Capturing Uncertainty in Magnetospheric Ultralow Frequency Wave Models

Bentley, Sarah, Watt, Clare, Rae, I. J., Owens, M. J., Murphy, K., Lockwood, M. and Sandhu, J. K. (2019) Capturing Uncertainty in Magnetospheric Ultralow Frequency Wave Models. Space Weather, 17 (4). pp. 599-618. ISSN 1542-7390

2018SW002102.pdf - Published Version

Download (2MB) | Preview
Official URL:


We develop and test an empirical model predicting ground-based observations of ultra-low frequency (ULF, 1-20 mHz) wave power across a range of frequencies, latitudes and magnetic local time sectors. This is parameterized by instantaneous solar wind speed vsw, variance in proton number density var(Np) and interplanetary southward magnetic field Bz. A probabilistic model of ULF wave power will allow us to address uncertainty in radial diffusion coefficients and therefore improve diffusion modeling of radial transport in Earth's outer radiation belt. Our model can be used in two ways to reproduce wave power; by sampling from conditional probability distribution functions or by using the mean (expectation) values. We derive a method for testing the quality of the parameterization and test the ability of the model to reproduce ULF wave power time series. Sampling is a better method for reproducing power over an extended time period as it retains the same overall distribution while mean values are better for predicting the power in a time series. The model predicts each hour in a time series better than the assumption that power persists from the preceding hour. Finally, we review other sources of diffusion coefficient uncertainty. Although this wave model is designed principally for the goal of improved radial diffusion coefficients to include in outer radiation belt diffusion based modeling, we anticipate that our model can also be used to investigate the occurrence of ULF waves throughout the magnetosphere and hence the physics of ULF wave generation and propagation.

Item Type: Article
Uncontrolled Keywords: magnetospheric ULF waves, radiation belts, radial diffusion coefficients, probabilistic model, ground‐based magnetometers, solar wind parameterization
Subjects: F500 Astronomy
Department: Faculties > Engineering and Environment > Mathematics, Physics and Electrical Engineering
Depositing User: John Coen
Date Deposited: 05 Oct 2020 13:08
Last Modified: 31 Jul 2021 13:00

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics