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 Healthcare studies are moving toward individualised measurement. There is 

need to move beyond supervised assessments in the laboratory/clinic. 

Longitudinal free-living assessment can provide a wealth of information on 

patient pathology and habitual behaviour, but cost and complexity of equipment 

has typically been a barrier. Lack of supervised conditions within free-living 

assessment means there is need to augment these studies with environmental 

analysis to provide context to individual measurements.  

This paper reviews low-cost and accessible Internet of Things (IoT) 

technologies with the aim of informing biomedical engineers of possibilities, 

workflows and limitations they present. In doing so, we evidence their use within 

healthcare research through literature and experimentation.  

As hardware becomes more affordable and feature rich, the cost of data 

magnifies. This can be limiting for biomedical engineers exploring low-cost 

solutions as data costs can make IoT solutions unscalable. IoT technologies can 

be exploited by biomedical engineers, but more research is needed before these 

technologies can become commonplace for clinicians and healthcare 

practitioners. It is hoped that the insights provided by this paper will better equip 

biomedical engineers to lead and monitor multi-disciplinary research 

investigations. 
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1 Background 

The western world spends >80% of their time indoors often exposed to poor indoor environmental 

conditions, which can be detrimental to health and wellbeing [1]. The use of passive sensors for 

measuring indoor environments and monitoring impact on quality of life has become prevalent in recent 

years [2–6]. Of particular importance is the need for monitoring systems to track individuals and how 

they respond to environmental changes [7]. By localising the measurement of environmental factors 

and augmenting with data from wearable technologies, healthcare researchers can better understand 

health and wellbeing through a more holistic and personalised approach [8].  

There is a trend toward personalised medicine with measurements suited to an individual’s 

ailments or needs. Individualised measurements could better identify health biomarkers, while 

longitudinally assessing habitual behavioural patterns [9]. To conduct such assessments, healthcare 

researchers need to move beyond the laboratory, towards free-living assessment. This involves 

longitudinal assessment of patients in their habitual environments, which can produce increased 

variability of measurements that may provide better insights to distinguish between physiological 

conditions [10]. This is because habitual environments are unsupervised and expose patients to a range 

of obstacles and tasks of daily living [11]. While healthcare researchers have proposed deploying 

monitoring equipment of the individual at scale, this has largely been unfeasible due to cost and 

complexity [12]. Moreover, there is a requirement to monitor beyond the individual by capturing 

insights about the general environment and how the individual performs daily tasks, which may 

negatively impact underlying pathology [6,13]. Use of low-cost sensor technology could facilitate this 

methodological shift in patient assessment [8,12] and in particular wearable sensing [11], but in many 

cases the technology still requires a great deal of researcher intervention [11,14,15]. 

Emergent sensor technology is changing the landscape of how buildings, environments and 

individuals are monitored. This is in part due to the increasing affordability and accessibility of sensor 

technology being driven by the Internet of Things (IoT), which is regarded as an extension of the 

internet and is comprised of billions of globally interconnected devices [16,17]. As a disruptive 

technology, IoT has the potential to positively impact healthcare, but are subject to limitations such as 

ongoing rapid technological changes [18]. Yet, that limitation is driving increased accessibility and 

affordability of IoT technology. Furthermore, marketing of sensor and associated technology is shifting 

from electronic engineers and computer scientists to other professions (e.g. construction, agriculture, 

manufacturing and education) and with it, innovative solutions to facilitate sensor integration and 

deployment. 

The aim of this paper is to provide a narrative review while surveying current state-of-the-art of 

accessible IoT sensor technologies. Here, we specifically examine low-cost technologies and 

investigate their use by providing examples for pragmatic insights to biomedical engineers. We present 

an overview of current low-cost devices and technical specifications to inform biomedical engineers 

about the possibilities, workflows and limitations presented by these technologies within healthcare 

applications. By doing this it is hoped that biomedical engineers can better investigate ideas and develop 

proof of concepts to work more productively with electrical engineers, computer scientists and 

healthcare professionals when outlining and scoping work within modern multidisciplinary studies. To 

place the review in context of current challenges for biomedical engineers, this paper will investigate 

by means of experimental work approaches for remote environmental and physiological monitoring. It 

is hoped that the findings of this experimental work will showcase low-cost IoT approaches with 

pragmatic considerations for future biomedical investigations.  

2 Low-cost sensor Technology 

Sensors are a prevalent driver of IoT technology and they serve a multitude of purposes, from measuring 

people or places to systems or things. Sensors can be used to measure air quality or motoric activity, 

the latter which can help identify symptoms of underlying medical conditions, e.g. Parkinson’s disease 

(PD) [19]. Those type of sensors have taken a variety of form factors, from environmental sensors that 

use printed conductive plastics that can accurately detect the concentration of Carbon Dioxide (CO2) in 
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the air [20] to smart clothes that integrate tri-axial accelerometers directly into garments [21]. Key to 

these developments is the increasing technological advancements in microelectromechanical systems 

(MEMS) [22]. 

2.1 Initial prototyping tools: MEMS sensors and bench testing 

MEMS use micro-engineering to integrate circuits and microscopic mechanical components into 

silicone microchips [23]. In doing so, it is possible to create micro-scale sensors with a range of sensing 

capabilities. Table 1 highlights the versatility and potential for MEMS technology within healthcare 

research. Whilst some research focuses around use of MEMS sensors for specific healthcare 

applications, researchers are exploiting these technologies to create accessible sensor-fusion ehealth 

monitoring systems. For example, studies [24–28] previously combined a range of low-cost sensors to 

create monitoring systems that were able to remotely measure a variety of health conditions. 

Alternatively, Rienzo et al. [29] adopted a different sensor-fusion approach to combine three sensors 

(Electrocardiogram (ECG), Photoplethysmogram (PPG) and Seismocardiogram (SCG)) to 

simultaneously measure heart rate from 12 sensor nodes (each containing 3 sensors) that could be placed 

on different anatomical locations. In doing so, they were able to take 36 unique and individualised, 

high-frequency measurements of heart rate.  

One of the most prominent resources available for rapid prototyping electronic circuits are 

solderless breadboards, which is a device made of interconnected rows and columns designed to 

temporarily connect circuits. Typically, there are four rows of sockets on a breadboard, which are 

connected horizontally and are used for supplying power. The remaining sockets are connected 

vertically and are used for connecting components. The sockets are designed so that components and 

wires slot in, without needing to solder a permanent connection. Solderless breadboards are a mature 

approach for prototyping, so component manufacturers typically conform to the width and spacing of 

sockets when designing hardware.  Therefore, by convention, many electronic components are 

standardised to have a pin spacing (known as pitch) of 2.54mm [30]. This often makes MEMS sensors 

alone unsuitable for prototyping as they have a much smaller pitch, which vary from sensor to sensor. 

