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A Quadruple Diffusion Convolutional Recurrent
Network for Human Motion Prediction

Qianhui Men, Edmond S. L. Ho, Hubert P. H. Shugenior Member, IEEBHoward Leung

Abstract—Recurrent neural network (RNN) has become pop- plausible poses frame by frame, but also maintaining dynamics
ular for human motion prediction thanks to its ability to capture  petween frames.
temporal dependencies. However, it has limited capacity in 14 geal with the above challenges, classical data-driven

modeling the complex spatial relationship in the human skeletal uti dopt babilisti dels to int th
structure. In this work, we present a novel diffusion convolutional solutions adopt probabilislic models to Interpret human mo-

recurrent predictor for spatial and temporal movement fore- tion using Hidden Markov Model [6] or Gaussian process
casting, with multi-step random walks traversing bidirectionally  priors [7]. Such models depend on strong assumptions in
along an adaptive graph to model interdependency among body statistical distributions, which limits the scope of prediction.
joints. In the temporal domain, existing methods rely on a single The emergence of recurrent neural network (RNN) allows
forward predictor with the produced motion de ecting to the .S . . .

drift route, which leads to error accumulations over time. We the prediction of motions with co_mple>_< dynamics [8]-{11],
propose to supplement the forward predictor with a forward as these networks use both motion history and the current
discriminator to alleviate such motion drift in the long term  pose to learn the temporal dependencies. Despite the improved
under adversarial training. The solution is further enhanced by a accuracy, it is still challenging for the RNN-based model to
backward predictor and a backward discriminator to effectively precisely preserve the motion dynamics during prediction.

reduce the error, such that the system can also look into the In thi . tiqate th bl . isti
past to improve the prediction at early frames. The two-way n this paper, we investigate three problems In existing

spatial diffusion convolutions and two-way temporal predictors motion prediction approaches with an RNN-based structure:
together form a quadruple network. Furthermore, we train 1) Mining the spatial interdependency among body joints;
our framework by modeling the velocity from observed motion 2) Reducing temporal discontinuity at early prediction; 3)
dynamics instead of static poses to predict future movements that Preserving motion trend in long-term prediction.

effectively reduces the discontinuity problem at early prediction. Int f mini tial interd d f bi
Our method outperforms the state of the arts on both 3D and n terms of mining spatial interaepenadency, we form a bi-

2D datasets, including the Human3.6M, CMU Motion Capture directional diffusion graph on joints with adaptive connectivity
and Penn Action datasets. The results also show that our method to capture the dependencies within multiple spatial steps.
correctly predicts both high-dynamic and low-dynamic moving Vanilla RNN generates unrealistic movements without spatial
trends with less motion drift. modeling [8], it is usually accompanied by a limb-level aggre-

Index Terms—human motion prediction, body joint dynamics, gation [11]-[13] while ignoring the abundant communications
diffusion convolutions, recurrent neural network, bi-directional  among joints, which ends up with an inaccurate pose estima-
predictor tion. Here, we focus on a more generalized solution to explore
the topology of the graph formed by joints without body part
constraints. By regarding each human joint as a graph node,
we make our graph connectivity to be adaptive with network
HUMAN motion prediction has attracted much attentiomraining to model exible joint combinations without skeletal

in real-world applications where a precise estimatiorestrictions. We then perform graph convolutions [14] along
of movements in future frames are needed for a fast systemulti-step random walks on the adaptive graph topology with
reaction. Examples include predicting pedestrian behaviour$orward and backward diffusion process. Unlike the majority
in autonomous driving [1] and controlling virtual charactersf existing methods that only model graph convolutions with
in computer graphics [2]. In contrast to action recognitioone-way propagation, we integrate both forward and backward
[3]-[5] with fully observed human movements, anticipatingiode information along the random walks, as the movement
motion aims at predicting the future moving trend fromof different joints may also affect each other.
partially observed motion seed, and the challenges mainlyRegarding the temporal discontinuity at early prediction, we
come from the highly temporal uncertainties on complex topselve it by modeling motion velocity to encode continuous
logical structures formed by body joints. The goal of correctlglynamics from the motion seed instead of raw poses. When
predicting motion trend becomes not only spatially estimatirgynthesizing future movements, the discontinuity problem
describes the irregular jump between the given motion and
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Fotivates us to train the velocity in a consistent way, i.e.
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I. INTRODUCTION
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dynamic motion refers to an active motion state with more
A\( ‘ movements and a low-dynamic motion is the opposite (see
\ Fig. 1). We also verify our improvements with ablation studies.
\ To summarize, the main contributions of this paper are:
We propose a bi-directional diffusion graph under adap-
tive joint connectivity to mine the spatial interdependency
for human motion prediction;
We propose to model velocity from the seed motion
dynamics to reduce temporal discontinuity at early pre-
diction meanwhile optimizing the restored poses to avoid
Fig. 1. lllustration of a high-dynamic motion (top) and a low-dynamic motion unexpected generations;
(bottom) in Human3.6M. We propose a bi-directional temporal predictor to reduce
error accumulation from both past and future motion

