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Abstract 

 

A method has been developed to analyse PAHs in solid environmental matrices using 

an in-situ PFE-GC-MS method. The method involves the use of 2 g of alumina as the 

in-situ clean-up sorbent, in order to remove interferences and impurities in the soils 

that could contaminate the instrument. By using this method, samples from two sites 

have been analysed for PAHs content, specifically (i) soils from a contaminated 

former Tar Works site, and (ii) urban road dust from Newcastle upon Tyne, UK. It was 

found that particle size was a significant parameter in both cases, showing a higher 

concentration (from 9 to 1404 mg/kg in the Tar Works, and 0.5 to 95 mg/kg in the road 

dust site) in the smaller grain size (< 250 µm); this is important when considering the 

ingestion exposure pathway as smaller particles are more likely to be ingested by 

children via hand-to-mouth behaviour. In addition, the source of the PAHs was 

investigated in the anthropogenically contaminated areas; it was found that pyrogenic 

sources (higher molecular weight PAHs, 4-5-6 rings) of PAHs were significantly more 

abundant compared to petrogenic sources (lower molecular weight PAHs: 2-3 rings). 

Generally the lower molecular weight such as naphthalene, acenaphthene, 

acenaphthylene and fluorene were found in lower concentration than fluoranthene, 

pyrene and other higher molecular weight PAH. In the case of the Tar Works lower 

molecular weights PAH were showing individual PAH concentration below 50 mg/kg 

whereas higher molecular weights were showing individual concentrations up to 270 

mg/kg. The same trend was observed in the road dust samples, and was clearly 

identified by using ratios of PAH concentration to demonstrate dominance of 

pyrogenic sources.  In this latter case, the pyrogenic sources were clearly identified as 

vehicle exhaust. However, other sources were identified such as the road pavement 

and the tire debris as potential sources of PAHs in urban areas. In the former case the 

PAH distribution was attributed to the locations of the chemicals productions areas in 

the former industrial site. The mean daily oral intake was used as an estimate of the 
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environmental health risk from the sites; values of PAH intake were determined based 

on the PAH individual concentration and compared against known values. Risk was 

often present for pyrogenic PAHs in road dust and soil samples. Further investigation 

of the environmental health risk was realized using a physiologically-based extraction 

test on soil samples from the former Tar works; the results, using a fed-version of the 

test, showed elevated bioaccessibilities of PAHs, mainly due to the presence of food 

and the lipophilicity of PAHs, however other PAH properties could influence their 

individual mobilizations such as the molecular weight, the ring number and the liquid-

to-soil ratio. 

It was noticed that the risk can be evaluated differently and can show different 

conclusions depending on the risk assessment chosen. Overall, the determination of 

PAHs in environmental soil and urban dust samples has highlighted the necessity to 

assess the potential impact on human health of their presence. The use of the fed-

version of the physiologically-based extraction test is one tool that could be used to 

assess the environmental health risk to humans. This tool was shown to be robust 

using an inter-laboratory study, as values for total PAH content and bioaccessible 

fractions were within the same acceptable range.   
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Chapter 1: PAHs exposure in environmental matrices 

1.1 Introduction 

The pollution of the environment, and more particularly soils, has started to be a major 

concern for the public and scientists 40 years ago with events such as the Love Canal 

in the United States, Lasalle in Canada and Lekkerkerk in the Netherlands, which 

were involving serious controversy (Jacquet, 2007). Following those events, soil 

pollution became an increasingly concern in media, therefore entering a debate 

implying environmental, social, economic and public health issues. Discussions have 

lead environmental specialists and the government to (i) create norms and rules to 

avoid further pollution of those types, to (ii) evaluate the pollution levels on specified 

sites, and to (iii) remediate the other sites around the world that could have been 

polluted through various human activities (Jacquet, 2007). Indeed, numerous sites 

may have been contaminated since the beginning of industrialization, however it is 

only after those controversial events, that an interest in contaminated land has been 

manifested (Jacquet, 2007). Therefore, it can be expected that nowadays a large 

number of unknown contaminated sites have to be monitored.  

 

A site can be characterized as contaminated when the pollution can lead to a risk to 

human and the environment. Various types of contaminations of solid environmental 

matrices generally exist (Rogge et al., 1993; Jacquet, 2007) such as leaks occurring 

during the transport and storage of raw materials, agricultural practices leading to the 

use of contaminants to protect crops, atmospheric emissions, former and actual 

industrial sites, domestic emissions, vehicle exhaust, and materials (e.g: pavement, 

tyre debris) that can involve leaching of contaminants into matrices. Polluted sites can 

represent a risk for human health because of the direct contact between soils and 

people activities. Toxic substances can migrate gradually towards the supply sources 

of drinking water, or infiltrate houses via cracks, and can be transferred into plants  

(Jacquet, 2007). In the case of urban soils, it should be said that, due to the increased 
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activities in urban areas, these soils are getting more polluted, therefore being also a 

major environmental concern (Okorie, 2010). Street dust can be very harmful to 

human as dust particles can also easily become airborne through vehicular traffic 

(Rogge et al., 1993; Miguel et al., 1999; Liu et al., 2007), thus possibly entering in 

contact with human via the respiratory tract. 

 

There are different exposure pathways to environmental matrices which will indicate 

how a pollutant can enter in contact with human (Pumlee et al., 2003; Sherwood, 

2007). One important parameter in any exposure pathways is the particle size of the 

matrix, which will indicate when the matrix will be more easily in contact with human 

receptors (Pumlee et al., 2003; U.S Environmental Protection Agency, 2008). After 

estimating the concentration of pollutants in a matrix with an analytical method, the 

levels are compared with Soil Guideline Values (SGVs) in order to evaluate the 

potential risk. For instance for PAHs, the values found in a solid environmental matrix 

such as soil will be compared with available SGVs in order to evaluate the risk, 

bearing in mind that SGVs for PAHs have not yet been released by the Environmental 

Agency (Smith et al., 2007). 

 

This chapter will firstly describe (1) the three different exposure pathways that exist in 

the environment, then (2) the importance of particle size when considering these three 

pathways of exposure. A description (3) of the CLEA (Contaminated Land Exposure 

Assessment) model will be made, before describing (4) soil guideline values for PAHs 

and (5) PAH occurrence in the environment and their properties.  

1.2 Exposure pathways to pollutants and environmental matrices 

Exposure assessment is ―the process of estimating or measuring the magnitude, 

frequency, and duration of exposure to an agent, along with the number and 

characteristics of the population exposed. Ideally, it describes the sources, pathways, 

routes, and the uncertainties in the risk assessment‖ (Environment Agency, 2009c). 
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Additionally, even if a contaminant is present at high concentration in a matrix, when 

there is no exposure, there will be no possibility to involve a risk (Environment 

Agency, 2009b). Risk is inevitably linked to exposure, consequently, the exposure 

pathway is as much important as estimating concentration of a pollutant in a matrix 

(Environment Agency, 2009b). Indeed, in order to assess the risk from pollutants in 

the environment, the recent models developed by environmental agencies and other 

organizations involve the use of the pathway of exposures between human and the 

pollutants contained in the environmental matrices (Plumlee et al., 2006; U.S 

Environmental Protection Agency, 2008). The contact can be made through different 

routes such as (Environment Agency, 2009c): 

(i) Via ingestion through the mouth. 

(ii) Via inhalation through the nose and mouth. 

(iii) Via absorption through the skin. 

The first case, which is the one considered in this entire study, involves principally 

young children because of their hand-to-mouth behaviour, with objects on the floor 

(Versantvoort et al., 2004). These pathways of exposure are included in a more 

general description of the links between a pollutant in a matrix and the humans and 

environment. As part of the Environmental Protection Act, there is a concept of 

pollutant linkage which implies three essential elements to any risk (Environment 

Agency, 2009d):  

(i) A source: a substance, contained in a matrix and which is classified as 

dangerous for a particular receptor 

(ii) A receptor: an individual or element that can be threatened by the 

contaminant. 

(iii) A pathway: a link between the receptor and the contaminant, which permits 

the contaminant to be in contact with the receptor and conversely, 

depending on the pathway of exposure. 
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This pollution linkage describes the presence of a potential risk, assuming the three 

are linked together (Environment Agency, 2009d). 

1.3 Importance of particle size 

The particle size is important in the three various pathways of exposures. According to 

the size of the particle of the solid environmental matrix (i.e. soil or dust), it will be 

ingested through the mouth, inhaled via the nose or mouth, or absorbed through the 

skin. Particle sizes below 250 µm are generally accepted as the size where particles 

can easily adhere on the skin (Bornschein et al., 1987; Rodriguez et al., 1999; US 

Environmental Protection Agency, 2000). Therefore, this particle size needs to be 

considered when working on the potential ingestion or absorption of chemicals 

through solid environmental matrices. Secondly, the finer particle size < 63 µm and 

more particularly PM2.5  (Particulate Matter 2.5 µm) and PM10 are generally considered 

in the inhalation pathway because they can easily become airborne (Miguel et al., 

1999). Several studies on road dust and soils have shown that particle size has an 

importance in the distribution of PAHs. Generally, an increase in concentration was 

observed as grain size was decreasing, which is important in the study of the 

ingestion of solid environmental matrices (Dong et al., 2007; Zhao et al., 2009). 

Indeed, if a higher PAHs content could be ingested via soil or dust with finer particle 

size, it could represent a higher risk for human health. 

1.4 The Contaminated Land Exposure Assessment (CLEA) model  

The CLEA is based on a model which tries to describe precisely the different ways of 

exposure from chemicals present in environmental matrices to human living, working 

and/or playing on contaminated land, over significant period of time (Environment 

Agency, 2009d). Considering the ingestion of soil, the risk is currently based on the 

possible ingestion of 100 mg/day of soil or dust by a children aged between 1 and 6 

years. This value has been recently established and used by the USEPA and the 

RIVM (Oomen et al., 2006; U.S Environmental Protection Agency, 2008), and those 
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values are generally used nowadays when considering the study of the possible 

ingestion of contaminants via soil or dust. 150 or 200 mg/day  of soil or dust ingested 

per day represent a realistic worst case scenario (Otte et al., 2001). In order to 

respond to problems due to contaminated land and pollutants in environmental 

matrices, environmental agencies and local authorities are developing models that 

industrials and researchers could use so as to define a site as contaminated or not 

and if remediation would need to be realized in the future. For example, remediation 

can help a land owner to increase the utility and value of their land (Department for 

Environment Food and Rural Affairs, 2008).  

 

Section Part 2 of the environmental protection act 1990 (Department for Environment 

Food and Rural Affairs, 2008) defines contaminated land ―as any land which appears 

to the local authority in whose area the land is situated to be in such a condition, by 

reason of substances in, or under the land, that significant harm is being caused or 

there is a significant possibility of such harm being caused‖. In this particular domain, 

harm means a potential hazard or threat to the health of human, animals and plants. 

Indeed, this act provides a statutory guidance which defines what a significant harm 

means, and guide local authorities so as to explain if there is a significant possibility of 

significant harm (Department for Environment Food and Rural Affairs, 2008). This 

guidance explains firstly that significant harm to human health includes various forms 

of diseases or dysfunctions that could affect human health, secondly, that the amount 

of pollutant to which a person might be exposed would represent an ―unacceptable‖ 

intake or ―unacceptable‖ direct bodily contact (Department for Environment Food and 

Rural Affairs, 2008).  

To help finding if the level of a contaminant can induce significant harm or the 

possibility of significant harm, the Contaminated Land Exposure Assessment supplies 

with a device where risk assessors can enter contaminant levels, estimates and 

assumptions about the factors that influence chemical exposure on a site 

(Environment Agency, 2009e). This tool provides information on the potential human 
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health risk when in contact with contaminated soils (Department for Environment Food 

and Rural Affairs, 2008): firstly (i), it permits to establish if a pollutant in soil can be 

transmitted to human through different pathways of exposure such as ingestion, 

inhalation and skin contact, as described previously. Secondly (ii), it permits to 

estimate the exposure level of a contaminant which could induce a significant harm in 

the case of penetrating the human body.  In this case, the assessor needs to choose 

an estimate that could induce significant harm as a result of long term exposure. 

Finally (iii), the tool will demonstrate if there is any possibility that the contaminant 

present in the soil would involve a significant harm for the human considered. This 

would be based on measurements, estimates and assumptions about the 

contamination levels on a specific site.  By using this tool, risk assessors can evaluate 

the risks on a specific site, for a contaminant.  In England and Wales, the estimation 

of the risks are based on the CLEA model, which involves comparison of pollutant 

levels with SGVs derived from HCVs (Health Criteria Values), and where a 

concentration below or at this value will involve minimal risk for humans 

(Environmental Agency, 2005). The CLEA employ estimates of exposure based on 

intake (i.e the amount of contaminant that can be in contact with the human, defined 

by mg/kg bw/day), rather than on the uptake (i.e the dose of contaminant that can 

potentially reach the systematic circulation) (Environment Agency, 2009b). Indeed, the 

HCVs are obtained mainly by using the intakes values, resulting from the contaminant 

content evaluation, using animals or humans and considering exposure to various 

matrices (Environment Agency, 2005); this first assumption explains that a 

contaminant might be taken up by the body from the matrix to the same extent as 

from the medium of exposure used in the study, to derive the oral HCV. This 

consideration could be wrong as soil contaminants for example can be sequestrated 

in the matrix, leading to lower the contaminant bioavailabilities (Environment Agency, 

2009c). Each contaminant can be bound in the matrix differently, so that some 

substances can be more easily adsorbed into the ingested soils than with the medium 

used in the toxicology study (Environment Agency, 2005).  Furthermore, the HCVs are 
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associated with two types of substances to establish the risk (Department for 

Environment Food and Rural Affairs, 2008) (Figure 1.1): 

(a) The threshold substances which consider a level at and below there is no risk 

for human. The government describes this level as a value where there is no 

appreciable risk to human health. This threshold will be called the Tolerable 

Daily Intake (TDI) and is expressed on a bodyweight basis (mg/kg bw/day) 

(b) The Non-threshold substances will involve risks at any level of exposure, this 

is described by the government as a minimal risk to human health. In this case 

an Index Dose (ID) will be required to define the risk. 

The Mean Daily Intake (MDI) can also be used when other matrices than soils are 

considered for the exposition of humans, such as food, water, and air (Environment 

Agency, 2009b). The MDI is defined in units of mass per day (µg/day). Moreover, the 

intake will vary, depending on the fate and transport of chemical in the environmental 

matrix, because complex processes are involved inside the soil such as partitioning 

due to contaminants being (i) adsorbed into soil organic matter, (ii) dissolved in the 

interstitial pore water, (iii) isolated in the gas phase, and also persistence, and  

transport of targeted compounds from a matrix to another (Environment Agency, 

2009c). 

 

 

 

 

 

 

Figure 1.1: Description of the risk estimation based on the derivation of HCVs, 
considering threshold and non-threshold substances 

Non-threshold Threshold 
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No RISK 
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1.5 Soil guideline values and PAHs 

The environmental agency has not yet released SGVs for PAHs (Smith et al., 2007; 

Environment Agency, 2009a), however some other documents establish generic 

assessment criteria between 0.83-2.1 mg/kg for benzo(a)pyrene in residential soils 

and allotments soils with organic matter ranging from  1 to 6 % (Nathanial et al., 2009) 

. In other countries such as Denmark and Belgium, the threshold level for a unique 

PAH is generally fixed at 1 mg/kg (Cave et al., 2010). This is confirmed by the Dutch 

environmental regulations  which estimates 1 mg/kg as a level where there is a 

potential risk, and a value of 40 mg/kg for the total of 10 PAHs (VROM, 2000). In the 

UK the threshold value for total PAH content was fixed at 50 mg/kg for residential and 

domestic areas, but those values have not considered being up-to-date (ICRCL, 

1987). It should be noted that in the majority of contaminated sites in the UK, values 

exceeds the GACs (Nathanial et al., 2007).  

1.6 Occurrence of PAHs in environmental matrices 

PAHs, which are part of a larger group called the persistent organic pollutants (POPs), 

are a type of components that can become easily airborne in the atmosphere, and will 

be distributed between both gaseous and particulate form, owing to their respective 

vapour pressures (Mostafa et al., 2009). Persistence and hydrophobicity of such 

compounds will conduct them to stay in the solid environmental matrix for several 

years (Motelay-Massei et al., 2004). Indeed, the hydrophobicity and stable chemical 

structure of those compounds, making them not very soluble in water, they will be 

adsorbed on soil particle and soil organic matter (Tang et al., 2006).  Therefore, the 

solid environmental matrices will act as a container for those pollutants.  Soil has been 

reported to be the primary reservoir for PAHs (Tang et al., 2006). This will involve 

significant risks for the environment in the case of contaminated agricultural soils and 

its corresponding trophic chain (Motelay-Massei et al., 2004). More generally, POPs 

will be transferred from the natural or anthropogenic source, into the environment, 

such as natural waters, sediments, soils, and they will enter plant, vegetables, and 
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other food components (Hubert et al., 2003). PAH are a group of organic compounds 

which are non-polar, hydrophobic, contain two or more fused benzene rings (Kim et 

al., 2003), and are ubiquitous in the environment (Berset et al., 1999). More than 100 

PAHs can be found in the nature (Barranco et al., 2003), but the US Environmental 

Protection Agency has only classified 16 of them as priority pollutants due to their 

occurrence, mutagenic and carcinogenic properties (Barranco et al., 2003). They are 

listed in Table 1.1 with their respective potential harmful effect, partitioning coefficient, 

solubility in water, melting point, ebullition point, structure, mass, and potential harmful 

effects. This explains why a larger number of studies are involved into the 

characterization of those pollutants in the environment, which can be toxic to humans 

and have hazardous effects on soil organisms and plants (Ong et al., 2003). 

 

These compounds are formed through combustion within anthropogenic and natural 

processes. The former involves burning of fossil fuels, coal-derived, coke production, 

industrial processes (Graham et al., 2006), the latter involving principally forest fires, 

volcanic activities and geochemical processes (Liguori et al., 2006). They can also be 

present in food due to heat processes such as smoking, grilling and smoke drying 

(Liguori et al., 2006), and in asphalt processing and use (Takada et al., 1991; Mahler 

et al., 2010). High concentrations of PAHs were found in sites where coal, coal-tar, or 

heavy petroleum distillates were produced or used, for example gas works, tar works, 

metal or bitumen production sites, and wood impregnation sites where creosote was 

used (Ong et al., 2003). Those industrially contaminated sites are often situated close 

to human activities and houses, therefore requiring remediation (Ong et al., 2003). 

This type of hydrophobic organic contaminants (HOCs) can enter the human digestion 

via the ingestion of solid environmental matrices, and therefore can be adsorbed into 

the gastrointestinal epithelium (Vasiluk et al., 2008). 
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Table 1.1: Structure, empirical formulae and other properties of the 16 PAHs 

PAH Structure 
Empirical Formulae 

 

PAHs 

 

 

 

MS Ion for Quantitation 

 

Risk group (IARC)
a
 

Bpt ( ºC) Mpt ( ºC) 
Log Kow 

b
 Solubility in water at 25 ºC µg/kg 

 

C10H8 Naphthalene (NAP) 128 2B 218 80.5 3.35 31.7 

 

C12H8 Acenaphthylene (ACY) 152 ND 280 80-83 4.07
c
 39.3

c
 

 

C12H10 Acenaphthene (ACE) 154 3 279 96.2 3.92 3.42 

 

C13H10 Fluorene (FLU) 166 3 293 116 4.18 1.98 

 

C14H10 Phenanthrene (PHE) 178 3 340 101 4.57 1.29 

 
C14H10 Anthracene (ANT) 178 3 340 216 4.54 4.5x10

-2
 

 

C16H10 Fluoranthene (FLUH) 202 3 250 107 5.22 2.6 x10
-1

 

 

C16H10 Pyrene (PYR) 202 3 360 150 5.18 1.35x10
-1

 

 

C18H12 Benzo(a)anthracene (BaA) 228 2B 435 162 5.79 5.7x10
-3

 

 

 

C18H12 Chrysene (CHY) 228 2B 448 255 5.98 1.9x10
-3

 

 

C20H12 Benzo(b)fluoranthene (BbF) 252 2B 481 168 6.06 1.4x10
-2

 

 

C20H12 Benzo(k)fluoranthene (BkF) 252 2B 480 217 6.06 4.3x10
-3

 

 

C20H12 Benzo(a)pyrene (BaP) 252 1 495 179 6.00 3.8x10
-3

 

 

C22H12 Indeno(1,2,3-cd)pyrene (IDP) 276 2B 536 164 6.40 5.3x10
-4

 

 

C22H14 Dibenzo(a,h)anthracene (DBA) 278 2A 524 267 6.86 4.0x10
-4

 

 

C22H12 Benzo(g,h,i)perylene (BgP) 276 3 500 222 7.10 3.0x10
-4

 

a
 Evaluation of risk according to International Agency for Research on Cancer (IARC), 1=Carcinogenic to human; 2A= Probably carcinogenic to human; 2B= Possibly carcinogenic to 

human; 3= not classifiable as to its carcinogenicity to humans; 4: Probably not carcinogenic to humans (Li et al., 2010) 
b 

(Lu et al., 2009)
 

c
(Tang et al., 2006) 
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PAHs can also create further metabolites when entering the digestion system 

potentially causing DNA damage, chromosomal mutation and increased risk of 

leukaemia in childhood (Liguori et al., 2006). Generally, benzo(a)pyrene is chosen as 

an indicator of the total 16 PAHs (Liguori et al., 2006), and has been identified by the 

Environment Agency (UK) and European Community as a carcinogenic marker 

substance, and as the most carcinogenic of all PAHs (Vasiluk et al., 2008). There is a 

lot of toxicological evidence on this particular compound, showing that tumours have 

been produced in several kinds of animals, following administration of benzo(a)pyrene 

through various pathway of exposure (Health Canada, 1986). 

 

The sources of PAHs are generally grouped in two different types: one considering 

PAHs resulting from anthropogenic sources and the other PAHs resulting from natural 

sources. Generally, the higher molecular weights PAHs are dominated by the 

combustion of fossil fuels and vehicle exhaust whereas low molecular weight PAHs 

are generally dominated by natural sources: those two different types of sources are 

defined by the terms pyrogenic for the higher molecular weight, and petrogenic for the 

lower molecular weight (Yunker et al., 2002). Those two types have been used 

extensively in the literature in order to compare distribution of the 16 PAHs in soils 

and road dust (Yunker et al., 2002; Wang et al., 2009). Usually, a high concentration 

of higher molecular weight indicates anthropogenic pollution whereas a high content 

with low molecular weight PAHs indicates natural pollution. Moreover, one study has 

shown that PAHs in urban areas can be more than ten times higher than those in rural 

areas (Lu et al., 2009). As described in the Figure 1.2, the potential sources of PAHs 

in street dust in an urban site are atmospheric deposition, vehicle exhausts, tyres 

debris, road surfaces, brake lining and cigarette ash. 

 



12 
 

Surface run-off Vehicle exhaust

Road surface

Tyres

Atmospheric 

deposition

Brake lining Street dust with cigarette 

ash, vegetative residues

Domestic IndustryIndustry

 

Figure 1.2: Sources of PAHs in an urban site 

 

1.7 PAHs properties  

In order to clearly understand the behaviour of PAHs in the environment and in solid 

or liquid environmental matrices, it is important to know the properties of those 

compounds, which can indicate why a specific trend or behaviour is observed. As 

described in the Table 1.1, the low molecular weight PAHs are more volatile than the 

higher molecular weights. For example, when comparing the lowest and highest 

molecular weight, naphthalene has a boiling point at 218 ºC whereas 

dibenzo(a,h)anthracene has a boiling point at 524 ºC, The contrary is observed when 

considering the solubility. Solubility in water at 25 ºC is decreasing when increasing 

the molecular weight of PAHs. PAHs are known to have very low solubility in water as 

they are hydrophobic compounds, which is further confirmed by the partition 

coefficient (Log Kow), which are increasing with augmentation of PAHs molecular 

weight. As described in the precedent paragraph, benzo(a)pyrene can be harmful for 

human health,  and it has recently been established as carcinogenic to human (Group 

1) (IARC, 2010), as in the past it was classified as probably carcinogenic to human 
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(Group 2A) (IARC, 1983). This last update on the carcinogenicity of PAHs has also 

changed the risk group of benzo(a)anthracene and chrysene from group 2A and 3 

respectively, to 2B for both compounds (Table 1.1) (IARC, 2010). According to the 

IARC‘s guidelines on risk assessment, the PAHs can be classified as carcinogenic to 

humans (Group 1), probably carcinogenic to human (Group, 2A), possibly 

carcinogenic to human (Group 2B), not classifiable as to its carcinogenicity to humans 

(3), and probably not carcinogenic to humans (Group 4) (IARC, 2010). With a good 

understanding of the PAHs properties, the evolution of PAHs distribution in 

environmental matrices can be explained, as interaction of those organic compounds 

with particles of soils or in an aqueous phase can be described. However, an 

understanding of the properties is not sufficient to characterize the risk as it is only 

related to the levels of contaminants in a media. Therefore, to evaluate the risk, the 

level of pollutant needs to be evaluated using appropriate analytical methods, but 

most importantly they need to be compared with specific values or guidelines that can 

inform the risk assessor where a hazard is likely to be present or not. 

1.8 Conclusion 

This first chapter introduces the issue on how to deal appropriately with level of 

contaminants, especially PAHs, in environmental matrices, when risk assessment 

needs to be realized. Currently, the risk assessment is based on these assumptions 

and regulations established by environmental agencies. However, there is ongoing 

work on how to improve the way the risk is estimated. For instance, estimation of 

bioaccessibilities using in vitro gastrointestinal tests is a way to refine the risk 

assessment already being used by the CLEA model. Indeed, the bioaccessibility gives 

information on the intake of pollutant through ingestion of solid environmental 

matrices, and is calculated, based on contaminant mobilized in the gastrointestinal 

fluids. Metals have been largely investigated using these methods (Ruby et al., 1996; 

Rodriguez et al., 1999; Gron et al., 2003; Schroder et al., 2004; Drexler et al., 2007), 

and nickel or PAHs have been less explored (Gron et al., 2003; Pu et al., 2004). To 
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validate these values, the procedure requires validation by comparison with in vivo 

studies that are not always available for bioaccessibility studies, especially with PAHs. 

An other way to validate those studies is to realize inter-laboratory evaluations using 

physiologically-based extraction tests, which have started to be done in the recent 

years (Versantvoort et al., 2004; Cave et al., 2010).  

 

This model requires an exhaustive understanding of the mechanisms that control 

human digestion and the possible interaction between contaminants and human 

organs inside the gastrointestinal tract, when ingested via solid environmental 

matrices. It also requires an overall understanding of the methods to isolate PAHs 

from complex solid and liquid environmental matrices, in order to identify risk and 

contaminant mobilization with as little uncertainty as possible. By understanding and 

applying these analytical tools, the risk assessment could be, on the one hand, 

estimated and on the other hand, improved. 
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Chapter 2: PAH mobilization in the human gastrointestinal 

tract 

2.1 Introduction 

As ingestion is one of the main pathways of human exposure to pollutants from 

environmental matrices, scientists are trying to model human digestion of those 

matrices to estimate potential risks. As described in the previous chapter, ingestion of 

soil mainly occurs involuntarily via hand-to-mouth behaviour, and involves principally 

young children (U.S Environmental Protection Agency, 2008). Obviously, in vivo 

studies are the first way to estimate the risk through those behaviours. However, 

these types of studies involve ethics, financial issues, and physiological divergences 

between human and the contaminant behaviour inside the matrix (Scoof, 2004).  

These constraints have led to the development of in vitro gastrointestinal models, on 

the one hand, to estimate the bioaccessibility of contaminants in various matrices, as 

an indicator of in vivo bioavailability, and on the other hand, to refine the risk 

assessment in contaminated land management (Environment Agency, 2005).  

Several in vitro gastrointestinal models have been investigated since the 1990s in 

order to mimic the human digestion of several contaminants such as metals and 

organic compounds in matrices such as food, soils and toys (Oomen et al., 2002). The 

tests are based on the medical physiology of the gastrointestinal tract. Three main 

compartments are involved in human digestion: (a) the mouth allows grinding and 

masticating the food ingested with saliva, (b) the stomach, stores food and initiates 

digestion by churning food and secreting proteases and acid, and (c) the intestine, is 

made of two different compartments, the small intestine and the large intestine (the 

colon). The former, permits digestion and absorption of nutrients, while the latter 

permits to store indigested remnants before defecation (Intawongse et al., 2006; 

Sherwood, 2007). The colon plays a significant role in degrading nutrients with 

bacteria (Petersen, 2007). The PAHs can be degraded by microbial contact and will 

potentially form new PAHs-based molecular structures or metabolites which can be 
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harmful for humans (Roberts et al., 2000; Van de Wiele et al., 2004). As evidenced by 

medical physiology, nutrients absorption will mainly occur in the small intestine. 

Therefore, some in vitro gastrointestinal tests do not include the saliva part, and focus 

often only on the gastrointestinal compartment (Hack et al., 1996; Van de Wiele et al., 

2004), because absorption of nutriments will occur via the epithelial cells lining the 

small intestine.  

In previously published studies, a good correlation has been found for selected metals 

such as lead and to some degree for arsenic and cadmium between in vitro 

bioaccessibility and in vivo bioavailability (Ruby et al., 1996; Rodriguez et al., 1999; 

Gron et al., 2003; Schroder et al., 2004; Drexler et al., 2007). Concerning nickel and 

PAHs, only very few in vivo bioavailability studies and comparison between in vitro 

and in vivo data have been published (Gron et al., 2003; Pu et al., 2004; Gron et al., 

2007).  It needs to be kept in mind that the bioaccessibility of a contaminant represent 

its mobilization into the gastrointestinal juices (intake or external exposure), whereas 

bioavailability represents the potential absorption of the contaminant into the systemic 

circulation (uptake or internal exposure) (Environment Agency, 2005; 2007). The in 

vitro gastrointestinal model explored in this project is the UBM (Unified BARGE 

Method) developed by a group of researcher within the Bioaccessibillity Research 

Group of Europe (BARGE) (Cave et al., 2006). Before agreeing to a common 

procedure, the BARGE has compared several in vitro gastrointestinal tests, in several 

laboratories around the world (Oomen et al., 2002). 

Recently, the UBM has been modified, based on the studies from the National 

Institute for Public Health and the Environment (RIVM), with fed-based in vitro 

gastrointestinal tests, in order to produce a model simulating the ingestion of soil and 

food, considering a child aged between 1 and 6 years old (Versantvoort et al., 2004). 

The method is called the Fed ORganic Estimation Human Simulation Test: 

FORES(h)t) (Cave et al., 2010). This test is particularly adapted to the evaluation of 

PAHs bioaccessibilities in soils, because firstly it is more realistic, as food is part of 
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digestion; Secondly, it involves increased mobilization of PAHs through bile micelles 

and fat constituents, increasing the human health risk via their absorption into the 

surface of the cells covering the inner layers of the small intestine microvilli (Hack et 

al., 1996; Gron et al., 2003). 

Now that an agreed procedure to realize a fasted in vitro test has been developed, the 

new step forward is to demonstrate that those models are reproducible and robust by 

doing inter-laboratory evaluations (Cave et al., 2010). Some have already been 

realized for various contaminants in different matrices (Versantvoort et al., 2004; 

Wragg et al., 2009). When the robustness of the method will be demonstrated, the 

aim would be to use the most suitable model in commercial laboratories, in order to 

assess the human health risk, as currently there is only one inter-laboratory study on 

the FORES(h)t (Cave et al., 2010). There is also a quality issue on the non-existence 

of a reference material for bioaccessibility studies (Environment Agency, 2007). 

Furthermore, the bioaccessibility tool seems a more suitable way to measure the risk, 

than the measurement of pollutant levels in environmental matrices compared to soil 

guidelines values.  

This introductory chapter will firstly deal with (1) the medical physiology of the 

gastrointestinal tract. Then (2), a presentation of physiologically-based extraction tests 

will be made with an attention on the reasons to develop such a model. The various 

parameters (3) influencing the mobilization of pollutants during digestion will be 

described. The different steps (4) towards the elaboration of a fed state of that model 

will be presented.  Issues of quality and reproducibility (5) will be discussed as part of 

the validation of the analytical protocol, related to this model. Finally (6), the fed model 

will be described as a promising and useful tool to refine the risk assessment, 

especially for polycyclic aromatic hydrocarbons.    
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2.2 Physiology of the gastrointestinal tract   

In order to mimic human digestion it is indispensable to understand the various 

complex mechanisms that occur inside the human gastrointestinal tract. The main 

steps in the digestion involve the mouth, the stomach, the small intestine, and the 

large intestine or colon which are part of the gastrointestinal tract (Figure 2.1). 

Numerous enzymes are involved allowing digestion of food, secretion and absorption. 

Indeed, the four basic digestive processes are motility, secretion, digestion and 

absorption (Sherwood, 2007). The digestive tract is a long tube that runs from the 

mouth to the anus and the all process can also be summarized in seven steps (Dean 

et al., 2007): ingestion, mastication, deglutition, digestion, absorption, peristalsis and 

defecation. 

 

Figure 2.1: View of the gastrointestinal tract (NIDDKD, 2009) 

 

In the mouth, food penetrates the digestive system where it is chewed, masticated 

and mixed with saliva to facilitate swallowing (Sherwood, 2007). The salivary enzyme, 

amylase, begins the digestion of carbohydrates. No absorption of nutrients occurs 

from the mouth and the entire process will only last a few minutes (Intawongse et al., 

2006). This can be explained by the fact that often the mouth compartment is not 

included in in vitro gastrointestinal tests. The nutrients are then transferred into the 

stomach via a tube called the oesophagus. 
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The stomach, a sac-like structure located between the oesophagus and small 

intestine, stores ingested food for variable periods of time until the small intestine is 

ready to process it further for final absorption (Sherwood, 2007). Gastric secretions 

into the stomach lumen include hydrochloric acid, which activates pepsinogen, 

denatures protein, and kills bacteria. Pepsinogen, after being activated, initiates 

protein digestion (Dean et al., 2007). Carbohydrates digestion continues in the body of 

the stomach under the influence of the swallowed salivary amylase. Protein digestion 

occurs in the antrum of the stomach, where strong peristaltic contractions mix the food 

with gastric secretions, converting it to a thick liquid mixture known as chyme. Again, 

no nutrients are absorbed from the stomach (Sherwood, 2007). 

The liver will then contribute to the secretion of bile, which contains bile salts, 

cholesterol and lecithin (Sherwood, 2007). Bile salts will be part of the digestion by 

forming micelles that will carry the fatty residues throughout the gastrointestinal tract 

until the layer of the small intestine (Gron et al., 2003). Indeed, the micelles are 

constituted by long hydrophobic chains and hydrophilic heads which gathered 

together, form a spherical particle (Figure 2.2). The core of this micelle will be lipohilic 

and therefore attract all fatty components in the gastrointestinal tract, while the 

hydrophilic heads will permit to the micelle to circulate easily in the aqueous phase 

reaching the small intestine for absorption (Gron et al., 2003) (Figure 2.2). The 

hydrophobicity of the fat matrix and of the micelle core is particularly important in the 

mobilization of polycyclic aromatic hydrocarbon which are lipophilic and non-polar 

compounds (Hack et al., 1996; Oomen et al., 2000).  Monoglycerides and free fatty 

acids are the main components transported by micelles as a result of fat digestion 

(Hack et al., 1996). When those compounds are not attracted onto the hydrophobic 

core of the micelle, they will remain in the aqueous phase (chyme), therefore not 

reaching the absorptive sites of the small intestine (Sherwood, 2007). 
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Figure 2.2: Description of a bile salt micelle  

 

In the small intestine, brush-border enzymes complete the digestion of carbohydrates 

and protein. Fat is digested entirely in the small-intestine lumen, by pancreatic lipase 

(Sherwood, 2007).  Absorption will occur through the fingerlike projections, covering 

the inner layer of the small intestine, more commonly called villi, which forms also the 

microvilli, a smaller version of those finger likes protrusions (Gron et al., 2003). These 

surfaces will be responsible for the absorption of the resulting components of fat 

digestion (Sherwood, 2007). Finally, only a small amount of fluid and indigestible food 

residue passes on to the large intestine.  

The colon serves primarily to concentrate and store undigested food residues until 

they can be eliminated from the body as faeces. No secretion of digestive enzymes or 

absorption of nutrients takes place in the colon, all nutrient digestion and absorption 

having been completed in the small intestine (Sherwood, 2007). 