Sensors (e.g. Table 1) are often integrated onto ‘breakout boards’, which are small Printed Circuited 

Boards (PCBs) useful for prototyping and facilitate access to the pins on a microchip [31] by 

conforming to the 2.54mm convention, Error! Reference source not found.. Many breakout boards 

can be used with little to no knowledge about electronic engineering. This is because much of the 

additional circuitry required to operate a MEMS chip is provided on the breakout board (Error! 

Reference source not found.), often exposing only inputs, outputs and voltage control pins. This is the 

reason why the number of pins on the MEMS component differs from the number of pins on the 

breakout board.  

 

 
Figure 1 - Scale of MEMS sensor breakout board, compared to a 555 Timer chip with 2.54mm pitch. 

2.1.1 Ensuring fit-for-purpose monitoring 

Sensor use within healthcare research is becoming more prevalent, but it has often been reactive rather 

than proactive as innovation in this field can be quite fractious [32,33]. With continued uptake of 

emergent technologies, biomedical engineers must perform robust and vigorous bench testing (e.g. via 
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tools outlined in section 2.1) to ensure new sensor-based technologies are valid and fit-for-purpose [32]. 

There is no absolute standard regarding sensor selection, as choosing an appropriate sensor will depend 

on what the researcher needs to measure and the subsequent digital endpoint(s) that is/are sensitive to 

the pathology in question [34]. Once fit-for-purpose sensors have been selected, appropriate and equally 

fit-for-purpose processing units (i.e. what the sensors are integrated into) must also be selected, to send 

control signals to the sensors as well as read and process sensor data. 
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Table 1 - Examples of MEMS sensor use for healthcare 

Author Year Healthcare Application Sensor ID Sensor Type 

Alberto et al.[35] 2020 Heart Rate MAX30003§ Electrocardiogram (ECG) 

Bakar et al. [24] 2020 
Body Temperature 

Heart Rate 

MAX30205§ 

SEN11574¶ 

Temperature 

Electrocardiogram (ECG) 

Rienzo et al. [29] 2020 
Heart Rate 

Pulse 

MAX30003§ 

MAX30101§ 

LSM6DSM†† 

Electrocardiogram (ECG) 

Photoplethysmogram (PPG) 

Seismocardiogram (SCG) † 

Al-Naggar et al. [25] 2019 

Heart Rate 

Pulse 

Body Temperature 

MAX30003§ 

AFE4490‡‡ 

MAX30205§ 

Electrocardiogram (ECG) 

Pulse Oximeter 

Temperature 

Anisimov et al. [36] 2019 Heart Rate 

ADS1292R‡‡ 

ADAS1000‡‡ 

MAX30003§ 

AD8232§§ 

Electrocardiogram (ECG) 

Portaankorva, A. [26] 2018 
Heart Rate 

Activity Monitoring 

MAX30003§ 

LASM6DSL†† 

LIS3MDL†† 

Electrocardiogram (ECG) 

Accelerometer / Gyroscope 

Magnetometer 

Yudhana et al. [37] 2018 Sign Language Detection MPU6050¶¶ Accelerometer / Gyroscope 

Anik et al. [38] 2017 Activity Recognition MPU6050¶¶ Accelerometer / Gyroscope 

Dawson S. [39] 2017 Medical Implant Security ADXL362§§ Accelerometer / Gyroscope 

Fitriani et al. [40] 2017 Activity Recognition MPU6050¶¶ Accelerometer / Gyroscope 

Kardos et al. [41] 2017 Gait Analysis MPU6050¶¶ Accelerometer / Gyroscope 

Mohanraj  

and Keshore [27] 
2017 

Body Temperature 

Pulse 

Heart Rate 

Emotion Detection 

MAX30205§ 

SEN11574¶ 

AD8232§§ 

101020052††† 

Temperature 

Photoplethysmogram (PPG) 

Electrocardiogram (ECG) 

Galvanic Skin Response 

Mota et al. [42] 2017 Gait Analysis MPU6050¶¶ Accelerometer / Gyroscope 

Shaji et al. [28] 2017 

Body Temperature 

Blood Pressure 

Pulse 

Heart Rate 

Fall Detection 

MAX30205§ 

HoneyWell 26PC‡ 

SEN11574¶ 

AD8232§§ 

ADXL362§§ 

Temperature 

Pressure 

Photoplethysmogram (PPG) 

Electrocardiogram (ECG) 

Galvanic Skin Response 

Al-Dahan et al. [43] 2016 Fall Detection MPU6050¶¶ Accelerometer / Gyroscope 

Kim et al. [44] 2015 Medical Implant Security ADXL362§§ Accelerometer / Gyroscope 

Lei et al. [45] 2015 Fall Detection MPU6050¶¶ Accelerometer / Gyroscope 

Wang et al. [46] 2015 Gait Analysis MPU6050¶¶ Accelerometer / Gyroscope 

†Seismocardiograph measurements were conducted using a MEMS-based accelerometer / gyroscope.; ‡HoneyWell have a range of 26PC 

sensors, but the authors have not declared the specific sensor used in their study.; §Maxin Integrated Products; ¶SparkFun; 
††STMicroelectronics; ‡‡Texas Instruments; §§Analog Devices; ¶¶TDK InvenSense; †††Seeed Studio 
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3 Communication and control: hardware 

There are a variety of ways to communicate and control sensor technology, which can vary depending 

on the stage of production, requirements of the hardware or accessibility.  

3.1 FPGA/ASIC 

For applications that require a great deal of power efficiency, whilst executing control algorithms in 

parallel and at high speeds, an Application-Specific Integrated Circuit (ASIC) may be required [47]. 

ASICs are microchips that contain an integrated circuit that is designed for a single application and 

cannot be reprogrammed [48]. This makes them suited to production level devices that do not need to 

change throughout the device’s lifecycle. Alternatively, Field Programmable Gate Arrays (FPGA) are 

reprogrammable. FPGAs are similar to ASICs as they contain integrated hardware circuits and once 

programmed can perform any logical function [49]. However, FPGA architecture differs from an ASIC 

and is comprised of an array of inputs and outputs (I/Os), logic blocks, interconnects and connection 

lanes. These interconnects can be programmed so that the connection lanes bridge a connection between 

I/Os and a series of logic blocks to form a circuit of components that are suited to a specific application 

[50].  

Since FPGAs and ASICs require the configuration of hardware circuits, they have a steep learning 

curve and may lack general accessibility to those without circuit design experience. However, it is also 

possible to interface with sensors using a programmable Central Processing Unit (CPU), which is used 

for controlling hardware and software [51]. Within IoT applications, CPUs are typically integrated into 

a Microprocessor Unit (MPU) or into a Microcontroller Unit (MCU) which combines CPU with 

memory. That enables CPUs programming to execute processes whilst being able to read and write data 

during an execution [52]. The key distinction between MPUs and MCUs, is the latter combines the CPU 

and memory onto a single microchip making it act as a single-chip-computer, capable of executing 

programmed instructions [53].  