. . . » dynamics in an adversarial manner.
than the previous pose, to maintain the moving regularities

. . . : . ; The rest of the paper is arranged as follows. Section Il
inherited from its seed motion dynamics. As a result, it shows a . .

- ) : reviews the background research related to our work. Section
better continuity than residual connections. We further propo

a velocity-pose reconstruction loss that optimizes the pOS%FSexplalns the proposed Q-DCRN prediction framework.
a

: . ection IV analyses the experiment results and discusses our
reproduced from the predicted velocity to ensure not to creaie : :
unexpected movements, system. Lastly, Section V concludes this paper.

To preserve the motion trend in long-term prediction,
we propose a bi-directional predictor enhanced by a bi- ) o )
discriminator to adversarially revise the generated forward andVeé TSt review how existing research leams the spatial
backward motion dynamics. From a single forward predict§fructure in sequential-based networks (i.e. Spatial Perception).
[8], [10], [17], prediction errors are rapidly accumulated alor;lée then summarize the background efforts in reducing the ini-
the temporal domain since RNN models fail to keep th¢ | discontinuity (i.e. Temporal [?|scont|nU|ty at Ear!y Prec_ilc-
long-term knowledge in recurrent steps, causing the generatif). and the long-term errors (i.e. Long-term Motion Drift).
motion drifting to a wrong direction. To this end, we trairfAter that, we present different types of parameterizing during
a backward predictor to encode the velocity in reversdffining and their evaluation metrics (i.e. Parameterizations).

timesteps, such that the model recovers the context from
the beginning dynamics that are lost during long sequenBe Spatial Perception
transition. Furthermore, the forward and backward prediCtorSSequentia| learning is the common approach to modeling
together with a bi-directional discriminator will guide thelemporal dynamics of human motion, since body joints are
generated velocity sequence to detect and revise its error fraghly correlated with each other, it is equally important
both past and future dynamics through adversarial training. ® consider the inherent spatial structure for generating a
reduce the model Complexity, we also Ieverage the Similari%turm pose in the meanwhile. Butepg@aL [12] origina”y
between the predictor and discriminator in the same directigﬁjposed a hierarchical encoder based on the kinematic tree
using a weight sharing structure. using fully-connected layers, which outperforms its exper-
In particular, our predictor is formed by embedding thémental counterpart without the structural prior. Similarly,
multi-step diffusion convolutions in the gated recurrent unitvanget al. [11] learned the high-level spatial representations
(GRU) [18] to synchronously learn the spatial-temporal réyy encoding hierarchical features extracted from different body
lationship of motion dynamics under a recurrent sequenassmponents, and predict batch of frames at once to prevent
to-sequence (seq2seq) [19] pipeline. With dual directions ihe mean pose problem. In contrast to [11] and [12], Aksan
both space and time illustrated above, we achieve a quadrugleal. [21] considered skeleton hierarchy at the output stage
diffusion convolutional recurrent network (Q-DCRN) for afor reconstructing controllable poses, and their idea can also
precise motion dynamic prediction. be attached to existing works as extra structure-aware layers
Comparing with the state of the art, we test on Mean Angte further promote motion prediction performance. While in
Error (MAE) as previous motion prediction works [8], [15],these works, the subdivision of joints into groups is a strong
[16]. We also verify the predicted sequence with positiorassumption under the articulated chain, and it overlooks the
based metrics, i.e. Mean Per Joint Position Error (MPJP&)aracteristic joint-level correlations.
and Percentage of Correct Keyjoints (PCK) [20], to better Graph convolutional network (GCN) [22] is an alternative
tell whether a prediction follows the ground truth in poseolution to integrally consider all joints as graph nodes. By
level. Experimental results show that in terms of differemherging the features of a joint with its nearby neighbours,
metrics, our Q-DCRN outperforms the state of the arts dBCN shows potential in modeling human pose under graph
both 2D and 3D human pose datasets. The qualitative stustguctures. When combining with the recurrent framework,
also shows that the proposed method correctly preserves bBBN shows great advantages in analysing graph-based se-
high- and low-dynamic motions in long-term prediction, wherguential data. For example, Seb al. [23] modeled natural
previous work could not handle both cases. Here, a higlanguage represented by the nearest neighbour graph and