2.3 Development and design of an in vitro gastrointestinal test 

Therefore, on the basis of human physiology, simulated gastrointestinal models have 

been developed.  They are generally based on the different reagents and enzymes 

found in the saliva fluid (mouth), gastric fluid (stomach), bile fluid (intestine) and 

duodenal fluid (intestine). However, some tests include for example the colon or 

exclude the mouth (Oomen et al., 2002; Van de Wiele et al., 2004), some are very 

simple, whereas others are more complicated (Oomen et al., 2002).  In all cases they 

are trying to mimic the ingestion of a matrix such as soil or food and the effect on the 
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mobilization of the pollutants inside the gastrointestinal fluids, using different 

parameters and varying amount of soil or food depending on the conditions 

established for the model. To simulate as precisely as possible the gastrointestinal 

tract, the temperature of the extraction should be fixed at body temperature 37°C, and 

in order to mimic the peristaltic actions of the oesophagus, the extractions has to be 

performed by shaking or agitation (Dean et al., 2007). Several ways of agitation have 

been reported such as end-over-end, mechanical stirring, peristaltic movements, 

argon gas dispersion and head-over-heels (Dean et al., 2007). 

After extraction, the compounds need to be isolated from a matrix containing generally 

biological fluids, water, food and soil particles. Suitable methods of extraction need to 

be used to simplify this complex matrix. Typically, techniques used can be filtration, 

centrifugation, saponification  and extraction methods such as liquid-liquid extraction, 

solid phase extraction, solid-phase micro-extraction, stir-bar sorptive extraction, micro-

extraction by packed sorbent,  employed generally with  liquid matrices (Dean, 2009). 

After isolation, analysis can be realized using analytical instruments such as, GC-

ECD, GC-MS, HPLC-UV depending on the matrix and on the compounds analysed 

(Intawongse et al., 2006; Dean et al., 2007).  

The pollutant concentrations in the resulting aqueous phase are then measured as the 

bioaccessible fraction and are defined as the fraction of a compound that is released 

from its matrix in the gastrointestinal tract, and thus become available for intestinal 

absorption (Environment Agency, 2005). Bioaccessibility only provides an estimation 

of the fraction of contaminant in soil potentially available for absorption whereas the 

bioavailability will represent solubilisation and absorption inside the gastrointestinal 

tract (Environment Agency, 2005). The calculation of the bioaccessible fraction is a 

way to estimate bioavailability, but a compound that is bioaccessible will not be 

automatically bioavailable. This involves an understanding of the mechanisms of 

absorption of a particular contaminant into the systemic circulation.  
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The simulated in vitro gastrointestinal tests can be described either as static or 

dynamic: when a model is static, it consists in simulating the exposure of the samples 

with the fluids from the gastrointestinal tract, whereas a dynamic model will mimic the 

transfer of the samples within the various gastrointestinal fluids (Intawongse et al., 

2006). The dynamic tests are not as numerous as the static models, and the static 

models are generally more simple to use (Intawongse et al., 2006). The main 

simulated in vitro gastrointestinal tests that have been developed in the last years 

have been summarized in a study (Oomen et al., 2002), which is synthesized in Table 

2.1. This table describes the main differences between the tests, such as the 

compartments of the gastrointestinal tract used, if food is added and if in vivo studies 

have been realized, and finally if the simulated test is static or dynamic.   

The variation between the types of reagents used, the amount of soil, the incubation 

time, the soil-to-solution ratio, have led to differences in the resulting bioaccessibilities 

from those different models. However, this works was realized towards the elaboration 

of an agreed procedure, developed by BARGE and aiming to produce a scientifically 

sound, robust and simple in vitro gastrointestinal test, as required by environmental 

agencies (Gron et al., 2003; Environment Agency, 2007). This has been realized for 

metals in various matrices but there is still a need for an agreed procedure to estimate 

bioaccessibility of PAHs from soils using a physiologically-based extraction test. 

2.4 Parameters influencing mobilization inside the gut 

2.4.1 Bile salts 

The mobilization of organic compounds in the gastrointestinal tract is largely 

influenced by the presence of bile salts (Oomen et al., 2000). Generally, the main 

trend observed in the literature is that bile salts increase the oral bioaccessibility.  
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Table 2.1: Comparison of the presence of different characteristics in several in vitro gastro intestinal tests recently developed (Oomen et al.,2002) 

Name of in vitro gastro intestinal 
model 

Characteristics of the model 

 Static Dynamic Mouth 
compartment 

Colon 
compartment 

In vivo 
correlations 

Food 

The SBET (Simple 
Bioaccessibility Extraction Test); 

British Geological Survey, 
United Kingdom 

 
X 

  
 

  
X 

 

The Method E DIN 19738; Ruhr-
Universitat Bochum (RUB), 

Germany 

 
X 

    
X 

 
X 

The in vitro digestion model, 
National institute of public 
health and the environment 

(RIVM), the Netherlands 

 
 

X 

  
 

X 

  
 

X 

 
 

X 

The SHIME (Simulator of Human 
Intestinal Microbial Ecosystems 
of Infants), LabMet (RUG)/VITO, 

Belgium 

 
 

X 

 
 

X 

  
 

X 

 X 

TIM (TNO Gastro intestinal 
model); TNO nutrition, The 

Netherlands 

  
X 

 
X 

  
X 

 
X 

Unified BARGE Method, BARGE X  X  X  

Fed Organic Estimation Human 
Simulation Test , BARGE 

X  X   X 
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A number of studies with organic compounds show clearly the influence of bile salts 

on the surface tension of gastrointestinal juices, the formation of micelles, and the 

increasing bioaccessibility values. Some work has already been done on the role of 

bile salts in the increase of mobilization of organic compounds in an aqueous 

environment (Fries, 1985). More specifically, some studies have shown increase of 

PAHs bioaccessibility when increasing bile salts concentrations (Hack et al., 1996). 

Phenanthrene solubility was more than five times higher in the extracting solution 

containing bile salts  (Pu et al., 2006). Some researchers  (Sips et al., 2001; Wittsiepe 

et al., 2001)  observed that  bile  may also create an apolar environment in the interior 

of bile salts micelles for hydrophobic compounds. An   increase with a factor 2 to 4 

was reported (Hack et al., 1996) in in vitro releases of PAHs and PCBs when their 

artificial digestive juices was supplemented with bile salts.  Other examples such as 

PCBs or lindane have also shown increase in bioaccessibility when increasing bile 

salts amounts (Oomen et al., 2000). Increased solubility of Total Petroleum 

Hydrocarbons (TPH) in the intestinal fluid was observed when increasing bile salts 

concentration, due firstly to the formation of micelles that move away from soil 

particles, and secondly to the decrease of the intestinal juice surface tension (Hrudey 

et al., 1996; Holman et al., 2002). 

It was demonstrated that bile salts act as a surfactant or detergent, and therefore 

decrease the surface tension of the gastrointestinal juices substantially, which may 

become important for the wetting and mobilization of contaminants from soils (Laher 

et al.; Laher et al., 1983; Charman et al., 1997; Hack et al., 1998b; Luner, 2000; Van 

de Wiele et al., 2004). Therefore, the PAHs can be bound to the hydrophobic core of 

the micelles and will be more bioavailable and bioaccessible. They can be absorbed 

by the epithelial absorptive cells, and may enter portal blood and lymph circulation, 

being harmful for the human health. A description of the transport and circulation of 

PAH inside the gastrointestinal tract, via the ingestion of soil and food, is described in 

Figure 2.3. 
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Figure 2.3: Schematic of PAH mobilization in gastrointestinal tract after ingestion of soil 
and food 

 

2.4.2 Organic matter  

The organic matter is known to considerably reduce the bioavailability and 

bioaccessibility of hydrophobic compounds in soils (Gron et al., 2003). Two terms are 

mainly known as sequestration and weathering to define the behaviour of organic 

compounds within the soil organic matter (Amellal et al.). When a soil enters the 

gastrointestinal juices, the organic compounds are differently released according to 

the organic matter proportions. A high content in organic matter seems to decrease 

bioaccessibility and bioavailability as the compounds remain attracted by the soil 

particles, decreasing the solubility of organic molecules. Mainly because of the 

sorption of the contaminants on the soil organic matter which will stop mobilization of 

organic compounds in the gastrointestinal juices. Organic matter in soil is thought to 

be the most significant factor dominating organic compound interaction with soil, and 

thus the bioavailability of these compounds (Calvet, 1989). Other studies have 

confirmed  that hydrophobic molecules sorption into soils was strongly dependant on 

organic matter (Chiou et al., 1979; Karickhoff et al., 1979; Chiou et al., 1998)   
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Moreover, the hydrophobicity of a compound will favour the sequestration into the soil 

organic matter (Schwarzenbach et al., 2003), especially important in the study of 

PAHs. Indeed, PAHs being hydrophobic molecules, the sequestration is again more 

pronounced (Means et al., 1980; Chiou et al., 1986; Yin et al., 1996; Kogel-Knabner et 

al., 2000; Xing, 2001; Pu et al., 2004). This was also observed in the case of PCBs, 

PCDDs (polychlorinated dibenzo-p-dioxins) or other organic compounds where 

sorption and persistence was increased with an high organic carbon content (Papa-

Perez et al., 1991; Luthy et al., 1997; Ayris et al., 1999; Boehm et al., 2000; Fava et 

al., 2002). 

2.4.3 Food 

The main effect of adding food as part of an in vitro gastrointestinal model is to 

increase the bioavailability and bioaccessibility of hydrophobic compounds (Fries et 

al., 1989; Hack et al., 1996; Van Schooten et al., 1997; Shargel et al., 1999; Roos et 

al., 2000; Wittsiepe et al., 2001; Pu et al., 2004). Different types of food have been 

added in in vitro gastrointestinal tests such as milk, milk powder, minced beef and 

grape seed oil (Hack et al., 1996), with an enhancement of bioavailability, varying 

depending on the amount of fat contained in food. Because of the creation of apolar 

and lipophilic environments, as with bile salts, food is increasing solubilisation of 

organic and hydrophobic contaminants in the gastrointestinal juices and therefore 

their mobilization. Food induced mixed intestinal lipids, such as monolein and long-

chain fatty acids, enhance gastrointestinal solubilisation of TPH residues (Van 

Schooten et al., 1997; Roos et al., 2000). 

2.4.4 Other parameters 

Some few studies have demonstrated the effect of the liquid-to-soil ratio on 

bioaccessibility. An increase in the liquid-to-soil ratio was showing an increase in 

bioaccessibility (Van de Wiele et al., 2004) . They concluded that the possible effect 

was due to variations in dissolved organic matter. Even for a very low contaminated 
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soil, the resulting bioaccessibility was still significant (Van de Wiele et al., 2004). 

However, other studies demonstrated contradictory trends with an increase or a 

decrease of bioaccessibility with an increasing dose of contaminants (Shu et al., 1988; 

Wendling et al., 1989; Pu et al., 2003). The augmentation of the ring number in  PAHs 

was showing a decrease in bioaccessibility in a recent study (Tang et al., 2006). The 

organic carbon normalized bioaccessibility of individual PAHs in soils decreased with 

the increasing ring number in both gastric and small intestinal conditions, possibly due 

to the decrease in the water solubility and increase in partitioning coefficient (log Kow) 

of individual PAHs by about one order per ring (Tang et al., 2006). Comparison of 

drug absorption profiles with drug hydrophobicity and drug molecular weights have 

shown that absorption of hydrophobic drugs decline at larger molecular weight 

(Borgstrom, 1967; Kimura et al., 1994). 

As organic matter is controlling interaction between organic compounds and soils, 

other properties such as the type of soil can influence the sequestration of organic 

compounds. Typically, soils containing clay have shown a decrease in 

bioaccessibility, due to weak physical interaction inside the soil (Pu et al., 2004; 

Petersen, 2007). Indeed, the high surface areas of clays involve more attraction 

between soil and hydrophobic compounds, therefore decreasing their mobilization 

inside the gastrointestinal tract. However,  studies demonstrated no clear differences 

between bioavailabilities among soil types (Pu et al., 2004) (Pu et al., 2006). The 

mobilization of pollutants also depends on the physical qualities of the soil material 

such as particle structure, porosity, and grain size (cf. chapter 1) (Hack et al., 1996). 

2.4.5 pH and residence time  

pH is also an important factor to consider in the use of in vitro gastrointestinal models.  

As described previously, the pH will give variable values according to each 

compartment of the gastrointestinal tract. In the mouth, the pH varies from 6 to 7.5. In 

the stomach the pH ranges from 1 to 4. And in the intestine, pH goes from 4.5 

(duodenum) to 7.5 (ileum) (Intawongse et al., 2006). The addition of food was shown 
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to increase pH values. For example, in the gastric part the pH was increasing from 3 

to 7 (Versantvoort et al., 2004). Concerning the influence of pH on the mobilizations of 

pollutants inside the gut, it appears that bioaccessibility are generally decreasing 

when pH increases, depending on the compounds (Oomen et al., 2002).  For instance 

lead bioaccessibility decreased with increasing gastric pH (Oomen et al., 2003b). It 

was explained that the pH along with the ionic strength could influence the structure of 

bile salt micelles, increasing solubilisation of them and therefore bioaccessibility 

(Barnabas et al., 1995a). Various digestion models have led to change residence time 

where the fluids are mixed together in order to mimic digestion movements. However, 

the variation between incubations times have not shown clear changes in the resulting 

bioaccessibilities (Intawongse et al., 2006). 

2.5 Development of a fed version of the in vitro gastrointestinal test 

According to the different parameters influencing PAHs mobilization inside the 

gastrointestinal tract, it appears that food plays a major role. As described before, 

PAHs are easily mobilized in the fat constituents of the food components due to their 

hydrophobic properties, and they can be transported in the lumen and be potentially 

absorbed into the cell walls of the intestine, involving potential hazards for human 

health (Gron et al., 2003). Moreover, including food in in vitro digestion models seems 

very essential for the development of realistic simulated gastrointestinal extraction 

procedures. Several studies have shown the dramatic increase in PAHs bioaccessible 

fractions when using a fed version of a physiologically-based extraction test (Hack et 

al., 1996; Versantvoort et al., 2004), which is important towards the evaluation of  the 

risk to human health when ingesting PAHs via soils. 

 

Several in vitro gastrointestinal tests involving food or food and soil have been used 

and developed (Rotard et al., 1995; Hack et al., 1996; Holman et al., 2002; 

Versantvoort et al., 2004; Oomen et al., 2006) to assess bioaccessibility of several 

contaminants such metals or PAHs. However, there is still not a procedure that has 
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proven satisfactory robustness as with the Unified BARGE Method. In order to realize 

a common and robust approach, several members of BARGE, which have developed 

the UBM, have developed a fed version of the Unified BARGE Method, based 

principally on the work from the RIVM (Cave et al., 2010). At the present stage, the 

method needs to be compared in different laboratories to estimate robustness, in 

order to be available in commercial laboratories, on a routine basis. A first evaluation 

has shown good performance of the analytical method and comparable results with 

another fed in vitro gastrointestinal test, the SHIME (Simulator of Human Intestinal 

Microbial Ecosystems of Infants) (Cave et al., 2010). This new method was called 

FORES(h)t (Fed ORganic Estimation Human Simulation Test) by the BGS and was 

developed to analyse PAHs bioaccessibilities from soils (Cave et al., 2010). It will be a 

fed version of the UBM, and more focused on the evaluation of PAHs 

bioaccessibilities, using a fed state of the digestion.  

The development of the FORES(h)t method needed an understanding of the 

fundamental changes that occur when a digestion model includes food. The 

FORES(h)t method was based on a method developed by the RIVM, which justify 

those modifications (Cave et al., 2010). Indeed, the RIVM has developed an in vitro 

gastrointestinal test including food and considering digestion of ―average children‖ in 

the Netherlands. This new model was firstly based on the fact that an adult or a child 

is half of the day in a fed state and the other half on a fasted state (Oomen et al., 

2006). Therefore, applying a fed state in the simulation of soil ingestion will give a 

more realistic and ―non-conservative‖ value of bioaccessibility (Versantvoort et al., 

2004). Addition of food involves many modifications to the gastrointestinal tract such 

as changes on the secretion of gastric, bile and pancreatic fluids, differences of 

gastric and intestinal motility patterns, and modifications in visceral blood and lymph 

flow (Versantvoort et al., 2004). As the human physiology is significantly modified 

when eating food, the fed version of the in vitro gastro-intestinal test will involve 

numerous modifications. In the RIVM method, the food intake was based on food 

consumption during a meal from men and women aged 19-65 years old in the 



35 
 

Netherlands (Versantvoort et al., 2004). The food constituent was chosen in order to 

comply with the mean intake of adults during a cooked meal, constituted with a known 

proportion of calories, proteins, carbohydrates and fat. Two infant formulas were 

chosen because the proportion of energy and nutrients are very close to those of a 

cooked meal. Oil was added with the infant formula to reach as nearly as possible the 

same amount of fat and calories, contained in a cooked meal.  The amount of soil 

added in the RIVM test is based on the involuntary ingestion of 100 mg/day of soil 

considering the ―average behaviour of a child‖ (cf. chapter 1). Therefore, the amount 

of soil added in the process was based on these previous assumptions. After several 

studies on the soil-to-solution ratio, the RIVM concluded that quantities of soil 

between 0.2 and 0.6 g were a good option because lower quantity of soils could lead 

to heterogeneity of the contaminant concentration in a soil and also give difficulties to 

detect some of the compounds at low levels (Oomen et al., 2006). However, the 

FORES(h)t method is employed in England for the moment, therefore the mean intake 

of energy and nutrients was based on the daily food consumptions of a children aged 

4-6 years old and living in the UK (Cave et al., 2010). 

 

The main changes that occur in human digestion when eating food are the residence 

times, the pH, the bile and pancreatic juices secretions, and the volume of food and 

digestive fluids (Versantvoort et al., 2004): (a) in the mouth, the saliva secretion is 

increased. (b) Emptying the stomach when food is ingested can take more time than 

with a fasted state, whereas no differences are observed in the small intestine. (c) In 

the small intestine, the bile secretion is increased, until food is removed from the 

stomach. (d) The pancreatic secretion also increases significantly in the duodenum 

when food is part of the digestion. The pH gradually increases also after eating, with a 

pH increasing from 1.5-2 to 3-7 in the stomach and from 5.5 to 7.5 in the duodenum 

and ileum, contrary to the jejunum where there are no differences. (e) Finally, the 

volume of digested fluids will depend on the amount of food and liquid ingested during 

a meal, and therefore will vary between a fasted and a fed state. Based on these 
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assumptions the RIVM has developed a fed physiologically-based extraction test for 

the analysis of metals and lipophilic compounds (e.g : benzo(a)pyrene) in various 

matrices such as soil or food (Versantvoort et al., 2004). When applying the fed 

version of a gastrointestinal model the scientists from the RIVM demonstrated that the 

food was clearly increasing  the bioaccessibility (from 5 to 43 %)  of benzo(a)pyrene, 

but not of the metals Pb, As and Cd  due mainly to the lipophilic character of 

benzo(a)pyrene (Versantvoort et al., 2004). 

 

When developing this model, four important considerations were made, as it is in 

general for the development of other in vitro gastrointestinal tests: absorption (1) will 

occur in the intestine, so a model involving only the stomach is not sensible. This test 

(2) should represent a worst case scenario, however the model should be as realistic 

as possible. The scenario (3) involved will depend on the contaminant and on the 

matrix studied. Finally (4), the test needs to be easily applicable, robust and 

reproducible (Versantvoort et al., 2004). 

2.6 Validation of the method: quality and reproducibility  

The reproducibility is an important parameter into the validation of those models. 

However, little differences between laboratories procedures such as the separation of 

the chyme from the matrix (using filtration and centrifugation), can produce variation in 

bioaccessibilities (Versantvoort et al., 2004). These considerations need to be kept in 

mind when comparing bioaccessible fractions from different laboratories, including 

also the type of shaking, the vessels used and the purifications methods, which can 

lead to variables results (Versantvoort et al., 2004), as uncertainty is always 

significant in any analytical procedures. However, reproducibility of the model with 

various contaminants in food or soil was shown acceptable by observing between day 

variation varying from 9 to 54 % (mean 25 %),  within day variation varying from 3 to 

74 % (mean 17%) and minor variations of pH (Versantvoort et al., 2004).  A recent 

inter-laboratory study from BARGE has also shown satisfactory reproducibility for the 
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application of the Unified Barge Method on metals within soil matrices (Wragg et al., 

2009). The next step would be to establish the robustness of the FORES(h)t  method, 

as the method has now been implemented and validated in one laboratory (Cave et 

al., 2010). However, to realize these inter-laboratory studies, the RIVM suggest the 

use and preparation of reference soil samples in all various institutes to allow a quality 

control, as  bioaccessibility could vary from one laboratory to another (Oomen et al., 

2006). As there are no actual reference materials to use in bioaccessibility studies (for 

PAHs), this will provide a ―uniformity‖ of the results between laboratories (Oomen et 

al., 2006).  

2.7 Consideration in risk assessment  

The final aim of introducing a fed state of a simulated gastrointestinal model, as with a 

fasted state, is to refine the risk assessment from pollutants in various matrices 

(Environment Agency, 2005). Especially for PAHs, the fed state is an important step 

forward, because it describes more clearly the mobilization of hydrophobic 

compounds inside the gastro-intestinal tract. Indeed, interactions will occur with the fat 

components and the bile salt micelles inside the lumen, favouring the absorption into 

the layers (microvilli) of the small intestine (Gron et al., 2003).  

Comparing the bioaccessibility of compounds from different matrices, the RIVM 

concluded that the bioaccessible fraction was variable according to the matrix studied, 

and also that not all the pollutants were released from the matrix in the same manner 

(Oomen et al., 2006). The bioaccessible fraction should be reported as the maximum 

fraction of a contaminant that could be available from the human body, thus improving 

the risk assessment (Versantvoort et al., 2004).  

2.8 Extractions methods and analysis following PBETs 

After realizing an in vitro gastrointestinal procedure, the final solution can contain a 

complex mix of components such as biological fluids, soil particles, and food that can 

seriously harm the instruments used for further analysis. Secondly, targeted 
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compounds need to be isolated and clearly identified, in order to obtain final 

concentrations. Typically, the extraction procedures for liquid matrices developed and 

used in the recent decades are, liquid-liquid extraction, solid-phase extraction, solid 

phase micro-extraction, stir-bar sorptive extraction and micro-extraction by packed 

sorbent.  

Liquid-liquid extraction is the most common method, and consists in mixing two 

solvents with different properties in order to isolate a compound which has an affinity 

with one of the two phases.With solid phase extraction, the sorbent permits to retain 

the compounds, and to get them in lower quantities of solvent. This technique allows 

purification and pre-concentration of samples. To summarize the process (Figure 2.4), 

the first step consists of conditioning the sorbent by adding a specific solvent. This will 

swell and expand the phase. The long grafts (C8 or C18 for example) will be 

straightened in order to permit interactions. Indeed, the C18 octadecyl-bonded silica 

network will be spread and more available to non-polar compounds. Then, they will be 

more attractive to molecules reaching the sorbent with the same properties. 

 

 

Figure 2.4: Schematic of the Solid-Phase Extraction procedure 

 

The second step washes the sorbent with solvent. The third step consists of loading 

the sample (1 L or less) in the cartridge passing through the sorbent. And the final 

step permits to elute the compounds remaining on the sorbent with a small quantity of 
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solvent, being soluble with the compounds. The lower chain C8 and C2 retain less the 

PAHs because of the chain length which attract less. C2 is more polar due to the 

exposition of the polar group (Si-O). Indeed, the short C2 alkyl group provides a 

smaller area for non-polar interaction to occur. Therefore, C18 will be really 

appropriate for the extraction of PAHs due to its high hydrophobicity compared to 

other sorbent such as C8 or C2 which are more polar, therefore less attractive to 

PAHs. 

Stir Bar Sorptive Extraction is a sample preparation technique that involves the 

extraction and enrichment of organic compounds from a liquid sample, using a stir bar 

which is covered with a coating, for example PDMS (Figure 2.5). The extraction time 

is controlled kinetically. It is determined by the sample volume, the stirring speed and 

the stir bar dimensions and must be optimized for a given application (Kawaguchi et 

al., 2005).] 

                                         

 

Figure 2.5: Schematic of a Stir-Bar Sorptive Extraction principle with PDMS coating 
(Barnabas et al., 1995b) 

 

To realize desorption of the compounds from the stir bar, either thermal desorption or 

liquid desorption can be used. The former includes a thermal desorption unit fixed on 

the instrument (GC-MS). Then, the stir bar is directly placed in the unit and molecules 

are desorbed at high temperature. The latter consist to heat and sonicate a small 

quantity of liquid with the stir bar to desorb the compounds. The PDMS is very 
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suitable for the analysis of PAHs because it is an apolar stationary phase and 

therefore it is very attractive for non-polar compounds (Figure 2.6). 

Si

CH
3

*

CH
3

O* n

 

  

Figure 2.6: PolyDiMethylSiloxane (PDMS) molecular structure used with SPME and 
SBSE 

 Solid-Phase Micro-Extraction is an equilibrium extraction technique and a solvent-

free method (Pawliszyn, 1999). The fibre has a polymer coating chosen for its 

suitability for the analytes of interest. For example, for relatively non-polar compounds 

such as PAHs, a non-polar coating such as polydimethylsiloxane (PDMS) is used, as 

with the SBSE technique (Figure 2.6 an 2.7). The thickness of the coating can also be 

varied between 7 and 100 µm, thin coatings are generally most effective for the 

adsorption of semi volatile  analytes, while thicker coatings should be used for volatile 

compounds (Supelco, 1998).The fibres are either immersed in the sample or exposed 

to the headspace above it. Analytes in aqueous samples can be extracted by 

immersion (King et al., 2003). The PDMS fibre attracts the compounds when in stirring 

solution in a specific solvent. Then, the fibre is inserted in the injection port of the GC-

MS for desorption of the compounds at high temperature.  

 

Figure 2.7: Schematic of the Solid-Phase Micro-Extraction principle 
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Micro Extraction by Packed Sorbent is a new and interesting technique of which the 

concept is similar to SPE, and the main advantage is to reduce the sample extraction 

time. This tool can be directly connected to a GC or LC during operation (El-Beqqal et 

al., 2006)  Indeed, in this device, the sorbent (BIN) is fixed inside a 250 ml syringe. 

The sorbent material or solid packing material used in the packed syringe can be 

silica-C8, silica-C18 or any type of sorbents (Figure 2.8). This method requires  the 

same four steps as with SPE, but all the process can be done with a small amount of 

sample (10 ml or less): Conditioning the sorbent, sampling multiple times, washing, 

and eluting  directly in the GC-MS with a large amount of solvent (50 µl). The multiple 

pulling and pushing of the sample by the syringe increases the extraction recovery 

(El-Beqqal et al., 2006). MEPS can be employed with Programmed Temperature 

Vaporizing injector (PTV) with GC-MS which allows large volume of injection 

compared to Split/Split less mode (SSL). With the PTV injector, the sample is 

deposited into the inlet at a low temperature, and then the inlet temperature is rapidly 

raised to vaporize the desired compounds and cause their transfer to the column. The 

PTV can operate effectively with large volume injections allowing venting of solvent 

and backflushing of undesired compounds to vent  (Clay et al., 2004) PTV/LVI is used 

mainly to increase sensitivity and to deal with complex samples containing impurities. 

                                                                      

 

Figure 2.8: Description of the Micro-Extraction by Packed Sorbent 
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2.9 Conclusion 

The in vitro gastrointestinal models are complex tools that are trying to simulate 

human digestion, in order to consider the effect of contaminants after ingestion of 

environmental matrices. To estimate this effect, the concentration of the contaminant 

is measured at the end of the process, after using appropriate analytical methods to 

isolate the target compounds. This concentration is divided by the total content in the 

matrix and is called bioaccessibility. The bioaccessibility is an indicator of 

bioavailability, but a contaminant that is bioaccessible is not necessarily bioavailable 

because of the complex mechanisms that are involved for the transfer of a compound 

from the lumen to the systemic circulation (Gron et al., 2003). Therefore, in vivo 

evaluations are always important to validate in vitro studies, on a particular 

contaminant present in a specific matrix. Currently, various in vitro gastrointestinal 

models have been implemented and validated in certain laboratories (Oomen et al., 

2002). BARGE (BioAccessibility Research Group of Europe) is an international group 

of researchers who are trying to compare and evaluate those models, in order to 

establish a common and accepted physiologically-based extraction test for an 

international standardization of the use of bioaccessibility (Hansen et al., 2007). They 

have developed a physiologically-based extraction test called the Unified BARGE 

Method which has shown good performance in terms of robustness. This model has 

been applied for numerous studies, such as metals in environmental matrices (Cave 

et al., 2006). Furthermore, it has been demonstrated that an important number of 

parameters are influencing the mobilization of contaminants inside the gastrointestinal 

tract, such as food, bile salts, mucine, pH and soil properties. Therefore, other types 

of simulated digestion models are being developed in order to be more realistic. The 

last model being developed by the BARGE is based on the Unified BARGE Method, 

but is a fed version. It is based on some previous work from the RIVM on the addition 

of food matrices in the in vitro gastrointestinal tests (Oomen et al., 2006). This model 

is particularly adapted for environmental matrices contaminated with polycyclic 

aromatic hydrocarbons. Those toxic compounds are very hydrophobic, so they are 
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easily retained by the fat constituents of the food, and also into the core of the bile salt 

micelles, leading to more absorption into the epithelial cells covering the inner layer of 

the small intestine. This test will permit to avoid underestimation or overestimation of 

the risk caused by the ingestion of PAHs via environmental matrices. The fed model 

being developed is called the FORES(h)t (Fed ORganic Estimation Human Simulation 

Test) (Cave et al., 2010). At this stage, the method still needs to be further validated 

through interlaboratory studies, and the researchers need to agree on one type of 

reference material that all laboratories could use, in order to get a uniformity of the 

results, replacing the use of a certified reference material, which is not available for 

PAHs in bioaccessibility studies (Oomen et al., 2006). 

 

The use of in vitro models is therefore essential into the refinement of the human 

health risk assessment. Firstly, because the simple use of a physiologically-based 

extraction test will give access to the bioaccessible fraction, which will give more 

information about the risk than the comparison with soil guidelines values based on 

possible biased assumptions, using various matrices (Environment Agency, 2005). 

Secondly, by combining the use of that model with food, the estimation of PAHs 

bioaccessibility via ingestion of solid environmental matrices, will be again more 

accurate. However, it needs to keep in mind that even if bioaccessibility can be a 

powerful tool to estimate the human health risk, in vivo correlations and inter-

laboratory studies need to be considered.  
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Chapter 3: Sampling, preparation and analysis of 

contaminated urban soils 

3.1 Introduction 

The sampling and analysis of environmental matrices need to be planned and 

meticulously organised in order to obtain pollutant levels with as little uncertainty as 

possible. These procedures are required to let public and environmental scientists 

know about the risk of living and having activities close to contaminated areas, in the 

case of soil guidelines values exceeded, for example. In Newcastle-upon-Tyne, an old 

Tar works site has contributed to the contamination of the environment and the land 

close to the Tyne River. People have activities (fishing, walking) and are living very 

close to the area, potentially involving risk for their health, as they can be in contact 

with the soils (Newcastle City Council and Ove Arup and Partners, 2007). The 

Newcastle City Council has therefore installed warning signs to prevent people 

accessing the site, as a first step towards prevention of the risk in the area. However, 

further action will be needed to confirm there is a risk, using appropriate practical 

methods and complex tools for (1) sampling, (2) pre-treatment and storage, (3) 

extraction and (4) analysis (Dean, 2009). 

The sampling strategies really depend on the objectives of the study and are generally 

separated in several types such as random, stratified and judgemental (Keith, 1991). 

After being collected, samples cannot be extracted and analysed directly, so they 

should be stored in appropriate containers (Keith, 1991). The type of storage and pre-

treatment method will need to consider the reactivity of the analyte with light, air, heat, 

water, biological organisms, metals and other reagents. Moreover, parameters such 

as compound volatility, space and time variability, and compound sorption to the 

sampling tool and container will need to be considered when storing samples (Keith, 

1991). The next step after storage is to choose the appropriate method to realize the 

extraction of compounds from the matrix. This step will follow strict quality 

requirements in order to notice any errors that will be controlled after with instrument 
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analysis. Generally, the quality control will require the analysis of spikes, blanks, 

duplicates and certified reference materials.   

To analyse pollutants in solid environmental matrices there is a large number of 

extractions methods existing nowadays. The current EPA methods for this usage are: 

Soxhlet extraction (Method 3541, 1994), automated Soxhlet extraction (Method 

3540C, 1996), pressurize fluid extraction (PFE) (Method 3545, 1996), ultrasonic 

extraction (Method 3550C, 2007) and supercrititical fluid extraction (SFE) (Method 

3561, 1996). Recently, PFE was shown to be a more effective way to extract PAHs 

from soils compared to other extraction methods (Bjorklund et al., 1998; Dean, 1998) 

in terms of accuracy, precision, reduced time of operation and reduced use of solvent. 

After extraction, the solution containing the targeted compounds is almost ready to be 

injected in an appropriate analytical instrument. However, before injection, some 

considerations must be made on the necessity to use clean-up procedures to 

eliminate impurities and incompatible reagents that could harm particular 

compartments of the analytical instrument. Generally, clean-ups methods involve the 

utilization of a sorbent which will remove the unwanted impurities or compounds. The 

sorbent can be placed in a suitable chromatographic (glass) column with a drying 

agent to realize the clean-up procedure. Recently, clean-up methods have been 

integrated in extraction procedures such as PFE or SFE (Fidalgo-Used et al., 2007), 

they combine the extraction and the purification in only one step, which reduce time of 

manipulation and costs. Finally, concerning the analysis of polycyclic aromatic 

hydrocarbons in environmental matrices, the type of instrument used is generally    

GC-MS and HPLC-UV (or fluorescence), but GC-MS methods are generally more 

employed because of better selectivity, resolution and sensitivity (Poster et al., 2006).  

The purpose of this chapter is to briefly present (1) the sampling strategy for soil and 

dust samples, (2) the sample pre-treatment and storage of such matrices, (3) the 

extraction and purification procedures available for these matrices, and finally (4) the 
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different types of instrument analysis for PAHs in soils and dust, which already exist in 

the literature. 

3.2 Sampling strategy 

It is important to keep in mind that in any analytical processes, which involve 

numerous steps such as sampling, pre-treatment procedures, instrument analysis and 

data treatment, uncertainty of measurement is always present. The error estimated on 

each step has been reported (Markert, 1995) and involves up to 1000 % for 

representative sampling, 100-300 % for sample preparation, 2-20 % for instrument 

measurement, and finally 50 % for data treatment (Markert, 1995; Theocharopoulos et 

al., 2001). Therefore, potential error on the sampling strategy and pre-treatment 

procedures is significantly higher than for the extraction, analysis and data 

interpretation (Fortunati et al., 1994). This fact shows the need to prepare an 

analytical procedure on a precise and strategic sampling approach. Indeed, the 

sampling strategy is the first and indispensable step in the process of isolating 

pollutants from environmental matrices. In the case of solid matrices such as soils and 

road dust, the site needs to be thoroughly explored before starting to go for sampling, 

and choices have to be made on the type of sampling that will be made on the site, 

according to the type of data analysis realized afterwards (Dean, 1998). Generally, 

background information and historic ordnance survey maps about the sampling site 

should be obtained from the city council, which will include a general description of the 

location, site history, and more detailed information about surface geology, stream 

flows, river locations, archaeological issues and any possible former quarrying 

activities (Dean, 2009). Moreover, a site walkover should allow the investigators to 

notice main features of the site such as houses, roads, people activities, in order to 

evaluate potential risk for humans (Dean, 2009). 

The information collected from the historic ordnance survey maps can give precious 

clues about the future distribution of contaminants on the site, such as a particular 

building involved in the production of chemicals, which could have polluted the 
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environment (Dean, 2009). When the necessary background knowledge about the site 

has been acquired, the investigators can decide what type of sampling approach they 

will use and the material required. The sampling approach will consider the selection 

of the sample points, the size and the shape of the sample area, and the number of 

sampling units in each sample (Dean, 2009). Those processes will vary according to 

the purposes of the study and the type of sampling site (Keith, 1991). The three types 

of approaches are judgemental, systematic and random. These methods can be 

combined into other forms of approaches such as judgemental random, systematic 

random and systematic judgemental. Considering the systematic sampling, the 

samples can be taken randomly inside the grids drawn for the sampling. All methods 

have advantages and drawbacks and are listed in Table 3.1. Sometimes, methods 

can be mixed according to the type of site and the sample locations (Keith, 1991). In 

all cases an appropriate decision for the sampling approach should be made, taking 

account of the possible distribution of the contaminants on the site. 

Table 3.1: Primary sampling approaches (Keith, 1991) 

Approach Relative Number of 

Samples 

Relative 

Bias 

Basis of Selecting Sampling 

Sites 

Judgemental Smallest Largest Prior history, visual assessment of 

technical judgement 

Systematic Larger Smaller Consistent grid or pattern 

Random Largest Smallest Simple random selection 

 

When the preliminary decisions on the sampling strategy are made, investigators 

need to consider appropriate clothes, protection, sampling tools (trowel, ―Kraft‖ bags) 

and cleaning devices (to avoid cross contamination)  when going on the site. Separate 

devices for each sample can, for instance, be used before doing the decontamination 

later in the laboratory (Keith, 1991). Considering the collection of road dust samples, 

either sweeping tools (Yang et al., 1997; Hassanien et al., 2008; Duran et al., 2009), 

or vacuum cleaners (Yang et al., 1995; Dong et al., 2007; Zhao et al., 2009) were 

used. 
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3.3 Pre-treatment and storage of samples 

After collection of the samples from the site, samples containing PAHs need to be 

treated in order to start the extraction procedure. It would be ideal to start directly the 

extraction after collection, but the amount of samples and the sample condition often 

require a pre-treatment procedure (Keith, 1991).  Indeed, after collection, samples can 

be wet, and can be mixed with rocks and debris. Therefore they need to be dried 

before extraction, and also to be sieved at a certain particle size owing to the type of 

information required from the analysis. In a large number of studies involving ingestion 

of soils, samples were sieved at a particle size below 250 µm, considering the 

potential adsorption of that specific soil particle size into children‘s fingers via hand-to-

mouth behaviour  (Bornschein et al., 1987; Rodriguez et al., 1999; US Environmental 

Protection Agency, 2000). Generally, soils are firstly sieved under the particle size of 2 

mm to remove stones,  large roots and other materials (Dean, 2009), before going 

down to lower grain sizes, according to the pathway of exposure studied (inhalation, 

ingestion). There are different ways of realizing the drying of the soil samples which 

can be also applied on dust sample, which generally involves less exhaustive pre-

treatment procedure, requiring only the drying and sieving steps (Yang et al., 1995; 

Dong et al., 2007). Thermal drying seems to be the most frequently used method 

(Berset et al., 1999). However, this technique can involve loss of analytes if the 

temperature of drying is taken too high. Apparent losses started to appear above 40 

°C for PAHs (Berset et al., 1999). Probably the lower molecular weights PAHs, such 

as naphthalene, were lost because of their volatile character. Researchers concluded 

that an appropriate temperature between 25 °C and 40 °C to dry the soil could be 

suitable to avoid losses. Air-drying of the soil in a fume cupboard could be also a 

solution, bearing in mind that letting a sample exposed to the laboratory air can 

involve contaminations (Keith, 1991). Another way is to freeze-dry the samples, and it 

has become a commonly used storage technique in the recent years (Berset et al., 

1999). It is particularly adapted for non-polar compounds such as PAHs, and it is 

more rapid compared to thermal drying. Moreover, this method permits to avoid 
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possible air contamination that could occur through air-drying. However, in one study 

it appeared that naphthalene was lost using this freeze-drying procedure (Berset et 

al., 1999) or when stored immediately after collection in a freezer (Krauss et al., 

2003). Air-drying was generally used for the analysis of PAHs in soils (Wilcke, 2007), 

or in some cases soils samples were field-fresh extracted (Chu et al., 2003), or 

freeze-dried (Berset et al., 1995). A comparison between air-dried and field-freshed 

extracted samples (frozen directly after collection) showed that a consequent 

percentage of PAHs were lost during the air-drying procedure, which was attributed to 

the volatility of low molecular weight PAHs and the sequestration of  compounds on 

the soils with time (Wilcke, 2007). When those drying methods are not convenient, 

chemical drying could be chosen. In this case, the soil sample is mixed with 

anhydrous sodium sulphate and talcum powder cooled in liquid nitrogen and milled 

(Berset et al., 1999). This drying method has several advantages compared to the 

other techniques presented previously: (1) water is trapped via binding to sodium 

sulphate, (2) soil is not exposed to laboratory air for a long time, (3) the microbial 

activity is stopped due to the abundant presence of salt and (4) samples could remain 

longer in the freezer without risk of degradation. However, the addition of salt into the 

solution provokes dilution of the sample.  Naphthalene appeared with a higher 

concentration (or recovery) using this technique compared with other drying methods 

(Berset et al., 1999). This specific study comparing different drying methods showed 

that except the variability of results for naphthalene, the rest of the 16 PAHs were 

situated the same range of values, demonstrating that the choice of the drying 

procedure will not lead to significant modifications in the final results.  

After drying of the soil samples during a certain time, the samples needs to undergo 

homogenization (mixing/crushing),  grinding (mills, mortar) and sieving, in most of the 

cases before storage and extraction (Okorie, 2010). During those stages, the tool 

used must not be interacting with the contaminants requiring analysis in the matrix. 

Contamination can appear due to the type of container and the tools employed. Then, 
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contamination problems can be avoided by using appropriate equipment and having 

good laboratory practices (Okorie, 2010).  For example, when working with 

hydrophobic compounds such as PAHs, it is better to avoid the use of plastic as it can 

retain these types of molecules. The conditions of storage requires the same type of 

precautions, generally the glass containers are preferred, with a polyethylene or poly 

(tetrafluoroethylene) lid, and it is advised to avoid letting a headspace above the 

sample, as it can involve oxidation reactions (Dean, 1998). Contaminations can also 

occur by abrasion of the mortar and pestle  with a sample matrix when grinding 

(Okorie, 2010). The next step of the analytical process for the analysis of pollutants in 

solid environmental matrices will require other considerations. Uncertainty is still 

present during extractions, but, in this step, the cost of the instrument and reagents 

used, the rapidity of the extraction, and the consistency and accuracy of results, will 

be more important.  

3.4 Extraction and purification procedures 

3.4.1 Extraction of PAHs from solid environmental matrices 

To realize the extraction of PAHs from solid environmental matrices,  the method used 

generally were soxhlet extraction, alkaline saponification, ultrasonic extraction and 

accelerated solvent extraction (Wilcke, 2007). Investigation of several types of 

extraction procedures is usually done to reduce the time of operation and the use of 

large amount of solvent. The most commonly used technique for the extraction of 

PAHs from soil samples is soxhlet extraction, other techniques more recently applied 

are soxthern, supercritical fluid extraction and microwave extraction (Graham et al., 

2006). Shaking methods and ultrasonic extraction were applied since a long time but 

were considered to be less effective than the other type of extraction methods (Jonker 

et al., 2002). Comparing the use of soxhlet extraction, microwave-assisted extraction 

and pressurized fluid extraction, one study demonstrated that the best repeatability 

and recoveries were obtained with PFE (Pressurized Fluid Extraction) in the first 

position, then MAE (Microwave Assisted Extraction) and finally Soxhlet (Itoh et al., 



57 
 

2008). This was confirmed by a similar study comparing the three methods and 

showing the best extraction efficiency for PFE compared to MAE and soxhlet (Wang 

et al., 2007). It was concluded that PFE and MAE were more suitable methods for the 

extraction of PAHs from soils. SFE was also shown to be a good technique to extract 

PAHs from soils compared to methods like soxhlet, ultrasonic and shaking. 

Methanolic saponification demonstrated very good PAHs recoveries but variations 

were observed for the low molecular weights PAHs (Berset et al., 1999).  

3.4.2 Pressurized fluid extraction 

The principal components of a PFE system are a source of organic solvent, a pump to 

circulate the solvent, a sample cell into which is placed the sample, an oven in which 

the sample cell is heated and its set temperature monitored, a serie of valves that 

allows pressure to be measured and generated within the sample cell, and an outlet 

point (Figure 3.1) (Dean, 2009). This method allows reaching very high temperature of 

extraction without evaporating the solvent. This is explained by the fact that pressure 

is applied on the cell where the sample is placed, so when the solvent is mixed with 

the sample, temperature above boiling points can be reached, improving the 

extraction efficiency (Fidalgo-Used et al., 2007). 

 

Figure 3.1: Schematic of the principle of Pressurized Fluid Extraction (Cyberlipidcenter, 
website) 
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3.4.3 Clean-up methods 

Generally, column chromatography or solid phase extraction were used with florisil, 

silica gel, aluminium oxide, or a combination of them, in different mesh sizes,  with 

various types of solvents to elute PAHs resulting from the extraction of solid 

environmental matrices (Wilcke, 2007). Other types of sorbents, or tools such as 

filtration, are obviously available and depend on the type and structure of the 

compounds studied and the interference that needs to be removed (oil, food, etc), and 

also on the matrix. The US Environmental Protection Agency has approved a list of 

protocols for the application of the clean-up with the same type of sorbent such as 

alumina, florisil, and silica gel for the purification of organic extracts from solid 

environmental matrices (Method 3610B, 1996; Method 3620 B, 1996; Method 3630 C, 

1996; Method 3660, 1996). Generally, each of the method considers the clean-up 

using column chromatography or solid phase extraction. The former uses larger 

amounts of solvent and adsorbent but has a greater clean-up capacity (Method 3620 

B, 1996).  

A new type of clean-up that is being used for various solid environmental and non-

environmental matrices combine the extraction and the purification in only one 

simultaneous step and is called on-line, in cell (for PFE), in-situ or selective clean-up 

(Gomez-Ariza et al., 2002; Bjorklund et al., 2006; Fidalgo-Used et al., 2007; Hussen et 

al., 2007; Westbom et al., 2008). It consists in realizing the clean-up simultaneously 

with the extraction, by adding the sorbent inside the cell, in the case of PFE. Few 

publications have been dealing with this integrated form of clean-up and generally 

involve the PFE and SFE techniques (Fidalgo-Used et al., 2007). The objective of this 

one-step clean-up is to reduce (1) extraction and purification procedure time, (2) cost, 

and (3) use of large volume of solvent. The method has shown efficiency for the 

extraction and purification of PAHs from soil samples (Kim et al., 2003). The 

difference in recoveries between the off-line and on-line clean-up, in this study, was 

not significant (less than 5%), and the extract was very clear and contained less 
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impurities using the latter method (Kim et al., 2003) The comparison of the on-line and 

off-line procedure shows clearly that the former method is faster, easily automated 

and consumes less solvents (Gomez-Ariza et al., 2002; Fidalgo-Used et al., 2007). 

3.4.4 Clean-up using copper powder 

According to the literature, copper is used to reduce the sulphur content in soils  

(Berset et al., 1999; Notar et al., 2000). This clean-up is realized because high sulphur 

content in soil can involve bleeding and deterioration of the GC-MS column. 

Moreover, recently, the copper powder has been used directly into the cell of the PFE, 

as described before for the clean-up with sorbents such as florisil or alumina (Notar et 

al., 2000). However, one study demonstrated no effect on the sulphur removal with 

copper addition using a selective PFE (Rodil et al., 2008). 

3.4.5 Pre-concentration step 

When finalizing the preparation of the samples for injection in the instrument, pre-

concentrations of the solutions can be done in order to improve signal sensitivity. The 

most common approach of pre-concentration step are gas blow down, Kuderna-

Danish evaporative concentration, the automated evaporative concentration system 

(EVACS), or rotary evaporation (Dean, 2009). Care should be taken when doing the 

evaporation, firstly because compounds can be lost due to their high volatility or low 

ebullition point, and secondly contamination due to the glassware can appear. 

Sometimes solutions can be evaporated directly to dryness and reconstituted with a 

small known quantity of solvent before injection into the analytical instrument.  

3.5 Analysis 

3.5.1 Description of gas chromatography-mass spectrometry principle 

Gas chromatography is used to separate components in a liquid or gaseous phase 

according to their respective polarities and ebullition temperatures, via a mobile phase 

which is the gas and a stationary phase which is the capillary column. Generally, a 
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small amount of liquid (1-5 µl) is injected via a heated injection port, through a rubber 

septum, and the sample is volatilized before entering the column (Figure 3.2). The 

most commonly used injector is the split/splitless mode, where a certain amount of 

sample is more or less vented before injection. To authorize a higher quantity of 

sample (30-50 µl) to be injected, the PTV (programmed temperature vaporizing) can 

be used. The injection can be done manually or using an autosampler. Then, the 

sample is transferred into the column inside the GC oven (Figure 3.2), which is 

generally made of polyimide-coated silica with dimensions of between 10 and 60 m, 

long with an internal diameter between 0.1 and 0.5 mm, and a cross-linked silicone 

polymer stationary phase (for instance 5 % polydiphenyl-95 % polydimethylsiloxane, 

coated as a thin film on the inner wall of the fused silica (SiO2) capillary of thickness 

0.1-0.5 µm (Dean, 2009). The compounds will be separated into the column according 

to a temperature program, established for the oven.  

 

Figure 3.2: Principle of Gas Chromatography-Mass Spectrometry (UCDavis Chemwiki, 
website) 

 

Then, detection can occur using a mass spectrometer or a detector such as Flame 

ionization detector (FID), Electron Capture Detector (ECD), Photo-ionization detector 

(PID), Flame photometric detector (FPD) , NPD (nitrogen-phosphorous detector), and 

thermal conductivity detector (TCD). The type will be chosen according to the type of 

compounds that are analysed, such as organic compounds, phosphorous or 
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nitrogenous compounds, halogenous compounds, metals and aromatic compounds, 

etc. The most universally used detector is the FID and the mass spectrometer (such 

as quadrupole, ion trap or time of flight). When using a mass spectrometer as GC 

detector, the compounds are exiting the column from the transfer line and are 

bombarded by electrons produced by a rhenium filament. This phenomenon is called 

electron impact and produces charged species (ions) which can be separated 

according to their mass to charge ratio (m/z) into the mass spectrometer. The ions are 

then entering an electron multiplier which will produce electrons by collision, finally 

producing a signal response which is proportional to the amount of organic 

compound. The data will be finally collected either in full scan which means that all 

ions will be detected, or in single (selected) ion monitoring where only selected ions 

will be recorded. 

3.5.2 Analysis of PAHs using chromatography and mass spectrometry  

The main drawback for the analysis of PAHs in environmental matrices is the difficulty 

to separate isomers. This can be overcome by using other types of detector such as 

various mass spectrometers or the Flame Ionization Detector. The main types of 

instrumental analysis for PAHs in soils involve the use of a GC-quadrupole, GC-ion 

trap (Nam et al., 2003) or GC-FID (Wilcke, 2007). However, PAHs analyses by GC-

TOF, GC-IRMS, LC-MS and HPLC have also been reported (Poster et al., 2006). 

Generally, the analysis of PAHs by capillary gas chromatography involved the 

utilization of methyl and phenyl substituted polysiloxanes columns due to their low 

polarity which will permit retention of hydrophobic compounds. The type of column 

used can influence the separation of PAHs, the signal sensitivity, the resolution and 

the selectivity (Poster et al., 2006).   

3.6 Quality assurance and quality control 

In order to control the quality of data obtained in a specific laboratory with a specific 

user, some specific points should be addressed. Generally, the use of certified 
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reference materials in extractions is recommended to compare values obtained by a 

single laboratory with certificate values. Samples should be at least extracted and 

analysed three times so as to observe precision and accuracy of the results. The 

same should be done with spiked samples or blanks where recoveries will be 

observed in order to evaluate again the performance of a specific method. A 

calibration with 5 to 7 standards must be realized before starting analysing samples, 

and must show correlation coefficients above 0.995 (for all PAHs), demonstrating 

good linearity of the prepared standards for future quantification of pollutants in 

samples. The stability of the calibration should be checked every day by controlling 

the response of a standard used in the initial calibration. It could also be useful to run 

a calibration and compare the response after 24 hours or 48 hours to evaluate the 

stability of the standards. Finally, blanks should be analysed to control the presence of 

compounds between batches, and permit to check the purity of the solvent, avoiding 

errors and increased uncertainty with results (Dean, 2009).  

3.7 Conclusions and aims of the project 

Based on this entire approach the samples from this study will need to be collected 

strategically, stored and treated appropriately avoiding losses, extracted using a 

simplified, rapid, accurate, precise, robust, realistic and non-expensive approach, 

injected using a sensitive approach allowing good separation, following strict quality 

guidelines, in order to get the lowest uncertainty in the final results.  

The main objectives of this thesis are presented below and are summarized on Figure 

3.3: 

(a) To develop an appropriate and efficient analytical method to isolate PAHs from 

any solid environmental matrices based on an in-situ PFE approach (Chapter 4). 

(b) Apply this method on soil matrices from a former contaminated industrial site in 

order to determine total PAH content, consequently the risk on the site, and compare 
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distribution according to two different particle sizes, considering the ingestion 

exposure pathway (Chapter 5).  

(c) Implement and compare fasted and fed in vitro gastrointestinal tests in the present 

laboratory coupled with analytical methods, evaluating PAHs bioaccessible fractions  

and the human health risk, and evaluate the robustness of the method using an inter-

laboratory study (Chapter 6). 

(d) To apply this method on road dust in order to assess the risk by evaluating the 

potential daily intake of PAHs via involuntary ingestion of dust particles, considering 

again various particles sizes, and identify the various sources of PAHs in road dust. 

(Chapter 7)  

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Schematic representation of the aims of the thesis 
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Chapter 4: Development of a method to establish total PAH 

content in soils 

 

4.1 Introduction  

In order to evaluate the risk from the occurrence of pollutants in a particular matrix, 

appropriate extractions, purifications and analysis methods must be used and 

developed. Chromatographs and mass spectrometers are very appropriate for the 

analysis and quantification of a large range of analytes. However, before being 

analysed, the compounds need to be isolated from the matrix using suitable 

extractions and purifications, by employing specific solvents or devices that can 

mobilize or attracts the compounds.  

PAH levels in solid environmental matrices can be assessed by a number of methods 

involving various extraction procedures. Pressurised fluid extraction (PFE) is one such 

technique that has been compared favourably to other extraction methods e.g. 

microwave, ultrasonic and Soxhlet extraction (Bjorklund et al., 1998; Dean, 1998). It is 

common practice to affect a clean-up stage, using column chromatography containing 

different sorbents including alumina and florisil, post-extraction to remove extraneous 

material (Graham et al., 2006; Li et al., 2007; Wang et al., 2007). However, this off-

line approach is both time consuming and involves large amounts of solvents and 

sample manipulation. An alternate strategy has been applied recently and uses in-cell, 

in-situ, or selective PFE as a viable option for extract clean-up.  The approach is a 

clean-up within the PFE cell facilitated by adding a specific sorbent and dispersant to 

the sample. The packing of the sorbent and sample within the extraction cell are of 

fundamental importance in the use of in-situ PFE (Bjorklund et al., 2006; Liguori et al., 

2006; Canosa et al., 2007; Hussen et al., 2007; Rodil et al., 2008; Westrom et al., 

2008). The comparison of the on-line and off-line procedure has shown that the 

former method is faster, uses less solvent and gives better recoveries (Gomez-Ariza 

et al., 2002; Fidalgo-Used et al., 2007). Therefore, the first step in the estimation of 

the environment and human health risk from PAHs, via the potential ingestion of 
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environmental matrices, was to develop a convenient and effective analytical method 

using PFE to identify clearly those 16 compounds. Indeed, thanks to this method, 

PAHs levels in any solid matrices could be quantified. Moreover, obtaining the total 

content of PAH in soil will be the first indispensable step towards the estimation of 

bioaccessibilities. 

The aim of this chapter was (1) to estimate the performance of a method using a PFE 

system with an off-line clean-up using column chromatography, to (2) estimate the 

performance of the analytical method using an in-situ PFE method, to (3) evaluate the 

performance of the method using a slurry spiked soil approach, and finally to (4) 

observe the influence of copper on sulphur content removal in soils.  

4.2 Experiment 

4.2.1 Chemicals 

A PAH standard solution was obtained from Thames Restek U.K Ltd., 

Buckinghamshire, UK (2000 µg/ml in dichloromethane). Alumina and 4,4‘-

difluorobiphenyl were obtained from Sigma Aldrich Ltd., Dorset, UK while florisil was 

purchased from Fluka (Sigma Aldrich Ltd., Dorset, UK). The copper powder was 

obtained from Thames Restek, UK. All the solvents (dichloromethane, acetone, 

hexane) were analytical reagent grade and obtained from Fisher Scientific Ltd. 

(Loughborough, UK). High purity diatomaceaous earth (hydromatrix) was obtained 

from Varian Inc. (Harbor City, CA, USA). A certified reference material (LGCQC3008 

Sandy soil) was obtained from LGC Standards, Teddington, UK. The binder used in 

EDXRF analysis was Licowax C Micropowder PM (FLUXANA GmbH & Co, 

Sommerdeich, Germany). Filter papers (ASE200) made from glass fibre cellulose 

were obtained from Dionex Corporation (Sunnyvale, USA). 
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4.2.2 Instrumentation and laboratory equipment 

Extractions were performed with pressurized fluid extraction (PFE) on an ASE200 

instrument (Dionex UK Ltd., Camberley, Surrey) using an extraction cell of volume 11 

ml. The operating conditions were organic solvent: dichloromethane: acetone (50:50, 

v/v); pressure: 2,000 psi; temperature: 100 ºC; and, extraction time: 10 minutes.  The 

GC-MS instrument included a Trace GC Ultra coupled with a Polaris Q Ion trap MS 

(Thermo Scientific, UK) and a Triplus auto sampler injector. The system was 

controlled from a PC with Xcalibur™ 1.4 SR1 software. Separation was performed 

using a capillary column Rtx®-5MS (5 % diphenyl- 95 % dimethylpolysiloxane, 30 m x 

0.25 mm ID x 0.25 μm) supplied from Thames Restek (UK). The temperature 

programme was as follows: start at 70 º C for 2 min and then 7 º C/ min until 180 º C, 

then 3º C/ min until 280 ºC, then hold for 3 min. The transfer line temperature was 

fixed at 300 ºC. The GC-MS operating conditions are shown in Table 4.1. The 

quantification of PAHs in soil samples was carried out by GC-MS using an internal 

standard calibration procedure. The concentration of the internal standard (4, 4‘-

difluorobiphenyl) was fixed at 2 µg/ml in the calibration solutions and in the spiked 

solutions. The standard concentration range was established from 0.5 µg/ml to 10 

µg/ml, involving five calibration points. The GC-MS was operated in selected ion 

monitoring (SIM) mode using the ions shown in Table 4.1 for each individual PAH.  All 

soil data were reported as PAH concentration (mg/kg, dry weight). A sonicator 

(Bransonic Ultrasonic Cleaner 2200) was used to warm and sonicate PAHs standards 

solutions before use. The X-Ray fluorescence spectroscopy apparatus was an 

EDXRF SPECTRO X-LAB 2000 used with the computer software X-Lab Pro 2.2. 
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Table 4.1: GC-MS operating conditions and acquisition parameters 

Operating Conditions 
 

Acquisition 
Parameter 

Injector mode (GC) Split 

Carrier gas flow (GC) 1.5 ml / min 

Split flow (GC) 15 ml / min 

Split ratio (GC) 10 

Temperature injector 
(GC) 

280ºC 

Injection volume (GC) 1 μl 

Ion source 
temperature (MS) 

270ºC 

Start time (MS) 4 min 

Scan mode (MS) Selected Ion 
Monitoring 

Damping gas flow 
(MS) 

0.3 ml / min 

GC = gas chromatography; MS = mass spectrometer 

4.2.3 Soil preparation 

The soil used in the spiking procedure was collected from the former            

Newcastle-upon-Tyne St Anthony‘s Lead Works, and did not show the presence of 

polycyclic aromatic hydrocarbons. However, blanks  The soil was stored in a Kraft bag 

and was air-dried in a fume cupboard during one week before grinding (using pestle 

and mortar) below 2 mm, and sieving below 250 µm. The soil was sealed in a plastic 

bag, labelled and stored in the fridge (4 °C) until further analysis.  

4.2.4 PFE procedure 

4.2.4.1 Conventional approach 

PFE and off-line clean-up: The soil sample (1.3 g) was mixed with a similar quantity 

of hydromatrix (Varian), and added in to the extraction cell (11 ml) on top of a filter 

paper. Additional hydromatrix was added to fill the cell and a final filter paper was 

placed on top prior to cell closure. After PFE, the solvent (dichloromethane: acetone, 

1:1, v:v) was evaporated under a gentle stream of nitrogen gas to dryness and 

reconstituted with 2 ml of hexane. Then, the extract was treated as per column clean-

up, prior to GC-MS. 
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Column clean-up: A column (200 mm x 18 mm) was prepared with either 10 g of 

Alumina (Sigma Aldrich, 150 mesh) or Florisil (Fluka, 60-100 mesh) as adsorbent with 

an additional 11 g of anhydrous Na2SO4 placed on top. Then, the column was eluted 

with 50 ml of hexane and the eluate was discarded. Just prior to complete elution and 

to avoid Na2SO4 powder exposure to the air, 2 ml hexane from the PFE procedure 

were added on top of the column for elution. (Spiking procedure: PAH standard was 

added: 50 µl of a 2000 µg/ml standard, in 2 ml hexane solution). Again, just prior to 

complete elution and dryness of the sorbent, 2 times 15 ml of hexane were added and 

again the eluate was discarded. Finally, the column was eluted with approximately 30 

ml of dichloromethane into a flask and then the solvent was retained. Then 60 µl of 

the internal standard (2 µg/ml) was added to give a final volume of 30 ml. 

Soil slurry spiking: A known quantity of soil (1.3 g) was placed inside a beaker. 

Then, 10 ml of dichloromethane containing 50 µl of the PAH standard solution (2000 

µg/ml) was added to the soil. The sample was then left exposed, in a fume cupboard, 

for 5 days prior to PFE. After the PFE (without clean-up) the solution was 

reconstituted with 25 ml of dichloromethane and 50 µl of internal standard at 1000 

µg/ml. 

4.2.4.2 In-situ approach 

2 g of Florisil or Alumina were added into the PFE extraction cell, on top of a filter 

paper. Then, the soil and hydromatrix were added according to the procedure 

described above (PFE and off-line clean-up), with a filter paper placed before closure. 

After in-situ PFE, the solvent (dichloromethane: acetone 1:1 v:v) was evaporated 

under a gentle stream of nitrogen gas to dryness and reconstituted with 2 ml of 

dichloromethane containing the internal standard (20 µl of a 1000 µg/ml solution), 

prior to GC-MS. In order to observe the influence of the adsorbent amount, the soils 

were spiked (50 µl of a 2000 µg/ml standard solution) directly in the extraction cell 

with 0.5 g, 1 g and 2 g of sorbent (Alumina and Florisil). In the case of no evaporation 
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after extraction, the final solution was reconstituted with 25 ml of dichloromethane with 

the internal standard (50 µl of a 1000 µg/ml solution). 

4.2.4.3. Copper clean-up  

To assess the effect of copper on the sulphur removal in soils and CRM, four major 

steps were realized. The first step was to analyse approximately 3.8 g of soil or CRM 

with 0.7 g of binder (Licowax C) by Energy Dispersive X-Ray Fluorescence 

Spectroscopy to determine the sulphur content. The second step was to mix soil with 

hydromatrix, as done with the PFE procedure, and check again the sulphur content by 

EDXRF. The third step consisted in realizing the in-situ PFE approach as described 

previously (paragraph 4.2.4.2) to assess the sulphur content of the matrix after 

extraction. Finally, the in-situ procedure was realized again, and granulated activated 

copper powder (2 g and 4 g) was added in the cell, above alumina, and the extract 

was analysed by EDXRF. Three replicates were analysed for each step and for the 

soil and CRM. 

4.2.4.4 Certified Reference Material analysis 

As part of the in-house quality control procedure a CRM was selected with PAHs of 

appropriate certified concentrations. In accordance with the certification of the CRM 

the recommended soil weight of 10 g was extracted using in-situ PFE with 2 g 

alumina. 

4.2.4.5 Preliminary information on method development and validation 

In order to analyse, identify and isolate PAHs from soils and more generally when 

analysing any compounds via an analytical procedure, there are essential steps 

required to control the quality of the results and improve the performance of the 

analytical method. For instance, when using a GC-MS for the analysis of pollutants in 

environmental matrices, several parameters and tools can be used to control the 

quality:(i) Selection of ions with mass spectrometer parameters: either full scan or SIM 

(Selected ion monitoring), (ii) Choice of concentration range for calibration curves, and 
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choice of the type of calibration (internal, external, standard addition), (iii) Time of 

analysis, temperature program, transfer line temperature, ion source temperature, 

choice of the amount injected in GC,(iv) Choice of the injection port, (v)Preparation 

and injection of blank samples, duplicates, spiked samples and standard checks 

during analysis, certified reference material during the extraction, (vi) Auto sampler 

parameters. 

With these parameters, a method development can be realized on a GC-MS with a 

PAH standard solution. Developments and observations are still made when doing 

extractions, by taking care of the sample solution injected (clean-up), the appearance 

of chromatograms after injections (peak-tailing and column-bleeding), and the 

consistency of standard quantitations when analysing samples. Then, the entire 

analytical procedure with extraction can be developed according to observation of 

recoveries with spiking procedure. Indeed, in the comparison of off-line and on-line 

clean-up, spikes are realized to estimate the % recovery and precision of the results. 

However, other parameters are observed, such as the efficiency of the clean-up 

according to the colour of the extract, the influence of the adsorbent, and the effect of 

specific compounds to remove impurities from soils. After being developed, a method 

is used to quantify the contaminants in unknown samples, for example with PAHs in 

solid environmental matrices. 

4.3 Results and Discussion 

4.3.1 Example of chromatogram with 16 PAHs  

After optimizing the parameters of the GC-MS, a suitable temperature program was 

found for the analysis of 16 PAHs in less than 60 minutes. Peaks were sharp, isomers 

were well separated, and peaks were in good intensities for a 5 µg/ml concentration 

(Figure 4.1). 
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Figure 4.1: Chromatogram of 16 PAHs at  5 µg/ml concentration with conditions 
stated in experimental part 

 

4.3.2 Analytical figures of merit 

Initial work established the basic analytical figures of merit for quantifying PAHs using 

GC-MS with typical calibration curve correlation coefficients >0.995 (Table 4.2).   

4.3.3 PFE procedure 

4.3.3.1 Conventional approach 

PFE followed by off-line clean-up with both adsorbents gave average recoveries for 

mid-molecular weight PAHs (fluorene to pyrene) of approximately 80 % whereas for 

the heavier molecular weight PAHs i.e. benzo(a)anthracene to benzo(ghi)perylene the 

average recoveries were typically 50%. For the lightest, i.e. small molecular weight 

PAHs, recoveries of < 5 % for naphthalene, < 30 % for acenaphthylene and < 40 % 

for acenaphthene were obtained (Figure 4.2). Typical SDs for the recovery of PAHs, 

using alumina and florisil, ranged from 11.1 to 61.4 % and 3.3 to 68.9 %, respectively 

(Lorenzi et al., 2008). 
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Table 4.2: GC-MS calibration of PAHs based on a five point graph (0.5 - 10 µg/ml) 

PAH   

Structure 

Empirical 

Formulae 

 

PAHs 

 

 

 

Retention 

time (tR; min) 

MS Ion for 

Quantitation 

 

Calibration Regression 

y = mx + c 

Correlation 

Coefficient R2 

 

 

 
C10H8 Naphthalene (NAP) 6.06 128 4.1399 X + 0.7205 0.9986 

 
C12H8 Acenaphthylene (ACY) 10.95 152 4.1139 X + 0.0279 0.9999 

 
C12H10 Acenaphthene (ACE) 11.34 154 2.3134 X + 0.1547 0.9993 

 
C13H10 Fluorene (FLU) 13.02 166 2.9124 X + 0.037 0.9998 

 
C14H10 Phenanthrene (PHE) 16.04 178 4.5264 X + 0.0952 0.9995 

 C14H10 Anthracene (ANT) 16.20 178 4.2730 X - 0.2848 0.9999 

 
C16H10 Fluoranthene (FLUH) 20.19 202 

 

 

 

 

 

 

 

 

 

4.5104 X - 0.8234 0.9996 

 
C16H10 Pyrene (PYR) 21.05 202 4.8043 X - 0.7057 0.9998 

 
C18H12 Benzo(a)anthracene (BaA) 27.57 228 2.9000 X - 0.9132 0.9974 

 

 

C18H12 Chrysene (CHY) 27.76 228 4.4652 X - 1.6144 0.9969 

 
C20H12 Benzo(b)fluoranthene (BbF) 34.06 252 2.7100 X - 0.8907 0.9972 

 
C20H12 Benzo(k)fluoranthene (BkF) 34.26 252 3.6894 X - 1.4761 0.9954 

 
C20H12 Benzo(a)pyrene (BaP) 35.84 252 2.6269 X -0.9960 0.9955 

 
C22H12 Indeno(1,2,3-cd)pyrene (IDP) 42.09 276 4.0229 X - 1.7347 0.9977 

 

C22H14 Dibenzo(a,h)anthracene (DBA) 42.53 278 4.7652 X – 2.3214 0.9970 

 

C22H12 Benzo(g,h,i)perylene (BgP) 43.26 276 5.6479 X - 2.7142 0.9973 
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Figure 4.2: Recoveries of PAHs after PFE with off-line clean-up (mean +/- sd, n = 3) 

 

4.3.3.2. Adsorbent amount influence 

Various amounts of adsorbent were inserted in the cell of the PFE in order to find the 

best quantity to add to realize the clean-up of the extract whilst at the same time 

obtain efficient recoveries from PAHs after extraction. The in-situ PFE-GC-MS 

procedure was done as described in the experimental procedure, with different 

amounts of adsorbents (0.5 g, 1 g and 2 g). According to Figures 4.3 and 4.4 the most 

convenient amount of adsorbent to get recoveries between 75 % and 120 % was 2 g. 

Moreover, the results were precise because relative standard deviations were below 

20 % for 2 g of adsorbent.  There was not a significant variation between alumina and 

florisil. Alumina was chosen for the rest of the studies because the overall results 

were more consistent and efficient.  

 

Figure 4.3: Recoveries of PAHs after PFE with in-situ clean-up (mean +/- sd, n = 3) with 
three different amount of Florisil (0.5, 1 and 2 g) 
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Figure 4.4: Recoveries of PAHs after PFE with in-situ clean-up (mean +/- sd, n = 3) with 

three different amount of Alumina (0.5, 1 and 2 g) 

 

4.3.3.3. Spiking procedure of the in-situ approach 

Soil samples were spiked directly into the PFE cell to assess the impact on PAH 

recovery using in-situ clean-up with either alumina or florisil. It can be seen in Figure 

4.5 that good recoveries (~90 %) were obtained for all PAHs when no further sample 

concentration took place (no solvent evaporation post-extraction). Typical RSDs for 

the recovery of PAHs, using alumina and florisil, ranged from 4.0 to 10.5 % and 1.1 to 

22.4 %, respectively. No specific influence is noted in terms of the use of florisil and 

alumina on recovery of PAHs. This is not the case in Figure 4.6 in which post-

extraction evaporation under a stream of N2 results in significant losses of 

naphthalene (>80%), and to a smaller extent for acenaphthylene and acenaphthene.  

 

Figure 4.5: Recoveries of PAHs after PFE with in-situ clean-up without evaporation 
(mean +/- sd, n = 3) 
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Appropriate recoveries are noted for alumina for the other PAHs whereas elevated 

recoveries are noted for the mid-range PAHs when using florisil as the in-situ 

adsorbent. Typical RSDs for the recovery of PAHs, using alumina and florisil, ranged 

from 2.7 to 25.7 % and 3.8 to 22.2 %, respectively.   

 

Figure 4.6: Recoveries of PAHs after PFE with in-situ clean-up with evaporation (mean 
+/- sd, n = 3) 

 

The process was repeated using PAH slurry spiked soil. It is shown in Figure 4.7 that 

the overall recovery of PAHs was significantly reduced (~50 %) using this soil spiking 

approach. While higher recoveries are noted for alumina the major losses are most 

likely due to evaporation of the PAHs during the 5 days equilibration period. Typical 

RSDs for the recovery of PAHs, using alumina and florisil, ranged from 3.7 to 10.3 % 

and 8.7 to 24.8 %, respectively (Lorenzi et al., 2008). 

 

Figure 4.7:  Recoveries of PAHs from a slurry spiked soil after PFE with in-situ clean-up 
(mean +/- sd, n = 3) 
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4.3.3.4. Comparison of conventional and in-situ approach  

After evaluating each approach for isolating PAHs from soils, the optimum procedure 

was described as follows: PFE with in-situ clean-up using 2 g alumina and without 

evaporation after extraction. According to the overall results, florisil appeared to be 

less efficient than alumina. The quantity of adsorbent seemed enough with 2 g to 

obtain good recoveries (more than 80 %). The evaporation step should be preferably 

avoided because some PAHs are lost. The more volatile PAHs, especially 

naphthalene, acenaphthylene and acenaphthene, were evaporated because of their 

low molecular weight. Regarding the efficiency of the clean-up, it was worthwhile 

observing the colours of the extracts. With the offline clean-up (10 g of sorbents) the 

extract colour was very transparent (Figure 4.8) showing that clean-up was effective. 

