sensor and achieves effec-
tive battery-free loop closure method. The proposed method
suggests the key-point dynamic time warping for detecting
loops and uses robust simultaneous localisation and mapping
(SLAM) as the optimiser to remove falsely recognised loop
closures. Extensive evaluations in the real environments have
been conducted to demonstrate the advantageous photocurrent
characteristics for indoor localisation and good localisation
accuracy of the proposed method.

Index Terms— Indoor localisation, SLAM, Solar cell

I. I NTRODUCTION

The proliferation of wearable devices and wireless tech-
nologies in the last decade has resulted in a wide range of
mobile and ubiquitous services, including indoor localisation.
Indoor localisation has a huge potential for many application
scenarios, e.g. navigation in of�ce areas, shopping malls, and
museums. However, despite signi�cant research progress, de-
veloping an ef�cient and practical indoor localisation system
remains a challenge.

Since the Global Positioning System (GPS) fails to offer
accurate localisation information without good reception of
its signal in an indoor environment, various indoor local-
isation systems have been developed in the past decades
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Fig. 1. Feasibility Study (a) Spatial variation (b) Ground truth trajectory
(left) and recovered trajectory (right)
[1]–[3]. Among the solutions, Inertial Measurement Unit
(IMU) based pedestrian dead reckoning (PDR) is a promising
technique due to the ubiquity of IMUs in mobile devices.
By using this method, only one IMU is carried by the
user to localise itself. However, the localisation drift always
occurs caused by the inevitable IMU sensor bias. Therefore,
extra sensors are usually required for data fusion, which
corrects the errors generated from the IMU sensor and
provides accurate localisation performance. Popular data
fusion methods for mobile devices are camera based [1]
, WiFi based [2], Ultra-wide Band (UWB) based [3], etc.
These sensors can be used for fusing with inertial data,
which signi�cantly improves the IMU based localisation
performance and provides fairly good accuracy in the indoor
environment. However, those sensors cost a massive amount
of energy, which limits their long term use in mobile devices.
Extensive research has been conducted towards improving
localisation accuracy, but limited attention has been paid
to reduce the energy consumption of an indoor localisation
system.

In this paper, we present a battery-free loop closure
method for indoor localisation system, which is named
SolarSLAM. The key feature of SolarSLAM is the use of an
off-the-shelf solar cell. The advantage of the use of solar cells
over existing sensors is the capability of energy harvesting
and photocurrent generation even with indoor illumination
[4]. Furthermore, the amplitude of its generated photocurrent
is extremely sensitive to different lighting conditions, while
the lighting condition in one particular position usually
does not change in the indoor environment. Motivated by
these facts, we use one solar cell along with an IMU for
indoor localisation. The stability of the spot-wise indoor
lighting condition and the sensitivity of solar cell generated
photocurrent due to varying lighting conditions offer the
feasibility of the use of a solar cell to close loops for indoor
localisation when the user revisits one place.

The use of solar cells, though has not been widely studied
in wearable devices at the moment, is a promising future
battery-free solution for various mobile applications such
as activity recognition [5], gesture recognition [6], [7] etc.



Different from the existing applications, we are the �rst
to use one solar cell as a sensor for closing loops in an
indoor localisation application. In the near future, we can
envision that solar panel-based energy harvesting can be
integrated into wearable devices [8]. Thus, our solution
can take advantage of this technique to achieve battery-free
indoor localisation. Even though the lighting condition in
an indoor environment is usually not as optimistic as that
under direct sunshine on sunny days, it still can generate
a certain level of photocurrent. When a portion of a solar
panel is covered or the lighting condition changes, its output
photocurrent will change accordingly. In an indoor environ-
ment, the variation of the lighting condition along one path
follows the identical pattern. When one user revisits one area,
the solar cell can capture the same lighting variance from
its generated photocurrent and indicate the user's returning
one location. The photocurrent measurements from revisits
can be taken advantage for loop closures and calibrating
the biased IMU based PDR trajectory estimate. Evaluation
results show that the proposed method increases localisation
performance up to 80% compared with the IMU based
method. The solar cell, as a sensor, is capable of offering
high-precision signals without consuming any energy, which
can provide the support of long term execution of indoor
localisation.

To summarise, the contributions of this paper are as
follows:

� We are the �rst to use solar cells for indoor localisation
because of their stability and sensitivity of indoor light-
ing conditions. A key-component dynamic time warping
(DTW) has been proposed to �nd loop closures and
improve the matching robustness.

� We implement an indoor localisation system, which
conducts data fusion between inertial measurements and
photocurrent from a solar cell.

� Extensive experiments have been conducted to evaluate
our proposed localisation methods in the real environ-
ments.

In the rest part of this paper, Section II shows the related
works. Section III overviews the system. Our proposed
battery-free loop closure methods for indoor localisation will
be shown in detail in Section IV. In Section V, we conduct
extensive experiments in real environments and evaluate
our proposed methods to show its feasibility, ef�cacy and
robustness.

II. RELATED WORKS

Many localisation methods have been based on various
sensors, such as camera [1] and laser [9]. They can achieve
high-precision accuracy in ideal conditions, but they cost
extremely high energy, which makes them infeasible for the
long term use by mobile devices with limited energy. WiFi
signal is widely available in indoor environments, such as
of�ce building, shopping mall, etc. Therefore, WiFi based
indoor localisation systems have been well studied [2], [10].
The recent wireless communication standard IEEE 802.11mc
has integrated the ranging and localisation into WiFi standard
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Fig. 2. System overview of the battery-free loop closure method for indoor
localisation

[11], and the latest Android phones have started to support
this protocol [12]. However, WiFi based localisation would
require to install several access points to achieve reasonable
accuracy. The localisation performance of these systems is
also affected by multipath effect [13]. UWB is a promising
indoor localisation technique, which is able to offer high
precision centimetre-level accuracy [14]. Roetenberg et al.
fused UWB signal with inertial measurements and designed
a context awareness system [3]. To achieve good accuracy,
it requires a proper transmitter geometry placed in the
periphery of an Area of Interest with a good line-of-sight.
Magnetic induction devices were also used with IMU and
achieved accurate and robust indoor localisation [15].

Recently, researchers have taken advantage of solar cells
as sensors to convert the generated photocurrent to the usable
spatial and temporal information for many context awareness
applications. Randall et al. [5] used the wearable solar cells
to track the changing lighting for localisation and activity
recognition. The light emitter model was analysed and used
to estimate the distance between the solar cells and the
known lights. Different from this work, our method does
not need any prior knowledge and the location information
of the lighting source. Chen et al. [16] used the solar energy
information and exposed the locations of the solar-powered
home with the assumption of anonymity, which achieved the
accuracy within 20km. Umetsu et al. [17] explored solar
cells along with random forest machine learning techniques
for place recognition. The implemented system was able
to distinguish 10 places under different weather and time
periods. Varshney et al. [7] designed a visible light sensing
system for communication and context awareness, which
enabled recognition for 3 gestures. Ma et al. [6] used a
transparent solar panel to conduct gesture recognition and
achieved the 96% accuracy, and the designed system saved
more than 40% power compared to the use of a photodiode.

III. SYSTEM OVERVIEW

Figure 2 shows an overview of the proposed system.
The proposed indoor localisation system consists of two
sensors, i.e. a motion sensor IMU and a solar cell. The IMU
continuously provides motion measurements using a PDR
method. In our system, we use a handheld mobile phone with
the integration of an IMU and apply the robust PDR method
to obtain the initial trajectory estimate from the integrated
accelerometer, gyroscope and magnetometer. In the robust
PDR, step detection mechanism has been utilised to mitigate



the bias from hardware design. However, suffering from
biased measurements, the indoor localisation using an IMU
still fails to achieve a satisfactory localisation performance.
One popular calibration method is loop closure to indicate
the user revisits one same place, where one auxiliary sensor
is usually required to calibrate the bias.

In this paper, we propose to use a solar cell as a sensor to
close loops. Along with motion measurements from an IMU,
the generated photocurrent from the solar cell is measured
simultaneously, which re�ects the dynamic lighting condition
in different locations. DTW has been explored to determine
the user's revisiting. Our proposed loop closure methods have
addressed several challenges, such as time unsynchronisation
and changing walking speed, etc. Simultaneous localisation
and mapping (SLAM) has been used as the optimiser to fuse
inertial measurements and photocurrent measurements.