II. RELATED WORK
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learned temporal regularities using the RNN pipeline. In parRecurrent-Decoder (ERD) network and a multi-layer Long
ing motion patterns, Sét al. [24] exploited spatial-temporal Short-Term Memory network (LSTM-3LR) to decode motion
graph convolution on dynamic skeleton sequence to boost fr@me by frame. To detect the error, they suggested curriculum
performance of action recognition. In this paper, we adalgarning [33] to increasingly perturb input to mimic the
the method originally for traf c network modeling [25] to distribution of the noisy prediction. The idea of noise schedul-
our motion prediction task with multiple spatial and temporahg is later absorbed in [31] who introduced Structure-RNN
steps to anticipate future movements. Since motion dynam{@&RNN) of mixture units interactions concerning an arti cial
have more complex topology structures and more stochastfatial-temporal graph. Unlike ERD and SRNN, Martinez
temporal variations, as discussed in [26] and [27], using xeelt al. [8] proposed a sampling-based loss to synthesize the
graph connection limits the spatial proximity to the predeisext frame completely from its previous predicted pose. The
ned con guration (i.e. kinematic chain in skeletal structure)method performs less satisfactorily in the long run for its
Therefore, we design our graph connectivity to be adaptive, inwisibility of real motions. Later, a convolutional seq2seq
it is capable of learning the underlying dependencies amongtwork [15] is de ned to identify spatial-temporal motion
joints, and temporally we use a bi-discriminator to rectify theorrelations. However, their learned temporal dependency is
motion following a realistic moving pattern. restricted by a deterministic lter size, causing an intensive

Recent researches also adopt GCN for motion predictiolatg-term dynamic loss in prediction. Recently, Dong and Xu
over innovative graph structures. ket al. [28] constructed a [32] attempted to reduce long-term error by looking back at
multiscale graph structure based on different body componeptgvious frames with spatial attention. Chen et al. [34] avoided
for motion prediction. While this method provides a comprenotion drift by generating early prediction controlled by the
hensive coarse-to- ne modeling, extra knowledge is requiretttion label, while our model is label-agnostic and is also
to group the body into skeleton subsets, which makes it deté#asible for long-term prediction.
ministic and hard to be transferred to other skeletal structuresWith the assistance of generative adversarial network
Moreover, the cross fusion of the multi-level structures in [2§GAN), the generative model is able to produce realistic mo-
also increases the computational complexity, resulting inti@ns with less motion drift. Guét al. [35] rst incorporated a
slower prediction process. Similar to our graph structure, Cufelity and a continuity discriminator with a residual generator
et al. [29] de ned adaptive joint connectivities and achievedo x the prediction process. Later in [16], RNN was equipped
impressive prediction results under a deep GCN framewonkith an extrinsic factor to nd the intended probabilistic space
However, their joint information can only be updated fronof poses with the assist of a bi-directional discriminator. Note
its neighbour joints one step away. In this work, we condutiiat their adversarial training aims to predict probabilistic
diffusion convolutions on joints by integrating informationpriors, while we explore the native ability of a bi-discriminator
several steps away to capture global dependencies, which atseorrect the predicted motion from two temporal directions
provides more insights on the understanding of graph structuirean effective weight-sharing strategy.

) o L In [28], [29], temporal convolution network (TCN) is

B. Temporal Discontinuity at Early Prediction adopted to process motion history. By aggregating high-level

The temporal discontinuity in the beginning is harmful as temporal information, TCN shows an advantage over RNN in
delivers wrong initial information to its following prediction, short-term prediction by generating smoothed poses. However,
which may derive an unexpected motion sequence withtkis advantage becomes weak in the long term especially for
large error rate. In heuristic research for motion predictiohjgh dynamic motions, with the side effect of losing dynamic
a representative residual network [8] was rst proposed tetails. In this paper, we enhance RNN with a velocity-
estimate velocity, which has achieved great success in hsed discriminator to correct the generated moving trend,
ducing initial discontinuity of the generated sequence comvhich eventually performs better in preserving long-term high
pared with previous attempts [30], [31] predicting only statidynamics compared with TCN-based methods [28], [29].
poses. This triggers many sequential-based motion prediction
frameworks [13], [16], [32] introducing residual connection
into their baselines. One step of residual connection medns
that the system outputs velocity from the pose, and adds thérThe method of parameterizing human motion inevitably
velocity back to the previous pose to predict the next stepifects the outcome of nal prediction, such as exploiting
However, the initial error remains notable during predictiojoint positions is more interpretable than joint angles but may
as these methods only encode pose features while unseegeoerate invalid articulations. In most cases, input motion is
the dynamics from the motion seed. This causes inconsistepayameterized as exponential maps, which obtains satisfactory
in preserving the moving trend for prediction, which violatesesults. Pavllicet al. [36] employed quaternion representation
the overall coherence of motion dynamics. In our case, veecompanying with the property of orientation interpolation
model the velocity from the given motion and observe a bettacross frames, and this brings a smooth path in the estimation.

Parameterizations

continuity property. Holdenet al.[2], [37] learned latent feature representations by
) _ operating 3D joint positions, which bene ts multiple applica-
C. Long-term Motion Drift tion elds like motion generation, recovery, and comparison.

The phenomenon of error accumulation during testingyhile training on 3D position suffers from skeleton constraints
is originally observed in [30] who proposed an Encodesuch as bone stretching, in [17] and [21], they modeled
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joint angles and tested on both angle and position spaf
of their generations for a more comprehensive evaluati
under different parameterizations. Following their work, fo
Human3.6M [38] and CMU MoCap datasets [39] we train o
joint angles as they are invariant of bone length constraints g
thus stabilizing the model tting. In the test phase, we compa|
the joint angle as a standard metric used in previous modé
and also joint position to convince of the prediction qualit
The experiment on the Penn Action dataset [40] is carried g
on key joint positions because of its data representation format

in 2D space.
Fig. 2. An example of the dual directional 3-step diffusion graph concentrated
on the “left shoulder” joint. The arrow between graph nodes represent the
I1l. THE QUADRUPLE DIFFUSION CONVOLUTIONAL diffusion direction. The nodes in orange are the activated graph nodes that

RECURRENTNETWORK taking part in the feature fusion at the current step.
Our goal is to holistically learn the spatial-temporal joint

correlations to preserve the motion trend. To achieve this, .\ggnvergent diffusion process separately to simulate upstream

propose an.innovative approach to modeling joiqt dynami hd downstream node communications. This is because under
in the velocity eld under a graph-based sequential networ conventional directed graph, the diffusion will only apply

ar(\:lcnecr:tl:re;(mlllt& q[EaI d:r%(fu?nnsdmnti)t?t: Sa?jcfnf:ng tlmet.h along a single direction from the root node to the child node
 rst expiain the proule € nition a OdUCE TNE,\ithin several steps [44], i.e. a divergence random path. Here,
notation that will be used throughout our framework. |

eneral. a human motion sequence consists of consecunr\]/e extra convergent path is to complement the divergence in
9 ' >€q . >CUl¥Ger to model the two-way information delivery, such that the
poses, and each of them is represented by multiple join

. . o TR iild node can also in uence its root node.
We assume that the interaction within two joints is directe e
. . L The diffusion processes are conducted on a novel graph
and heterogeneous, i.e. the inuence from jomto joint q ; L o -
structure with adaptive joint connectivity. In existing graph-

is different fromq to p, which better models the effect of the
body hierarchicaﬁ strEcture [41]. Taking “arm swing” as an exc_entered networks [43], [45], [46], the topology structure of
' raph re ected by the node connectivify is unweighted and

am_ple, shqulder dynam|cs largely determine hand movemergtrsﬂ cially de ned. In diffusion convolution, [43] provided
while the in uence will be smaller from hand to shoulder.

However, this diversity cannot be modeled by an undirectéd general case uqder an unweighted and undirected graph
or node classication tasks, where the node connections

graph W_here two c_apposne directions are weighted equala/.e with equal importance. Their model is expected to learn
Under this observation, a human pose can be constructed uny

a directed grapl® = (V: E), whereV is the vertex set with ﬁugrdominant graph structure that can discriminate against a
K nodes igej\F;j _ K ,and’E is the edge setd 2 R K certain type of cluster, regardless of the connectivity strengths

is the aranh adiacency matrix denoting the spatial rOXimipetween nodes. However, in motion prediction, the unweighted
grap J Y g P b Q{ructure cannot quantify the joint dependency, which may