Considering the in-situ clean-up with 2 g, it produced a slightly brown solution 

whereas the same experiment with evaporation showed a dark-brown colour (Figure 

4.8). There were no significant differences in colour between 0.5, 1 and 2 g using the 

in-situ clean-up (Figure 4.9). However, 2 g gave better recoveries and a slightly more 

light-brown colour (Figure 4.8). Therefore, 2 g integrated in an in-situ PFE-GC-MS 

procedure seemed a reliable method to replace an off-line clean-up. The soil slurry 

spiking approach showed that PAHs were very sensitive to loss due most likely to 

evaporation, as concentration are significantly lower after that the spiked soil was 

exposed to the air during several days.  

 

Figure 4.8: Colour of the extract after in-situ PFE, off-line PFE and in-situ with 
evaporation using 2 g of alumina (from left to right) 
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Figure 4.9: Colour of the extract after in-situ PFE with 0.5 g alumina and florisil, and with 
1 g alumina and florisil (from left to right) 

4.3.4. Copper influence 

The sulphur percentage in soil and CRM was estimated as a function of the copper 

powder added in the cell of PFE system and analysing the extract by XRF (Figure 

4.10). The copper powder had no effect, or very negligible, on the sulphur content 

removal of the soil sample and CRM, in this study. The bar charts showed that either 

with/ without copper powder the percentage of sulphur content stayed the same in the 

soil. The mean sulphur content in the soil was 28 % and remained constant at 29 % 

and 28 % by adding 2 g or 4 g of copper, respectively. The mean sulphur content in 

the CRM was 14 % and became 15 % after adding 2 g of copper before pressurized 

fluid extraction. The only difference noticed was that the mixing with hydromatrix 

(Blank) reduced the sulphur content in soil. The Mean sulphur content in the pure soil 

and pure CRM was 55 % and 50 %, and after mixing with hydromatrix the mean 

sulphur content was 33 % and 26 %. But it could be only an effect of reducing the 

amount of soils analysed by the XRF, because mixed (1:1, w:w) with hydromatrix. 

 

Figure 4.10: Sulphur percentage in soil and CRM as a function of copper amount after 
PFE and XRF analysis (mean +/- sd, n = 3) (CRM: Certified Reference Material) 
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4.3.5 Analysis of a Certified Reference Material   

All CRM results were reported within the certified values (+/- standard deviation), 

except dibenzo(a, h)anthracene where the measured value was above the indicative 

value of < 2 mg/kg (Table 4.3). As the concentration of dibenzo (a,h) anthracene was 

only an indicative value and not a certified value no further investigation was 

considered necessary. 

Table 4.3: Determination of PAHs in a certified reference material (CRM LGC QC 3008) 
using in-situ-PFE-GC-MS 

 

4.4 Conclusion 

An analytical method was developed to separate and identify the 16 priority pollutant 

PAHs from solid environmental matrices. An in-situ PFE-GC-MS method with 2 g of 

alumina for the clean-up was discovered to be suitable to analyse the 16 PAHs that 

are potentially contained in numerous solid environmental matrices. This new way of 

doing the purification and extraction in only one step was shown to be very effective 

compared to an off-line mode using column chromatography. A comparison between 

the in-situ approach, with and without evaporation at the end of the process, 

 

PAHs 

 

 

 

CRM LGC QC 3008 (sandy soil 2) 

Measured (+/- SD)       

n = 3  (mg/kg) 

Certificate Value        

(+/- SD) n = 3 (mg/kg) 

Naphthalene 3.4 ± 0.1 3.1 ± 0.9 

Acenaphthylene 3.9 ± 0.5 3.4 ± 1.6 

Acenaphthene 1.5 ± 0.3 <2 

Fluorene 6.7 ± 0.4 7.7 ± 1.7 

Phenanthrene 28.7 ± 3.8 34 ± 7.1 

Anthracene 8.0 ± 0.8 5.9 ± 2.1 

Fluoranthene 29.2 ± 6.0 32 ± 6.4 

Pyrene 20.6 ± 3.5 24 ± 6.5 

Benzo(a)anthracene 10.2 ± 1.8 11 ± 2.5 

Chrysene 9.1 ± 1.1 9.9 ± 2.1 

Benzo(b)fluoranthene 10.4 ± 1.8 9 ± 3.3 

Benzo(k)fluoranthene 6.1 ± 1.3 5.8 ± 2.2 

Benzo(a)pyrene 8.3 ± 1.5 8.2 ± 1.8 

Indeno(1,2,3-cd)pyrene 6.6 ± 1.4 5.2 ± 1.8 

Dibenzo(a,h)anthracene 3.7 ± 0.2 <2 

Benzo(g,h,i)perylene 6.1 ± 1.1 5.2 ± 1.8 
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demonstrated the strong tendency of low molecular weight PAHs to evaporate, due to 

their high volatility, which should be considered in further work with those compounds. 

The off-line approach was not showing satisfactory recoveries with the spiking 

procedure. A slurry spiking procedure correlated this observation, by showing 

significant losses of PAHs after leaving a soil in a slurry for a couple of days.  Copper 

powder showed no effect in removing sulphur in soil. Therefore copper powder will not 

be included in future extractions. This method shows that validating an analytical 

method requires the analysis of several parameters such as precision, accuracy, 

repeatability, sensitivity and selectivity. The comparison of the PAH concentrations 

obtained with a certified reference material and its certificate values also demonstrate 

the quality of our results, considering the instrument and operator of the present 

laboratory. Therefore, this method will be ideal for the rest of this project and for other 

studies requiring the identification of PAHs in solid environmental matrices. 

Particularly in this study, this method will help finding the total PAH content in 

contaminated soils or road dusts, in order to establish the risk for the environment and 

for humans regarding the levels of contaminants potentially ingested via these 

matrices. This extraction will also be used in relation with physiologically-based 

extraction tests, to compare values, in the solid environmental matrices and in the 

gastrointestinal fluids, in order to evaluate bioaccessibilities. 
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Chapter 5: An investigation into the occurrence and 

distribution of PAH, in two soil size fractions, on a former 

industrial site, NE England, UK using in-situ PFE-GC-MS 
 

5.1 Introduction  

PAHs can be introduced into the environment via incomplete organic matter 

combustion at high temperature (pyrogenic origin), oil spill and natural oil leakage 

(petrogenic origin) and via natural precursor transformations during early diagenesis 

processes (Mazeas et al., 1999). The pyrogenic sources, mainly higher molecular 

weight PAHs, result primarily from human and industrial activities. The petrogenic 

sources, generally lower molecular weight PAHs, include organic-rich shales and 

natural oil seeps (Neff et al., 2003). Therefore, analyses of PAHs in soils from both 

anthropogenic and natural sources are relevant in the study of their occurrence and 

distribution in the environment. 

 

The former UK soil total PAH trigger concentration for land used as domestic gardens, 

allotments and play areas was 50 mg/kg (ICRCL, 1987). However, these guidelines 

were withdrawn in 2002. The Environment Agency (EA) in England and Wales is 

currently in the process of producing new Soil Guideline Values (SGVs) for PAHs (EA, 

2009). Therefore, at the present time there are no published SGVs for the PAHs. In 

the absence of SGVs,  the generally accepted limit for landscaping and domestic 

garden soil for benzo(a)pyrene is 1 mg/kg and for total PAHs is 40 mg/kg (Tim O'Hare 

Associates, 2002). The 40 mg/kg value is based on the Dutch intervention value 

which is itself based on the sum of ten individual PAHs i.e. naphthalene, anthracene, 

phenanthrene, fluoranthene, benzo(a)anthracene, chrysene, benzo(a)pyrene, 

benzo(ghi)perylene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene (VROM, 2000). 

As part of the contaminated land regulatory regime in England and Wales, Generic 

Assessment Criteria (GAC) have been published for benzo(a)pyrene, fluorene, 

naphthalene, and dibenzo(a,h)anthracene (Nathanial et al., 2007). The GAC identified 
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values between 1.08 and 1.32 mg/kg dry weight for benzo(a)pyrene for residential 

land use (with/without plant uptake) which concur with the generally accepted limit of 

1 mg/kg (Nathanial et al., 2007). Above these values it is considered to be a potential 

risk in the environment, for human health. It should also be noted that all these 

guidelines are based on a < 2 mm soil size fraction (EA, 2009).  

 

In chapter 4, we compared the use of different quantities of alumina and florisil with / 

without the presence of copper powder (for removal of sulphur) for the analysis of 

PAHs from soil (Lorenzi et al., 2008). Results showed that 2 g of alumina was 

appropriate for effective extract clean-up with no requirement for the addition of 

copper powder, as adding copper in the PFE cell was not removing efficiently the 

sulphur content. In addition, the work compared the benefits of off-line and on-line 

PFE for the recovery of PAHs from soils. In-situ PFE provided a viable alternative to 

extraction of PAHs from soils that was fast, efficient and minimised the use of organic 

solvent (Lorenzi et al., 2008). Other workers have compared both on-line and off-line 

procedures for post-extraction clean-up with similar results (Gomez-Ariza et al., 2002; 

Fidalgo-Used et al., 2007). 

 

Oral ingestion of soils, either intentionally or unintentionally, is an important exposure 

route for contaminants from the environment to humans. Ingestion can take place by 

consumption of unwashed fruits and vegetables; from hand-to-mouth contact when 

children are playing on the floor, by drinking water filtered through soils, via pica-soil 

behaviour and through poor personal hygiene (Intawongse et al., 2006). It has been 

reported (Bornschein et al., 1987) that the < 250 µm soil size fraction is most 

representative of the grain size that adheres to an individual‘s hands; hence it 

represents a primary source of soil ingestion. Therefore, when undertaking 

environmental risk assessment, it is important that the distribution of PAHs in the < 

250 µm soil fraction is considered.  
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To test the determination of PAHs in different soil size fractions using the PFE 

method, the former St Anthony‘s Tar Works, in Newcastle-upon-Tyne (NE England, 

UK) was selected as the study area. This study area was representative of historically 

contaminated land that was under-developed since closure of the industry in 1981, 

having previously been in operation since the 1920s. Whilst in business, the Works 

generated a variety of products distilled from imported coal tar, including tar, pitch, 

naphtha, anthracene, creosole, benzol, and cyanide which were stored in tanks on the 

site (P Hartley, Newcastle City Council, Personal Communication, 2009). The purpose 

of this research was to (1) apply in-situ PFE to assess the level of PAH contamination 

in the study area, (2) evaluate whether PAHs were distributed within different soil 

particle sizes uniformly, and (3) to assess the implications of the PAH  – soil particle 

size relationship in terms of environmental human health risk.  

5.2 Experimental 

5.2.1 Sampling procedure 

The soil sampling was undertaken at the former St Anthony‘s Tar Works in October 

2008 (Figure 5.1). Soils were taken from 16 locations within the study area: on the 

upper plateau (sampling sites 1 - 4), the slope down to the River Tyne (sampling sites 

5 - 6), the foreshore close to the river (sampling sites 7 -15), and finally a potential 

historic dumping site close to the former Tar Works (sampling site 16) (Figure 5.1). 

More stringent safety precautions were taken when soil sampling on the foreshore of 

the river due to the strong hydrocarbon odour emanating from the area. Precautions 

included the wearing of disposable masks and gloves and Wellington boots that could 

be de-contaminated. The soils were manually collected (top 0 - 10 cm soil layer) and 

transported back to the laboratory in Kraft® paper bags. In the laboratory, soil 

samples were air-dried at room temperature (< 20 C) in a fume cupboard  (Barnabas 

et al., 1995a; Barnabas et al., 1995b), prior to grinding (using a pestle and mortar) and 

sieving (using a plastic sieve) to soil size fractions of < 2 mm and < 250 µm. Both soil 
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particle size fractions (fraction A: < 250 µm and fraction B: > 250 µm to < 2 mm) were 

sealed in plastic bags, labelled and stored in the fridge at 4 ºC until required for further 

analysis. As the GC-MS was operated in selected ion monitoring mode, no 

contamination from plastic ware was identifiable in the analysis.  

 

The study area is located at UK National Grid co-ordinates NZ 291 631. 

 © Crown Copyright/database right 2009. An Ordnance Survey/EDINA supplied 
service.  

Figure 5.1: Soil sampling plan and location of the St Anthony’s Tar Works study area, 
Newcastle upon Tyne. 

5.2.2 Analysis 

All the soil samples were analysed for the 16 priority PAHs outlined in Table 4.2 

(chapter 4). Each PAH was extracted by in-situ PFE followed by Gas Chromatography 

Mass Spectrometry (GC-MS), as described in chapter 4. Chemicals, figures of merits 

and certified reference material results were also listed in chapter 4, so they are not 

represented in this chapter. 

5.2.3 In-situ PFE protocol 

The in-situ PFE procedure was realized with 2 g of soil sample instead of 1.3 g in the 

chapter 4, with the method development. The experimental procedure remains the 

same, apart from this change in the mass of soil. After PFE, the solvent 
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(dichloromethane : acetone, 1:1, v/v) was evaporated under a gentle stream of 

nitrogen gas to dryness and reconstituted with 2 ml of dichloromethane containing the 

internal standard (20 µl of 1000 µg/ml solution), prior to the injection of 1 µl in the GC-

MS. 

5.2.4 Determination of soil pH   

The pH was determined in a soil: distilled water suspension 1: 2.5 w/v (Strowbel et al., 

2005) as follows; 10 g of soil sample was accurately weighed into a small beaker  and 

25 mL of distilled water was added to the soil. The sample was shaken and stirred for 

5 minutes. Then, the sample was left to stand for 10 minutes and the pH recorded. 

The pH was measured using a pH meter after being calibrated with buffer solutions of 

pH 4 and 7.  

5.2.5 Determination of soil organic matter content  

Soil organic matter content was determined using the method of loss of ignition (LOI) 

(Baize, 1993). 5 g of soil sample was accurately weighed into a pre-weighed crucible. 

The weight of soil (W) and the weight of soil and crucible (W1) were recorded. The 

sample was placed in a pre-heated muffle furnace (800 °C) for half an hour and then 

removed from furnace with gloves to be cooled in a desiccator. The sample was re-

weighed and the weight was recorded (W2). The % LOI was calculated using the 

equation below: 

% LOI = (W1 - W2) x 100                     [5.1] 

5.3 Results and discussion 

5.3.1 Preliminary information  

It should be noted that previous work in our laboratory has shown that evaporation to 

dryness under a stream of nitrogen post- in-situ PFE results in loss of the most volatile 

PAH (i.e. naphthalene) by as much as 80 % (Lorenzi et al., 2008). In addition, losses 

due to solvent evaporation were noted for acenaphthylene (50 %), acenaphthene (35 
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%) and fluorene (15 %). For higher molecular weight PAHs, no significant differences 

were noted with/ without evaporation post in-situ PFE. Therefore, these aspects of the 

analytical method have to be considered when interpreting the results. 

5.3.2 Soil total PAH concentrations  

An initial assessment of the average total PAH concentrations in the 16 soil samples, 

revealed ranges from 9.0 to 1404 mg/kg in soil fraction A and from 6.6 to 872 mg/kg in 

soil fraction B (Table 5.1). The results also showed that the majority of the samples, 

irrespective of soil particle size, had a total PAH concentration above the generally 

agreed threshold for total PAHs of 40 mg/kg (Tim O'Hare Associates, 2002).  

The results from the present study were compared to total PAH concentrations in soils 

from selected industrial sites around the world (Table 5.2). The St Anthony‘s Tar 

Works soils showed a wider range in total PAH concentrations than most of the values 

reported from elsewhere in the literature. Although some very high total PAH 

concentrations have been reported in the vicinity of an oil refinery in Belgium (300 

mg/kg), an aluminium smelter in Slovakia (200 mg/kg) and a chemical plant in 

Australia (79 mg/kg), the majority of published soil total PAH data from industrial sites 

fall within the range of 0.1 to 18 mg/kg (Table 5.2). The higher soil total PAH 

concentrations (6.6 to 1404 mg/kg) recorded in the present study indicate that the St 

Anthony‘s Tar Works site is significantly contaminated and warrants further 

investigation/ remediation as it may represent an environmental and human health 

risk. A statistical comparison (t-test) of the mean  total PAH concentrations, in soil 

fractions A and B, indicated that there were significant differences (95% confidence 

interval) in 14 out of the 16 soils. The exceptions to this were soil samples 5 and 6 for 

which no statistical difference in total PAH concentration was evident between the two 

soil fractions (Table 5.1). 
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Table 5.1:  Average total PAH concentrations and t-test comparison for the two soil size fractions from the St. Anthony’s Tar Works study area. 

 
Sampling Site 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Total PAHs  
(mg/kg)(soil 
fraction A)* 

 
 

123 ± 
22 
 

 
 

9.0 ± 
0.2 

 

 
 

1404 ± 
73 

 

 
 

366 ± 
22 

 

 
 

66.5 ± 
1.4 

 

 
 

46.4 ± 
1.4 

 

 
 

38.9 ± 
0.4 

 

 
 

40.5 
±1.9 

 

 
 

375 ± 
34 

 

 
 

289 ± 
8 
 

 
 

54.1 ± 
2.1 

 

 
 

43.6 ± 
2.5 

 

 
 

41.6 
±1.0 

 

 
 

40.8 ± 
0.7 

 

 
 

43.7 ± 
0.8 

 

 
 

39.7 ± 
0.7 

 

Total PAHs  
(mg/kg)(soil 
fraction B)* 

 
 

234 ± 
17 
 

 
 

6.6  ± 
0.1 

 

 
 

872 ± 
176 

 

 
 

285 ± 
10 

 

 
 

69.2 ± 
10.3 

 

 
 

39.9 ± 
4.7 

 

 
 

23.6 ± 
0.8 

 

 
 

65.8 ± 
0.7 

 

 
 

173 ± 
4 
 

 
 

585 ± 
39 

 

 
 

88.7
# 

 

 
 

59.0 ± 
4.8 

 

 
 

30.6 ± 
3.9 

 

 
 

38.8
#
 

 

 
 

28.4 ± 
2.2 

 

 
 

28.3 ± 
2.2 

 

t-test value 
(tcritical = 

2.78) 

-6.90 
 

18.2 
 

4.83 
 

5.78 
 

-0.44 
 

2.27 
 

29.8 
 

-21.6 
 

10.19 
 

-12.9 
 

-28.5 
 

-4.92 
 

4.73 
 

5.04 
 

11.4 
 

8.57 
 

 

* Mean of three analyses (± SD)
 

#
 n = 1 only (limited sample available). 

Soil fraction A = < 250 µm and soil fraction B = > 250  µm < 2 mm 

The figures in bold represent the statistically significant values (above t critical) (95% confidence interval), of comparisons between mean total PAH concentrations in soil fractions A and 
B.  
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Table 5.2: Total PAH concentrations in urban soils from selected industrial sites in a range of different countries compared to the present study. 

Country 
ΣPAHs  (mg/kg dry 

weight) 

Number of 
PAHs 

Analysed 
Source 

Soil Depth 
(cm) 

Reference 

Australia 0.3-79 18 Vicinity of a chemical plant 0-5 (Weiss et al., 1994) 

Austria 1.45* 18 Industrial area ND (Weiss et al., 1994) 

Belgium 
300 (50 m away); 3-14 (1.3-

4.2 km away) 
7 Vicinity of an oil refinery ND (Bakker et al., 2000) 

Brazil 0.1 20 Vicinity of industrial activities ND (Wilcke et al., 1999a) 

China 0.82 ± 0.80 16 Industrial area ND (Wang et al., 2003) 

Estonia) 12.39 ± 9.81 16 
Oil-shale thermal treatment 
industry, power station and 

traffic 
ND (Trapido, 1999) 

France 0.45-5.65 14 Near industrialised area ND (Motelay-Massei et al., 2004) 

Germany 10.2 20 Vicinity of industrial activities ND (Wilcke et al., 1997) 

Ghana 0.1 20 Periurban agricultural soils ND (Wilcke, 2000) 

Greece 0.55-4.95 16 Lignite-fired power plants ND (Stalikas et al., 1997) 

Japan 1.3 ± 0.8 8 Vicinity of industrial activities 0-3 (Spitzer et al., 1993) 

Korea 0.16* 16 Agricultural soil ND (Nam et al., 2003) 

Slovakia 40-200 17 Vicinity of an aluminium plant Surface
+
 (Wilcke et al., 1996) 

Spain 1.00 ± 1.52 16 Near chemical industries ND (Nadal et al., 2004) 

Switzerland 11 ± 12 16 Vicinity of industrial activities 0-20 (Niederer et al., 1995) 

Thailand 0.1 20 Vicinity of industrial activities ND (Wilcke et al., 1999b) 

UK 12-18 16 Vicinity of industrial activities 0-10 (A.A. Meharg et al., 1998) 

USA 3.73* 16 Vicinity of industrial activities ND (Mielke et al., 2001) 

Newcastle-
upon-Tyne 

(NE England) 
6.6 – 1404 16 Former tar works site 0-10 Present Study 

* median value 

+ organic surface layer 
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5.3.3 Soil individual PAH concentrations  

The relationships between PAH concentrations in soil fractions A and B were 

examined further for the 16 individual PAHs determined during the study.  A plot of 

individual PAH concentrations in the 16 soil samples revealed that the majority of 

PAHs were higher in concentration in soil fraction A (< 250 µm) (Figure 5.2). This was 

particularly true of the highest concentrations (> 100 mg/kg) of some individual PAHs 

(e.g. fluoranthene, pyrene, benzo(a)anthracene, benzo(b)fluoranthene, 

benzo(a)pyrene and  indeno(1,2,3-cd)pyrene (Figure 5.2). Some exceptions to this 

trend i.e. higher individual PAH concentrations (> 100 mg/kg) in soil fraction B, were 

noted for phenanthrene and fluoranthene (Figure 5.2). In addition, if all the individual 

PAH determined i.e. 16 PAHs x 16 soil samples x 2 soil size fractions were summed 

(i.e. 512 individual PAH concentrations) the percentage of results that are higher in 

soil fraction A is 65.8 %. 

 

Figure 5.2: The influence of soil particle size on the concentration of individual PAHs: 
PAH concentration (mg/kg) in particle size B as a function of particle size  

 

Furthermore, statistical comparison (t-test) of all the soil samples confirmed that 

68.9% of the mean individual PAH concentrations were significantly different (95% 

confidence interval) between soil fractions A and B (Table 5.3).
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Table 5.3: Statistical (t-test) comparisons between two soil size fractions for 16 individual PAH concentrations from the St. Anthony’s Tar Works’ study 
area. 

PAH 

abbreviation 

Sampling Site 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

NAP -2.79 ND 11.5 -0.05 -0.37 43.7 33.0 9.67 20.9 31.6 -40.9 -0.81 32.1 15.9 30.2 7.47 

ACY -1.15 ND 3.26 1.54 2.65 39.7 180 28.8 112 -3.73 11.1 6.17 46.7 62.2 258 30.7 

ACE ND ND 17.1 1.04 ND ND ND ND 5.91 6.98 ND ND ND ND ND ND 

FLU -4.43 ND 1.12 -1.73 ND -22.5 -251 -3.31 8.69 0.91 ND -1.99 ND ND ND ND 

PHE -5.63 -2.49 0.66 0.38 -1.11 -2.19 2.00 -1.40 9.53 -20.6 -34.6 -16.2 -18.5 -34.5 -7.00 -12.7 

ANT -3.34 89.9 -0.37 -1.00 -1.62 0.67 18.3 -0.50 8.53 -6.89 -110 -2.34 -6.59 -31.31 -3.70 9.61 

FLUH -7.51 2.01 4.25 4.59 -0.71 -1.65 1.52 -1.09 13.4 -10.3 -24.4 -13.2 1.43 20.4 4.71 2.71 

PYR -9.10 0.14 4.68 5.85 -0.73 0.11 17.8 -0.97 7.58 -12.4 -58.6 -4.96 1.27 16.4 3.95 4.10 

BaA -8.33 ND 4.16 5.84 -0.18 4.25 19.3 -0.37 6.77 -10.4 -7.37 1.46 7.62 0.64 30.1 14.4 

CHY -5.39 ND 3.87 5.37 -0.65 2.24 2.67 -0.99 13.5 -6.50 -40.7 -1.44 10.9 207 67.3 13.4 

BbF -6.42 ND 4.23 4.30 -0.61 4.32 10.0 -0.44 9.16 -8.58 -14.9 -1.19 6.71 -46.9 4.74 2.31 

BkF -5.45 ND 3.32 6.54 -0.65 10.8 12.6 0.19 6.22 -13.3 -1.42 2.17 16.6 70.6 22.9 21.4 

BaP -7.85 ND 5.47 7.22 0.26 3.03 13.3 -0.37 8.19 -8.81 -17.0 -1.04 1.77 -18.3 4.50 0.68 

IDP -6.14 ND 7.32 10.59 1.41 14.74 36.89 0.50 7.31 -5.35 -0.68 3.06 3.48 7.00 17.6 9.28 

DBA -2.97 ND 6.27 5.22 0.80 0.30 ND -14.9 7.39 -3.69 -1.85 1.25 9.75 13.5 14.2 52.3 

BgP -5.51 ND 7.59 7.81 1.27 1.22 2.73 -0.94 7.80 -6.97 -5.30 0.79 3.09 3.02 6.56 3.14 

 

ND = no data for an individual PAH for at least one size fraction 

The figures in bold represent the statistically significant values (above tcritical) (95% confidence interval), of comparisons between individual PAH concentrations in soil fractions A and 
B.  

Soil fraction A = < 250 µm and soil fraction B = > 250 µm < 2 mm 
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Conversely, 31.1% of the mean individual PAH concentrations showed no significant 

difference (95% confidence interval) between soil fractions A and B.  

The results for both total and individual PAH concentrations indicated that PAHs were 

present in greater concentrations in soil fraction A than in soil fraction B. This may be 

because PAHs are more readily adsorbed with finer particles in the soil such as clay 

minerals and fine silt (Amellal et al.). However, while some workers have also found 

higher concentrations of PAHs in the smaller particle size fraction (150 – 250 µm) 

(Ahrens et al., 2004) others have found higher concentrations of PAHs in the greater 

particle size fraction i.e. 250 – 500 µm (Li et al., 2010). Based on our results, 

however, the higher concentration of PAHs in soil fraction A is important in 

contaminated land studies. This is because fraction A (< 250 µm) corresponds to the 

particle size thought to be the most important in terms of human contact with soils and 

potential health risk (Bornschein et al., 1987; Rodriguez et al., 1999; US 

Environmental Protection Agency, 2000). 

Individual PAH concentrations in each of the soil samples are shown in Figure 5.3 (a) 

and (b) for soil fractions A and B, respectively. In soil fractions A and B, the majority of 

samples had individual PAH concentrations < 50 mg/kg. The commonly used Dutch 

intervention level (40 mg/kg) is often used as a guide to total PAH in soils (VROM, 

2000). However, it may not be appreciated that it is based on the sum of ten individual 

PAH. Therefore, in this work, it was considered appropriate to select a higher value 

(50 mg/kg) as the boundary between high and low individual PAH concentrations, 

based on the determination of 16 compounds.  Based on this value of 50 mg/kg it is 

noted that the soil from sampling site 3, irrespective of soil particle size, contained the 

highest concentrations of individual PAHs. Other exceptions included soils 4 and 9 for 

which elevated concentrations of fluoranthene and pyrene were identified, and for site 

10 high levels were found for phenanthrene, all of them in soil fraction A (Figure 5.3 

a). Soil from sampling site 10 also contained elevated concentrations of 

phenanthrene, fluoranthene and pyrene - in fraction B (Figure 5.3 b).  
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(a) 

 

(b) 

 

Soil fraction A = < 250 µm and soil fraction B = > 250 µm < 2 mm  

See Table 1 for explanation of PAH abbreviations 

Figure 5.3: The individual PAH concentrations of (a) soil fraction A and (b) soil fraction 
B from the former St. Anthony’s Tar Works study area. 

 

5.3.4 Distribution and sources of PAHs across the St Anthony‘s Tar Works 

study area 

The results for total and individual PAH concentrations in the soil samples 

demonstrated that highest values were reported at sampling sites 1, 3, 4, 9 and 10 

(Figure 5.1). The most polluted sites were close to where the former factory was 

located (sites 1 and 3; Figure 5.1) (P Hartley, Newcastle City Council, Personal 



97 
 

Communication, 2009). Sampling site 2 which was proximal to sites 1 and 3 had a 

lower soil PAH concentration (individual PAH concentrations ranged from 0 to 3.0 

mg/kg). This may be because site 2 corresponded to the location of the former 

factory, which rested on an impervious floor and this may have protected the sampling 

site from pollution spillage. Site 4 was located adjacent to a vertical conduit which 

might have acted as a storage area for the factory; hence the higher PAH 

concentrations in this soil. Sample sites 7 – 15 were located on the foreshore of the 

river and as such were subject to twice-daily tidal washing in the River Tyne estuary. 

This may explain the generally lower PAH concentrations reported in these soils. The 

exceptions to this trend were soils from sampling sites 9 and 10, which contained 

higher PAH concentrations. This probably reflects their location directly down-slope of 

any sub-surface run-off from the former factory (Figure 5.1). 

The results for soil individual PAH concentrations demonstrated that higher molecular 

weight PAHs (from 3 to 6 rings) were recovered in greater concentrations compared 

to lower molecular weight PAHs (naphthalene, acenaphthylene, acenaphthene, 

fluorene) across the study area (Figures 5.2 and 5.3). Specifically, fluoranthene and 

pyrene were recovered from the soils in significantly higher concentrations than the 

rest of the PAHs. It is possible that lower molecular weight PAHs could simply have 

evaporated from the study area over time due to their high volatility. Anecdotal 

evidence for this process was noted during sample collection from sites 7 – 12 (Figure 

5.1) at which a strong hydrocarbon odour was evident. As outlined in the methodology 

and analytical figures of merit sections of this paper, it should also be borne in mind 

that lower molecular weight PAHs may have been lost in the sample processing / post 

extraction solvent evaporation process prior to GC-MS analysis (Dean, 2003; Lorenzi 

et al., 2008). 

However, despite these possible volatilisation processes, comparing the results of the 

present work with other studies into PAH distributions in anthropogenically 

contaminated soils, it is apparent that the trends are very similar. Generally the lower 
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molecular weight PAHs (e.g. naphthalene, acenaphthylene, acenaphthene) are the 

least recovered, the medium molecular weight PAHs (e.g. fluoranthene and pyrene) 

show the greatest recoveries, and finally the remaining PAHs, which include mainly 

high molecular weight compounds, are recovered in moderately elevated 

concentrations (Berset et al., 1999; Trapido, 1999; Ong et al., 2003; Motelay-Massei 

et al., 2004; Nadal et al., 2004; Graham et al., 2006; Morillo et al., 2007). It has been 

well documented in the literature that PAHs recovered from sites that are typical of 

anthropogenic (pyrogenic) sources tend to have high molecular weights as opposed  

to petrogenic sources which are typically characterised by the lower molecular weight 

PAHs (Li et al., 2008). Therefore, it is most likely that the greater concentrations of 

higher molecular weight PAHs at the former site of the St Anthony‘s Tar Works are 

indicative of pyrogenic (anthropogenic) sources, given its industrial history.  

5.3.5 Influence of organic matter and pH 

The identification of the sources of PAH pollution seems to be an appropriate way to 

comprehend the variation in PAH distribution in this particular site. Some studies have 

demonstrated that the content of organic matter or pH in a soil could potentially 

involve interaction with compounds that may retain them in the matrix (Chiou et al., 

1979; Means et al., 1980; Chiou et al., 1986; Calvet, 1989; Yin et al., 1996). 

Therefore, an estimation of organic matter content and pH was realized on the 

different soils sample at two different particle sizes, compared to the distribution of 

PAHs on the site (Table 5.4 and 5.5). Firstly, variations in the content of organic 

matter between sampling site were very low, with values varying from 9.4 to 22.4 % 

LOI. . Consequently, the identification of trends was complicated. Moreover, the rare 

variations were showing contradictory trends. Indeed, low organic matter content was 

giving both high total PAH content and low total PAH content (9.4 % LOI giving 375 

mg/kg and 11.0 % LOI giving 9.0 mg/kg). And in the same way high organic matter 

content was showing both low and high total PAH content (18.4 % LOI giving 1404 

mg/kg and 22.4 % LOI giving 38.9 mg/kg).  
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Table 5.4: Comparison of loss of ignition (%LOI) and total PAH content in two different 
particle sizes of soil (< 250 µm and > 250 µm) 

 
Particle size < 250 µm Particle size > 250 µm 

Soil sample 
site 

% LOI 
Total PAH 

content (mg/kg) 
% LOI 

Total PAH content 
(mg/kg) 

1 11.1 123 12.1 234 

2 11.0 9.0 11.2 6.6 

3 18.4 1404 15.3 872 

4 17.4 366 11.8 285 

5 15.9 66.5 17.9 69.2 

6 15.2 46.4 15.4 39.9 

7 22.4 38.9 NA NA 

8 19.9 40.5 NA NA 

9 9.4 375 13.9 173 

10 17.2 289 NA NA 

11 13.5 54.1 NA NA 

12 15.4 43.6 NA NA 

13 20.1 41.6 NA NA 

14 19.9 40.8 NA NA 

15 22.3 43.7 NA NA 

16 21.4 39.7 20.5 28.3 

*NA= Non Available 

Moreover, the differences in total PAH content between the two particle sizes did not 

show any associations with organic matter variations, as the variation in organic 

matter were not significant compared to the variations in total PAH content. It was 

concluded that the PAH distribution on this site was independent of organic matter 

and more linked to the type of locations where the samples were collected.  The pH 

range of values was also contained in a narrow range between 6.51 and 8.72, and as 

with the comparison with organic matter content, the total PAH content was found to 

be completely independent from the variations in those pH values. pH variations 

between the two particles sizes were negligible, having no influence on the total PAH 

content differences observed previously (Table 5.5).   
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Table 5.5: Comparison of pH (calculated in water and CaCl2) with the total PAH content 
of two different particle sizes (< 250 µm and > 250 µm) 

 
Particle size < 250 µm Particle size > 250 µm 

Soil 
sample 

site 

pH 
(distilled 

water) 

pH 
(CaCl2) 

Total PAHs 
content 
(mg/kg) 

pH 
(distilled 

water) 

pH 
(CaCl2) 

Total PAHs 
content 
(mg/kg) 

1 7.61 7.16 123 7.83 7.55 234 

2 8.34 7.67 9.0 8.44 7.41 6.6 

3 7.41 7.2 1404 7.11 6.97 872 

4 7.75 7.17 366 8.23 7.09 285 

5 7.81 6.81 66.5 7.73 6.81 69.2 

6 7.45 6.57 46.4 7.75 6.49 39.9 

7 6.58 6.61 38.9 NA NA 23.6 

8 6.51 6.52 40.5 NA NA 65.8 

9 8.14 7.48 375 8.72 7.96 173 

10 7.09 6.89 289 NA NA 585 

11 7.04 6.82 54.1 NA NA 88.7 

12 6.84 6.74 43.6 NA NA 59.0 

13 6.87 6.75 41.6 NA NA 30.6 

14 6.91 6.73 40.8 NA NA 38.8 

15 6.86 6.62 43.7 NA NA 28.4 

16 6.53 5.86 39.7 6.85 5.76 28.3 

 

5.4 Conclusion 

The importance of determining PAHs associated with different soil particle size 

fractions has been highlighted in this work. The higher concentrations of PAHs in soil 

fraction A (< 250 µm particle size) are important to highlight as this soil fraction is 

most likely to be accidentally ingested by humans (Bornschein et al., 1987; Rodriguez 

et al., 1999; US Environmental Protection Agency, 2000) These findings have 

implications for the development of ongoing Soil Guideline Values for PAHs in relation 

to environmental human health risk, which are typically based on a < 2 mm soil size 

fraction only.  

The distribution of individual PAH in soils across the former site of the St Anthony‘s 

Tar Works, coupled with the history of the site, indicate that the PAHs are most 

probably derived from pyrogenic (anthropogenic) sources. The dominance of higher 
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molecular weight PAHs across the site is consistent with trends reported in other 

anthropogenically polluted soils from around the world. The distribution of PAHs on 

the site was principally linked to the sample locations, related to the position where 

chemicals were produced in the former factory. The distribution of the PAHs on the 

site was shown to be independent from the organic matter and the pH content of 

those soils, in contradiction with observations made in the literature. The total PAH 

content variations between the two particles sizes was therefore not related to those 

parameters, and seems more likely to be due to other properties of the soils such as 

the surface area, which will increase at finer grain size, increasing sorption of PAHs. 

However, the notably high concentrations of soil PAHs determined at this site, 

compared to other contaminated locations reported in the literature, make it a prime 

target for further investigation/remediation given its proximity to a national cross-

country pathway of historic importance (Hadrian‘s Wall walk) and a popular venue on 

the River Tyne foreshore for fishing.  
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CHAPTER 6:  Application of two versions of an in vitro 

gastrointestinal extraction to evaluate oral bioaccessibility of 

PAH in industrially contaminated soils 

6.1 Introduction 

As described in the previous chapter, the ingestion of a solid matrix depends on the 

potential adsorption against the skin, according to the size, type and the surface of the 

matrix particles (soil, dust and sediment). After being adsorbed the matrix will enter 

human digestion, and may cause harm via mobilization of pollutants. Then, small 

quantities of the solid matrix will be ingested with nutrients, releasing potential 

contaminants inside the gastrointestinal tract. A risk for human health will exist, as the 

contaminants can interact with the organs inside the gut. To assess the effects of the 

ingestion of pollutant via soils, in vitro methods have been introduced to estimate the 

bioaccessibility of soil contaminants, as an indicator of in vivo bioavailability (Scoof, 

2004). Indeed, in vitro methods are being developed in order to reduce and replace 

human and animal testing, which involve financial and ethical issues (Environment 

Agency, 2007). 

The Environmental Agency in England and Wales agrees that the development of an 

in vitro digestion test that is robust, simple and representative of reality would be a 

useful tool to assess human health risk from pollutants in environmental matrices, in 

commercial laboratories (Environment Agency, 2005). This simulated in vitro 

gastrointestinal test could be used in risk assessment if it is simple, comprehensive, 

precise, reproducible, interpretable and consistent (Gron et al., 2003). Currently, 

physiologically-based extraction tests have only started to show good reproducibility 

(Versantvoort et al., 2004; Oomen et al., 2006)  within and between laboratories; there 

is still need for certified reference materials concerning bioaccessibility testing, and 

there is still no agreed procedure that every laboratories could use for any matrix and 

any contaminants (Environment Agency, 2005). However, recent studies, developed 

by the Bioaccessibility Research Group of Europe (BARGE), demonstrated 
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satisfactory reproducibility for bioaccessibility testing for matrices such as food and 

soils containing contaminants, such as metals (Versantvoort et al., 2004; Wragg et al., 

2009). The members of this group have also developed the Unified BARGE Method 

(Cave et al., 2006), which is used in the present study, by comparing several 

physiologically-based extraction tests.  

 In order to represent more accurately and realistically human digestion of soil 

containing polycyclic aromatic hydrocarbons, some researchers have developed a fed 

version of the physiologically-based extraction test. Indeed, a child is thought to be in 

a fed state more than half of the time during a day, considering ingestion of snacks 

through the day (Oomen et al., 2006). A Danish study (Gron et al., 2007) and a Dutch 

study (Sips et al., 2001; Versantvoort et al., 2004), based on a report from the Dutch 

National Institute for Public Health and the Environment (RIVM), estimated  PAHs 

bioaccessibilities from food and soils using fed and fasted gastrointestinal tests 

(Versantvoort et al., 2004; Oomen et al., 2006). 

Moreover, the RIVM has largely contributed to the development of the UBM (Unified 

BARGE Method) (fasted state) (Cave et al., 2006), and the fed version of this test, the 

FORES(h)t (Fed Organic Estimation human Simulation Test) (Cave et al., 2010), used 

in the present  study, with minor modifications, because of changes in secretion of 

enzymes and variations in pH, when food is ingested. In the case of the FORES(h)t 

method, developed and named by members of BARGE (Cave et al., 2010) in 

England, the food supplement in the test was composed of pure sunflower oil and an 

organic creamy porridge infant food and was based on the macronutrients 

composition of the average diet of a 4-6 years old child in the UK (Gregory et al., 

2000). The amount of soil added during the process was based on the fact that 

children ingest involuntarily 100 mg of soil per day via hand-to-mouth behaviour 

(Oomen et al., 2006; U.S Environmental Protection Agency, 2008). According to the 

RIVM and the US EPA this amount of daily involuntarily ingested soil considers a child 

aged between 1 and 6 years old (Oomen et al., 2006; U.S Environmental Protection 
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Agency, 2008). Based on these assumptions, 0.3 g of soil was used with those 

models, in order to obtain a soil-to-solution ratio closer to the fluid proportion of the 

gastrointestinal tract of a child (Oomen et al., 2006). The composition of the 

gastrointestinal fluids is based also on the human physiology of the gastrointestinal 

tract  (Oomen et al., 2003). The main reason for adding food in such systems is to 

mimic more realistically the human digestion. Consequences of adding food in an in 

vitro gastrointestinal test were described as an increase of the mobilization of 

hydrophobic PAHs from the matrix, inside the human gastrointestinal fluids. This was 

demonstrated to be partly due to the changes in the gastrointestinal fluids composition 

between a fasted and a fed state. Indeed, parameters that can alter mobilization of 

PAHs can be the amount of bile salts (Friedman et al., 1980; Fries, 1985; Feroci et al., 

1995; Hack et al., 1996; Charman et al., 1997; Luner, 2000; Oomen et al., 2000; 

Holman et al., 2002; Pu et al., 2004; Van de Wiele et al., 2004), the soil-to-solution 

ratio (Van de Wiele et al., 2004),  the amount of food (Fries et al., 1989; Hack et al., 

1996; Van Schooten et al., 1997; Shargel et al., 1999; Roos et al., 2000; Wittsiepe et 

al., 2001; Pu et al., 2004), the quantity of mucine (Hack et al., 1996), the chlorine 

content (Van den Berg et al., 1985 ; Geyer et al., 1987; Olling et al., 1990; Mc Lahan, 

1993; Wittsiepe et al., 2001; Schwarzenbach et al., 2003; Pu et al., 2006), the ring 

number (NEPI, 2000; Tang et al., 2006), the organic matter (Chiou et al., 1986; 

Calvet, 1989; Yin et al., 1996; Kogel-Knabner et al., 2000; Schwarzenbach et al., 

2003; Pu et al., 2004; Van de Wiele et al., 2004), the solubility of individual PAHs in 

water (Mackay, 2001), and the physicochemical properties of the soils (Chung et al., 

1998; Ake et al., 2001; Pu et al., 2004; Pu et al., 2006) 

Furthermore, the addition of food constituents in the in vitro gastrointestinal test will 

considerably modify the related analytical methods used to isolate PAHs from the 

resulting simulated gastrointestinal digests. A complex matrix consisting of food 

constituents, biological fluids and soil particles will require further steps of extraction 

and purification, involving for example saponification (Grimmer et al., 1975; 
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Eschenbach et al., 1994; Hartman, 1996; Kelly et al., 2000; Northcott et al., 2001; 

Kishikawa et al., 2003; Pena et al., 2007; Itoh et al., 2008), than for a fasted version of 

the in vitro digestion test. Food residues and alkaline substances resulting from 

saponification need to be removed or cleaned-up before injection on a GC-MS, so as 

to avoid any spoiling of instrumental parts such as the column, the ion trap (or 

quadrupole) and the filament. The FORES(h)t method has already been tested as 

precise, accurate and robust using  HPLC-FL as the analysis method  (Cave et al., 

2010).  

A recent survey has shown that 70 % of scientists and policy makers, working in this 

area of research, think that the use of bioaccessibility testing is a powerful tool that 

refines risk assessment and facilitates sustainable land management (Latawiec et al., 

2010). In the UK, the Soil Guidelines Values are based on the Contaminated Land 

Exposure Assessment model, which also describes how to estimate human health 

risk from pollutants in environmental matrices. The model was developed in order to 

compare predicted contamination exposure levels with known toxicological or Health 

Criteria Values (HCVs). A HCV represents the exposure level below which, there 

should be minimal or no risk to human health (Environment Agency, 2007). Those 

values are used to derive a Soil Guideline Value (SGV) which is dependent on the site 

and the contaminant considered (Environment Agency, 2007). Derivation of SGVs 

using the CLEA model assumes that the contaminant is released from the soil and is 

taken up by the human body to the same extent as the model which has been used to 

determine the HCV (for that contaminant) (Environment Agency, 2005). This 

assumption may, of course, not be true as the HCVs may have been determined 

using non-human participants and more soluble forms of the contaminant 

(Environment Agency, 2005). Consequently, basing the human health risk of harmful 

compounds from contaminated land on SGVs implies that the entire pollutant is 

entering the bloodstream. This statement does not take into consideration the 
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insolubility of the contaminant and its potential weathering and chemical bonding 

within the soil (Environment Agency, 2005). 

Another way to estimate the risk to humans from pollutants is to compare the mean 

daily intake with the amount of PAH ingested (µg) through involuntary ingestion (100 

mg/day), soil-pica (50 g/day) and geophagy behaviour (1g/day) (U.S Environmental 

Protection Agency, 2008). These calculated values give an estimation of the risk from 

pollutants when soils are ingested. This calculation of the PAH intake will describe 

how they can interact and be mobilized in the digestive tract. However, this calculation 

is still based on the total pollutant content obtained in the environmental matrix, which 

is not as realistic as the determination of bioaccessibilities, considering the ingestion 

exposure pathway. Indeed, the bioaccessible concentration can be calculated 

according to the bioaccessible fraction and be compared with the mean daily intake. 

There are no threshold values concerning the bioaccessibility (%), as values may vary 

from 0 to 100 %, but it can be suspected that the risk will increase as the 

bioaccessibility and bioavailability is increasing.  

This chapter will focus (1) on the application of the Unified BARGE Method, by 

evaluating the analytical method through a spiking procedure (insert a known amount 

at the beginning of the procedure and observe response at the end of the process), 

and then a comparison of total PAH content, residual digests and PAH bioaccessible 

fractions. The chapter will then deal with (2) the application of the FORES(h)t method, 

by evaluating the analytical method through a spiking procedure, and then comparing 

total PAH content, residual digests and PAH bioaccessible fractions. Then, (3) a 

comparison will be made between PAH bioaccessibilities and total PAH content in two 

different soil locations, evaluating any parameters that could influence distribution of 

PAHs. An interlaboratory comparison (4) will be realized for the application of the 

FORES(h)t method in two different laboratories. Finally (5), a risk assessment 

evaluation will be established according to the bioaccessible fractions observed in 

different site locations. 
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6.2 Experiment  

6.2.1 The study site  

The study site (St Anthony‘s Tar works), sample collection strategy, soil pre-treatment 

procedure, storage, extraction, as well as the apparatus needed for the experiment 

has already been described in chapter 4 and 5. The other soil samples used in this 

study were supplied by the British Geological Survey, from disused gas work sites 

within the UK (Cave et al., 2010). They were firstly freeze-dried and sieved below 250 

µm (Cave et al., 2010) as for the soils collected from the St Anthony‘s Tar works, 

considering this fraction size as potentially more easily ingested through hand-to-

mouth contact with soil (Bornschein et al., 1987; Rodriguez et al., 1999; US 

Environmental Protection Agency, 2000) 

6.2.2 Apparatus for analysis of total PAHs content 

In order to obtain the total PAHs concentration in the soils and in the residues after 

the simulated in vitro gastrointestinal tests, the analytical method in-situ PFE-GC-MS 

developed in chapter 4 for the analysis of PAHs in soils was used. The chemicals, 

apparatus, and instrumentation related to that method were also described in   

chapter 4. 

Two different GC-MS systems were used, one with the Unified BARGE Method (ion 

trap), and the other with the FORES(h)t (quadrupole). Two different types of mass 

spectrometers were used because of the FORES(h)t method involving complex 

samples containing food components. Using a quadrupole instead of an ion trap will 

increase instrument robustness and decrease sensitivity. The first GC-MS instrument, 

used to analyse the extract from the UBM, was a Trace GC coupled with a Polaris Q 

(ion trap) mass spectrometer (Thermo Scientific, UK) and a Triplus auto sampler 

injector. The  second GC-MS, used to analyse the extract resulting from the 

FORES(h)t, was a FOCUS GC coupled with a DSQ (single quadrupole) and an 

Autosampler AS 3000 (Thermo Scientific, UK). Identical temperature programs and 
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capillary columns were used in both instruments. The injector was used in Split 

according to the SSL mode. A five point calibration curve was used for quantitation on 

the GC-MS using 4, 4‘ difluorobiphenyl (10 mg/kg) as an internal standard. A 

sonicator (Bransonic Ultrasonic Cleaner 2200) was used to sonicate PAHs standards 

solutions. 

6.2.3 Unified BARGE Method: Chemicals and laboratory equipment  

Table 6.1: Reagents used in the Unified BARGE Method and FORES(h)t method with 
their respective supplier and supplier location 

Reagent Supplier Location 

NaCl Merck Darmstadt, Germany 

KSCN Merck Darmstadt, Germany 

KCl Merck Darmstadt, Germany 

CaCl2.2H2O Merck Darmstadt, Germany 

NH4Cl Merck Darmstadt, Germany 

NaHCO3 Merck Darmstadt, Germany 

MgCl2.6H2O Merck Darmstadt, Germany 

NaOH Merck Darmstadt, Germany 

HCl Merck Darmstadt, Germany 

Urea Merck Darmstadt, Germany 

Anhydrous D+Glucose Merck Darmstadt, Germany 

D-Glucosaminehydrochloride Merck Darmstadt, Germany 

Pepsin (pig) Merck Darmstadt, Germany 

Bovine Serum Albumin (BSA) Merck Darmstadt, Germany 

Pancreatin (pig) Merck Darmstadt, Germany 

Mucin (pig) Merck Darmstadt, Germany 

Uric acid Merck-Prolabo  Leuven, Belgium 

α-amylase (bacillus species) Sigma Aldrich Dorset, UK 

Lipase (pig) Sigma Aldrich Dorset, UK 

Bile salts (bovine) Sigma Aldrich Dorset, UK 

D-Glucoronic acid Sigma Aldrich Dorset, UK 

NaH2PO4 Mallinckrodt, Baker Devender, Holland 

KH2PO4 Mallinckrodt, Baker Devender, Holland 

Na2SO4 May and Baker Ltd England 

Sunflower oil Marks and Spencer Chester, UK 

HIPP creamy porridge HIPP Ltd Berkshire, UK 

 

The UBM procedure was done using an end-over-end shaker (Stuart® rotator SB3) in 

an oven fixed at the temperature of 37 ± 2 °C, a water bath (Grant OLS 200), a pH 

meter (3020 JENWAY supplied by S.H Scientific), and a centrifuge (Centaur 2 Sanyo; 
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MSE, Scientific Laboratory Supplies). To avoid contact of PAHs with plastic we used 1 

L and 500 ml Duran glass vessels to prepare the biological fluids. The sample 

preparation of the soils was done in red-top centrifuge tubes (Sarstedt Ltd, Leicester) 

suitable for further shaking and centrifugation. The oven used to heat samples at 100 

ºC for 1 hour during the saponification was from Sanyo Electric Ltd, Japan.  

6.2.4 Unified BARGE Method: Preparation of the gastrointestinal fluids  

The physiologically-based extraction test from the present study was based on the 

Unified BARGE method (Cave et al., 2006). Essentially, simulated saliva fluid was 

prepared by first adding 145 mg of amylase, 50.0 mg mucin and 15.0 mg uric acid to a 

1 litre Duran bottle. Then, separately, 896 mg of KCl, 888 mg NaH2PO4, 200 mg 

KSCN, 570 mg Na2SO4, 298 mg NaCl and 1.80 mL of 1.0 M HCl were added into a 

500 mL volume container and made up to the mark with water into a second 500 mL 

volume container, 200 mg of urea was added and made up to the mark with water. 

Then, simultaneously the 500 mL of inorganic and 500 mL of organic saliva 

components were poured into the 1 litre Duran bottle. The entire content of the bottle 

was shaken thoroughly. The pH of this solution was measured (gastric simulated 

saliva fluid). The pH needed to be within the range 6.5 ± 0.5 (if necessary, pH was 

adjusted by adding either 1.0 M NaOH or 37 % HCl v:v).  

Simulated gastric fluid was prepared by first adding 1000 mg of bovine serum 

albumin, 3000 mg mucin and 1000 mg pepsin to a 1 litre Duran bottle. Then, 

separately, 824 mg of KCl, 266 mg NaH2PO4, 400 mg CaCl2, 306 mg NH4Cl, 2752 mg 

NaCl and 8.30 mL of 37 % HCl v:v were added into a 500 mL volume container and 

made up to the mark with water. Into a second 500 mL volume container, 650 mg 

glucose, 20.0 mg glucuronic acid, 85.0 mg urea and 330 mg glucosamine 

hydrochloride were added and made up to the mark with water. Then, simultaneously 

the 500 mL of inorganic and 500 mL of organic components were poured into the 1 

litre Duran bottle. The entire contents of the bottle were shaken thoroughly. pH of this 

solution was measured (gastric simulated fluid). The pH needed to be within the range 
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0.9-1.0. When necessary, pH was adjusted to this range (0.9-1.0) by adding either 1.0 

M NaOH or 37 % HCl. The combination of mixed saliva fluid (1 mL) and gastric fluid 

(1.5 mL) was checked for pH in the range 1.2 – 1.4. If the combined mixture was not 

within this range it was necessary to adjust the pH of the gastric fluid by adding either 

1.0 M NaOH or 37 % HCl. The combination of mixed saliva fluid (1 mL) and gastric 

fluid (1.5 mL) was again checked for a pH in the range 1.2 – 1.4.  

 

Simulated duodenal fluid was prepared by first adding 200 mg of CaCl2, 1000 mg 

bovine serum albumin, 3000 mg pancreatin and 500 mg lipase to a 1 litre Duran 

bottle. Then, separately, 564 mg of KCl, 80 mg KH2PO4, 50.0 mg MgCl2, 5607 mg 

NaHCO3, 7012 mg NaCl and 180 μL of 37 % HCl were added into a 500 mL volume 

container and made up to the mark with water. Into a second 500 mL volume 

container, 100 mg urea were added and made up to the mark with water. Then, 

simultaneously the 500 mL of inorganic and 500 mL of organic duodenal components 

were poured into the 1 litre Duran bottle. The entire contents of the bottle were shaken 

thoroughly and pH of this solution was measured (simulated duodenal fluid). The pH 

needed to be within the range 7.4 ± 0.2. So when necessary, the pH of the duodenal 

fluid was adjusted by adding either 1.0 M NaOH or 37 % HCl v:v. 

 

Simulated bile fluid was prepared by first adding 222 mg of CaCl2, 1800 mg bovine 

serum albumin and 6000 mg bile to a 1 litre Duran bottle. Then, separately, 376 mg of 

KCl, 5785 mg NaHCO3, 5259 mg NaCl and 180 μL of 37 % HCl v:v were added into a 

500 mL volume container and made up to the mark with water. Into a second 500 mL 

volume container 250 mg urea was added and made up to the mark with water. Then, 

simultaneously the 500 mL of inorganic and 500 mL of organic bile components were 

added into the 1 litre Duran bottle. The entire contents of the bottle were shaken 

thoroughly. The solution was left to stand for approximately 1 hour, at room 

temperature, to allow for complete dissolution of solid reagents. The pH of this 

solution was measured (simulated bile fluid). The pH needed to be within the range 
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8.0 ± 0.2. When necessary, the pH of the duodenal fluid was adjusted by adding 

either 1.0 M NaOH or 37 % HCl v:v. The combination of 1.0 mL saliva fluid, 1.5 mL 

gastric fluid, 3.0 mL duodenal fluid and 1.0 mL bile fluid was checked for a pH around 

6.3 ± 0.5. If the combined mixture was not within this range it was necessary to adjust 

the pH of the duodenal fluid by adding either 1.0 M NaOH or 37% HCl v:v. The 

combination of 1.0 mL saliva fluid, 1.5 mL gastric fluid, 3.0 mL duodenal fluid and 1.0 

mL bile fluid was again checked for a pH at 6.3 ± 0.5. All extraction fluids were 

prepared the day before applying the in vitro gastro-intestinal test, to let all the 

reagents dissolve overnight (stored at < 8 °C).  

6.2.5 Unified BARGE Method: Extraction of samples  

An accurately weighed soil sample (0.3 g) was placed into a 50 mL screw cap 

Sarstedt tube and treated with 9 mL of simulated saliva fluid by manually shaking the 

mixture in the screw-cap vessel. Then, after 5 – 15 minutes, 13.5 mL of simulated 

gastric fluid was added. The mixture was then shaken on an end-over-end shaker 

maintained at 37 ± 2 °C for 1 hour. Then, the pH of the soil suspensions was checked; 

the pH needed to be within the range 1.2 -1.7. Then, 27.0 mL of simulated duodenal 

fluid and 9.0 mL of simulated bile fluid were added by manually shaking the mixture in 

the screw-cap vessel. The pH of the resultant suspension was adjusted to 6.3 ± 0.5, 

by the drop wise addition of 37 % HCl v:v, 1 M or 10 M NaOH, as required. The 

mixture was again shaken on an end-over-end shaker maintained at 37 ± 2 °C for 4 h. 

Then, the soil suspension was removed and  the pH of the soil suspension was 

recorded. The pH needed to be within the range 6.3 ± 0.5. The soil suspension was 

then centrifuged at 3000 g (6424.5 rpm) for 5 min. At the end of the process the liquid 

phase is taken with a micropipette (eppendorf) into the SPE cartridge until no more 

liquid can be taken. Then, each aqueous solution is passed through the cartridges 

positioned on the vacuum manifold of the SPE system (after conditioning the 

cartridges; following the SPE protocol). When all the aqueous phase is removed with 

a micropipette, and added on SPE cartridges, the sorbents were washed and PAHs 
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were eluted with dichloromethane (SPE protocol). Soil residues were dried during one 

or two days in Sartstedt tubes (50 ml). Then, after this period, the soils were delicately 

removed from the tube into small containers to be accurately re-weighed. The soils 

were again weighed to check any losses and the in-situ PFE procedure was again 

repeated. 

6.2.6 Unified BARGE Method: spiking procedures 

6.2.6.1 Liquid-liquid extraction 

The spiking procedure was realized with water and the gastrointestinal juices to know 

the precision and accuracy of the results obtained by the operator on this specific 

method, and to check the potential influence of the gastro-intestinal fluids on PAHs 

recoveries. Firstly, an aliquot (10 ml) of reagent water, gastric or intestinal solution 

was taken. Thanks to a separatory funnel (50 ml) the aliquot of reagent water or UBM 

aqueous solution extract was added. Dichloromethane (5 ml) was added in the 

separate funnel and shaken for two minutes with periodic venting to release excess 

pressure. The organic layer was allowed to separate from the water phase for a 

minimum of 10 minutes. If the emulsion interface between layers was more than one 

third the volumes of the solvent layers, it was necessary to use mechanical 

techniques to complete the phase separation. The optimum technique depends upon 

the sample, but may include stirring, filtration of emulsion through glass wool, addition 

of salts and centrifugation. The dichloromethane extract was collected in an 

Erlenmeyer flask and then transferred into a volumetric flask. A second aliquot of 

dichloromethane (5 ml) was added to the sample bottle and into the separatory funnel 

so the extraction procedure was repeated a second time, then a third time collecting in 

the same Erlenmeyer flask (U.S. Environmental Protection Agency, July 1990). In 

order to observe recoveries of PAHs after extraction, and therefore the efficiency of 

the method, the solution was spiked at the beginning with 50 µl (2000 µg/ml standard 

PAHs solution) in 5 ml water sample. 40 µl of the internal standard solution (1000 
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µg/ml) was added at the end in the 20 ml volumetric flask and completed with solvent 

until graduation mark. At the end the PAHs standard concentration was 5 µg/ml and 

the internal standard concentration 2 µg/ml.  

6.2.6.2 Solid Phase Extraction 

 As part of the spiking procedure with SPE, three types of sorbents were used: C2, C8 

and C18. The same procedure was followed for the different types of sorbent as 

presented just below.  

Conditioning Part: 2 X 10 ml of dichloromethane were passed through the SPE 

cartridge. The cartridge was let to drain under vacuum after each wash. Then 2 X 10 

ml of methanol were passed through it and let drain after each wash. 2 X 10 ml of 

reagent water were passed through the cartridge. The first 10 ml portion was allowed 

to wash through and the cartridge was let to drain until dry. The next wash 10 ml 

portion was passing through it, keeping the cartridge wet and keeping the water level 

just above the sorbent of cartridge. 

Loading part: 10 ml of the water sample were added keeping a very slow rate (1-2 

drops per second). This step is very crucial because the compounds will start to be 

retained by the sorbent. 

Wash part:  10 ml of distilled water were loaded through the sorbent. Vacuum was 

drawing through the cartridge for an additional 10 minutes to dry the cartridge. Then 

the vacuum was released and the sample waste discarded.  

Eluting part: 2 X 5 ml of dichloromethane were passed through the cartridge and 

vessels were placed inside the vacuum manifold to collect the solvent. The container 

of the water sample was washed with 2 ml dichloromethane or more and added to the 

cartridge extract. This step was done at a very slow flow rate (1-2 drops per second) 

to get all the compounds from the cartridge (U.S. Environmental Protection Agency, 

July 1990). 
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Furthermore all glass surfaces coming in contact with the aqueous sample were 

washed with dichloromethane and added to the column eluate. In order to observe 

recoveries of PAHs and method performance after extraction, the solution was spiked 

inside the liquid in the vessel, to avoid any PAHs losses, at the beginning with 50 µl 

(2000 µg/ml standard PAHs solution) in 10 ml water sample. 40 µl of the internal 

standard solution (1000 µg/ml) was added at the end in the 20 ml volumetric flask and 

completed with solvent until mark. PAHs standards concentration was 5 µg/ml and the 

internal standard concentration 2 µg/ml. 

6.2.6.3 Solid Phase Micro-Extraction 

Firstly, the fibre was conditioned in the GC injection port at 250 ºC for one hour. 

Several fibre blanks were run to ensure the fibres were fully conditioned and that no 

interferences from the fibres were present in GC chromatograms. The fibre was 

placed inside a 10 ml aqueous solution with a holder allowing the fibre to go into the 

solution. SPME calibration curves involve the preparation of several standard 

solutions in a sample matrix so as to obtain the relationship between the peak 

responses and the targeted standard concentrations. Then, the concentrations of the 

target analyte in a sample can be calculated with the equation of the calibration curve 

(Ouyang et al., 2008). The solution was stirred during a fixed time (15, 30, 45, 60, 75, 

90, 105, 120 min). 

Finally, the fibre was directly inserted into the injection port of the GC-MS at the 

appropriate needle depth by adjusting the needle guide. The compounds will be 

desorbed at high temperature in the GC injection port. The amount of PAHs adsorbed 

against the fiber, as a function of stirring time, was controlled in order to know the best 

extraction time to recover them. To clean the PDMS fibres between injections they 

were immersed for 30 minutes in water soluble organic solvents such as methanol, 

acetonitrile or ethanol. In this case, the addition of water helps reduce swelling. The 

PAHs standard concentrations were established from 10 to 200 ng/ml. 
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6.2.6.4 Stir-Bar Sorptive Extraction 

First the stir bar was conditioned as follow: it was placed into a vial containing 1 ml of 

a mixture of dichloromethane and methanol (1:1, v:v), and treated for 5 minutes with 

sonication. Then, the solvent mixture was rejected and the procedure repeated three 

times. The stir bar was dried in a desiccator at room temperature and heated for 90 

minutes at 280 °C with a nitrogen stream of about 100 ml/min. Then the stir bar was 

placed into a glass vial having screw caps (for example 10 ml water sample in a 10 ml 

glass vial). The extraction was performed during 30 to 240 minutes with a stirring 

speed of 750 to 1000 rpm at room temperature (25 °C). After extraction, the stir bar 

was removed with clean tweezers and dried with a lint-free tissue. Then, for liquid 

desorption, the stir bar was placed into the insert (250 µl glass flat bottom) of a 2 ml 

vial. The insert was filled with 150 µl acetonitrile ensuring total immersion. Solvent 

back extraction was performed using ultrasonic treatment for 15 minutes at constant 

temperature: 25 °C (to obtain an efficient stripping) to allow desorption of the PAHs. 

After desorption the stir bar was removed by means of a magnetic rod, and the vial 

was placed into the auto sampler of the GC/MS. In order to observe recoveries of 

PAHs and method efficiency after extraction, the solution was spiked inside the liquid 

in the vessel, to avoid any PAHs losses, at the beginning with 50 µl (20 µg/ml 

standard PAHs solution) in 10 ml water sample. 50 µl of the internal standard solution 

(40 µg/ml) was added to the 200 µl solution in the 250 µl insert inside the vial. This will 

result on an internal standard concentration of 10 µg/ml and a PAHs standard 

concentration of 5 µg/ml.  PAHs concentrations were observed according to variations 

in stirring time with the stirring speed kept constant and temperature let ambient 

(Garcia-Falcon et al., 2004). 

6.2.6.5 Micro Extraction by Packed Sorbent 

The system was totally automated, using the Triplus autosampler and the wash vial as 

sample solution. The packed syringe was conditioned first with methanol and then 

with water (50 µl) before being used for the first time. The water sample (50 µl each, 
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washing vial of the autosampler) was drawn through the syringe 30 times by the 

autosampler with a speed of 20 µl/s. The sample volume contained 10 ml of water 

and 5 µl of PAHs standard solution at 200 µg/ml. Consequently the PAHs 

concentration was 0.1 µg/ml in the water sample. The syringe was rinsed once by 50 

µl of reagent water (sample vial). The analytes were then eluted with 30 µl 

dichloromethane (sample vial replaced by dichloromethane in another vial) directly 

into the GC injector, giving a final PAH concentration of 33.33 µg/ml. 

6.2.7 FORES(h)t method 

The FORES(h)t method is also a simulated in vitro gastrointestinal test which is based 

on the Unified Barge Method, with minor changes (Cave et al., 2010). Therefore, the 

same reagents used in the UBM were used in the FORES(h)t. The FORES(h)t 

method is the fed version of the UBM. Adding food in this test involves specific 

physiological changes such as the composition of the different fluids, the pH and the 

intestinal motility (Versantvoort et al., 2004). The pHs of the fluids were increased in 

comparison with the UBM (Cave et al., 2010). The amount of amylase was two times 

higher, and the quantity of mucin two times lower than in the UBM (saliva solution). 

The amount of mucin and pepsin in the gastric phase were multiplied by a factor of 3 

for the former and by a factor of 2.5 for the latter. Pancreatin and lipase quantities 

were also increased by a factor of 3, for the composition of the duodenal fluid. Finally 

the amount of bile in the bile solution was increased by a factor of 5. pH values were 

also changed through the process. The pH of the saliva solution was augmented from 

6.5 ± 0.5 to 6.8 ± 0.5, the gastric solution from 0.9-1 to 1.3 ± 0.5, the duodenal fluid 

from 7.4 ± 0.2 to 8.1 ± 0.2 and the bile fluid from 8.0 ± 0.2 to 8.2 ± 0.2 (Cave et al., 

2010). 

In order to realize the extraction, an accurately weighed sample (0.3 g) was placed 

into a 50 mL screw-cap Sarstedt tube with 0.813 g of HIPP organic creamy porridge 

(HIPP UK Ltd; Berkshire, UK), 2.45 ml of distilled water and 50 µl of pure sunflower oil 
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(Marks and Spencer; Chester, UK). Then, 4.5 mL of simulated saliva fluid was added 

via pipette and the solution was installed in the end-over-end shaker for 5 minutes 

with a speed of 30 rpm in an oven at 37 ± 2 °C. Then, 9 mL of simulated gastric fluid 

was added via pipette into the vessel. The tubes were capped and inserted in the end-

over-end shaker inside an oven at 37 ± 2 °C for 2 hours. After the extraction, the 

vessels were removed from the extractor and the pH was controlled for each of the 

solutions.  9 ml of simulated duodenal fluid and 9.0 mL of simulated bile fluid were 

added via pipette to the vessels and the pHs of the solutions were measured before 

extraction in the oven. The pH was again checked after extraction of the solution 

during 2 hours, inside the oven at 37 ± 2 °C. The soil suspension was then centrifuged 

at 3000 g for 5 min. 

After the centrifugation of the extract following the process, 1 ml of the liquid phase 

was transferred via glass pipette into a Hach chemical oxygen demand vial. The 

pipette was cleaned with 1 ml methanol into the tube, in order to get any PAHs 

possibly adsorbed on to the layer of the glass. Then, 3 ml of potassium hydroxide in 

methanol was added into the tube with a screw cap, and put into an oven for 1 hour at 

100 °C. After cooling the solution, 5 ml of distilled water was added. Before loading 

the samples into the SPE polymeric cartridges (Waters OASIS HLB Plus Sep-Pak®) 

they were conditioned by adding 5 ml dichloromethane, 5 ml methanol and 2* 5 ml 

water. The samples were loaded through the cartridges at a flow rate of 1-2 ml/min. 

The cartridges were then washed by 5 * 2 ml of distilled water, and they were dried 

under maximum vacuum during 10 minutes. The clean-up step was realized by 

connecting the dried cartridge to a silica sorbent cartridge (Waters Plus Silica Sep-

Pak®) in order to reverse the flow inside the cartridges compared to sample addition 

(Figure 6.1). In other terms, a backflush of the dried cartridges was realized into the 

silica cartridge. Finally, the cartridges were eluted by a solution of dichloromethane 

and tetrahydrofuran (1:1, v:v) at a slow flow rate, in 15 ml amber vials. Less than 10 

ml of solvent was collected in each vial, and the solution was evaporated under a 
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gentle stream of nitrogen until dryness. The residue was collected with 1 ml or 100 µl 

of dichloromethane with 10 µl of an internal standard solution (respectively 1000 µg/ml 

or 100 µg/ml), according to the sensitivity obtained with the GC-MS for the analysis of 

the final solutions. 

6.2.7.1 FORES(h)t method spiking procedure 

To evaluate the performance of the analytical method following the FORES(h)t 

method, the soil was spiked at the beginning with 10 µl of a PAHs standard solution 

(2000 µg/ml). 5 replicates of each blanks and spikes were prepared so as to get 

accurate and precise results. The final solution was made to a volume of 1 ml with the 

internal standard (10 µl of a 1000 µg/ml) solution.  

 

Figure 6.1: Solid phase extraction using polymeric and silica cartridges to isolate PAHs 
from gastrointestinal digests (Itoh et al., 2008) 

 

6.3 Results and Discussion 

6.3.1 Quality control 

The calibration curves were showing good linearity on both instruments with 

correlation coefficients above 0.995. Concentrations of standards were ranging from 

0.1 µg/ml to 5 µg/ml. The first standard was chosen at a lower concentration than 

previous calibrations because of the low signal obtained after applications of the 

physiologically-based extraction tests, and purifications.  
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In order to lower the detection limit, pre-concentration was employed after the solid 

phase extraction by evaporating the solution until dryness under a gentle stream of 

nitrogen, and by completing with dichloromethane until 100 µl with the internal 

standard. Then, instead of a dilution factor around 100, the dilution factor was reduced 

to 10. Calibration curves and limits of detection, based on a signal-to-noise above 3,  

with the GC-DSQ are displayed on Table 6.1, the latter being converted to values in 

the FORES(h)t phase, and secondly converted to values in the residual digests and 

soil. 

The calibration curves obtained with the GC-Polaris Q were obtained previously and 

are displayed in the Chapter 4. Solubility and partition coefficients (log Kow) are also 

displayed because of the potential influence of the aqueous phase and the food matrix 

on the mobilization of PAHs, inside the digestive tract. Retention times of the PAHs 

between the chromatograms were slightly changed between the two instruments, but 

the PAHs peaks were sharp, showing good sensitivity and separation (Figure 6.2 and 

6.3). 
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Figure 6.2: Chromatogram of a 5 µg/ml PAH standard solution using a Trace GC-Polaris 
Q (GC-MS) in SIM mode
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Table 6.2: GC-MS calibration of PAHs based on a five point graph (0.1 - 5 µg/ml) 

 

a
 (Lu et al., 2009) 

 
b
 (Tang et al., 2006)

PAH 

Structure 

Empirical 

Formula 

 

PAHs 

 

 

 

Number 

for PCA 

MS Ion for 

Quantitation 

 

LOD(mg/kg) in 

FORES(h)t 

solution 

LOD (mg/kg) in 

soil and 

residue 

Calibration Regression 

|y = mx + c| 

Correlation 

Coefficient R
2 

 

 

Solubility in 

water (µg/kg)  

at 25 °C
a
 

Log Kow
a
 

 
C10H8 NAP 1 128 1.15 1.44 1.3313 X + 0.0865 0.9994 31.7 3.35 

 
C12H8 ACY 2 152 1.10 1.38 1.3079  X + 0.0981 0.9993 3.93b 4.07b 

 
C12H10 ACE 3 154 1.44 1.80 0.8795  X + 0.0880 0.9989 3.42 3.92 

 C13H10 FLU 4 166 1.77 2.21 0.9513 X + 0.1655 0.9959 1.98 4.18 

 
C14H10 PHE 5 178 1.43 1.79 1.3456 X + 0.1703 0.9980 1.29 4.57 

 C14H10 ANT 6 178 1.35 1.69 1.0494  X  + 0.1035 0.9975 4.5 ×10-2 4.54 

 
C16H10 FLUH 7 202 1.94 2.43 1.1869 X + 0.1665 0.9976 2.6 ×10-2 5.22 

 
C16H10 PYR 8 202 2.27 2.84 1.2741 X + 0.1632 0.9971 1.35 ×10-1 5.18 

 
C18H12 BaA 9 228 1.60 2.00 0.7502 X + 0.1146 0.9971 5.7 ×10-3 5.79 

 

 

C18H12 CHY 10 228 1.55 1.94 0.9428 X + 0.1368 0.9971 1.9 ×10-3 5.98 

 
C20H12 BbF 11 252 1.55 1.94 0.7314 X + 0.1042 0.9976 1.4 ×10-2 6.06 

 
C20H12 BkF 12 252 1.59 1.99 0.9363 X + 0.1443 0.9964 4.3 ×10-3 6.06 

 
C20H12 BaP 13 252 1.11 1.39 0.6183 X + 0.0613 0.9973 3.8 ×10-3 6.00 

 
C22H12 IDP 14 276 1.63 2.04 0.5309 X + 0.0790 0.9959 5.3 ×10-4 6.40 

 

C22H14 DBA 15 278 1.67 2.09 0.4932 X + 0.0782 0.9964 4.0 ×10-4 6.86 

 
C22H12 BgP 16 276 1.55 1.94 0.6554 X + 0.0583 0.9979 3.0 ×10-4 7.10 
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Figure 6.3: Chromatogram of a 5 µg/ml PAH standard solution using a Trace GC-DSQ 
(GC-MS) in SIM mode 

 

The CRM analysis was done with two different masses, 0.3 g and 10 g. The lowest 

mass was considered as it was the mass used in the physiologically-based extraction 

models of the present study. Usually, a large amount of CRM was needed (e.g. 10 g, 

according to certificate recommendations) in order to compare confidently with the 

certificate values. The values obtained for 10 g of CRM were within the range of the 

certificate values, as shown in Table 6.2. They were all contained in the confidence 

interval, except one value, acenaphthylene, which was contained in the prediction 

interval. Concerning the extraction and analysis of 0.3 g of CRM, the values were 

lower than both the certificate and when using 10 g of CRM. The values were 

contained in the prediction interval, except two values, chrysene and benzo(a)pyrene 

which were slightly below the lower values of the prediction internal. Therefore, the 

values obtained with 0.3 g were lower than with 10 g. Using a F-test to compare 

values of PAHs concentrations for 0.3 g and 10 g, it shows that there was a 

statistically significant difference between the values, as the P value was below 0.05 

(0.015) (Figure 6.4).  
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Table 6.3: Comparison of values (mg/kg) (CRM 123-100) resulting from the extraction of 
PAHs by in-situ PFE-GC-MS of 0.3 g and 10 g of certified reference material, with 

reference values (certificate value, confidence interval and prediction interval in mg/kg) 

*NA= non available 

Ideally, the values should have been closer, considering homogeneity of the sample. 

But the soil-to-solution ratio may have influenced the potential release of compounds 

from the matrix. 

It means that the values on the total PAHs concentrations of the samples were slightly 

underestimated, due to the use of only 0.3 g of soil samples. Consequently, the 

bioaccessible fraction may have been slightly overestimated as the PAHs 

concentrations were directly measured in the gastrointestinal digests, where no 

potential errors exist on those values.  This study demonstrated again the need to 

obtain a certified reference material that allows measurement of the bioaccessible 

fraction for PAHs, or another certified reference material for soil samples that allows 

accurate measure of low-mass samples, such as 0.3 g, as a tool to realize the quality 

control on simulated in vitro gastrointestinal models. 

 CRM 123-100 (BNA’s in soil) CRM 123-100 reference values 

 

PAH 

0.3 g 

Measured (+/- 
SD)     n = 3            

(mg/kg) 

10 g 

Measured (+/- 
SD)     n = 3            

(mg/kg) 

Certificate 

value 

(mg/kg) 

Confidence 

Interval 

(mg/kg) 

Prediction 

Interval (mg/kg) 

Naphthalene 6.58  ± 0.63 8.07 ± 0.31 9.73 8.49-11.0 4.84-14.6 
Acenaphthylene 3.39 ± 0.09 2.73 ± 0.10 7.24 5.75-8.73 1.37-13.1 
Acenaphthene 5.49 ± 0.24 6.22 ± 0.23 7.52 6.20-8.84 2.31-12.7 

Fluorene 5.83 ± 0.21 5.85 ± 0.07 6.88 5.91-7.85 3.05-10.7 
Phenanthrene 5.06 ± 0.32 6.77 ± 0.21 7.94 6.96-8.92 4.07-11.8 

Anthracene 4.50 ± 0.35 5.69 ± 0.14 6.94 5.90-7.98 2.83-11.1 
Fluoranthene 5.20 ± 0.13 8.66 ± 0.51 9.31 8.08-10.5 4.44-14.2 

Pyrene 4.22 ± 0.02 6.21 ± 0.14 6.75 5.79-7.71 2.98-10.5 
Benzo(a)anthracene 4.55 ± 0.09 8.27 ± 0.34 8.38 7.24-9.52 3.87-12.9 

Chrysene 6.01  ± 0.08 12.17 ± 0.40 11.3 10.0-12.6 6.23-16.4 
Benzo(b)fluoranthene NA* NA NA NA NA 
Benzo(k)fluoranthene NA NA NA NA NA 

Benzo(a)pyrene 3.44 ± 0.21 7.35 ± 0.33 7.77 6.79-8.75 3.92-11.6 
Indeno(1,2,3-cd)pyrene NA NA NA NA NA 
Dibenzo(a,h)anthracen

e 
NA NA NA NA NA 

Benzo(g,h,i)perylene NA NA NA NA NA 
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Figure 6.4: Statistical comparison of the values resulting from the extraction of PAHs by 
in-situ PFE-GC-MS of 0.3 and 10 g of Certified Reference Material (CRM 123-100) 

 

However, in this study, a comparison was done between the total PAH content and 

PAH bioaccessible fractions obtained from BGS soils in two different laboratories 

(present study and BGS). This comparison will control the quality of the results from 

the present study, as results from the CRM cannot be used in this bioaccessibility 

study. This was part of the utilization of an interlaboratory tool to estimate the 

FORES(h)t method robustness. 

6.3.2 Performance of analytical method following UBM 

6.3.2.1 Liquid-liquid extraction 

The results for the spiked reagent water and gastrointestinal fluids gave precise and 

accurate results with liquid-liquid extraction. All recoveries ranged from 80 to 110 % 

with RSD ranging from 8 to 22 % with water only, and using gastrointestinal digests 

similar recoveries and relative standard deviation were obtained (Figure 6.5). It has 

confirmed the precision and accuracy of the method for extraction of PAHs from liquid 

phases. Therefore, this extraction is suitable for further works with the UBM. However 

this technique takes a considerable amount of time because it is not automated. 
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Figure 6.5: Recoveries of PAHs after Liquid-liquid extraction with (mean +/- sd, n = 3) 

 

6.3.2.2 Solid Phase Extraction 

The SPE gave also efficient recoveries ranging from 71.6 to 96.5 % and RSD ranging 

from 4.4 to 27.8 % (Table 6.4 and Figure 6.6) with the C18 sorbent. Indeed, the C18 

end-capped octadecyl is very retentive of non-polar compounds because of its 

hydrophobic character. The recoveries were lower for C8 between 40 and 70 % 

(Figure 6.6) and again lower concerning C2 between 30 and 60 %. Due to their 

structure, these sorbents were expected to retain less PAH as their chain length is 

shorter and C2 is more polar due to the exposition of the polar group Si-O. So there is 

no place for hydrophobic attractions as with the C18 sorbent. C8 and C2 sorbent were 

therefore discarded for further analysis. However, the SPE technique with C18 

sorbent was kept as a competing device against LLE. Furthermore, the advantage of 

SPE against LLE is the use of a vacuum manifold which can process several samples 

at the same time. It can reduce significantly the time compared to LLE. However, this 

needs to be taken with precaution, as doing the extraction on several cartridges at the 

same time on the vacuum manifold can involve discrepancies on the flow rate as 

pressure will vary according to the position of the cartridges on the manifold.  

 

 

%
 R

e
c
o
v
e
ry

 



129 
 

Table 6.4: Recoveries and relative standard deviation of a spiked aqueous solution (10 
ml) after SPE (C18)-GC-MS 

Spiking procedure SPE-GC-MS 

 Recoveries considering final 

concentration: 5 mg/kg 

Relative Standard 

Deviation 

 %REC (n=3) %RSD (n=3) 

NAP 71.6 8.6 

ACY 81.2 4.4 

ACE 83.5 13.4 

FLU 91.5 11.0 

PHE 85.8 6.9 

ANT 96.5 15.1 

FLUH 88.8 12.7 

PYR 87.2 7.3 

BaA 82.8 13.6 

CHY 86.6 13.8 

BbF 87.2 18.4 

BkF 89.6 12.1 

BaP 91.3 10.0 

IDP 87.5 

 

21.4 

DBA 88.0 27.8 

BgP 89.9 15.0 

 

 

Figure 6.6: Recoveries of PAHs after Solid Phase Extraction for three types of sorbents 
(C18, C8 and C2) with (mean +/- sd, n = 3). 

 

6.3.2.3 Stir-Bar Sorptive Extraction 

The SBSE technique was investigated with liquid desorption in this study. Conclusions 

rapidly appeared that this type of desorption was not ideal. SBSE is a solvent-free 

method which consists of desorbing directly the stir bar without solvent into the 

instrument. Therefore, the use of solvent to desorb PAHs did not give very precise, 

% Recovery 
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accurate and linear results, compared to the use of LLE or SPE. However, this 

technique could be useful in conjunction with a thermal desorption unit. 

6.3.2.4 Solid Phase Micro-Extraction 

Considering only the results on standards for calibration, the technique seemed more 

suitable assessing low quantities of contaminants in samples. In a number of studies 

fibre overload has been demonstrated to lead to a bias in the results (Roberts et al., 

2000). The soils and CRM contained mg/kg levels of PAHs. So the needle can be 

easily overloaded at a certain PAH concentration and some of the PAHs will not reach 

the needle. Then, it could lead to incorrect results for mg/kg ranges of concentration. 

µg/kg concentration was giving acceptable calibration curves correlation coefficient 

(from R2 = 0.95 to 0.99) avoiding overloading the needle. It was also noted that stirring 

time is important for the mobilization of PAHs onto the fibre. It was noticed that as 

stirring time was increasing (0, 5, 10, 15, 20 until 60 minutes) the amount of PAHs 

adsorbed onto the fibre was getting higher (value at 60 minutes up to six fold the 

value at 5 minutes).  

6.3.2.5 Micro-extraction by Packed Sorbent 

The chromatograms obtained with MEPS-PTV-GC-MS showed a very well defined 

baseline with sharp and well-separated peaks for all the 16 PAHs. The method allows 

injection of large volume of samples which increases sensitivity. The comparison of 

the integration of the fluoranthene peak with split/splitless mode (0.5 mg/kg) and the 

program temperature vaporizing/Large volume injection (0.1 mg/kg), demonstrates 

that the sensitivity had dramatically increased (more than 15 times using ratio of peak 

surface areas) and the signal-to-noise ratio was only 3 for the former method and 

reaching 77 for the latter (Figure 6.7). This method is therefore very useful to increase 

sensitivity, which is a common issue when working with samples with low 

concentrations of contaminants. That method can also be used in backflush mode in 

order to remove impurities, by venting large amount of solvent.  
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Figure 6.7: comparison of sensitivity, surface area and signal-to-noise ratio of a 
fluoranthene peak using split/splitless injector (SSL) (0.5 mg/kg) and Programme 

Temperature Vaporizing/ Large volume injector (PTV/LV) (0.1 mg/kg) with a Trace GC- 
Polaris Q MS for analysis. 

As the technique is complex, a complete study would need to be done on this 

technique, before applying it on real samples. 

6.3.2.6 Conclusion 

As a conclusion, the best technique to isolate polycyclic aromatic hydrocarbons from 

gastric and intestinal aqueous solutions under these conditions was Solid Phase 

Extraction. Firstly, the SPE method was easy to use and did not require specific 

complementary devices (Stir Bar Sorptive Extraction) or use of low compounds 

concentration as with Solid Phase Micro Extraction. Secondly, very good recoveries 

were obtained with the C18 octadecyl sorbent with SPE. Finally, the method can 

process several samples at the same time and involves less manual operation and 

use of solvent, compared with liquid-liquid extraction.  

6.3.3 Evaluation of bioaccessibilities using the UBM 

The bioaccessible fractions for the 16 PAHs, obtained using the Unified Barge 

Method, were calculated using the Equation 6.1 (based on the total content in soil and 

the concentration obtained after using the PBET) showed very low bioaccessible 

fractions values from 0.73 to 7.45 % (Table 6.5). PAHs concentrations in the aqueous 

phase resulting from the simulated in vitro gastrointestinal models were also low, from 

SSL 0.5 mg/kg PTV 0.1 mg/kg 
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0.22 to 1.94 mg/kg. The recoveries of the addition of the residual fraction digest and 

the gastrointestinal digests, compared with the total PAHs content was showing 

values from 82.57 to 110.20 % which meant that the PAHs were remaining in the soil 

and were not leaching into the aqueous phase. Moreover, the % Residual was 

showing values between 77.03 to 110.20 %, with an exception for acenaphthene at 

44.23 %, which again demonstrate that PAHs were remaining in the residue after 

using the physiologically-based extraction model.  

                                                          Amount released using the UBM (mg/kg) 

 % BAF (Bioaccessible fraction) =                                                                                    * 100    [6.1] 

                                                                      Total content in soil (mg/kg) 

 

Moreover, these results confirm that the use of SPE C18 sorbent to recover PAHs 

from the gastrointestinal digests using the Unified Barge Method is precise and 

accurate. As the PAH content in the gastrointestinal digests is nearly negligible after 

simulated extraction, this experiment can be seen as a spiking procedure, drawing 

two conclusions at the same time. On the one hand, SPE with C18 sorbent is 

definitely appropriate for the analysis of PAHs in the gastrointestinal digests resulting 

from the physiologically-based extraction tests. On the other hand, a fasted model 

involves negligible mobilizations of PAHs from soils in the gut.  

As polycyclic aromatic hydrocarbons are hydrophobic compounds they are not very 

soluble in water, they will tend to remain in the soil matrix as they will not be attracted 

by a polar solvent such as water. For example, fluorene have a high solubility in water 

compared with other higher molecular weight PAHs, and was giving the highest 

bioaccessible fraction, at 7.45 %. Comparing with previous studies, based on the use 

of fasted in vitro gastrointestinal tests, researchers were finding low PAH 

bioaccessible fraction from 0 to 20 % (Hack et al., 1996; Oomen et al., 2004; Van de 

Wiele et al., 2004). However, a few studies were finding higher bioaccessible fraction 

from up to 50 % (Gron et al., 2003; Pu et al., 2004; Tang et al., 2006). Phenanthrene 

was showing particularly high bioaccessibilities compared to other polycyclic aromatic 
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hydrocarbons (Gron et al., 2003; Pu et al., 2004). It was observed that adding food in 

the digestive tract was increasing significantly the PAHs bioaccessibilities (Hack et al., 

1996; Versantvoort et al., 2004). 

Table 6.5: Analysis of the most contaminated Tar works soil using in-situ pressurized 
fluid extraction and the Unified Barge Method. 

Most Contaminated Tar works soil 

 Total (PFE) 
Gastric + Intestinal 

digest (UBM) 
Residual fraction digest (PFE) %Recovery 

 
Mean ± 

SD(n=3)  

(mg/kg) 

Mean ± 

SD(n=3)  

(mg/kg) 

%BAF
*
 

Mean ± SD(n=3)  

(mg/kg)SD(3) 
% Residual

+
 %REC

^
 

NAP 17.4 ± 11.8 <LOD ND* 19.1 ± 2.2 109.8 ND 

ACY 3.8 ± 1.9 <LOD ND 3.4 ± 0.3 89.5 ND 

ACE 5.2 ± 3.1 <LOD ND 2.3 ± 1.4 44.2 ND 

FLU 7.4 ±1.9 0.54 ± 0.06 7.45 5.7 ± 0.4 77.0 86.9 

PHE 38.6 ± 9.9 0.79 ± 0.08 2.15 32.1 ± 2.3 83.2 88.5 

ANT 35.1 ± 11.9 0.22 ± 0.07 0.69 27.0 ± 3.3 76.9 82.6 

FLUH 209.3 ± 43.8 1.48 ± 0.28 0.73 181.5 ± 11.5 86.7 89.6 

PYR 191.9 ± 38.3 1.94 ± 0.22 1.04 162.0 ± 10.6 84.4 87.8 

BaA 106.6 ± 24.3 1.06 ± 0.10 1.02 97.9 ± 8.8 91.8 95.4 

CHY 98.0 ± 14.6 1.03 ± 0.12 1.07 86.9 ± 6.8 

 

88.7 90.5 

BbF 141.6 ± 26.6 1.29 ± 0.11 0.94 131.4 ± 3.6 92.8 95.9 

BkF 48.2 ± 6.7 1.21 ± 0.04 2.55 44.4 ± 3.5 92.1 96.6 

BaP 184.6 ± 32.2 1.62 ± 0.22 0.90 176.2 ± 16.6 95.4 97.3 

IDP 76.8 ± 12.5 1.28 ± 0.06 1.70 77.5 ± 2.6 100.1 104.2 

DBA 23.42±3.76 ND ND 25.81 ± 2.43 110.2 110.2 

BgP 70.5 ± 14.1 0.57 ± 0.04 0.83 72.9 ± 5.6 103.4 106.3 

* %BAF: stage related bioaccessibility, calculated as a fraction of the total (mean; n=3) 

+ %Residual: residual fraction calculated as a fraction of the total (mean; n=3) 

^ %Rec: calculated as a fraction of the total (mean; n=3) 

* ND= non detected 

  

6.3.4 Performance of the analytical method following FORES(h)t 

The performance of the method was estimated by using a spiking procedure (Table 

6.6). Recoveries were satisfactory with values from 63.0 % to 114.0 %. Only 

naphthalene was found at a low recovery (19.8 ± 50.4) because it was lost during 

evaporation due of its high volatility. Therefore, the analytical method was showing 

good performance as recoveries were accurate (between 70 and 130 %) and relative 

standard deviation were precise (< 30%), between 8.7 % and 17.1 % conform to the 
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USEPA criteria for the quality control and validation of analytical methods 

(Shoemaker, 2002). 

Table 6.6: Recoveries and relative standard deviation of a spiked soil FORES(h)t 
Saponification-SPE (polymeric-silica)-GC-MS 

 

Spiking procedure: FORES(h)t-Saponification-SPE-GC-MS 

 

Recoveries considering final 

concentration: 20 mg/kg  

Relative Standard 

Deviation 

 %REC (n=5) %RSD (n=5) 
NAP 19.8 50.4 
ACY 63.0 15.7 
ACE 72.1 13.6 
FLU 73.1 8.7 
PHE 79.2 9.3 
ANT 86.7 13.3 

FLUH 94.6 11.9 
PYR 92.1 10.7 
BaA 99.1 13.9 
CHY 109.9 15.1 
BbF 114.0 13.4 
BkF 107.0 15.5 
BaP 97.2 13.0 
IDP 111.6 14.3 
DBA 95.5 16.1 
BgP 97.6 17.1 

 

6.3.5 Evaluation of PAHs bioaccessible fractions using FORES(h)t 

6.3.5.1 Comparion of bioaccessible fractions with residual digests and total content 

Using the FORES(h)t method, the bioaccessible fractions of PAHs inside the 

gastrointestinal digests, containing food, water and biological juices, were significantly 

higher. Concerning the 6 Tar works soils samples (1, 2, 3, 4, 5, 6) the maximum 

bioaccessible fractions were ranging from 9.3 % to 83.9 % (Table 6.7 (A)) and the 

maximum residual fraction was ranging from 43.0 % to 122.9 %.  Concerning the four 

BGS sample soils, maximum bioaccessible fractions were ranging from 24.9 % to 

103.3 % and maximum residual fractions were ranging from 41.2 % to 63.1 % (Table 

6.7 (B)). 
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Table 6.7: Comparison of stage related bioaccessibility and residual fraction of polycyclic aromatic hydrocarbons in the St Anthony’s Tar works (A) and 
BGS soils (B) 

(A) 

 
St Anthony’s Tar works soils 

 
Total (PFE) (mg/kg) n =6 Gastric + Intestinal digest (FORES(h)t) (mg/kg)  n = 6 Residual digest (PFE) (mg/kg) n = 6 

 

Minimum  

± SD   
Median Maximum 

± SD   
Minimum 

± SD   
Median Maximum 

± SD   
%BAF* Minimum 

± SD   
Median Maximum 

(%residual+) 

± SD   
NAP 2.5±0.1 4.0 24.0±3.6 ND 3.3 4.1±1.1 9.3 ND* 4.7 18.6±0.8 (77.39) 

ACY 1.5±0 3.1 5.6±0.1 ND 3.1 4.3±3.7 45.9 ND 2.3 4.3±0.3 (77.02) 

ACE 2.2±1.1 3.7 7.9±0.7 ND 2.2 2.7±0.7 59.4 ND 3.0 7.7±9.3 (122.87) 

FLU 3.3±0.0 5.9 14.5±1.0 3.1±0.7 3.7 5.1±0.5 65.0 ND 4.5 5.9±1.1 (96.24) 

PHE 5.9±0.2 36.0 54.0±4.5 7.4±1.9 12.7 36.6±2.2 83.9 ND 21.7 27.5±3.9 (67.63) 

ANT 3.9±0.1 15.2 24.6±1.2 2.8±0.7 4.2 6.2±1.4 72.1 ND 8.1 13.8±0.4 (56.13) 

FLUH 9.3±0.2 56.6 242.6±7.2 3.3±0.5 10.4 55.0±6.6 35.0 3.7±0.2 35.8 104.4±2.0 (43.04) 

PYR 8.0±0.1 42.6 234.1±7.4 3.2±0.7 8.1 61.1±8.8 39.9 3.1±0.1 26.8 101.7±1.5 (43.46) 

BaA 5.7±0.1 31.6 102.6±6.9 2.3±0.3 7.4 65.3±2.5 63.9 4.1±0.1 20.8 50.4±1.5 (49.11) 

CHY 5.9±0.1 24.1 94.8±3.2 2.2±0.1 8.0 61.3±5.6 68.7 3.5±0.1 16.2 46.1±1.5 (48.68) 

BbF 5.5±0.8 27.0 117.2±3.4 2.2±0.6 6.4 67.3±1.9 57.5 4.4±0.7 17.2 58.0±0.9 (49.51) 

BkF 5.1±0.6 16.8 107.7±8.5 2.3±0.2 5.7 72.5±3.1 67.5 3.5±0.1 13.8 51.5±2.0 (47.83) 

BaP 5.9±0.5 32.9 141.8±12.8 1.7±0.4 6.8 69.6±8.5 49.6 3.6±0.0 20.8 80.8±2.1 (56.99) 

IDP 5.2±0.5 21.1 98.0±8.9 2.1±0.3 5.4 73.3±5.3 75.4 3.0±0.4 14.6 48.8±3.2 (49.81) 

DBA 4.0±0.4 9.1 26.4±2.0 1.8±0.2 3.8 6.4±1.6 76.3 1.4±0.1 7.9 16.0±0.6 (60.60) 

BgP 4.2±0.1 16.9 89.0±6.7 1.6±0.4 4.3 53.1±1.2 60.0 2.6±0.1 10.5 46.0±1.9 (51.75) 

         *ND= non detected 
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Table 6.7 (continued): Comparison of stage related bioaccessibility and residual fraction of polycyclic aromatic hydrocarbons in the St Anthony’s Tar 
works (A) and BGS soils (B) 

 

(B) 

 
BGS sample soils 

 
Total (PFE) (mg/kg) n =4 Gastric + Intestinal digest (FORES(h)t) (mg/kg)  n = 4 Residual digest (PFE) (mg/kg) n = 4 

 

Minimum  

 ± SD  
Median  Maximum  

± SD   
Minimum 

± SD  
Median Maximum 

± SD   
%BAF* Minimum 

± SD   
Median Maximum  (%residual*)  

± SD 

NAP 2.5±0.8 15.4 21.2±2.0 ND 1.6 5.4±3.3 ND ND* 4.4 4.8±2.0 (41.2) 

ACY 3.1±0.2 7.7 17.7±0.8 ND 2.5 6.0±2.1 61.8 2.0±0.2 4.0 7.7±0.5 (43.6) 

ACE 2.3±0.0 4.1 4.4±0.5 ND 2.4 3.2±0.3 59.5 ND 1.6 2.7±0.2 (63.1) 

FLU 3.9±0.1 6.6 7.9±0.6 ND 4.4 6.2±0.6 69.9 ND 3.0 4.5±0.2 (57.2) 

PHE 22.0±1.7 25.4 27.3±3.7 8.2±0.8 13.0 22.4±3.7 103.3 2.6±0.4 7.4 13.6±0.5 (49.8) 

ANT 10.4±1.0 11.4 12.1±1.1 2.4±0.2 3.0 4.2±0.4 41.0 1.8±0.4 4.9 6.4±0.4 (52.8) 

FLUH 47.4±5.2 58.5 105.0±7.2 11.2±1.0 11.9 19.5±6.2 25.0 13.3±1.2 25. 38.6±1.5 (36.7) 

PYR 46.8±4.8 58.8 82.4±5.8 10.4±0.6 13.0 15.7±4.1 26.0 10.1±1.2 25.0 29.5±1.0 (35.8) 

BaA 28.0±0.6 31.5 53.1±3.8 6.9±0.7 7.4 11.8±3.8 27.2 8.8±0.8 15.1 23.5±1.0 (44.2) 

CHY 24.9±1.2 31.9 53.3±3.3 7.4±0.9 8.8 11.0±3.1 36.6 8.2±0.5 13.5 21.0±1.2 (39.3) 

BbF 32.3±5.0 48.2 51.4±2.2 8.1±0.3 12.4 13.4±2.0 26.5 11.0±1.2 18.9 29.1±2.2 (56.6) 

BkF 25.7±2.9 28.0 41.5±5.5 5.9±0.4 8.8 9.8±2.7 33.7 7.8±1.3 14.6 22.6±3.5 (54.3) 

BaP 38.8±5.1 59.5 62.1±5.2 6.6±0.1 12.1 15.0±2.7 24.9 8.5±1.2 25.9 27.0±1.8 (43.5) 

IDP 32.4±0.5 41.0 48.6±2.2 8.5±2.3 9.4 11.2±2.7 26.3 9.2±1.1 18.6 27.0±1.9 (55.6) 

DBA 8.8±0.6 9.8 10.8±0.9 1.6±1.4 2.2 2.4±0.2 26.3 2.7±0.2 5.8 6.4±0.4 (63.0) 

BgP 33.8±1.1 35.6 49.8±2.3 6.5±0.7 8.7 9.8±2.3 29.0 9.0±1.4 13.7 22.7±1.1 (45.5) 

 *ND= non detected 
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Highest bioaccessible fractions were very often observed for phenanthrene in any 

type of soil. Bioaccessible fraction for phenanthrene were respectively for soils 

samples 1, 2, 3, 4, 5, 6 (Tar works soils) and 1, 2, 3, 4 (BGS soils): 64.0 %, 83.9 %, 

21.9 %, >100 %, 31.0 %, 25.1 %, and 67.2 %, 103.3 %, 30.3 %, 36.2 % (Table 6.8). 

Unexpected high bioaccessibility for phenanthrene, compared with other PAHs, was 

also observed in the literature (Gron et al., 2003). 

Table 6.8: In vitro gastrointestinal extraction (FORES(h)t method): application to soil 

samples from St Anthony’s Tar works and from BGS. 

Phenanthrene 

Samples 
(sites) 

Total (PFE) Gastric 
+Intestinal 

digest 
(FORES(h)t) 

Residual 
digest (PFE) 

%BAF 

 
Mean (mg/kg) 

± SD (n=3) 
Mean (mg/kg) ± 

SD (n=3) 
Mean (mg/kg) ± 

SD (n=3) 
 

TW1 11.8 ±5.9 7.4 ±1.9 6.3 ±0.3 64.0 

TW2 43.6 ±2.2 36.6 ±2.2 23.7 ±0.3 83.9 

TW3 31.3 ±3.2 9.6 ±0.3 25.4 ±2.6 21.9 

TW4 5.9 ±0.2 > Total ND*        >100% 

TW5 40.7 ±8.8 11.9 ±2.1 27.5 ±3.9 31.0 

TW6 54.0 ±4.5 13.5 ±2.2 19.7 ±4.5 25.1 

BGS1 24.6 ±2.6 16.6 ±4.0 2.6 ±0.4 67.2 

BGS2 22.0 ±1.7 22.4 ±3.7 3.5 ±0.4 103.3 

BGS3 27.3 ±3.7 8.2 ±0.8 13.6 ±0.5 30.3 

BGS4 26.2 ±2.4 9.4 ±0.7 11.4 ±0.5 36.2 

*ND= non defined 

The median of the bioaccessible fraction for all the PAH from the Tar work soil 

samples were respectively for the samples 1, 2, 3, 4, 5, 6: 52.43 %, 49.64 %, 21.48 

%, 40.30 %, 15.62 %, 40.85 % (Table 6.9) and for the BGS soil samples the median 

bioaccessible fractions were respectively for the samples 1, 2, 3, 4: 26.15 %, 21.74 %, 

26.00% and 22.62 % (Table 6.10). The type of soil seems to influence the 

bioaccessibility as the soils from a Gas Works (BGS) were giving median 

bioaccessible fractions between 21.74 and 26.15 % and soils from the Tar works were 

showing median bioaccessible fractions between 15.62 % and 52.43 % with values in 

a slightly higher range in this type of soils. The parameters that could influence these 

variations can be: the age of the contamination which could more or less bound the 
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compounds on the soil particles, named as weathering or sequestration (Tao et al., 

2010), the type, the structure of the soil and finally the organic matter. As described 

before in this study, the effect of organic matter on PAHs distributions was not clear. 

By comparing again the loss of ignition with total PAHs content, median 

bioaccessibilities of PAHs and gastrointestinal digest fractions, no correlations were 

appearing. The trends were even contradictory with the literature, showing sometimes 

higher bioaccessibility for high amount of organic matter (18.42 % LOI giving 21.48% 

median % BAF) and lower bioaccessibility for low organic matter content (9.39 % LOI 

giving 15.62 % median %BAF) (Tables 6.9 and 6.10). 

Table 6.9: Comparison of the loss of ignition with the total PAH content, gastrointestinal 
digest fractions and median of bioaccessible fraction for the 16 PAHs in all the soil 

samples from the Tar works. 

Soil sample site % LOI 
Total PAH 

content (mg/kg) 

Gastrointestinal 
digest fraction 

(mg/kg) 

Median BAF 
(%) for 16 

PAHs 

1=TW1 11.14 123 82.67 52.43 

2 11.04 9.0 NA* NA 

3=TW2 18.42 1404 634.19 49.64 

4=TW3 17.38 366 100.66 21.48 

5=TW4 15.90 66.5 53.18 40.30 

6 15.18 46.4 NA NA 

7 22.38 38.9 NA NA 

8 19.91 40.5 NA NA 

9=TW5 9.38 375 88.53 15.62 

10=TW6 17.25 289 76.03 40.85 

11 13.54 54.1 NA NA 

12 15.40 43.6 NA NA 

13 20.08 41.6 NA NA 

14 19.92 40.8 NA NA 

15 22.27 43.7 NA NA 

16 21.42 39.7 NA NA 

*NA= Non Available 

The same absence of correlation was observed when doing the identical comparison 

with the total organic carbon content for the BGS sample soils (Table 6.10). The 

median bioaccessible fraction and the gastrointestinal digests were showing values in 

a very narrow range, from 103.8 mg/kg to 141.04 mg/kg for the gastrointestinal 

digests, and from 21.74 to 26.15 % for the bioaccessible fractions, with no 

correspondences regarding the variations in the total organic carbon content. 
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Table 6.10: Comparison of the total organic carbon content with the total PAH content, 
gastrointestinal digest fractions and median of bioaccessible fraction for the 16 PAHs in 
the BGS soil samples 

BGS soils TOC* 
Total PAHs content 

(mg/kg) 
Gastrointestinal 
digest (mg/kg) 

Median BAF 
(%) 

1 6.94 166.03 103.08 26.15 

2 7.76 264.07 141.04 21.74 

3 12.91 224.76 110.3 22.62 

4 3.85 214.54 122.86 26.00 
*Values taken from (Cave et al., 2010): The analysis of the BGS soils was realized as follow (Cave et al., 2010): 0.2 g 

of soil sample was extracted with 100 ml of 1:1 v/v acetonitrile / tetrahydrofuran at 50 C in an ultrasonic bath for 45 
mins. Extracts were filtered and 5 µl aliquots injected into an HPLC system with fluorescence detection. HPLC analysis 
was realized using a Hypersil PAH guard column (10 mm x 4 mm id) coupled to a Hypersil PAH analytical column (100 
mm x 4.6 mm id) under isocratic conditions of 90% acetonitrile and 10% water at a flow rate of 1 ml/min.  
Fluorescence detection was achieved using an excitation wavelength of 296 nm and emission at 408 nm changing at 
23.5 mins to excitation at 302 nm and emission at 506 nm for detection of indeno(1,2,3-cd)pyrene. BGS Samples 1, 2, 
3 and 4 correspond to sample numbers 4, 7, 8 and 9, respectively (Cave et al., 2010). 

 

The bioaccessible fractions resulting from the FORES(h)t method were dramatically 

higher than the bioaccessible fraction from the Unified BARGE Method because of the 

addition of food constituents and also because of the changes in the composition of 

the gastrointestinal fluids. Food is known to contain a certain proportion of fat, 

especially vegetable oil, which can more easily attract PAHs that are known for their 

lipophilic properties. Few studies on a fed version of a simulated in vitro 

gastrointestinal model demonstrated the influence of food with the increase of PAHs 

bioaccessibilities (Hack et al., 1996; Versantvoort et al., 2004; Cave et al., 2010). 

An another reason for that increasing trend is related to the amount increase of 

reagents such as bile salts and mucine (Hack et al., 1996). Indeed, bile salts can 

decrease the surface tension due to its surfactant properties, and therefore surface 

tension can become important into the mobilization of contaminants from soils  

(Oomen et al., 2003; Oomen et al., 2004). Moreover, bile salts can produce a 

favourable apolar environment inside the bile salt micelles which can retain easily 

hydrophobic contaminants such as PAHs (Oomen et al., 2000) (cf Chapter 2). 

However, these results need to be taken with caution, as the quality control values 

(CRM) were not within the range required (cf chapter 6.3.1), using 0.3 g. As explained 

before, the total values may have been underestimated, consequently the 

bioaccessible fraction values could have been overestimated. This could explain the 
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particularly high values of PAH bioaccessible fraction. But there is confidence on the 

fact that bioaccessibility is still elevated in this study, as our values were close enough 

to the quality control material, and the residual fractions were significantly low for 

almost all PAHs, compared to the residual fraction using the Unified Barge Method 

(Table 6.7 A and B) 

6.3.5.2 Boxplot and PCA interpretation 

The bioaccessible fractions of PAHs in this study were found in the same range as 

other studies considering the fed state of a physiologically-based extraction test, and 

showed that when adding food and increasing biological constituents amount, 

bioaccessible fractions can reach values higher than those observed considering a 

fasted state, which is really important to consider in human health risk assessment 

(Hack et al., 1996; Versantvoort et al., 2004; Cave et al., 2010). By realizing the 

boxplots of the individual PAHs bioaccessible fraction, and individual PAHs content for 

the Tar works and the BGS soils it was possible to identify any correlations between 

those values. The boxplot of the individual PAHs bioaccessible fraction from the Tar 

Works soil samples (Figure 6.8) showed again phenanthrene with the largest upper 

quartile (up to 75 % bioaccessibility). Then, the following maximum upper quartiles of 

bioaccessible fractions appeared for acenaphthene, fluorene, benzo(a)anthracene, 

chrysene, indeno (1,2,3-cd) pyrene and dibenzo(a,h) anthracene between 60 and 

80%. The lowest maximum upper quartile and means were observed for fluoranthene 

and pyrene between 30 and 40 %. Anthracene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, benzo(a)pyrene and benzo(g,h,i)perylene were showing upper 

quartiles between 42 and 55 %. By comparing with the individual PAH concentration 

(Figure 6.8 and 6.9), it appeared that the highest bioaccessible fraction give in some 

cases the lowest total PAH content. The two highest upper quartile of individual PAH 

content were fluoranthene and pyrene and they were showing the two lowest upper 

quartile of bioaccessible fraction, as described before. The rest of the individual PAH 

content containing high molecular weight PAHs from benzo(a)anthracene to 
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indeno(1,2,3-cd) pyrene and benzo(g,h,i) perylene, were showing moderate to high 

upper quartiles of  total content, and  also moderate upper quartiles of bioaccessible 

fractions.  
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Figure 6.8: Boxplot of individual PAH bioaccessible fractions (%) in Tar work soil 
samples (6) with median line (50

th
 percentile), mean cross, upper and lower quartile (25

th
 

and 75
th

 percentile) and whiskers. 
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Figure 6.9:  Box plot of individual PAH concentrations in Tar works soil samples (6) with 
median line (50

th
 percentile), mean cross, upper and lower quartile (25

th
 and 75

th
 

percentile) and whiskers. 
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By using the same boxplots comparison with the BGS samples soils, a similar trend 

appeared more clearly. Acenaphthylene, acenaphthene, fluorene, anthracene and 

phenanthrene, showed the highest upper quartile of bioaccessible fractions (Figure 

6.10) and the lowest upper quartiles of individual PAH content (Figure 6.11). One 

exception appeared for dibenzo(a,h)anthrancene which showed low upper quartile of 

individual content, and also low upper quartile for the bioaccessible fraction. 

Fluoranthene, pyrene and benzo(a)pyrene had the lowest upper quartile of 

bioaccessible fraction and the highest upper quartile of individual PAH content, as in 

the case of the Tar Works soils.  The rest of the PAHs upper quartile  bioaccessible 

fractions (benzo(a)anthracene, chrysene, benzo(b)fluoranthene, 

benzo(k)fluoranthene, indeno(1,2,3-cd)pyrene and benzo(g,h,i)perylene)  displayed 

moderate upper quartiles, and moderate upper quartiles of the individual PAH 

concentration.  
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Figure 6.10:  Box plot of individual PAH BAF (%) in BGS soil samples with median line 
(50

th
 percentile), mean cross, upper and lower quartile (25

th
 and 75

th
 percentile) and 

whiskers. 
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Figure 6.11: Box plot of individual PAH content in BGS soil samples with median line 
(50

th
 percentile), mean cross, upper and lower quartile (25

th
 and 75

th
 percentile) and 

whiskers. 

 

A principal component analysis with covariance (Figure 6.12 and 6.13), for the 

individual PAH bioaccessible fraction and concentration of 14 PAHs, illustrated also 

the trend observed by comparing boxplots of bioaccessible fractions and individual 

PAH concentrations. With PCA, it appeared that three groups were formed either with 

the bioaccessible fractions or with the individual PAHs contents. Concerning, the 

bioaccessible fraction (Figure 6.12), there was one group with only phenanthrene (5), 

a second group with anthracene, fluoranthene and pyrene (6,7 and 8) and a third 

group was containing the rest of the high molecular weight PAHs.  
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*cf Table 6.1 for numbers corresponding to PAHs 

Figure 6.12: Principal Component Analysis of each individual PAH (except the four 
lower molecular weights) bioaccessible fraction (%) from all soils samples (Tar Works 

and BGS) 
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*cf Table 6.1 for numbers corresponding to PAHs 

Figure 6.13: Principal Component Analysis of each individual PAH content (except the 
four lower molecular weights) from all soils samples (Tar Works and BGS) 

 

The PCA of the individual PAH content (Figure 6.13) unveiled also three groups: a 

first group only containing phenanthrene (5), a second group with fluoranthene and 

pyrene (6 and 7) and a last group composed by all the higher molecular weights PAH 

with anthracene. 
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Therefore, it is clear that there was a correlation between concentration in the soil 

matrix and the resulting bioaccessible fraction. As described previously, it seemed 

that a higher concentration in the soil will result in a lower bioaccessibility and 

conversely. This is contradictory with some studies showing increase of 

bioavailabilities with the increase of contaminant levels in soils (Pu et al., 2004). 

Meanwhile, some other studies were not showing that bioaccessible fractions were 

independant of dose (Shu et al., 1988). A possible explanation to that phenomenon 

implies the liquid-to-contaminant ratio parameter. As the ratio between liquid and the 

level of PAH will increase, it will result in higher bioaccessibility. This has been 

observed previously in the literature where higher bioaccessible fractions were 

observed for higher liquid-to-soil ratios (Van de Wiele et al., 2004). Even with very low 

levels of contaminant in a soil, the bioaccessible fraction was still substantial (Van de 

Wiele et al., 2004).  This was linked to the dissolved organic matter present in the 

soils which can more or less attract contaminants such as PAHs (Van de Wiele et al., 

2004). Indeed, in several studies, organic matter has demonstrated an affinity or 

attraction of PAHs with soils (Richnow et al., 1998). However, in this entire project, no 

correlations were found between organic matter and PAHs distributions as 

demonstrated previously. Other parameters that could influence the release of PAHs 

from the soil matrix are the solubility, the partition coefficient, the ring number and 

molecular weights of individual PAH (Mackay, 2001). For example, phenanthrene is 

very soluble in water, has a low molecular weight and ring number, compared to other 

high molecular weight PAHs, which would explain why its bioaccessible fraction is 

particularly high in many cases. This was demonstrated in a study where in vitro 

bioaccessibility of phenanthrene was close to two times the bioaccessible fraction of 

benzo(a)pyrene, in the digestive tract of cows (Tao et al., 2010). This phenomenon 

was explained by the fact that the low molecular weight, lipophillicity (partition 

coefficient) and higher solubility of phenanthrene was increasing its bioaccessibility 

(Tao et al., 2010). Another particular behaviour was the very high concentration of 

fluoranthene and pyrene as individual PAH in soils samples compared with the very 
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low contribution of their bioaccessible fraction. They are slightly less soluble in water 

than phenanthrene, and their molecular weigth and ring number is higher. This could 

explain why they are giving low bioaccessibilities, as they will tend to remain within the 

soil, as not very soluble in water and could be more strongly sorbed to the soil due to 

their hydrophobicity (Tao et al., 2010). Indeed, these observations can be related to 

other PAHs properties such as the ring number and the molecular weight that could 

be of significant importance for the sequestration of them within soils. As described in 

previous chapters, predominance of pyrogenic PAHs is generally the signature of 

PAHs from urban and industrial areas. This is the case for the BGS soils and the soils 

from the Tar Works where pyrogenic PAHs are in higher concentration from 

fluoranthene to benzo(g,h,i)perylene (Figure 6.9 and 6.11). When observing the 

bioaccessible fractions it appears that the petrogenic PAHs are now in higher 

concentration, from naphthalene to anthracene (Figure 6.8 and 6.10). The number of 

rings in the structure could influence  the sequestration of PAHs within the soil 

particles, as demonstrated in a recent study where the mobilities of high molecular 

weight PAHs were lower than those of low molecular weight (Tao et al., 2010). This 

was due to higher affinities between higher molecular weight with the organic matter, 

and to the chemical structure of the soil that tend to retain hydrophobic compounds 

such as PAHs (Tao et al., 2010). Indeed, higher molecular weights PAHs are more 

hydrophobic so they will be more sequestrated on the soil particles (Tao et al., 2010). 

Few studies showed that bioaccessibility of PAHs were decreasing as the number of 

PAH ring was increasing (Tang et al., 2006; Tao et al., 2010). 

According to those comparisons, it seems complex to establish a trend on the 

individual PAHs bioaccessibility variations, as numerous parameters are in 

competitions to influence PAHs mobilization in the digestive tract. However, as a 

general observation, the food components seem to increase the bioaccessibility of 

PAHs due to the lipophilic character of the PAHs, even if some variations in solubility, 
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partition coefficient and ring number exist between them. Further studies would be 

needed to evaluate influence of each of this parameter in depth. 

6.3.5.3 Interlaboratory comparison  

An interlaboratory evaluation was also realized for some of the PAHs compounds 

from the BGS soils. Bioaccessible fractions and total PAH content were compared for 

benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, 

indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene. There were two reasons to 

realize an interlaboratory comparison of the FORES(h)t method. On the one hand, 

this was done to give an indication on the performance of our laboratory and operator, 

using this specific method, assuring at the same time the trueness of our results. As 

there was no certified reference material available for PAHs bioaccessibilities for a low 

amount of soil (certified values based only on large quantities of CRM) this 

comparison will control the quality of the results obtained in Northumbria university 

(laboratory 1) by using the same soils than with the British Geological Survey 

laboratory (laboratory 2). On the other hand, this interlaboratory comparison was 

essential in the process of making the FORES(h)t method applicable in any 

commercial laboratories, by proving that the method is robust. 

The individual PAH content showed similar inter-quartile range values except for 

benzo(b)fluoranthene where the inter-quartile range values were slightly higher in the 

laboratory 2 (Figure 6.14). Concerning the bioaccessible fraction, the differences were 

more significant, however values remained in the same inter-quartile ranges, as 

observed on the boxplots (Figure 6.15).  
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*Lab 2 values obtained using HPLC-FL (Cave et al., 2010) 

Figure 6.14:  Boxplot of individual PAH concentration in BGS soils (Lab 2) and present 
laboratory  with median line (50

th
 percentile), mean cross, upper and lower quartile (25

th
 

and 75
th

 percentile) and whiskers. 
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*Lab 2 values obtained using HPLC-FL (Cave et al., 2010)  

Figure 6.15:  Box plot of individual PAH bioaccessible fraction in BGS soils (Lab 2) and 
present laboratory with median line (50

th
 percentile), mean cross, upper and lower 

quartile (25
th

 and 75
th

 percentile) and whiskers. 
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Comparison of Benzo(a)anthracene, benzo(b)fluoranthene and indeno(1,2,3-

cd)pyrene inter-quartile range of values for laboratory 1 were slightly below the values 

for the laboratory 2. Benzo(k)fluoranthene, benzo(a)pyrene and 

dibenzo(a,h)anthracene inter-quartile range of values were in the same range for 

laboratory 1 and 2. 

 The slightly more significant variation in the bioaccessible fraction compared with 

total content can be explained by the type of method used. Indeed, to estimate the 

total PAH content an in-situ PFE-GC-MS method was used. This process did not 

involve as many steps as the FORES(h)t which could influence the variation of the 

results between laboratory 1 and 2. The FORES(h)t method involved firstly a 

physiologically-based extraction test which implied various steps such as shaking, 

heating, centrifugation and pH measurements. Then, saponification was realized on 

the final solution with isolation and purification of PAHs by SPE. All these 

manipulations can have an effect on the uncertainty of the results, therefore bringing a 

potential difference in results between the two laboratories. As described previously in 

the literature the methods of filtration and centrifugation following the simulated 

digestion model can introduce variability between the results from different 

laboratories (Cave et al., 2006). However, as a preliminary study comparing the 

FORES(h)t method in two different laboratories, it appeared that the values were 

reasonably close. When observing the Figure 6.14, it showed that all inter-quartile 

range of PAHs bioaccessible fractions values were approximately between 18 and 41 

%, and dibenzo(a)anthracene inter-quartile range of bioaccessible fraction was 

approximately between 12 and 26 %. It means that the bioaccessible fractions in both 

laboratories showed some variations but within an acceptable range, demonstrating 

that the method is quite robust. Further interlaboratory experiments using FORES(h)t 

method between laboratories would be required to validate the method. 

The relative standard deviation for the recoveries of the residual fraction and the 

gastrointestinal digest, compared to the total PAH content, and bioaccessible fraction 
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(Table 6.7 (A) and (B)), were below the criteria of 30 % fixed by the USEPA  

(Shoemaker, 2002), so the method was repeatable in this laboratory. Moreover, the 

pH values were showing very good repeatability, within the required ranges, at the 

end of the process. Standard deviations were ranging from 0.01 to 0.02 (n=3) for the 

measurement at the gastric stage, they were varying from 0.02 to 0.10 (n=3) after 

adding bile and duodenal fluids, and finally they were situated between 0.01 and 0.05 

(n=3) after shaking during two hours at 37 ± 2 °C  the gastrointestinal fluids, soil and 

food constituents.  Therefore, this work is a good start towards the elaboration of a 

robust fed in vitro gastrointestinal test that commercial laboratories could use routinely 

as a tool to measure human health risk from PAHs.  

At the moment, comparison of in vitro bioaccessibilities procedures have 

demonstrated significant variation within and between laboratories (Environment 

Agency, 2005) explained partly by the variation in pre-treatment procedures applied 

before testing the bioaccessibility (Gron et al., 2003). Only bioaccessibility testing of 

metals in soils (Wragg et al., 2009) and pollutants in food, toys and soils (Versantvoort 

et al., 2004) had shown satisfactory reproducibility. 

6.3.5.4 Human health risk assessment 

Risk assessment is the main issue when dealing with the transmission of pollutants to 

human via ingestion of environmental matrices. As described previously, the risk 

assessment is currently based either on the total concentration of pollutant in a matrix 

or it can be established by calculation of potential PAHs intake. Indeed, ingestion of 

100 mg/day of soil has been estimated to be the average involuntary soil amount 

ingested per day for a young child aged between 1 and 6 years old (U.S 

Environmental Protection Agency, 2008). By using these values, we can calculate the 

amount of PAH (µg) that would be potentially ingested per day (intake), via soil, 

according to the individual PAH content (mg/kg) found in soil. A comparison with 

ingestion of 1 g and 50 g/day of soil was made, considering the case of soil-pica and 

geophagy behaviour (U.S Environmental Protection Agency, 2008). These calculated 
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values were compared with the mean daily intake of PAHs (µg) in food per day 

(Nathanial et al., 2009). However, by using a physiologically-based extraction test, we 

will have access to the bioaccessible fraction and concentration, which can give more 

detailed informations about the human health risk, as it informs on the mobilization of 

PAHs in the gastrointestinal fluids and therefore on the potential maximum 

bioavailabilities. Indeed, by calculating directly the bioaccessible concentration in 

g/day, based on the weight of a small child (10 kg), the maximum amount of PAHs 

potentially bioavailable through the systemic circulation will be known. Those 

calculated values were compared with the mean daily intake of PAHs through food 

(µg/day), allowing a different evaluation of the potential risks of ingestion of PAHs via 

soils (Table 6.11 and 6.12). 

Table 6.11: Amount (µg) of PAH ingested from the Tar works soils sample. Calculation 
are based on the maximum content of PAH (mg/kg) with assumptions of daily soil 
ingestion rate of 0.1 g, 1 g and 50 g (U.S Environmental Protection Agency, 2008) 

 St Anthony’s Tar works soils 

PAHs 
50 g/day 
ingestion 

rate* 

1g/day 
ingestion 

rate* 

0.1g/day 
ingestion 

rate* 

Bioaccessible 
concentration+ 

(g/day  
ingestion rate) 

MDI 
(µg/day)^ 

Naphthalene 1201 24 2.40 0.04 7 

Acenaphthylene 281 5.6 0.56 0.04 0.14 

Acenaphthene 393 7.9 0.79 0.03 0.98 

Fluorene 727 14 1.45 0.05 0.59 

Phenanthrene 2700 54 5.40 0.37 1.54 

Anthracene 1231 25 2.46 0.06 0.08 

Fluoranthene 12132 243 24.3 0.55 0.35 

Pyrene 11703 234 23.4 0.61 0.35 

Benzo(a)anthracene 5131 103 10.3 0.65 0.06 

Chrysene 4739 95 9.48 0.61 0.11 

Benzo(b)fluoranthene 5860 117 11.7 0.67 0.11 

Benzo(k)fluoranthene 5386 108 10.8 0.72 0.09 

Benzo(a)pyrene 7090 142 14.2 0.70 0.11 

Indeno(1,2,3-cd)pyrene 4898 98 9.80 0.73 0.10 

Dibenzo(a,h)anthracene 1318 26 2.64 0.06 0.04 

Benzo(g,h,i)perylene 4449 89 8.90 0.53 0.06 
*based on the maximum total concentration 

+based on the maximum bioaccessible concentration using the gastric+intestinal digest, the calculation is 
based on a child weighing 10 kg. 

^
 Mean daily intake threshold for PAHs in food; Figures in bold represent maximum individual PAH levels 

that exceed the stated oral MDI  
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The maximum values for all individual PAH from the Tar Works, considering the 

ingestion of 100 mg /day of soil (U.S Environmental Protection Agency, 2008) were 

ranging from 0.56 µg to 24.30 µg (Table 6.10). Almost all values, except naphthalene 

and acenaphthene, were above the mean daily intakes of PAHs via food, therefore 

there would be an human health risk if those soils are ingested. Indeed, the MDI 

represent a limit where there will be a risk if an individual PAH concentration is above 

this value, and calculation of this threshold are based on the bodyweight, as for the 

bioaccessible concentration (Defra and Environmental Agency, 2002). The amount of 

PAH involuntary ingested through 100 mg/day of soil was quite high as values can 

reach 24.3 µg whereas the MDI only went up to  a maximum of  7 µg (naphthalene), 

otherwise the rest of the values were situated below 1.54 µg. Therefore, when 

observing the Table 6.11 it appears that the risk is significant, even in the case of an 

involuntary ingestion of 100 mg/day of soil. The amount of PAH ingested through 

ingestion of 1 g or 50 g/day of soil, in the case of geophagy or soil-pica behaviour, 

was dramatically increased. It was obvious that, as the risk was already present for an 

ingestion of 100 mg/day of soil, in the case of geophagy or soil-pica behaviour the 

ingestion of soil will represent a serious hazard for the health of humans involved. 

Indeed, the amount of PAHs ingested was ranging from 5.6 to 243 µg for an ingestion 

of 1 g/day of soil, and from 281 to 12132 µg for an ingestion of 50 g/day of soil, which 

was extremely high compared to MDI values.  

Considering the BGS soils, the overall values for the three different ingestion cases, 

were less important than in the case of the Tar works soils (Table 6.12). The 

maximum values of PAH ingested through soils, varied from 0.44 to 10.5 µg for 100 

mg/day, 4.4 to 105 µg for 1 g/day, and 220 to 5252 µg for 50 g/day. The values still 

represent a risk for the three different amounts of soil ingested. Considering the 

involuntary ingestion of 100 mg/day of soil, again naphthalene and acenaphthene 

were below their respective MDI, and the rest of the individual PAH showed values 

above the MDI.  
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Table 6.12: Amount (µg) of PAH ingested from the BGS soil sample. Calculations are 
based on the maximum content of PAH (mg/kg) with assumptions of daily soil ingestion 

rate of 0.1 g, 1 g and 50 g (U.S Environmental Protection Agency, 2008) 

 BGS soils 

PAHs 
50g/day 
ingestion 

rate* 

1g/day 
ingestion 

rate* 

0.1g/day 
ingestion 

rate* 

Bioaccessible 
concentration+ 

(g/day  
ingestion rate) 

MDI 
(µg/day)^ 

Naphthalene 1060 21 2.12 0.05 7 

Acenaphthylene 886 18 1.77 0.06 0.14 

Acenaphthene 220 4.4 0.44 0.03 0.98 

Fluorene 393 7.9 0.79 0.06 0.59 

Phenanthrene 1367 27 2.73 0.22 1.54 

Anthracene 607 12 1.21 0.04 0.08 

Fluoranthene 5252 105 10.5 0.19 0.35 

Pyrene 4122 82 8.24 0.16 0.35 

Benzo(a)anthracene 2656 53 5.31 0.12 0.06 

Chrysene 2664 53 5.33 0.11 0.11 

Benzo(b)fluoranthene 2572 51 5.14 0.13 0.11 

Benzo(k)fluoranthene 2076 41 4.15 0.10 0.09 

Benzo(a)pyrene 3106 62 6.21 0.15 0.11 

Indeno(1,2,3-cd)pyrene 2428 49 4.86 0.11 0.10 

Dibenzo(a,h)anthracene 538 11 1.08 0.02 0.04 

Benzo(g,h,i)perylene 2490 50 4.98 0.10 0.06 
*based on the maximum total concentration 

+based on the maximum bioaccessible concentration using the gastric+intestinal digest, the calculation is 
based on a child weighing 10 kg. 

^
 Mean daily intake threshold for PAHs in food; Figures in bold represent maximum individual PAH levels 

that exceed the stated oral MDI 

 

A more realistic approach to evaluate and refine the risk from pollutant in 

environmental matrices is to use the bioaccessible fraction. As we have obtained the 

bioaccessible fraction and concentration, using the FORES(h)t method, it is now 

possible to estimate the risk directly related to the potential mobilization of PAHs in 

the gut. The calculation of the bioaccessible concentration was based on a child 

weighing 10 kg. When doing this calculation, based on the maximum bioaccessible 

concentration of PAHs from the Tar Works (Table 6.11), values were ranging from 

0.03 to 0.73 g/day. In this case, only bioaccessible concentration for fluoranthene, 

pyrene, chrysene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, 

Indeno(1,2,3-cd)pyrene, Dibenzo(a,h)anthracene, Benzo(g,h,i)perylene were above 

the MDIs, showing potential human health risk again for some of higher PAH 

molecular weigths (pyrogenic), but values were significantly lower than when 
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estimating the risk based on the ingestion of 100 mg/day of soil. Concerning the BGS 

soils the bioaccessible concentration were ranging from 0.02 to 0.22 g/day (Table 

6.12), and were above MDI in some of the pyrogenic PAHs, however values were 

very close to the threshold. Again, a difference appeared in the estimation of the risk 

between bioaccessible fractions and values based on the 100 mg/day ingestion rate. 

These discrepancies in the risk estimation show that a consensus is needed on how 

to evaluate uniformly the risk from pollutants in environmental matrices, and using the 

most realistic and accurate approach, based on these different approaches. 

6.4 Conclusion 

Implementation of the Unified BARGE Method and the FORES(h)t method in the 

present laboratory were successful as the methods have shown efficient performance 

with satisfactory accuracy and precision using spiking procedures. The bioaccessible 

fractions have shown also good precision with RSD < 30 % for all PAHs from different 

locations. The interlaboratory comparison of the FORES(h)t method demonstrated 

acceptable reproducibility of bioaccessible fractions, for a first study in the present 

laboratory. Indeed, this study is going in the direction of establishing robust simulated 

in vitro gastrointestinal models that could be used routinely to estimate human health 

risk, as it has started to be done on other matrices and contaminants (Versantvoort et 

al., 2004; Wragg et al., 2009). Moreover, the comparison of total PAH content 

between the two laboratories was showing reproducible values, which can be used to 

further validate the methods used. This could be used as a quality tool to replace 

certified reference materials (if not available), in bioaccessibility testing, in further 

studies. Indeed, the use of a CRM with a value at 0.3 g was showing an 

underestimation of the real concentration on the soils, leading to a potential 

overestimation of bioaccessibility values, which showed again the necessity of a way 

to realize the quality control on bioaccessibility studies.  
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As a general observation, the use of a fed state of an in vitro gastrointestinal test has 

shown a dramatic increase in the bioaccessibility of polycyclic aromatic hydrocarbons 

from soils, compared with a fasted state. Food and biological constituents such as 

mucine and bile salts therefore play an important role in the mobilization of PAHs 

inside the digestive tract, through complex mechanisms involving absorption and 

adsorption, hydrophobic attractions, and sequestration. Indeed, the chemical 

characteristics of PAHs and soils seem to influence PAHs mobilization inside the 

gastrointestinal tract. However, organic matter does not show influence on the 

mobilization of PAHs inside the gastrointestinal fluids. For instance, the solubility in 

water, the partition coefficient, the molecular weight, the number of rings, and the ratio 

between contaminant and volume of gastrointestinal fluids could be influent 

parameters, providing variations in bioaccessibility, for example between higher 

(pyrogenic) and lower molecular weights (petrogenic). These variations demonstrated 

that the bioaccessibility and the total PAH can give opposite distributions, with for 

instance highest bioaccessibility leading to lowest PAH total content. This is important 

to consider, as the evaluation of the risk will lead to different conclusions, as there are 

multiple ways to assess the risk in a contaminated environmental matrix. Indeed, 

when evaluating the risk on the site using the ingestion rate (100mg/day) based on 

total PAH concentration, and the bioaccessible concentration, both compared to MDI 

values of PAHs in food, it was giving different interpretations on the risk on the site. 

Bioaccessible fractions estimation seems to be more appropriate and realistic to 

define human health risk from pollutants in environmental matrices. However, a 

consensus needs to be established on the estimation of the risk using bioaccessibility 

testing. In this study, the risk is present for both types of soils, considering the 100 

mg/day ingestion rate (based on total PAHs content) with some exceptions, and in 

larger proportions for the Tar Works site. Using bioaccessible concentration the risk is 

considered lower, limited to pyrogenic PAHs for the Tar Works soils, and limited to 

some pyrogenic PAHs for Gas Works soils (BGS) with values very close to the MDI of 

PAHs in food.   
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Chapter 7: Determination of PAH in urban street dust: 

implications for human health 

7.1 Introduction 

Dust is a generic term used to describe very small, solid particles (< 500 µm) which 

are located in the environment after deposition from airborne material. Dust attracts 

attention due to its potential impact on human health and can be derived from a 

number of sources ranging from natural, geogenic, to biogenic and anthropogenic 

sources. Outdoor dusts are predominantly composed of soil-derived material, as well 

as particles released in to the atmosphere due to volcanic eruptions and 

anthropogenic activity, whilst indoor dust additionally reflect personal detritus (skin 

flakes) as well as emissions from household appliances. Both types of dust have 

different compositions and involve risks to humans through direct inhalation 

(principally the finest particle sizes e.g. <10 µm) and unintentional consumption due to 

hand-to-mouth contact as well as by consuming poorly washed fruits and vegetables 

(< 250 µm). The focus of this chapter is on outdoor dust from an urban environment 

with a historic legacy of mining and industrial activity. 

Outdoor dust particles can become easily airborne through wind dispersion, 

dispersion by road traffic as well as other activities in urban areas such as emissions 

from chimneys  (Rogge et al., 1993; Duran et al., 2009; Wang et al., 2009). Road side 

dust has been described as a complex mixture of deposited motor vehicle exhaust 

particles, vehicle tyre particles, spillages and leaks from vehicles including lubricating 

oils and fuel, road surface erosion material as well as a range of plant and animal 

debris and litter, including remnants of cigarette ash, all of which contain a complex 

range of potentially toxic elements and organic compounds including polycyclic 

aromatic hydrocarbons (Takada et al., 1991; Rogge et al., 1993; Pereira Netto et al., 

2006; Zhang et al., 2008; Dong et al., 2009; Mostafa et al., 2009). 

Polycyclic aromatic hydrocarbons can be classified in terms of their source as either 

pyrogenic or petrogenic, as described in chapter 5. The former is characterised as 
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being mainly derived from vehicle exhaust and combustion of fossil fuel, whereas 

petrogenic sources are usually derived from petroleum products and crude oil (Wang 

et al., 2009). In terms of PAH distribution, pyrogenic sources are identified as those 

containing higher molecular weight PAHs i.e. those with 4 to 6 ring structures, 

whereas petrogenic PAHs are identified as those containing lower molecular weights 

PAHs i.e. those with 3 to 4 ring structures. Vehicle exhausts have been reported to be 

a major source of pyrogenic PAHs in street dusts from city centres (Takada et al., 

1991; Dong et al., 2007; Hassanien et al., 2008; Duran et al., 2009; Mostafa et al., 

2009). However, a variety of other sources have also been purported to generate 

pyrogenic and petrogenic PAHs in road dust. Examples include tyre abrasion and 

tailpipe discharge (Glaser et al., 2005), coal combustion products (Liu et al., 2007; 

Zhang et al., 2008), cranckage oil (Pereira Netto et al., 2006; Zhang et al., 2008; 

Mostafa et al., 2009), oil combustion (Zhang et al., 2008; Dong et al., 2009), wood 

emission (Dong et al., 2009), industrial emissions and the incomplete combustion of 

open waste burning (Hassanien et al., 2008; Dong et al., 2009), asphalt and tyre 

rubber (Dong et al., 2009). Several studies have shown that the PAH distribution 

profile in urban road dust from both industrial and non-industrial localities shows a 

predominance of pyrogenic over petrogenic PAHs (Takada et al., 1991; Yang et al., 

1995; Liu et al., 2007; Zhang et al., 2008; Duran et al., 2009; Mostafa et al., 2009; 

Zhao et al., 2009), and the same trend is observed for other environmental matrices 

such as waters, soils and sediments  (Yunker et al., 2002; Brito et al., 2005; Wang et 

al., 2009; Lorenzi et al., 2010). In contrast, some studies found mixed sources of 

petrogenic and pyrogenic PAHs in street dust, partly due to an inherent mixed variety 

of sources from both urban and industrial sites (Hassanien et al., 2008; Zhang et al., 

2008). Typically, high concentrations of fluoranthene, pyrene and phenanthrene are 

markers of pyrogenic sources (Takada et al., 1991; Yang et al., 1995). Several studies 

have used ratios of selected PAHs to identify petrogenic sources as distinct from 

pyrogenic sources of PAHs in soils and road dusts (Blumer, 1976; Simoneit, 1985; 

Lipiatou et al., 1991; Benner et al., 1995; Budzinski et al., 1997; Yunker et al., 2002). 
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For instance, a phenanthrene / anthracene ratio of < 10 is reported to be indicative of 

PAHs of pyrogenic origin whereas a ratio > 15 is characteristic of PAHs of petrogenic 

origin (Liu et al., 2007).  

Traffic has clearly been demonstrated as a potential pyrogenic source of PAHs in road 

dust through vehicle exhausts (Pereira Netto et al., 2006). However, exhaust 

emissions may vary according to the type of road surface, traffic volume and vehicle 

speed (Mi et al., 2001; Dong et al., 2009). Studies have linked heavily trafficked road 

zones with high PAH concentration (Takada et al., 1991; Pereira Netto et al., 2006). In 

a study using various engine types it was reported that increasing the speed of a 

vehicle can influence the dispersion of PAH emissions in the atmosphere (Mi et al., 

2001). However, the authors propose some caution in interpretation of the data. Also, 

it has recently been shown that other potential factors can affect PAH concentration in 

road dust, such as, the number of traffic lanes, and the street cleaning frequency 

(Dong et al., 2009). In contrast however, high concentrations of PAH have also been 

found in areas without significant vehicular traffic demonstrating that other sources 

can influence the presence of PAHs in road dust (Dong et al., 2009).  

In terms of human health risk assessment, there are multiple pathways of human 

exposure to road dust such as inhalation, ingestion and dermal exposure. Similarly 

with the pollutant mobilization in soil, dust particle size is a crucial factor in the 

exposure pathway to humans (Driver et al., 1989; Finley et al., 1994; Kissel et al., 

1996; Choate et al., 2006; Yamamoto et al., 2006). Indeed, dust particle size fractions 

below 10 µm (PM10) and 2.5 µm (PM2.5)  can enter the respiratory system by 

inhalation (Miguel et al., 1999; Plumlee et al., 2006; Riddle et al., 2007) whereas dust 

particle sizes below 250 µm (Bornschein et al., 1987) adhere easily to the skin and 

therefore can easily be ingested through hand-to-mouth behaviour. The ingestion of 

environmental matrices of < 250 µm particle size is of particular interest, for example, 

in studies involving in vitro gastrointestinal extraction to evaluate potential pollutant 

bioaccessibilities and human health risk. An investigation of different particle sizes of 
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street dust, with respect to its PAH content, is consequently of importance as part of a 

quantitative evaluation of human health risk.  

The chapter will therefore focus on (1) the analysis of urban dust from the city centre 

of Newcastle-upon-Tyne, (2) an evaluation of pyrogenic and petrogenic PAH 

distribution in this urban dust, (3) an evaluation of PAH distribution with respect to 

particle size and finally (4) a comparison between the PAH content of these urban 

dust samples with other urban environments around the world. 

7.2 Experimental  

List of chemicals, instrumentation and GC-MS (Trace GC; Polaris Q) analysis, have 

already been described in chapter 4, so they are not represented in this chapter. 

7.2.1 Collection and preparation of dust samples 

The dust samples were collected in the city centre of Newcastle upon Tyne, North 

East England (Figure 7.1) using a brush and a pan. Details about the locations of the 

sampling sites such as description of the location, driving speed, receptors and 

number of vehicle/day are explained in Table 7.1. The dust samples were air dried in 

a fume cupboard for one week and then sieved from < 2 mm to < 63 µm and stored in 

Kraft® paper bags, prior to analysis.  

7.2.2 Chemicals  

Two certified reference materials (CRM) (LGCQC3008 sandy soil and CRM 123-100 

BNA‘s in soil) were obtained from LGC Standards, Teddington, UK 

7.2.3 Procedure 

All dust samples were analysed for the 16 priority PAHs outlined in Table 7.2. The 

total PAH content of dust samples was determined in the > 250 µm particle size 

fraction for all sample sites. Then, total PAH content was determined in a large range 

of particle size for sample 10, 11 and 12 for particle sizes < 63 um to < 2mm. 
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Table 7.1: Road dust sample locations, descriptions and possible receptors on site (Okorie, 2010). 

 

 

 

Site 
number 

Location 
No of 

vehicles/ 
day 

Driving 
Style 

Description/sources Possible receptors 

1 

Robinson 
Library, 

Claremont 
Road 

14,091 
Fast 

moving 
traffic 

North of City Centre air quality Management area (AQMA). Entrance to Claremont bridge (over the Great North 
Road B1318) directly opposite entrance to Robinson library. Ivy (Hedera sp.) forming a semi protected area in 

which soil/dust can accumulate. Matrix comprising soil from adjacent landscaped area and curb-side dust. 

Busy pedestrian 
thorough fair with 

cyclist 

2 

Brandling 
Park, 

Forsyth 
Road 

28,885 
Fast 

moving 
traffic 

North of City Centre AQMA. Park adjacent (to the east) of the Great North Road B1318. Sample taken from a 
rectangular seating area. Matrix comprising soil from adjacent landscaped area and general urban inputs; sloppy 

sediment overlain by leaf litter. 

Urban parkland. 
Receptors include dog 
walkers, pedestrians 

and those using the site 
as a general recreation 

area 

3 

Grainger 
Street 

opposite St 
John‘s 
Church 

3,338 
Restricted 

traffic 
Sample collect from corners either side of 3 doorways and recessed areas between two buildings. Matrix: street 

dust and ‗rubbish‘ (cigarette ends, litter & other detritus of plant and animal origin). 

Busy pedestrian route 
to and from station. 
Busy with vehicular 

traffic. 

4 
Bolbec Hall, 

Westgate 
Road 

8,629 
Restricted 

traffic 
Sample taken along base of lowest stone step. Matrix: street dust, sediment and ‗rubbish‘ (cigarette ends, litter & 

other detritus of plant and animal origin). 

Busy with vehicular 
traffic. Critical receptors 

pedestrians. 

5 

St Nicholas 
Church, St 

Nicolas 
Street 

9,873 
Restricted 

traffic 
Sample taken along edge of building adjacent to Nicholas Road and either side of main doorway on St Nicholas 

Place. 

Adjacent to busy 
pedestrian route. Busy 
with vehicular traffic. 
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Table 7.1 (continued): Road dust sample locations, descriptions and possible receptors on site (Okorie, 2010). 

*Non available 

Site 
number 

Location 
No of 

vehicles / 
day 

Driving 
Style 

Description/sources Possible receptors 

6 Blacket Street 1,075 
Restricted 

traffic 
Sample taken in ‗tunnel‘ (Eldon square shops above) from block paved area 

either side of the main road. Road access restricted to buses and taxis. 
Adjacent less than 2 m away 

to busy pedestrian route. 

7 
Westgate Road 
opposite County 

Court 
7,752 

Restricted 
traffic 

Samples collected from the edge of the busy road opposite to a pub. Matrix: 
Dust particles blown to the edges of the road 

Adjacent to busy pedestrian 
route. Busy with vehicular 

traffic. 

8 
St James‘s Park, 
Strawberry Street 

5,063 
Restricted 

traffic 
Sample taken along the edges of the road opposite St James Park and busy 

with vehicular traffic. 

Adjacent to busy pedestrian 
route, especially during football 

match. 

9 
Percy Street, 

opposite Haymarket 
bus station. 

1,815 
Restricted 

traffic 
This sample was collected from corners of the building directly opposite the 

Hay market bus station. 

Receptors here are the 
pedestrian and those queuing 

for 

10 All Saints Cemetery NA* 
Fast 

moving 
traffic 

A few meters west of Jesmond air quality management area (AQMA). 
Cemetery situated along the busy Jesmond Road. Matrix: Sample of 

soil/sediment taken from the base of the Cemetery wall immediately to the 
east of the Cemetery gate. 

Busy pavement walkway 
and cemetery entrance. 

 

11 St Nicolas Square NA 
Restricted 

traffic 

Sample taken in open paved square where sediment had accumulated in the 
uneven paving slabs. Matrix comprising soil from adjacent landscaped area 

and street dust 

Adjacent to busy pedestrian 
route. Busy with vehicular 

traffic. 

12 Central Station NA 
Restricted 

traffic 
Sample taken under archway entrance to station adjacent to the taxi rank. 

Matrix: accumulated street dust 

Adjacent to busy pedestrian 
route. Busy with vehicular 

traffic 
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Figure 7.1: Location of the twelve dust sampling sites in Newcaslte upon Tyne, N.E. 

England. 