3.2 CPU 

In contrast to FPGAs or ASICs, CPUs process algorithms in series, meaning they are not capable of 

running concurrent tasks. This can be overcome by using multicore CPUs, which combine multiple 

CPUs cores into a single processing unit, where each core can concurrently execute commands in series 

[54]. Another key distinction between CPUs and FPGAs is that whilst both architectures can be 

programmed, the program used in an FPGA is used to define how the hardware is configured, whereas 

the CPU executes the code as a series of instructions [50]. Since processing on an FPGA is done using 

hardware this means they are capable of handling analogue or digital signals, whereas, a CPU is only 

capable of processing digital information. While this may seem like a major limitation for healthcare 

applications, one of the benefits of MCUs is that they typically contain a bus of General Purpose 

Input/Output (GPIO) pins, which allow the device to send or receive both analogue and digital 

information from peripheral devices such as sensors [55].  

Since the underlying CPU is capable of processing digital information only, analogue signals must 

first be converted to a digital signal or vice-versa. This is done using either analogue-to-digital 

convertors (ADC) or digital-to-analogue convertors (DAC) depending on the direction of the signal. 

When considering MCUs for healthcare applications and analogue signal measurement, it is important 

to consider the performance of the ADC to ensure that the device has sufficient resolution to be fit-for-

purpose. This largely comprises of a trade-off between the sample rate, measured in samples per second 

(sps) and the bit resolution of the ADC, which refers to the number of discrete digital values an analogue 

signal can be mapped to. The more the bit resolution of the converted signal is lowered, the more the 

degradation of information is increased. Moreover, as the sample rate is increased, the ADC needs to 

convert a greater amount of information, which further reduces the bit resolution of the conversion [56]. 

Therefore, if biomedical engineers intend to take measurements from analogue sensors, at a high sample 

rate, it is important that they choose an MCU with an ADC that has a high bit resolution when operating 

at the desired sample rate. This is to ensure the quality of the digital signal that is converted from the 

analogue stream is of a high standard for accurate data capture and robust patient assessment 



6 

 

3.3 MCU 

A key benefit of MCUs is their low-cost and accessibility, largely driven by open-source based 

Arduinos – a range of inexpensive MCUs that are typically built onto development boards for rapid 

prototyping [57]. In software development, open-source code is typically distributed with a license that 

enables other developers to view, modify and share derivative works legally [58]. In much the same 

way, open-source hardware licenses allow the technology to be modified and distributed legally. This 

means that manufacturers and developers are free to clone, build, enhance and distribute hardware that 

builds upon the original infrastructure. Since derivative boards are based on the Arduino architecture, 

the way in which these microcontrollers are programmed has become standardised. The widespread 

adoption of these boards has not only incited rapid advancements in the capability of Arduinos, but it 

has also drastically reduced the costs of associated components.  

Since their conception, Arduinos have taken a variety of forms and purposes. These include 

controllers for smart clothes that use inductive thread to control sensors to compact networked boards 

that are designed to interface with the IoT. For a full list of options and specifications, readers are 

directed to Arduinos product range1, which outline the technical specifications of each board and 

categorises the boards according accessibility. Additionally, Nayyar and Puri [59] present a review of 

Arduino hardware, outlining the technical intricacies of each board. However, the Arduino product 

range is continuously evolving and many of the boards in that review have subsequently been 

discontinued, as is the nature of disruptive technology [18]. Whilst the details presented in Arduino’s 

product range provide detailed technical specifications, they lack aggregated information on the 

ADC/DAC capabilities of each device. To address this gap, Table 2 is provided to further guide 

biomedical engineers when choosing boards to suit the needs of their research projects. 

 Boards in Table 2 convert analogue signals to digital with at least a 10-bit resolution. Moreover, 

the sample rates of modern Arduinos enable them to be applicable for a range of healthcare applications 

as they exceed requirements for measuring high frequency analogue signals, e.g. Electrocardiographs 

[60]. As the technology continues to disrupt, modern Arduinos push the boundaries with new processors 

and higher resolution ADC capabilities. Furthermore, IoT is an increasing driver of technological 

development and Arduino’s own IoT range now come equipped with e.g. a range of wireless capabilities 

to suit a variety of remote measurement projects via Cloud services or MCU boards with built-in FPGA 

for additional programmable functionality. However, these come at an increased cost, inhibiting 

accessibility. 

 

  

 
1 Arduino product range https://www.arduino.cc/en/main/products 

https://www.arduino.cc/en/main/products
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Table 2 - Arduino's product range, highlighting architectures and ADC/DAC capabilities 

Board Price† Processor 
Digital / 

PWM‡ 

ADC Bit 

Resolution 

ADC 

CHLs 

ADC Sample 

Rate§ 

DAC Bit 

Resolution 

DAC 

CHLs 

Entry Level         

UNO R3 $ 23 ATmega328P (8-bit) 14 / 6 10-bit 6 15 ksps - 0 

Nano $ 21 ATmega328P (8-bit) 22 / 6 10-bit 8 15 ksps - 0 

Leonardo $ 21 ATmega32U4 (8-bit) 20 / 7 10-bit 12 15 ksps - 0 

Micro $ 21 ATmega32U4 (8-bit) 20 / 7 10-bit 12 15 ksps - 0 

Nano Every $ 11 ATMega4809 (8-bit) 22 / 5 10-bit 8 115 ksps - 0 

Enhanced         

MKR Zero $ 26 SAMD21 (32-bit) 22 / 12 8/10/12-bit 7 350 ksps 10-Bit 1 

Zero $ 43 SAMD21 (32-bit) 20 / 10 12-bit 6 350 ksps 10-Bit 1 

Due $ 41 AT91SAM3X8E (32-bit) 54 / 12 12-bit 16 1000 ksps 12-bit 2 

Mega 2560 Rev3 $ 41 ATmega2560 (8-bit) 54 / 15 10-bit 16 15 ksps - 0 

IoT         

Nano 33 IOT $ 19 SAMD21 (32-bit) 14 / 11 8/10/12-bit 8 350 ksps 10-Bit 1 

Nano 33 BLE $ 21 nRF52840 (32-bit) 14 / 14 12-bit 8 200 ksps - 0 

Nano 33 BLE 
Sense 

$ 32 nRF52840 (32-bit) 14 / 14 12-bit 8 200 ksps - 0 

MKR WAN 

1300  
$ 41 SAMD21 (32-bit) 8 / 12 8/10/12-bit 7 350 ksps 10-Bit 1 

MKR GSM 1400 $ 69 SAMD21 (32-bit) 8 / 13 8/10/12-bit 7 350 ksps 10-Bit 1 

MKR WiFi 1010 $ 33 SAMD21 (32-bit) 8 / 13 8/10/12-bit 7 350 ksps 10-Bit 1 

MKR NB 1500 $ 77 SAMD21 (32-bit) 8 / 13 8/10/12-bit 7 350 ksps 10-Bit 1 

MKR Vidor 

4000¶ 
$ 72 SAMD21 (32-bit) 8 / 13 8/10/12-bit 7 350 ksps 10-Bit 1 

MKR 1000 $ 37 SAMD21 (32-bit) 8 / 12 8/10/12-bit 7 350 ksps 10-Bit 1 

UNO WiFi Rev2 $ 45 ATMega4809 (8-bit) 14 / 5 10-bit 6 115 ksps - 0 

All information has been sourced from Arduino’s product range and the subsequent datasheets provided there.; † prices (as recorded on 10 