The details of the proposed system will be described in
Section IV.

IV. M ETHOD

In this section, we will show the technical details of
SLAM, robust PDR, and the proposed loop closure method.
A. SLAM Framework

We show the explored SLAM framework in detail in this
section. In the proposed architecture, our system uses a
robust GraphSLAM optimiser [18], [19]. The original Graph-
SLAM optimiser [20], [21] considers all the constraints from
odometry and loop closures with equal weights, as shown in
Equation 1.

argmin
Y

X

i 2 S

uT
i � i ui (1)

where Y is the estimated trajectory,S is the constraint
set, u and � are error terms and information matrix for
the relevant constraint. The constraint set includes both
motion and loop closure constraints with equal weightings.
However, the use of photocurrent from the solar cells for loop
closure generates many false positives. Figure 3(a) shows the
similarity of the collected photocurrent measurements along
one corridor, where the intermediate distance between each
pair of lights are the same. This is very common in the
indoor environment. The similarity of the light deployment
will generate false matches because it is dif�cult to ascertain
the differences among these similar instances.

To avoid false matching, we use robust SLAM in our
system. Different from the original SLAM, the optimal
trajectoryY � will be derived using the following optimiser
instead [19],

argmin
Y

X

i 2 CO

uT
i � i ui

| {z }
(C1)

+
X

i 2 CL

� 2
i uT

i � i ui

| {z }
(C2)

(2)

The robust SLAM also considers constraints from two
sources as demonstrated in Equation 2, i.e. (C1) motion
constraints from the IMU trajectory and (C2) loop closures
from the solar cell, respectively.u and � also represent the
error terms and information matrix in Equation 2. To remove
the outliers and enable a strong optimiser, the robust SLAM

adds scaling factors� for each information matrix of the
loop closure constraints. Equation 3 shows the calculation
of the scaling factor� i ,

� i = min(1 ;
2�

� + K 2
i

) (3)

where K i = uT
i � i ui is for i -th photocurrent loop closure

constraint from Equation 2 and� is a free parameter. The
use of the scaling factor� during the optimisation can
signi�cantly and effectively reduce the impact of false-
positive loop closures, which removes false matching from
photocurrent. More information can be found in [19].
B. Robust PDR

Our proposed method employs a robust PDR method1

[22]. Using PDR and the ubiquity of IMU, a mobile device
is able to offer the user's motion without relying on any
other sensors. As shown in Figure 2, PDR has three key
components, i.e., step detection, step length estimation and
heading estimation. Acceleration measurements are used
for calculating the step length with the use of Weinberg
algorithm [23] and step detection with a threshold of signal
amplitude. Heading estimation is gauged from gyroscope
measurements and magnetometer measurements. The PDR
can derive the step lengthL s as the displacement and the
relative orientation� as the heading change with respect to
the previous pose for each step. The use of a robust PDR can
tremendously reduce the localisation error for the movement
of each step, but it still suffers from the unavoidable long
term drift. Figure 5(g) shows the trajectory using PDR in one
experiment, and the trajectory is drifted over a long period
of time compared with the ground truth in Figure 5(f). To
overcome this issue, the proposed method used battery-free
solar cells as a sensor, detect loop closures and correct the
long-term PDR drift.
C. Loop Closure Method

In this section, we will show the details of our proposed
loop closure method using photocurrent measurements from
solar cells.

1) Photocurrent Measurement Resampling:We use a so-
lar cell as a sensor to collect the photocurrent measurements.
Because the photocurrent is an analogue signal, it is collected
from an analogue-to-digital converter (ADC) to convert ana-
logue signals to digital signals. To synchronise photocurrent
measurement with IMU measurements, the �rst task is to
resample the photocurrent measurements before using them.

An ef�cient resampling method has been used in our
system [24]. Here we introduce the details of the resampling
method. The original signalsSo has the sampling rates (Hz)
Ro. Our aim is to resampleSo from Ro to Rd. To realise this,
Rd � 1 samples are interpolated into each pair of samples
in So samples to create an intermediate signalSm . One
low-pass �lter is then used toSi to avoid aliasing, and the
�ltered signal is denoted ascSm . Every Rd sample from the
intermediate signalcSm is selected to obtain the resultantSd.