Each PAHs were extracted by in-situ PFE followed by Gas Chromatography Mass 

Spectrometry (GC-MS), as described in chapter 4 and 5. Florisil (2 g) was added on 

top of alumina (2 g) in to the extraction cell on top of the filter paper. Then, the dust 

sample (2 g) was mixed with a similar quantity of high purity diatomaceous earth 

(Hydromatrix) and added in to the extraction cell on top of the alumina. Additional 

Hydromatrix was added to fill the capacity of the extraction cell and a final filter paper 

was placed on top prior to cell closure. PFE was performed under the same conditions 

that were developed for the soil matrix in Chapter 4. After PFE, the solvent 

(dichloromethane : acetone, 1:1, v/v) was evaporated under a gentle stream of 

nitrogen gas to either less than 1 ml or dryness, and then reconstituted to either 1 mL 

or 100 µL of DCM, according to PAH signal response, prior to the injection of 1 µL into 

the GC-MS. 
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The GC-MS was operated in selected ion monitoring (SIM) mode using the ions 

shown in Table 7.2 for each individual PAH.  All dust sample data were reported as 

PAH concentration (mg/kg, dry weight). As part of the in-house quality control 

procedure, two CRMs were selected with a PAH of appropriate certified concentration. 

In accordance with the certification of the CRMs the recommended soil weight of 10 g 

was extracted using in-situ PFE with 2 g alumina. 

7.2.4 Organic matter content 

The organic matter content of the road dust samples was determined using the same 

procedure described in Chapter 5. 

7.3 Results and Discussion 

Calibration for the determination of the 16 PAHs in a standard solution was 

determined. The results showed good linearity (Table 7.2) over a concentration range 

from 0.5 to 5 mg/kg (with 5 data points). In addition, an assessment of the sensitivity 

of the analytical methodology was determined in order to establish a practical lower 

limit of determination. In this study, the sensitivity of the GC-MS was an important 

parameter to consider in the determination of individual PAH concentrations. It was 

experimentally determined that the Limit Of Detection (LOD based on a signal-to-

noise ratio equal to 3 using peak areas; calculated using  XcaliburTM 1.4 SR1 

software) of the instrument varied between 0.1 and 2.5 mg/kg, depending upon the 

individual PAH. Increased sensitivity was achievable by pre-concentration of the 

sample, using evaporation, to values that ranged from 0.01 and 0.17 mg/kg, 

depending upon the individual PAH (Table 7.2). Initial experiments focused on the 

development of the analytical methodology. This was done by spiking a dust sample 

(2 g) with 5 µL of a PAH standard solution (2000 mg/kg). The recoveries were all 

between 75 and 110%, except naphthalene which had a recovery of 59.0% (Table 

7.3). The poorer recovery for naphthalene is due to its loss during gentle solvent 

evaporation post-PFE, due to its high volatility. 
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Table 7.2: Calibration data for analysis of PAHs by GC-MS: based on a five point graph (0.5 - 5 µg/mL). 

PAH Structure 

Empirical 

Formulae 

 

PAHs 

 

 

 

MS Ion for 

Quantitation 

 

LOD in dust 

(mg/kg)      

(S/N > 3)* 

LOD in dust 

(mg/kg) after 

evaporation      

(S/N > 3)* 

Calibration 

y = mx + c 

Linear 

regression 

coefficient R
2 

 

 
 

C10H8 Naphthalene (NAP) 128 0.7 0.04 1.3313 X + 0.0865 0.9972 

 

C12H8 Acenaphthylene (ACY) 152 0.2 0.02 1.3079  X + 0.0981 0.9982 

 

C12H10 Acenaphthene (ACE) 154 0.4 0.02 0.8795  X + 0.0880 0.9988 

 
C13H10 Fluorene (FLU) 166 0.1 0.01 0.9513 X + 0.1655 0.9968 

 
C14H10 Phenanthrene (PHE) 178 0.4 0.03 1.3456 X + 0.1703 0.9998 

 
C14H10 Anthracene (ANT) 178 0.2 0.01 1.0494  X  + 0.1035 0.9980 

 

C16H10 Fluoranthene (FLUH) 202 0.1 0.01 1.1869 X + 0.1665 0.9986 

 
C16H10 Pyrene (PYR) 202 0.5 0.03 1.2741 X + 0.1632 0.9975 

 
C18H12 Benzo(a)anthracene (BaA) 228 1.7 0.11 0.7502 X + 0.1146 0.9951 

 

 

C18H12 Chrysene (CHY) 228 2.5 0.17 0.9428 X + 0.1368 0.9990 

 
C20H12 Benzo(b)fluoranthene (BbF) 252 0.5 0.03 0.7314 X + 0.1042 0.9949 

 
C20H12 Benzo(k)fluoranthene (BkF) 252 1.9 0.12 0.9363 X + 0.1443 0.9949 

 

C20H12 Benzo(a)pyrene (BaP) 252 0.2 0.01 0.6183 X + 0.0613 0.9971 

 
C22H12 Indeno(1,2,3-cd)pyrene (IDP) 276 0.2 0.01 0.5309 X + 0.0790 0.9980 

 

C22H14 Dibenzo(a,h)anthracene (DBA) 278 1.2 0.08 0.4932 X + 0.0782 0.9977 

 

C22H12 Benzo(g,h,i)perylene (BgP) 276 0.2 0.01 0.6554 X + 0.0583 0.9968 

*LOD based on observations of signal-to-noise ratios of peak areas equal to 3, using the Xcalibur 
TM

 1.4 SR1 software.
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Table 7.3: Determination of PAHs using in situ-PFE-GC-MS: (a) PAH recoveries from a spiked dust sample and (b) two certified reference materials (CRM 
LGC QC 3008 and CRM 123-100) 

 Spiked dust sample CRM LGC QC 3008 (sandy soil 2) CRM 123-100 (BNA’s in soil) 

PAH 
Recovery (%) 

RSD (%) 
Measured    

(+/- SD) n = 3            
(mg/kg) 

Certificate Value 
(+/- SD)                      

n = 3            
(mg/kg) 

Measured   

(± SD) n = 3     

(mg/kg) 

Certificate 

value 

(mg/kg) 

Confidence 

Interval 

(mg/kg) 

Prediction 

Interval      

(mg/kg) 

Naphthalene 59.0 3.3 3.4 ± 0.1 3.1 ± 0.9 6.4 ± 0.8 9.73 8.49 -11.0 4.84 - 14.6 

Acenaphthylene 92.5 11.1 3.9 ± 0.5 3.4 ± 1.6 2.9 ± 0.3 7.24 5.75 - 8.73 1.37 - 13.1 

Acenaphthene 87.4 7.1 1.5 ± 0.3 < 2 5.0 ± 0.6 7.52 6.20 - 8.84 2.31 - 12.7 

Fluorene 91.4 8.1 6.7 ± 0.4 7.7 ± 1.7 4.2 ± 0.3 6.88 5.91 - 7.85 3.05 - 10.7 

Phenanthrene 96.4 4.8 28.7 ± 3.8 34 ± 7.1 4.9 ± 0.4 7.94 6.96 - 8.92 4.07 - 11.8 

Anthracene 87.2 0.1 8.0 ± 0.8 5.9 ± 2.1 3.9 ± 0.4 6.94 5.90 - 7.98 2.83 - 11.1 

Fluoranthene 76.1 3.2 29.2 ± 6.0 32 ± 6.4 6.2 ± 0.6 9.31 8.08 - 10.5 4.44 - 14.2 

Pyrene 75.4 1.9 20.6 ± 3.5 24 ± 6.5 4.1 ± 0.3 6.75 5.79 - 7.71 2.98 - 10.5 

Benzo(a)anthracene 89.4 3.9 10.2 ± 1.8 11 ± 2.5 5.1 ± 0.2 8.38 7.24 - 9.52 3.87 - 12.9 

Chrysene 75.6 4.7 9.1 ± 1.1 9.9 ± 2.1 7.6 ± 0.5 11.3 10.0 -12.6 6.23 - 16.4 

Benzo(b)fluoranthene 88.5 0.4 10.4 ± 1.8 9 ± 3.3 NA* NA NA NA 

Benzo(k)fluoranthene 100.3 15.0 6.1 ± 1.3 5.8 ± 2.2 NA NA NA NA 

Benzo(a)pyrene 105.7 4.2 8.3 ± 1.5 8.2 ± 1.8 4.6 ± 0.4 7.77 6.79 - 8.75 3.92 - 11.6 

Indeno(1,2,3-cd)pyrene 110.0 12.7 6.6 ± 1.4 5.2 ± 1.8 NA NA NA NA 

Dibenzo(a,h)anthracene 97.0 22.3 3.7 ± 0.2 < 2 NA NA NA NA 

Benzo(g,h,i)perylene 96.3 12.5 6.1 ± 1.1 5.2 ± 1.8 NA NA NA NA 

*NA= non available
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The precision is generally good for most PAHs with typical recoveries, based on three 

determinations, of < 10 %RSD, the exception is dibenzo(a,h)anthracene  with an RSD 

of 23% (Table 7.3). In terms of measured versus certified values for the two CRMs it 

is noted that all PAHs are within the specified mean ± sd for CRM LGC QC 3008 

whereas for CRM 123-100 all measured data were within the prediction interval for 

PAH content. 

7.3.1 PAH content in dust samples 

The concentrations of total PAHs in all twelve dust sample sites from the study area 

are shown in Figure 7.2. It is possible, from this data, to identify three main groups of 

PAH concentration. Firstly, a group having low PAH concentrations ranging from 0.59 

to 2.30 mg/kg (samples 7, 8, 9); a second group having moderate PAH concentrations 

ranging from 15.6 to 22.5 mg/kg (samples 2, 3, 4, 5, 6, 11 and 12) and a final group 

having the highest concentrations which range from 36.1 to 46.0 mg/kg (samples 1 

and 10). Analysis of the same data set by principal component analysis confirmed 

these three groups (Figure 7.3). 

 

Figure 7.2: Total PAH content of the twelve dust samples (particle size > 250 µm) 
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Figure 7.3: Principal Component Analysis of total PAH content in twelve dust sample 

It is possible to link these results with their collection sites (Figure 7.1 and Table 7.1). 

The sampling sites in which the lowest PAH concentrations were determined (sites 7, 

8 and 9) are all characterised as being city centre based and within close proximity to 

pedestrian walkways and areas of restricted traffic i.e. buses and taxis only (by 

inference vehicles in these areas travel at low speed < 30 km/h). The moderate PAH 

concentration sites (sampling sites 2-6, 11 and 12) are generally characterised as city-

centred based in areas of restricted and often slow moving, traffic. The exception is 

sampling site 2 which was collected adjacent to a public park on a minor B-road. In 

contrast, sampling sites 1 and 10 (with the highest PAH concentrations) are both 

located on busy roads with fast moving traffic (<90 km/h). Sampling site 1 is adjacent 

to the A167 (M) motorway while sampling site 10 was at the junction of 3 major road 

tributaries which are used as major access points to the east of the city centre. A 

summary of the level of total PAHs in street dust from 22 locations around the world is 

shown in Table 7.4. The levels of PAHs in Newcastle-upon-Tyne dust samples are 

comparable with other cities around the world. 
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Table 7.4:  Global determination of PAHs in roadside dust. 

 

 

City, Country Year ΣPAHs (mg/kg dry weight) Number of PAHs analysed Source Reference  

Niteroi city, Brazil 2006 0.43 to 1.25 21 Urban 
(Pereira Netto et al., 

2006) 
 

Tokyo, Japan 1991 1.4 to 26 34 Urban, residential (Takada et al., 1991)  
Dalian, China 2009 1.9 to 17 25 Urban, residential, industrial (Wang et al., 2009)  
Beijing, China 2009 0.3 to 1.3 16 Urban (Wang et al., 2009)  

Bangkok, Thailand 2007 1.1 10 Urban 
(Boonyatumanond et 

al., 2007) 
 

Ulsan, Korea 2009 46 to 112 16 Industrial, residential, urban (Dong et al., 2009)  
Yangtze river delta, 

China 
2009 1.6 to 9 16 Industrial, residential, urban (Zhao et al., 2009)  

Kaohsiung, Taiwan 1997 122 to 298 16 Industrial, urban, seashore (Yang et al., 1997)  
Shanghai, China 2007 6.9  to 33 16 Urban (Liu et al., 2007)  

Greater Cairo, Egypt 2008 0.05 to 2.6 12 Urban and residential 
(Hassanien et al., 

2008) 
 

8 cities, Egypt 2009 0.03 to 0.38 30 Residential and urban 
(Mostafa et al., 

2009) 
 

Okayama city, Japan 2008 46 4 Urban, residential (Kose et al., 2008)  
Taichung, Taiwan 2004 16 to 66 21 Urban, industrial and suburban (Fang et al., 2004)  
Pasadena,  USA 1993 59 39 Urban (Rogge et al., 1993)  
Birmingham, UK 1995 13 to 94 16 Urban (Smith et al., 1995)  

Kuala Lumpur, Malaysia 2002 0.05 to 0.2 17 Urban , rural (Omar et al., 2002)  
Lahore, Pakistan 1995 0.12 to 1.0 16 Industrial, urban, rural (Smith et al., 1995)  

Maracay, Venezuela 2009 9.9 to 696 4 Urban (Duran et al., 2009)  
Ulsan, Korea 2007 0.04 to 0.31 16 Residential and urban (Dong et al., 2007)  

Santa Monica, California 2005 0.2 to 4.8 15 Residential and urban (Lau et al., 2005)  
Various cities, Germany 1995 3.1 to 216 19 Urban, residential, industrial (Yang et al., 1995)  

Newcastle-upon-Tyne, 
England 

2010 0.5 to 95 16 Urban Present study 
 



175 
 

7.3.2 Identification of PAH sources (pyrogenic / petrogenic) in road dust  

The concentration of each individual PAH in the urban dust is shown in Figure 7.4. It 

is noted that the concentration of the low molecular weight PAHs i.e. naphthalene, 

acenaphthylene, acenaphthene, fluorene, phenanthrene and anthracene with 2 - 3 

ring structures are very low (generally well below 2 mg/kg, except phenanthrene). The 

moderate molecular weight PAHs i.e. fluoranthene, pyrene, benzo(a)anthracene and 

chrysene, with 4-5 ring structures plus the 5 ring structure PAHs of 

benzo(b)fluoranthene and benzo(k)fluoranthene have the highest individual PAH 

concentrations with values up to 8 mg/kg. In accordance with the low molecular 

weight PAHs, the highest molecular weight compounds i.e. benzo(a)pyrene, 

indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene and benzo(g,h,i)perylene, with 5 - 6 

ring structures have concentrations well below 2 mg/kg. This trend demonstrates a 

predominance of pyrogenic PAHs, which are known to be produced through 

anthropogenic sources such as combustion of fossil fuels and vehicle exhausts (as 

compared to petrogenic PAHs) (Yunker et al., 2002) 
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Figure 7.4: Box plot of individual PAH content of (all) dust samples (particle size 
> 250um) with interquartile range box, outlier symbols (*), median (cross) and 

whiskers indicated. 
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Identification of the source of PAHs has previously been investigated by the use of 

specific individual ratios to identify the proportion of pyrogenic and petrogenic PAHs in 

environmental matrices (Yunker et al., 2002). The ratios used are anthracene / 

(anthracene + phenanthrene); fluoranthene / (fluoranthene + pyrene);  

benzo(a)anthracene / (benzo(a)anthracene + chrysene); and, indeno(1,2,3-cd)pyrene 

/ (indeno(1,2,3-cd)pyrene + benzo(g,h,i)perylene) to determine the petrogenic or 

pyrogenic source of PAHs (Yunker et al., 2002). The values of the ratios to estimate 

the proportion of each source are summarized in Table 7.5. By comparing these ratios 

with those calculated on our Newcastle dust samples (Figure 7.5), it appears that 

pyrogenic sources are predominant in our road dust samples, characteristic of vehicle 

exhaust emission. 

    (A)                        (B) 

                      

           (C)                                              (D) 

               

 

Figure 7.5: Source (petrogenic or pyrogenic) of PAHs in dust samples irrespective of 
particle size: (A) ANT / (ANT + PHE); (B) FLUH / (FLUH + PYR); (C) BaA / (BaA + CHY); 

and, (D) IDP / (IDP + BgP). The solid line represents the indicative discriminating ratios 
as noted in Table 7.5. 
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Table 7.5: Indicative ratios to distinguish petrogenic and/or pyrogenic sources of PAHs 

in roadside dust (Yunker et al., 2002) 

Ratio 

 

 

Petrogenic 

source 

Petroleum or 

combustion source 

Pyrogenic source 

 
ANT /(ANT+PHE)* < 0.1 

 
> 0.1 

FLUH /(FLUH+PYR)* < 0.5 
 

> 0.5 

BaA /(BaA + CHY)* < 0.2 0.2-0.35 > 0.35 

IDP /(IDP+ BgP)* <0.2 
0.2-0.5 (liquid fossil 

fuel combustion) 
> 0.5 

*cf. Table 7.2 for PAHs abbreviations 

7.3.3 Organic matter influence 

In order to explain variations in PAHs distribution between sampling sites, the organic 

matter content can be evaluated. The dust organic matter has a different composition 

than the soil organic matter, so caution needs to be taken when interpreting the 

results (Wang et al., 2009). However, as demonstrated before in the chapter 5 for 

soils, the variations in dust organic matter do not show any correlation with the total 

PAH content (Table 7.6). 

Table 7.6: Comparison of loss of ignition (%) with total PAH content for the 12 road dust 
sample sites at a particle size > 250 µm 

Dust sample site (> 250 µm) LOI % Total PAH content 

1 6.33 46.04 

2 14.29 18.14 

3 23.12 22.34 

4 21.88 17.77 

5 7.88 15.57 

6 8.22 22.45 

7 11.14 0.59 

8 10.86 2.3 

9 7.83 1.32 

10 6.65 36.13 

11 28.58 18.01 

12 14.38 19.55 

 

The same observations are made when comparing the variations in organic matter for 

three dust sampling sites, with a large range of particle sizes. The observations are 
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even contradictory with the common correlations usually observed in solid 

environmental matrices (Gron et al., 2003; Mannino et al., 2008), generally low 

organic matter content resulting in high PAH content. Indeed, with sample 10, the total 

PAH content is increasing as organic matter is increasing (Table 7.7). Therefore, in 

this site, the distribution of PAHs is not linked to the organic matter content. 

Furthermore, variations in total PAHs content in various particle sizes is possibly due 

to other parameters such as the surface area or the type of dust particles. 

Table 7.7: Comparison of loss of ignition and total PAH content for three dust sample 
(10,11 and 12)  sites with various particles sizes (0-63, 63-125, 125-250, 250-500,500-1000 

and 1000-2000 µm) 

  LOI % Total PAH content (mg/kg) 

Road dust particle 
size  

10 11 12 10 11 12 

              

0-63 µm 18.02 NA 25.46 95.03 NA* 27 

63-125 µm 9.45 24.94 21.26 51.35 28.71 24.89 

125-250 µm 7.78 22.39 17.04 36.26 20.83 23.85 

250-500 µm 6.65 28.58 14.38 36.13 18.01 19.55 

500-1000 µm 8.40 32.23 19.63 40.12 22.1 19.35 

1000-2000 µm 8.64 34.05 20.24 69.14 20.99 20.49 
*Non available 

7.3.4 PAH distribution with respect to particle size 

The total PAH concentration for three selected dust sampling sites (sites 10 – 12; i.e. 

samples with a large sample mass) in Newcastle-upon-Tyne city centre were 

investigated with respect to six particle size fractions (< 63 µm, 63-125 µm, 125-250 

µm, 250 -500 µm, 500-1000 µm and 1000-2000 µm). For samples from sites 11 and 

12, the distribution of total PAHs is independent of particle size investigated (Figure 

7.6 (A)) but at sampling site 10 elevated concentrations are noted in two particle size 

fractions (i.e. < 63 µm and 1000-2000 µm). Moreover, when observing the variation of 

concentrations with two individuals PAHs (Figure 7.6 (B) and (C); phenanthrene and 

anthracene both showed elevated concentration in sample 10 for the largest particle 

size fraction (1000-2000 µm). 
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(A)  

(B)  

(C)  

Figure 7.6. Investigation of PAH content (mg/kg) in three dust samples with respect to 
particle size (n = 3). (A) Total PAH; (B) Anthracene; and (C) Phenanthrene. 

 

Further work is required on particle size variation of road dust samples, for the 

analysis of PAHs, in order to investigate the potential risk to human health from 

inhalation/ingestion. Moreover, the variation in concentrations between particle sizes 

can give further clues on the potential sources of PAHs in road dust. By observing the 

structure and colour of road dust particles, according to their particle size some 

conclusions can be drawn about variations in PAHs concentrations (Figure 7.6). 
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Figure 7.7: Pictures of a small amount of road dust for particle size 0-63, 63-125, 125-
250, 250-500, 500-1000, 1000-2000 µm, sample 10 (from left to right). 

 

Indeed, it appears that as particle size decreases, PAHs concentrations are getting 

higher for sample 10, and in the same way on the other extreme, where PAHs 

concentration are getting higher for bigger particle size of road dust . Sample 10 was 

chosen to realize this pictural comparison, as it contained the highest PAHs 

concentrations, so more confidence and more clarity was obtained with PAHs 

distributions (Figure 7.6 and 7.7). Several hypothesis could explain these variations.  

Firstly the surface area of particles, which is getting higher at lower particle size can 

increase mobilization and attraction of PAHs into the particles of road dust. Secondly, 

the color could explain those differences, as a particle with a dark colour could 

prevent PAHs being degraded (Behymer et al., 1988; Dong et al., 2009), and darker 

colour is observed for both highest and lowest particle size. A final hypothesis would 

be the type of particles, which can change as particle size of road dust increases or 

decreases. Indeed, when observing Figure 7.7, the type and structure of particles is 

really different for the dust particles below 250 µm, which has the appearance of a 

powder, whereas for particle size above 500 µm particles have the shape of 

minuscule rocks, which could come from particles of pavement or tire debris, two 

known sources of PAH (Rogge et al., 1993; Dong et al., 2009; Wang et al., 2009). 

These differents ways of explaining those variations were explored in the literature. 

The high surface area of the finer grain size was increasing the adsorption of PAHs 

against the particles of dust, therefore increasing the concentration (Yang et al., 1997; 

Fang et al., 2004; Dong et al., 2007; Dong et al., 2009; Zhao et al., 2009). This fact 

~2 cm 
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could well illustrate the first trend where smaller particle size gives higher PAHs 

concentrations. A second theory to explain the high concentration of higher particle 

size is the effect of colour. The colour of a soil or dust particle is generally influenced 

by his content in organic matter. However, the organic matter seems to have no 

influence in the total PAH content of those dust samples, as well as for soils, 

demonstrated in this study. Therefore the colour and organic matter may not be the 

parameters leading to these variations.  

Concerning the influence of the type of particles, one recent study has demonstrated, 

in the same way, that particles of asphalt were present at higher particle sizes from 

850 to 2000 µm, thus increasing PAHs concentrations (Dong et al., 2007; Dong et al., 

2009). Typical PAHs distributions in asphalt were also showing a higher concentration 

for phenanthrene and anthracene in the coarse grain size fraction (Takada et al., 

1991; Mostafa et al., 2009), as observed in the present study, demonstrating that the 

type of dust particles can significantly influences PAHs distribution in various particle 

sizes of road dust. Therefore two main parameters could participate in the variation of 

PAHs distribution in road dust, within a range of particle sizes: the surface area and 

the type (or source) of dust particles.  

7.3.5 Mean daily intake estimate of PAHs from urban dust and associated 

human health risk  

The potential health risk from urban dust can be assessed by calculating the mass of 

dust that a child would be required to ingest to reach the estimated mean daily intake 

(MDI) for each individual PAH. The values of MDI are shown in Table 7.8 (Nathanial 

et al., 2009). 
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Table 7.8: Oral PAH daily intake (µg) considering the involuntary ingestion of 100 mg/day
*
 of dust 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NA: not available 

*
 Values based on the Child-Specific Exposure Factors Handbook, USEPA, September 2008;  

+
 Mean daily intake threshold for PAHs in food (Nathanial et al., 2009); Figures in bold represent maximum individual PAH levels that exceed the stated oral MDI.

Compound 

Intake of PAHs, based on maximum content from dust samples (n = 3), across 3 sites (site 10,11 and 12), 
through involuntary ingestion of 100 mg / day* of dust for a range of soil particle sizes (µg) 

Soil particle size (µm) 
 

0-63 63-125 125-250 250-500 500-1000 1000-2000 

Oral MDI (µg/day) food
+
 maximum 

(n = 3) 

maximum 

(n = 3) 

maximum 

(n = 3) 

maximum 

(n = 3) 

maximum 

(n = 3) 

maximum   

(n = 3) 

Naphthalene 0.06 0.06 0.03 0.04 NA 0.05 7 

Acenaphthylene  0.09 0.10 0.09 0.10 0.03 0.05 0.14 

Acenaphthene  0.05 0.04 0.03 0.03 0.04 0.04 0.98 

Fluorene 0.12 0.13 0.12 0.12 0.08 0.05 0.59 

Phenanthrene  0.44 0.24 0.30 0.35 0.48 0.83 1.54 

Anthracene  0.10 0.10 0.10 0.08 0.11 0.14 0.08 

Fluoranthene  1.35 0.67 0.55 0.53 0.62 1.00 0.35 

Pyrene 1.09 0.60 0.42 0.46 0.49 0.90 0.35 

Benzo(a)anthracene 0.82 0.50 0.37 0.37 0.39 0.54 0.06 

Chrysene 1.06 0.66 0.49 0.47 0.49 0.60 0.11 

Benzo(b)fluoranthene  1.28 0.65 0.34 0.33 0.36 0.43 0.11 

Benzo(k)fluoranthene  0.61 0.38 0.29 0.29 0.31 0.31 0.09 

Benzo(a)pyrene  0.91 0.45 0.24 0.21 0.23 0.32 0.11 

Indeno(1,2,3-cd)pyrene  0.74 0.36 0.17 0.18 0.19 0.24 0.10 

Dibenzo(a,h)anthracene  0.25 0.13 0.07 0.06 0.07 0.08 0.04 

Benzo(g,h,i)perylene  0.70 0.35 0.19 0.16 0.20 0.21 0.06 
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The US EPA (U.S Environmental Protection Agency, 2008) summarized studies of soil 

ingestion by children by several authors and has set guideline values for estimated  soil 

ingestion rates at a mean value of 100 mg/day for children between the age 1 and 6 

years. On that basis, the amount of individual PAH ingested from street dust has been 

calculated based on 100 mg per day. The values obtained were compared with the MDI 

values to assess the risk of each individual PAH to the child. From the results it is evident 

that all 4-6 membered ring PAHs i.e. fluoranthene to benzo(g,h,i)perylene, irrespective of 

particle size, exceed the MDI for a child based on involuntary ingestion. Though this 

calculation can help to estimate the potential risk from urban dust samples and highlights 

the important role of regular street sweeping activities, it is perhaps somewhat unrealistic 

because it only assumes ingestion (oral) as the means of exposure, and perhaps more 

importantly is based on a 100 mg daily intake of urban dust. However, some risk is noted 

that warrants further investigation, especially as the smaller particle size fractions i.e. 

<125 µm, can readily stick to hands and be unintentionally consumed by a child through 

hand-to-mouth contact. 

7.4 Conclusion 

The distribution of PAHs in samples of urban dust from Newcastle-upon-Tyne city centre 

indicates a potential risk to human health if quantities in excess of 100 mg/day are 

ingested, of any of the size fractions investigated across the 4–6 membered ring PAHs, 

either intentionally or unintentionally by hand-to-mouth contact based on published 

tolerable mean (oral) daily intakes. Our data also indicate that the maximum PAH 

concentrations are not consistently observed in the finer size fractions (i.e. <250 size 

fraction), and to what extent this is PAH (and source) specific is currently the focus of 

further investigation. In addition, it is reported that the dominant individual PAH in these 

urban dust are derived from pyrogenic sources with vehicle exhausts likely to be the main 

and dominant source. Indeed, the vehicle exhausts can be a source of PAHs in road 
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dust, depending on the vehicle speed.  But the structure of the pavement and the tire 

debris are also a potential source of PAHs as described in the literature (Rogge et al., 

1993; Dong et al., 2009; Wang et al., 2009) and in this study. The pyrogenic sources 

seem to be predominant in either soil or dust from urban and industrial areas, as 

described in the present study and in the literature. Furthermore, as described for soil in a 

precedent chapter, the particle size is influencing the PAHs distribution inside the matrix, 

probably due to the surface area, and is of concern because of the potential ingestion of 

smaller particles via hand-to-mouth behaviour. In this particular chapter, the particles of 

dust were prepared at lower sizes than for soils, until 0-63 µm, meaning that further 

studies need to be realized with a larger range of particle sizes to consider the evolution 

of PAHs concentrations. Reaching very fine particle sizes (less than 10 µm) would involve 

the inhalation of those particles, which is another pathway of exposure, not explored in 

this study, but which implies also a risk for human health. Utilization of the value of 100 

mg/day for the calculation of the daily intake of PAHs via involuntary ingestion is another 

way to consider the risk compared with the estimation of bioaccessibilities, and the direct 

comparison of total content with soil guideline values.  
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Chapter 8: Conclusion and future work 

8.1 Conclusion 

This thesis has permitted to develop an efficient, robust, precise and accurate analytical 

procedure in order to analyse the 16 priority PAHs pollutants in solid environmental 

matrices. This method consists of using 2 g of alumina sorbent inside a cell integrated in 

a Pressurized Fluid Extraction system, called in-situ clean-up, and is followed by 

instrument analysis using a GC-MS. 

This analytical procedure has therefore been applied to real samples. Firstly, this method 

has been used with soil samples from a former industrially contaminated site. The 

concentration of the PAHs in the soils demonstrated high concentrations, largely above 

currently available soil guidelines values for PAHs and values reported around the world. 

This site needs to be considered for remediation or any technique that would degrade the 

PAHs on site, to make the site clean and safe for the public, as it is situated close to 

people activities, near the Tyne River. Smaller particle sizes of those soils samples (<250 

µm), which are more easily adhered on skin and ingested, have shown higher 

concentration of PAHs than with coarser grain sizes, which means that a higher risk will 

exist considering the ingestion exposure pathway. 

As part of the study of the potential ingestion of solid environmental matrices, 

implementations of the Unified BARGE Method and the FORES(h)t in the present 

laboratory were realized and demonstrated good performance in terms of recoveries, 

precision and accuracy, using spiking procedures. The FORES(h)t did show satisfactory 

reproducibility as part of an interlaboratory study, demonstrating that this method is 

becoming robust as laboratories are implementing it in their laboratories. This fed state 

seems to be more appropriate and realistic when evaluating the risk from the ingestion of 

solid environmental matrices containing PAHs. Evaluation of PAHs bioaccessibilities 
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showed that the fed state was mobilizing significantly more PAHs than the fasted state, 

possibly due to changes in the chemical composition of the gastrointestinal fluids, notably 

the addition of food. The mechanisms of adsorption, absorption and mobilization inside 

the gastrointestinal tract are complicated but involve the formation of bile salts micelles 

which can attract hydrophobic compounds on their core, the similar attraction appearing 

with fat, both constituents influencing the adsorption of the hydrophobic constituents onto 

the cell walls of the intestine, therefore potentially entering systemic circulation and 

causing harm to human health. Other parameters can be influent in the mobilization of 

PAHs in the digestive tract such as the ring number, the molecular weight, the solubility 

and the partition coefficient of PAHs, but further studies are required as the mechanisms 

involved are complex and parameters could be in competition. It was noted that high total 

content can lead to low bioaccessibility, which is important when considering risk 

assessment. Based on the 100 mg/day ingestion rate and bioaccessible concentration, 

the risk was present the various soil samples, but not in the same proportion. For the Tar 

Works soils a third alternate way to estimate the risk was based on comparing total PAH 

content with soil guidelines values, which was also demonstrating another degree of risk 

for humans.   

This analytical procedure developed, was used for the identification of PAHs in road dust 

samples from the city centre of Newcastle-upon-Tyne, as part of the examination of the 

risk involved via the ingestion exposure pathway, without the use of physiologically-based 

extraction tests. Concentrations were not as high as with the soil from the former 

industrial site, and they were in the same range of concentrations found around the world. 

Evaluation of PAHs content in a large range of particle sizes demonstrated possible 

variations in distributions due to the surface area of the particles and the sources of PAHs 

in an urban site, such as pavement and tire debris. Indeed, in the entire study, the 

organic matter did not show any correlations with the mobilization of PAHs in the solid 
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environmental matrices, therefore excluding this parameter, contrary to observations 

made in the literature. In some cases, PAHs concentrations were higher for finer particle 

sizes, which is again important considering the ingestion exposure pathway. The 

involuntary ingestion of 100 mg/day of soil per day for children, compared with the mean 

daily intake of PAHs in food, showed presence of risk with pyrogenic PAHs, in any of the 

particle size considered.  

This study has shown that there are multiple ways to define the risk on a contaminated 

site. Bioaccessible fraction resulting from the FORES(h)t method test seems to be a 

realistic way to estimate and refine the risk via the ingestion exposure pathway, 

considering the analysis of PAHs in environmental matrices. The comparison of 

bioaccessible concentration or total PAHs content with the Mean Daily Intake is essential 

as it gives an information on the intake involved with the ingestion exposure pathway. 

However, variations in evaluations of the risks highlight that a consensus should be made 

on how to estimate the risk, and more particularly with the use of bioaccessibity.  

8.2 Future prospects 

The FORES(h)t method needs also further interlaboratory studies to finally enable it to be 

used in commercial laboratories. Development of certified reference materials for PAHs in 

bioaccessibility studies would also be essential, or any method that would control the 

quality of experiments made in various laboratories. Furthermore, ongoing production of 

new soil guideline values for PAHs and tools to evaluate the risk in UK by the 

Environmental Agency would help risk assessors and environmental scientists, to 

evaluate uniformly the risk throughout the country.  

More studies should be done on the parameters that influence PAHs mobilization in soils, 

dust, and in the digestive tract, such as the surface area, the sources of PAHs, the 

molecular weight, the ring number, the solubility in water, the food and the soil-to-solution 
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ratio as mechanisms of attraction are complex. However, an understanding of the 

parameters that govern mobilization of PAHs will provide meaningful informations on the 

probability that has each individual PAHs (or group of PAHs) to be in contact with human 

and the environment, and therefore representing a risk. 

The particle size parameter would need to be considered again and with a larger range of 

grain size to have a more accurate view on how the PAHs distributions can vary in a solid 

environmental matrix. This is particularly important as particle size is involved in the three 

different exposure pathways. More particularly, at very fine particle size, the inhalation 

pathway will be involved as particles of soils or road dust can become airborne. Further 

work considering this exposure pathway seems to be the way forward, as inhalation of 

pollutants in the environment can occur rapidly through human activities in urban areas. 

This pathway would however require a model simulating the respiratory tract.  
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GLOSSARY 

 

AAS  Atomic Absorption Spectroscopy 

BARGE  BioAccessibility Research Group of Europe  

BGS  British Geological Survey 

CLEA   Contaminated Land Exposure Assessment 

CLR  Contaminated Land Report 

CRM  Certified Reference Material 

DCM  Dichloromethane 

ED-XRF Energy Dispersive X-ray Fluorescence  

EI  Electron Impact 

FL  Fluorescence 

FID  Flame Ionization Detector 

FORES(h)t Fed Organic Estimation Human Simulation Test 

GACs  Generic Assessment Criteria 

GC-MS  Gas Chromatography-Mass Spectrometry 

HCV  Health Criteria Values 

HOC  Hydrophobic Organic Contaminants 

HPLC  High Pressure Liquid Chromatography 

IARC  International Agency for Research on Cancer  

ICP  Inductively Coupled Plasma 

ID  Index Dose 

LC  Liquid Chromatography 

LC-MS  Liquid Chromatography-Mass Spectrometry 

LLE  Liquid-Liquid Extraction 

LOD  Limit of Detection 

LOQ  Limit of Quantification 
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MEPS  Micro Extraction by Packed Sorbent 

MDI  Mean Daily Intake 

PAHs  Polycyclic Aromatic Hydrocarbons 

PBET  Physiologically Based Extraction Test 

PCA  Principal Component Analysis 

PCBs  Polychlorinated biphenyls 

PDMS  PolyDimethylSiloxane 

PFE  Pressurized Fluid Extraction 

PLE  Pressurized Liquid Extraction 

POPs  Persistent organic pollutants 

PTV  Programme Temperature Vaporizer 

RSD  Relative standard deviation 

RPM  Revolution per minute 

SBSE  Stir Bar Sorptive Extraction 

SD  Standard Deviation 

SFE  Supercritical Fluid Extraction 

SGV  Soil Guideline Value 

SIM  Selected Ion Monitoring 

SPE  Solid Phase Extraction 

SPME  Solid Phase Micro Extraction 

SSL  Split Splitless injector 

TIC  Total Ion Current 

TOF-MS Time of Flight-Mass Spectrometry 

TDI  Tolerable daily Intake 

UBM  Unified BARGE Method 

USEPA United States Environmental Protection Agency 

 