July 2020) are rounded up to the nearest USD (ex. VAT); ‡ Pulse Width Modulation(PWM) is an emulated analogue signal created with high 

frequency digital pulses.; § ADC sample rates specified are in kilo-samples per second (ksps) and are achieved at the highest bit resolution of 

the ADC, lower bit resolutions can achieve sample rates greater than those specified above; ¶ MKR Vidor 4000 has an on-board Intel® 

Cyclone® 10CL016 FPGA to supplement the SAMD21 MCU. 

 

Derivative boards and inexpensive clone boards are an alternative, providing equal functionality much 

lower cost. For example, an official Arduino Uno R3 costs approx. $23 but a clone built to equal sizes 

and specifications is as little as $3.00. Although not supported by Arduino, clone boards will function 

the same as Arduino counterparts and will likely be compatible with Arduino software, as the latter 

supports third party manufacturers. However, biomedical engineers using clone boards should be aware 

that they would be unlikely to receive official support from Arduino for any clones.  

The open-source nature of Arduino products means that derivative boards can also be created. 

Instead of aiming to create clones that offer equal functionality, derivative boards aim to extend the 

functionality of Arduinos by on-boarding features such as LCD screens, wireless communication and 

more powerful processors, which can be useful for providing real-time feedback from sensor readings. 

One example which is gaining popularity [61] is the ESP322. The latter cannot be directly compared to 

an Arduino development board as it is regarded as a System on Chip (SoC), meaning that it is an entire 

system on a single microchip. These chips are considered a market leader as they integrate WiFi, 

Bluetooth Low Energy (BLE), dual-core processing and sensors onto a single chip [62]. Moreover, 

these chips are now being integrated onto a wide range of development boards that offer similar 

accessibility as Arduino development boards but with increased functionality and lower costs. One 

reason why SoCs (and the development boards built upon them) have been so successful within IoT 

 
2 Espressif Systems https://www.espressif.com/ 

http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/ATmega48A-PA-88A-PA-168A-PA-328-P-DS-DS40002061A.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
http://www.atmel.com/Images/Atmel-7766-8-bit-AVR-ATmega16U4-32U4_Datasheet.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-11057-32-bit-Cortex-M3-Microcontroller-SAM3X-SAM3A_Datasheet.pdf
http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-ATmega640-1280-1281-2560-2561_datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Boards/Atmel-42181-SAM-D21_Datasheet.pdf
https://content.arduino.cc/assets/Nano-Every_processor-48-pin-Data-Sheet-megaAVR-0-series-DS40002016B.pdf
https://content.arduino.cc/assets/Arduino-Vidor_c10lp-51001.pdf
https://content.arduino.cc/assets/Arduino-Vidor_c10lp-51001.pdf
https://www.espressif.com/


8 

 

development is that the entire chip can be reconfigured at run time to operate at extremely low power, 

making them suitable controllers for battery-powered IoT devices [63]. Furthermore, the ESP32 chip 

has 18 multi-resolution ADC channels capable of running 200ksps at 12-bit resolution and two 8-bit 

DAC channels, which makes the chip comparable to the Arduino Due – one of Arduino’s largest form-

factor development boards. Of note, while the ESP32 has an 18 channel ADC, two of those channels 

are occupied by integrated temperature and hall-effect sensors that detect magnetic fields and the 

temperature of its chip [63]. This means that for applications that do not make use of these sensors, the 

ESP32 has only 16 usable ADC channels, though this is comparable to the Arduino’s Due and Mega 

2560 boards. 

Unlike FPGAs and ASICs, Arduinos and their derivative microcontrollers were designed to be 

accessible to beginners yet flexible to accommodate skilled developers [57]. This makes them ideal for 

those that may not possess the prerequisite knowledge of an e.g. electrical engineer but wish to gain 

insights into IoT hardware development or become more knowledgeable about possibilities and 

limitations of the hardware.  

3.4 Software 

The scale of data across the healthcare sector has been increasing and is expected to continue increasing 

exponentially as healthcare professionals adopt IoT solutions [64]. As more information is stored into 

healthcare models, challenges around transmission and storage of those models increases in tandem. 

IoT adds further complexity to the issues of data scale as devices typically send a telemetry stream, 

which is continuous data ranging in frequencies from seconds to weeks. Therefore, frequency of data 

transmission has a direct impact on the level of storage and the type of system that is needed to manage 

the stream.  

Devices like Arduino processors must be programmed with a specific set of commands telling it 

which pins to read and write to and what to do with the data. Hardware manufacturers (e.g. Arduino, 

Adafruit, SparkFun) provide searchable databases of open-source code libraries (often accompanied 

with setup tutorials) that can be accessed from a web browser or their proprietary software3. Thus, 

biomedical engineers can be more informed about the steps involved and understand the possibilities 

and challenges the hardware presents through the support of those tutorials and documentation.  

4 Cloud Connectivity 

IoT workflows extend beyond the development of sensor technology by developing software that 

collects, stores and analyses data streams. Open-source IoT software platforms are also becoming a 

driving force of accessibility and innovation. These platforms are typically centred on providing a web-

based dashboard and a database to collect and display data from IoT devices. Biomedical engineers 

should be aware there are more than 600 known IoT platforms [65] and, whilst the sector is largely 

dominated by large corporations such as Amazon, Google and Microsoft [66], IoT cloud platforms are 

continuing to expand and fragment with niche platforms designed for specific use cases [65]. These 

platforms are typically centred on providing a web-based dashboard and a database to collect and 

display data. Many of these platforms are complex and feature-rich, with a range of integration protocols 

that can directly interface with MCUs [67–69]. However, many of these cloud platforms operate on a 

quota or a pay-as-you-go model, where users pay for services, storage or bandwidth they consume [70]. 

For IoT applications such as smart homes this can be an affordable option as the frequency of events 

(when an IoT device uses some of the quota) can be sporadic or low-frequency; e.g. when a light turns 

on or off. In healthcare research, the frequency of data transmission may often need to be much greater, 

in the region of hundreds or thousands of samples/second. This currently creates multiple technical 

obstacles that make cloud-based remote monitoring of patients challenging.  