1The PDR code can be downloaded from
https://lopsi.weebly.com/teaching.html
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The photocurrent measurements change with the lighting
condition continuously, which provides the feasibility of
interpolation and resampling without violating the usable
patterns. In our system, photocurrent measurements are �rst
resampled to the same sampling rate as the inertial mea-
surements using the discussed resampling method. Then,
the step-wise photocurrent measurements will be selected
according to the step detection in the PDR algorithm from
IMU measurements. Figure 3(d) shows one user revisits the
same area but stops for a period of time. Without the use of
the step-wise photocurrent measurements, the two instances
cannot match and create a loop closure constraint. On the
contrast, the removal of the temporal stopping points and the
selection of photocurrent measurements for each step make
the two instances virtually matching. Now we are ready to
introduce the instance matching method.

2) Principle Element Dynamic Time Warping for Effective
Loop Closure : When using DTW, the window size can
affect the performance signi�cantly. When using the original
sampling rate, it is dif�cult to match two instances because
the user may stop moving for a certain period of time, but
the solar cells still continue to sense the lighting condition.
To resolve this problem, we use the principle elements of
the resampled photocurrent measurements with the assistant
of an IMU. As introduced earlier, we use each step as a
key point to select the step-wise photocurrent measurements
for loop closure. Dynamic Time Warping (DTW) [25] is
explored for matching two photocurrent measurement in-
stances. DTW is a technique to measure the similarity of
two time series of signals using dynamic programming.
Figure 3(e) shows the difference between using Euclidean
distance and DTW for matching. When using a Euclidean
distance based method for matching two time-series signals,
it calculates the distance between corresponding elements.
By contrast, DTW considers phase misalignment. This is
very important because of varying walking patterns and
speed for our application scenario, which helps realise ro-
bust and effective loop closure detection using photocurrent
measurements. A DTW distance threshold is set to determine
the approximation of two instances.

V. EVALUATIONS

In this section, we will conduct evaluations to (1) show
the feasibility of accurate loop closure and indoor localisation
using photocurrent measurements; (2) present the localisation

performance in two indoor environments with people walk-
ing in the surrounding environment. The lighting condition
does not change signi�cantly in these indoor environments.
A. Hardware

Figure 4(a) shows the hardware for collecting photocurrent
measurements. In the experiment, we use an off-the-shelf 1V
solar cell to collect the photocurrent measurements. The solar
cell is attached to the ADC in an mbed FRDM k64f [26] with
the sampling rate 75Hz. The mbed FRDM k64f transfers
the collected data to one laptop through a USB serial. The
inertial measurements are recorded from an iPhone using the
SensorLog App [27].

B. Feasibility Study

We will investigate the feasibility of the use of solar cell
for indoor localisation and other context awareness appli-
cations in three aspects: stability, sensitivity and sequence
similarity.

1) Stability: In this experiment, we put the solar cell in
one spot and collect the data for approximately 8 minutes.
Figure 4(b) shows the stability of the solar cell. The signal
strength stays the same when the solar cell stays one position.

2) Sensitivity: The photocurrent signal is very sensitive
to the position changes. To verify this, we put the solar cell
on each corner of one piece of A4 paper with the size 21.0
cm � 29.7 cm (shown in Figure 4(c)), where the length is
much shorter than one step length (approximately 70 cm). It
clearly demonstrates the differences among the photocurrent
measurements in those four positions in Figure 4(d). The
sensitivity, along with the discussed stability, provides unique
spatial features and thus the feasibility of indoor localisation
using photocurrent measurements.

3) Sequence Similarity:Figure 5(a) shows photocurrent
measurements for 5 visits of the same path, i.e. a corri-
dor. We can make a number of observations: (1) When
looking at a sequence of photocurrent samples from that
the monitored person walking in one corridor, the patterns
of the photocurrent measurements in 5 visits are similar
along the whole path and distinguishable in different spots.
This fact makes the loop closure feasible when revisiting
a location. (2) During collecting the data, the user tried to
maintain the same speed, but the measurements are still not
exactly the same. Therefore, DTW is more suitable with the
proposed loop closure systems, which makes the proposed
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localisation methods robust and effective. (3) Figure 5(a)
demonstrates a number of examples of correct loop closures,
which constructs constraint for the SLAM optimisation. (4)
Several examples of false loop closures are also marked
in Figure 5(a), which necessitates the robust SLAM as
introduced in Section IV.

C. Experiments in an Of�ce Building

In this section, we show the performance of the proposed
SolarSLAM and compare it with the IMU based PDR.
The goal of this experiment is to localise the monitored
person who carries the solar cell and IMU and illustrate
the ef�ciency of the loop closure methods. We consider 2D
localisation in the experiments.

The following three metrics are used in this experiment:
(1) Trajectory: the trajectories are able to show the localisa-
tion performance intuitively ; (2)Root Mean Square Error
(RMSE)(erms ): erms shows the average localisation error

over the whole trajectory.erms =
q

� t e
t = t b

e(t)2=(te � tb),
where e(t) represents the localisation error with respect
to time t. (3) Cumulative distribution function (CDF) of
tracking errors: The CDF of tracking errors shows the
frequency that a corresponding estimate error is less than
or equal to the argument of that error.

The experiment area is 60 m� 5 m, and the trajectory path
is 250.8 m. Figure 5(b) and Figure 5(c) show the ground truth
and the trajectory of the IMU based PDR in the experiment.
Figure 5(c) con�rms that the IMU along with the robust PDR
can localise the user in a certain level, but the IMU based
PDR slowly drifts over time. Figure 5(d) shows the trajectory
after using the proposed SolarSLAM method, which has
corrected the IMU PDR localisation drift and is virtually
indistinguishable as the ground truth. This has con�rmed that
the SolarSLAM has an excellent discriminative ability for
loop-closure.

TheeRMS of IMU and the proposed SolarSLAM methods
are 2.0733 m and 1.2498 m, respectively. Using the proposed
SolarSLAM and fusing measurement from the solar cell
and IMU, it can achieve 39.72% improvement compared
with the IMU based PDR localisation method. Figure 5(e)
shows the tracking CDF of errors using IMU based PDR
and the proposed SolarSLAM method. The 80th percentile
localisation errors for the IMU based PDR and the proposed
SolarSLAM are 2.666 m and 1.526 m, respectively. In this
metric, the proposed method achieves 45.76% improvement
compared with the IMU based PDR.

D. Experiments in an Open Space Lab
The experiment is conducted in open space lab with

desks, chairs, and computers. The lights in the cell are
mostly evenly distributed, which caused excessive similarity
of lighting conditions. The similarity of the lighting condition
could result in a huge amount of falsely detected loop
closures, which poses more challenges to the solar cell based
indoor localisation. The carrier randomly walks in the 30 m
� 60 m areas, which leads the trajectory path 381.7 m. In
this experiment, we use the same metrics in Section V-C to
evaluate the performance of the proposed method.

Figure 5(f) and Figure 5(g) show the ground truth and the
trajectory of the IMU based PDR in the experiment. Figure
5(g) shows the severe drifts of IMU based PDR over time.
The proposed method corrects the IMU PDR localisation
drift, as shown in Figure 5(h). TheeRMS of IMU and the
proposed SolarSLAM methods are 10.7843 m and 1.8692
m, respectively. Using the proposed SolarSLAM and Fusing
measurement from the solar cell and IMU, the proposed can
achieve 82.67% improvements compared with the IMU based
PDR localisation method. Figure 5(i) shows the tracking
CDF of errors using IMU based PDR and the proposed
SolarSLAM method. The 80th percentile localisation errors
for the IMU based PDR and the proposed SolarSLAM
are 15.31 m and 2.507 m, respectively. In this metric, the
proposed method achieves 83.63% improvements compared
with the IMU based PDR.

VI. CONCLUSION

In this paper, we propose the �rst system that uses a solar
cell as a sensor for battery-free loop closure detection. An
indoor localisation system has been implemented using a
solar cell and IMU. The proposed loop closure method has
corrected drift error from IMU error using robust SLAM
method. Extensive experiments have been conducted to show
the feasibility of one solar cell as a sensor for indoor
localisation and context awareness. Our experiments in the
real environment show that the use of the proposed method
has increased the indoor localisation performance up to 80%.
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