 
3 Readers are directed to the Arduino Code Library List [95], which is an automatically generated database of libraries. This list contains 

approx. 3000 libraries, which provide detailed license, author and version information as well as links to download source code. 
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4.1 Rate limiting and transactional cost 

When transmitting high frequency sensor data to the cloud, a large volume of data can be accumulated 

in a short space of time. This will require large amounts of cloud storage and may require a great deal 

of bandwidth. Before adopting a cloud solution, biomedical engineers must be aware of how a user is 

charged for data, with regards to both storage and bandwidth. Given the number of available cloud 

solutions, a complete breakdown of costs involved with each service is beyond the scope of this paper. 

Instead, we present indicative costs associated with different subscription models from the key 

providers, Microsoft Azure, Amazon’ Web Services (AWS) and Google’s Cloud Platform (GCP)  [66].   

To demonstrate the speed in which message quotas would be consumed using cloud platforms, we 

extracted several ten second samples of raw tri-axial data from a low-cost commercial MEMS based 

wearable accelerometer (AX3, Axivity, Newcastle, UK) in CSV format with timestamp information 

included. The sample rate was set at 100sps (100Hz) and so each sample contained 1000 rows (100Hz 

× 10s) of values. The average file size of the CSV data were approximately 33 kilobytes (KB). This file 

size was then used to compare the pricing for the three major cloud IoT platforms.  

4.1.1 Microsoft Azure IoT Hub 

Microsoft Azure’s IoT Hub has a range of pricing options and quotas (Table 3). Users of the service are 

billed monthly and charged according to the number of messages/day. For device-to-cloud messaging, 

the maximum of a single message equals 256KB [71], meaning no single device can send more than 

that at any one time. However, that message size is far greater than the meter size for each tier, which 

is capped at a maximum of 4KB for paid tiers and 0.5KB for the free tier, Table 3. Therefore, while a 

single 256KB message can be sent from an IoT device to the cloud, this message is segmented into 

0.5KB/4KB segments and charged accordingly. Thus, a 256KB message will expend 64 messages from 

the daily quota on paid tiers and 512 messages from the daily quota on the free tier. For high-frequency 

data this quota can be quickly consumed. Using the example set out in Section 4.1, a 67.1KB message 

would consume 9 messages from paid tier subscriptions and 66 messages from free tier subscripts. At 

that rate, to monitor tri-axial data, values at around 100sps (100Hz) for 24-hours, approximately 71,280 

messages would be consumed on a paid tier subscription. This would mean either the S1 or the B1 tier 

would be applicable. However, the daily message quota on free tier subscription would be completely 

consumed in around 20 minutes. 

 

Table 3 - Example of IoT hub pricing tiers 

 Tier Monthly cost Messages / day Meter size 

Azure 

Free Tier $0 8000 0.5 KB 

Basic Tier 1 (B1) $10 400,000 4 KB 

Basic Tier 2 (B2) $50 6,000,000 4 KB 

Basic Tier 3 (B3) $500 300,000,000 4 KB 

Standard Tier 1 (S1) $25 400,000 4 KB 

Standard Tier 2 (S2) $250 6,000,000 4 KB 

Standard Tier 3 (S3) $2500 300,000,000 4 KB 

 Monthly Messages Price† Meter Size Connection cost‡ 

AWS 

<1 billion $1 5 KB $0.08 

1 billion – 5 billion $0.80 5 KB $0.08 

More than 5 billion $0.70 5 KB $0.08 

 Data usage Price / MB Minimum charge 

GCP 

Up to 250 MB $0.00 1024 bytes  

250 MB to 250 GB $0.0045 1024 bytes  

250 GB to 5 TB $0.0020 1024 bytes  

5 TB and above $0.00045 1024 bytes  

Data relating to tiers, pricing and message quotas was obtained from the pricing pages of Microsoft Azure [72], Amazon Web Services [73] 

and Google Cloud Platform [74] on 17 July 2020. †Per million messages. ‡Per million minutes.  
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4.1.2 Amazon Web Services (AWS) 

Similar to Azure, AWS IoT Core service involves chunking large messages and charging according 

with a maximum message size of 128KB and a 5KB meter size. Yet, unlike Azure, AWS tiers decrease 

in price as more messages are transmitted. If 10 seconds of tri-axial accelerometer recordings creates 

33KB of data, AWS would bill for 57,204 messages in 24-hours. This equates to 1,710,720 messages 

over a 30-day period, where each million messages will be billed at $0.80 – equalling $1.37 per month. 

Additionally, AWS also charge $0.08 per million minutes of connection, but for a single device the 

price change is negligible as a device connected continuously for 30 days would cost $0.003456.  

 

4.1.3 Google Cloud Platform (GCP) 

GCP adopts a different quota system to Azure and AWS, instead charging according to the total amount 

of data transmitted rather than the total number of messages (Table 3). Additionally, instead of charging 

in data segments according to a meter size, GCP adopt a minimum charge approach when billing for 

transactions. Consequently, GCP encourage users to send fewer large messages rather than many small 

messages (unlike Azure and AWS). If 33KB of tri-axial accelerometer data were sent from a device to 

GCP, instead of it being segmented and metered, prices would be calculated per megabyte (MB). In 

this instance, continuous data for 30 days would equate to 8.55 Gigabytes (GB) of data, costing 

$0.0045/MB. Therefore, total cost (including first 250MB free) for 30 days would be $37.37. It is 

important to note that this cost only considers data being sent from the sensor, as GCP also have costs 

associated to the communication protocols used to send data. It is important for biomedical engineers 

to understand which protocols are available on a chosen platform as they can significantly impact the 

cost of data transmission. 

4.2 Communication protocols 

Many cloud-platforms accept a range of communication protocols, with two of the most popular 

protocols used within IoT platforms are Hyper Text Transfer Protocol (HTTP) and Message Queuing 

Telemetry Transport (MQTT). HTTP is a mature protocol for requesting and received data over the 

internet [75]. Within IoT, devices can send data over HTTP by attaching the data (known as payload) 

to the HTTP request being sent to a server. When the server receives the request, it returns a response 

to indicate the success or failure of the request/response lifecycle [76]. However, each request requires 

authentication and once the request/response lifecycle is completed the connection to the server is then 

closed [77]. This uses a lot of bandwidth and creates overheads for IoT devices that need to send high-

frequency data to the Cloud. Contrastingly, instead of using a request/response lifecycle, MQTT 

protocol uses a publish/subscribe approach, where data is published to a server (message broker) and 

made available for subscription [76]. For example, an IoT device can publish a sensor reading to the 

broker and an IoT application (subscribed to the broker) can receive that data. A key benefit of MQTT 

over HTTP, for IoT applications, is that a persistent connection can be made to a broker, which allows 

devices to send multiple data payloads with a single authentication [75]. 

The fundamental differences between HTTP and MQTT have a substantial impact on cost within 

GCP. This is because GCP charges for each connection. For MQTT, monthly costs depend on how long 

the connection from a device is kept active. For example, if each device refreshes the connection every 

fifteen minutes, 96 daily requests will be made to broker. Yet, whilst each request will be extremely 

small, GCP’s minimum charge means that every request is charged at 1024 bytes (1KB), which equates 

to approx. 3MB/month. Alternatively, HTTP makes a request and response every time data is sent. If 

33KB of data were transmitted every 10 seconds, 8640 messages would be sent daily. Since GCP would 

apply the minimum charge of 1KB to each response, the HTTP responses alone would use the entirety 

of the 250MB free quota. For this reason, in contrast to AWS and Azure, it would be important to send 

considerably larger amounts of data and to transmit less often when using GCP. 

5 Serial Processing 

Whichever cloud platform is adopted for an IoT solution, technological inadequacies of processing units 

can be a limitation when attempting to collect, store and transmit high-frequency data. As discussed 

previously, MCUs process data in series, meaning they execute each command one after another. 
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Therefore, single core processors are unable to initiate the next command until the previous one is 

complete. On a single-core MCU, data transmission must therefore interrupt the data collection and the 

MCU will be unable to read sensor data until the data has been transmitted. This could also involve 

waiting for a response if transmitting over HTTP. Since it would be problematic to transmit every 

reading from a sensor running at a frequency of 100Hz (100sps), the MCU must read data from the 

sensor, perform analogue-to-digital conversion (if required), and store that data in memory. This whole 

process must also be executed within 10 milliseconds (ms) to maintain a sample rate of 100sps. When 

enough data has been collected in memory, the MCU must then send the data to the cloud. However, 

this instruction must also be executed within one of the 10ms windows allocated to data collection, 

otherwise the sample rate will drop. This problem could be mitigated by using multi-core MCUs such 

as the ESP32, or devices that combine FPGAs with MCUs such as the MKR Vidor 4000. These devices 

would allow an uninterrupted data stream to be collected and stored, while simultaneously transmitting 

the data to the Cloud.  

6 Experimental case study: Towards holistic IoT-based remote monitoring  

From the plethora of IoT technologies that have been covered within our investigations we conduct 

experimental work to investigate how current approaches could be undertaken by biomedical engineers 

for remote environmental and physiological monitoring. Here, we investigate a low-cost IoT approach 

for where an individual could be holistically monitored in their home with a focus on gait/walking 

assessment. The latter is commonly referred to the sixth vital sign [78] and has grown in considerable 

interest due to its ability to provide pragmatic insights to neurological conditions e.g. PD [79]. In brief, 

a conceptual model of gait suggests that numerous spatial and temporal characteristics (e.g. step length, 

step time variability) have clinical utility to examine onset and progression of PD [80]. This is important 

as a gait examination conducted under observation in the clinic can be used to diagnose, treat and 

manage those with PD. Traditionally, gait assessment in the clinic has proven useful but remains limited 

as the environment may not reflect daily life (e.g. good lighting, no obstacles) and those being assessed 

will perform the test optimally due to being observed [10]. Advances in wearable technology have 

created a methodological shift to quantify spatial and temporal gait characteristics beyond the clinic. It 

is hypothesised that these free-living characteristics can provide more insight due to the habitual manner 

in which they are generated. To date, evidence shows that there are differences in habitual gait compared 

to the clinic [11] with notable insights to fall risk assessment during prolonged assessment of those with 

PD [81].  

Current state-of-the-art in longitudinal remote gait assessment predominantly aligns to placing 

an inertial-based wearable (typically tri-axial accelerometer) on the lower back for extended periods 

(up to 7-days when also considering ambulatory behaviours). Upon completion of recording, the 

wearable is collected in person or returned to the researcher by post. This is extremely inefficient, costly 

and may often result in damage (or loss) of wearables (and data). Furthermore, recent impact of the 

2020 COVID pandemic brought clinical and research studies in this field to a halt due to isolating 

requirements for those with health conditions. Thus, there is a need to investigate how future habitual 

gait assessment could be best facilitated and maintained through the use of IoT technologies. Moreover, 

the addition of environmental information could augment gait assessment data, by providing healthcare 

professionals with greater insight to an individual’s living conditions (e.g. light quality of room) and 

how that may impact gait performance [12]. 

6.1 Physiological measurement of gait: Current state-of-the-art 

Given fabrication of modern inertial-based wearables due to MEMS technology, they can generally be 

worn on any anatomical location but placement on the lower back conforms to harmonisation of two 

principal algorithms for gait quantification [82,83] to generate 14 spatial and temporal characteristics 

[84] of clinical utility [85]. In brief, use of the continuous wavelet transform helps identify timings of 

the initial (heel strike) and final contact (toe off) for each step from the vertical acceleration of MEMS 

based wearables, such as the AX3. The AX3 has been widely used for validated gait analysis studies in 

various clinical cohorts [86–89]. Those contact times coupled with the inverted pendulum model [90], 

which estimates change in height of the wearable due to attachment near the wearers centre of mass, 
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provide pragmatic gait characteristics. Furthermore, identifying periods of gait (bouts of walking) from 

longitudinal assessment is feasible from a heuristic approach of (i) wearable location (accelerometer 

orientation) and (ii) recognising periods of interest from combined tri-axial inertial signals to define 

when the wearer is upright (mean accelerometer output) and moving (threshold to standard deviation). 

Once those periods of interest are located, they are analysed for initial and final contacts to deduce that 

the wearer is walking [91].  

Previously, it was shown that accessible IoT-based technology (smartphone, inertial wearable 

and Raspberry Pi) could be used beyond the clinic to gather robust gait data under observation when 

compared to routine procedures of analysing, via manual data download and processing through 

MATLAB® based gait algorithms [92]. Although the latter platform is being used less by data scientists, 

it remains popular due to its extensive toolboxes and formally arranged documentation and so may be 

perceived as the standard reference for processing sensor data. Nevertheless more popular approaches 

involving use of Python or Octave have been shown to be comparable to MATLAB® for gait 

characteristic analysis [14,92].  

6.2 Exploring IoT approaches to remote assessment 

When experimenting with the IoT and algorithm deployment, biomedical engineers may seek methods 

that are a continuum of existing and validated approaches. ThingSpeak™ is an open-source Cloud 

platform built upon MATLAB® meaning it can run its code in the Cloud to perform real-time analysis 

and visualisations on incoming data streams from IoT devices. 

Like many Cloud platforms, ThingSpeak™ imposes rate limits and quotas and these could be a 

major limitation for longitudinal assessment and multi-patient monitoring. When transmitting data to 

ThingSpeak™, data can be sent as individual messages where one message could comprise a reading 

from up to eight sensors. Alternatively, those data can be batched and sent collectively (i.e. in bulk) but 

regardless of transmission method the rate cannot be greater than one every 15 seconds. Nonetheless, 

ThingSpeak™ limits the amount of readings that can be transmitted in a bulk update message, with free 

users being limited to 960 rows and paid subscriptions being limited to 14,400 [93]. Given a sample 

rate of 100Hz, each 15 second period would consume 1500 messages, equating to 8,640,000 

messages/day. ThingSpeak™ charges in units where each unit includes a quota of data channels and 

messages. For academic subscriptions, costing $250/unit, a single unit has a message quota of 33 million 

messages. Therefore, a single unit would last just under four days if data were continuously transmitted. 

For longitudinal and/or multi-patient monitoring, these costs could grow exponentially. However, if the 

platform were used to analyse snapshots of data, biomedical engineers could fine tune their algorithms 

throughout a study and monitor the progress without waiting until the end of the sampling period. For 

environmental monitoring, high frequency transmission is not always necessary, so these limits are not 

a factor. 

6.3 Experimental setup and equipment 

To test the feasibility of ThingSpeak™, we conducted an experimental investigation to compare 

MATLAB® and ThingSpeak™, within the context of gait analysis. For the purposes of our experimental 

investigation, we present AX3 data from a single user in their habitual setting. The participant wore a 

single AX3 (100Hz, ±8g) on the lower back for 1-hour during which time they were free to perform 

their normal activities. Ethical consent was granted by the Northumbria University Research Ethics 

Committee (REF: 16335/335) and the participant gave informed written consent before participating in 

this study.  

Since the AX3 lacks wireless connectivity, the device was plugged into a desktop computer 

and the data were extracted and exported to CSV format. These data were then analysed in MATLAB®  

using a usual approach and validated algorithm [91]. Subsequently, a MATLAB® analysis application 

was created on ThingSpeak™ that contained the same code as on the desktop. The CSV file was then 

imported into ThingSpeak™ and analysis of these data was performed in the Cloud. 

Whilst the ability to run MATLAB® code in the Cloud is one of the primary benefits of 

ThingSpeak™, the platform also provides supported integration and code libraries for Arduino based 

devices. Therefore, to test the potential of using the platform as a way of augmenting wearable sensor 
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data with environmental data, we used a low-cost MEMS-based light intensity sensor (BH1750) to 

collect and transmit data to ThingSpeak™ every 5 minutes using a Heltec ESP32 Wi-Fi 32 development 

board (Error! Reference source not found.). The frequency of data transmission was set to match a 

reference device, the HOBO MX1101 light intensity data logger, which was simultaneously logging 

data on local storage to validate data from the BH1750. Data were captured from both devices 

consecutively for five days.  

 

 
Figure 2 - MX1101 light intensity data logger and BH1750 ambient light sensor connected to ESP32 

development board. 

 

6.4 Findings 

The official Arduino support from ThingSpeak™ made connecting the BH1750 to the cloud a seamless 

process. Data were transmitted directly from the Heltec development board which was connected to the 

internet via Wi-Fi. Each time data was sent to ThingSpeak™, live graphs were updated allowing data 

from the IoT device to be quickly visualised. During data collection it was also feasible to download 

ad-hoc as a CSV file and analysed directly in the Cloud. Data transmission frequency meant there was 

no need to consider any rate limits imposed by ThingSpeak™ and the ESP32 was more than capable of 

transmitting the data at such a low frequency.  

Regarding the data validation, the BH1750 was found to be highly correlative to the HOBO 

MX1101 sensor, with a Pearson correlation of 0.799. Moreover, Error! Reference source not found. 

shows that whilst the accuracy of the BH1750 is slightly lower than the MX1101, the BH1750 is more 

responsive to changes in light intensity. The results of this experiment highlight the potential low-cost 

MEMS light sensors have in measuring ambient light intensity. They also highlight the potential of 

Cloud platforms such as ThingSpeak™ for remote monitoring of an individual’s environment, given the 

longitudinal deployment of light intensity sensors could be used to augment data from MEMS-based 

inertial wearables. 
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Figure 3 - Data captured from HOBO MX1101 and BH1750 

 

6.4.1 Gait: High frequency data 

Individualised gait data was successful gathered and download via the usual desktop approach. The 

algorithm successfully segmented and identified gait events (Figure 4, each bout was examined for 

initial and final contact times) and generated spatial and temporal outcomes (Table 4), presented 

previously [11,81,91]. In contrast, we found that while ThingSpeak™ could collect, store, visualise and 

analyse data from low-frequency environmental sensors, its ability to be used for existing gait 

assessment approaches within the IoT highlighted some major limitations. Although the rate limits 

imposed allow up to 14,400 readings to be sent every 15 seconds, it would appear that the platform is 

capable of processing high-frequency data akin to similar approaches via a desktop. However, during a 

bulk update ThingSpeak™ checks no duplicate rows exist by comparing the timestamp of each reading. 

While this validation process accepts milliseconds and microseconds resolution timestamps, 

ThingSpeak™ rounds these to the nearest second, making it unsuitable for high frequency data. Given 

the 1Hz frequency limitation, to test how the Cloud-based MATLAB® Analysis compared with desktop 

approach, we circumvented the timestamp checks by changing timestamps to epochs in (seconds). This 

allowed high frequency gait data upload for analysis. 

 

 
Figure 4 – Free-living tri-axial accelerometer data (AX3). The vertical green and red indicate possible start/stop 

gait bouts. 

 

 

Table 4 – Individualised gait outcomes from all free-living data 

Gait characteristics Mean values across many bouts (s) 

Step time 0.541 

Stance time 0.711 

Swing time 0.489 

Step length 0.689 

Step velocity 1.276 
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6.4.2 Gait: Analysis via IoT 

Reading data via a ThingSpeak™ channel instead of from a CSV file stored on a desktop uncovered 

further limitations. Firstly, ThingSpeak™ limits readable data to 8000 rows, which meant that analysis 

had to be batched into 80 second sample windows. Once complete, a further error was encountered as 

the code utilised (e.g. filtering) functions from MATLAB® toolboxes that were not present in 

ThingSpeak™. Despite the removal of filtering processes, further errors were encountered, which 

highlighted fundamental differences between the two computation engines. While attempts were made 

to evaluate the IoT approach to gait assessment, in its current state, ThingSpeak™ is currently unsuitable 

for collecting high-frequency biomedical research data. 

7 Discussion 

This paper presented a narrative review and survey of current state-of-the-art for accessible and low-

cost IoT sensor technology. In doing so, we presented pragmatic insights of current technologies and 

the technical specifications that could present opportunities or limitations to biomedical engineers. One 

of the key benefits to these technologies is their low-cost, meaning it is feasible to create scalable sensor-

fusion devices that incorporate a range of sensors for monitoring patients. Moreover, such sensor fusion 

devices could enable biomedical engineers to augment wearable biomedical sensing devices with 

environmental sensors to provide more context to e.g. gait outcomes, which would help them move 

their research beyond the laboratory and into free-living conditions. 

7.1 IoT hardware 

Advancements in MEMS technologies allow a range of sensing capabilities that can aid biomedical 

engineers. However, many of these devices deal with high frequency analogue signals, which present a 

new set of challenges, which biomedical engineers must consider when specifying both the sensors and 

the processing units that will collect data from the sensor. For many healthcare applications, such as 

ECGs and electroencephalogram (EEGs), high-frequency sampling is a requirement [94]. For this 

reason, it may be necessary to exploit the technological capabilities of ASICs or FPGAs, which can 

capture multiple high-frequency analogue signals simultaneously. However, opensource 

microcontrollers such as Arduino have driven the industry to develop boards that are demonstrably 

capable within this field. Whilst microcontrollers were traditionally limited by being unable to execute 

tasks concurrently, multi-core microcontrollers are now becoming more prevalent. Moreover, whilst 

MCUs cannot process analogue signals directly, due to the limitations of the internal CPU, this paper 

has demonstrated how advancements in ADC/DAC technologies are enabling MCUs to perform 

continually higher-resolution conversions of analogue signals at high frequencies. Yet, for these devices 

to be considered IoT devices there is a need to connect these devices to the internet. Networked MCU 

development boards are becoming more prevalent, boasting a range of wireless connection options that 

enable these devices to not only collect and process sensor data, but also transmit these data to the cloud 

IoT platforms.  

7.2 Cloud computing 

From the three major platforms AWS was found to be the cheapest platform overall, especially when 

using many devices. Contrastingly, GCP was found to be significantly more expensive. Nevertheless, 

the unique pricing model adopted by Google, means that the platform is better suited for transmitting 

large amounts of data infrequently, as opposed to Azure and AWS, which favour regular small amounts. 

Whilst it would not be possible to evaluate all of the cloud platforms here, we identified ThingSpeak™, 

an opensource Cloud IoT platform built on MATLAB®. It could be reasoned that ThingSpeak™ may be 

a logical next step for biomedical engineers who are well versed in MATLAB® and wishing to explore 

Cloud IoT platforms. However, it is important for biomedical engineers to perform more rigorous bench 

testing of emergent technologies to ensure they are fit-for-purpose. For this reason, we conducted an 

experimental case study, to explore the suitability of MEMS technologies, MCUs and the ThingSpeak™ 
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platform, to ensure they met our expectations. We found that low-cost infrequent data collection is 

feasible using the ThingSpeak™, which make the platform suitable for environmental data collection. 

Currently, there are limitations that make the platform unsuitable for physiological monitoring, namely 

rate limiting that curtails data logging to 1Hz which is unsuitable for e.g. spatio-temporal gait analysis. 

Given the current limitations of ThingSpeak™, biomedical engineers invested in MATLAB® will likely 

need to explore sending data from IoT sensors to a cloud storage platform with connections to MATLAB® 

software on a desktop. For those not invested in MATLAB®, it seems more appropriate to explore Python 

for analysis, given that it is comparable to MATLAB® and available on all three major Cloud IoT 

platforms.  

7.3 Experimental Work 

We focused the experiment on gait analysis and the augmentation of environmental data, due to 

emergence of the former as a pragmatic patient monitoring outcome. Our evaluations found that current 

limitations with the ThingSpeak™ platform make the platform suitable for biomedical researchers, due 

to the inability to process high-frequency data. Moreover, whilst the platform claims to run MATLAB® 

code in the Cloud, the two computation engines result in differences in how the code runs, making it 

unusable for complex analyses. This is exacerbated by the fact that ThingSpeak™ has a limited toolbox 

in comparison to desktop-based MATLAB®. 

Our experiment did not focus on one of the fundamental issues of the current state-of-the-art in 

gait monitoring, which is the need to wait until the end of the sampling period before collecting data. 

However, this process could be streamlined by utilising smartphone interactions with Cloud computing 

that could facilitate optimal remote gait data capture. Biomedical engineers could then use MATLAB® 

to collect data from the Cloud and access the data published by the mobile device. However, such 

experimentation would be beyond the scope of the experimental work presented here. 

Whilst ThingSpeak™ was identified as currently being unsuitable for gait assessment, it could be 

a useful and inexpensive way for biomedical engineers to augment environmental data with healthcare 

data to provide more context during habitual assessment. Our experiment highlighted that low-cost 

MEMS technology can provide valid data which can be suitably collected, analysed and visualised via 

ThingSpeak™.  

7.4 Future Research 

The technologies explored here could be used to improve the current workflows within gait analysis. If 

low-cost, open-source devices like the AX3 could be controlled by a networked device, such as an 

ESP32, biomedical engineers could send a message to the device and request a snapshot of data at a 

given time, whilst the device simultaneously collects and stores the longitudinal data locally. Since 

these sensors are inexpensive, it would be possible to create a sensor fusion device that incorporates 

accelerometers (and gyroscopes) with a e.g. Global Positioning System (GPS) to provide location and 

elevation data when patients leave their homes. Moreover, these devices could communicate with smart 

home devices, such as smart lights, cameras, or environmental sensors, to augment and provide context 

to free-living gait assessment.  

8 Conclusion 

Given the pervasiveness of IoT technologies, healthcare will become more reliant on multi-disciplinary 

research teams to break-ground with these disruptive technologies. For this reason, it is important that 

biomedical engineers become familiarised with the core concepts of IoT technologies so that they can 

be better informed of the technological capabilities and the challenges these technologies present. In 

doing so, biomedical engineers will be better positioned to not only lead investigations, but also monitor 

the progress throughout. 
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10 List of Abbreviations 

ADC Analogue-to-Digital Convertor 

ASIC Application-Specific Integrated Circuit 

AWS Amazon Web Services 

BLE Bluetooth Low Energy 

CO2 Carbon Dioxide 

CPU Central Processing Unit  

CSV Comma Separated Values 
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DAC Digital-to-Analogue Convertor 

ECG Electrocardiogram  

EEG Electroencephalogram  

FPGA Field Programmable Gate Arrays  

GB Gigabyte 

GCP Google Cloud Platform 

GPIO General Purpose Input/Output 

GPS Global Positioning System 

HTTP Hyper Text Transfer Protocol  

I/Os Inputs and Outputs  

IoT Internet of Things 

KB Kilobyte 

ksps Kilo-samples per second 

MB Megabyte 

MCU Microcontroller Unit  

MEMS microelectromechanical systems  

MPU Microprocessor Unit 

MQTT Message Queuing Telemetry Transport  

ms Millisecond 

PCB Printed Circuit Board 

PD Parkinson’s disease 

PPG Photoplethysmogram  

PWM Pulse Width Modulation 

SCG Seismocardiogram  

SoC System on Chip 

sps Samples per second 
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