between nodes. Herd, is not symmetric in order to represenﬁ d bi L h h d
the inequality in the two-way connectivity. Given a pre x of ead to am Iguous Joint movemgnt;. Eurt ermore, t € prede-
ned topology in human modeling indicates only the joints
connected by bones are communicative, which ignores the
abundant collaborative information among latent connections
E’, . For example, the connection between two feet is important
as it symbolizes the gait pattern during locomotion, but it
backward difference xi = x; x; 1 denotes the motion yvill not be highlighted undgr the traditional s_etup. Therefore,
velocity at timei. msteqd _of manua_llly de nm_gA tha_lt restricting the graph
descriptiveness within the kinematic tree structure, weAset
as learnable during network training to reveal the inherent
A. Bi-directional Spatial Formation connection strengths among joints acquired by the real motion
We construct bi-directional diffusion convolutions on armlata. Here A is randomly initialized following a standard
adaptive graph structure to discover the spatial interdepeiform distribution within the rang¢o; 1].
dency among joints. Diffusion convolutions [42], [43] ag- With the adaptive graph structure, we then de ne a two-way
gregate messages passing within high-order neighbours diffusion convolution with polynomial recurrences to mine the
formulating the node communication as a diffusion processterdependency of joints within multiple spatial steps. More
with multiple steps, comparing to standard GCN that onlgpeci cally, in a diffusion procgss [47] with divergent random
considers local node correlations. Since the joint dynamipaths, a weighted combination E:o 2(D A)" is used to
can be in uenced by the joints from several spatial steps awagtimate the graph stationary distributior2 RK K with a
and vice versa, such as the movements of the joints in legsncation at stegN, and , is the nth factorization. This
and arms always affecting each other to maintain the bogglynomial quanti es the effect of root nodes on their child
balance, we regard the spatial dynamics ow as a divergent anddes withinN spatial steps spreading from the upstream.

de ned on graphG at timei, the purpose of motion prediction
is to estimate the motion post X (1+1). 7. Since we operate
on the velocity domain, our task is characterized as estimati
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Fig. 3. The proposed Q-DCRN framework (unrolled version) with the outline of dual directional processes in both space and time. The blue and green boxes
denote the GRU cells with diffusion graphs in forward and backward chronological directions, respectively. The skeleton in red and blue represents the ground
truth posture, and the one in green and purple represents prediction. We attach two skeletons to represent the velocity of two adjacent frames. Inside the
dotted line is the discriminator structure for adversarial trainfigandx; are used to indicate forward and backward predicted poses. Parameters of boxes

in the same color are shared during training.

D 'A is the normalized adjacency matrix, whebe is a diffusion stepN is empirical (see Fig. 11), as more steps will
degree matrix with its diagonal elements representing the roevne the diffusion process with the random walks traversing
summation of the absolut&. The transpos@’ describes the more often along the joints in a close relationship, on the other
spatial af nity for downstream diffusion process, which can bband, it yields a more complicated model.

used to capture the impact of child nodes on their ascendant

nodes. The diffusion convolution operation with dual randog, gj-directional Temporal Modeling

walks (denoted asg) is de ned by: As observed from the bi-directional computation for time

X Lnvn L ATn series [48], modeling temporal sequences in the forward and
Hi 6 = ((Dy "A)'He un +#(Dg"A7)"He an); (1) packward directions equips the system with rich contextual
n=0 information from both past and future conditions. This is
whereH; 2 RK F is the input features of the current step extremely useful for human motion prediction who will also
with F denoting the latent feature dimensionjs the weights borrow the information from the future dynamics to revise
of the convolution Iter to be trained and .., 2 RF P with promptly in order to keep the long-term motion trend.
P representing the dimension of output featuf@g. and D¢ Under a seq2seq recurrent architecture, we propose a bi-
are upstream and downstream diagonal matrices normaliziigectional predictor to encode the forward and backward
divergence and convergence Gn respectively. Whem = 0, motion dynamics. In the traditional single-predictor setup that
the two terms in Eq. (1) are merged and no diffusion ignly considers the forward direction [8], long-term movements
conducted. The dual directional diffusion procedure of owre not guaranteed because a current pose only has access
spatial structure is illustrated in Fig. 2. to the dynamics in the past and drift itself into a wrong
To facilitate the re nement of the diffusion procedure, herenoving direction. To alleviate this motion drift, we propose a
we use arN -step diffusion along the two-way random walksiovel two-way predictor to make the system aware of its own
on the spatial graph of human dynamics. Diffusion with mulgenerated dynamics from the past and the future.
tiple delivery steps gets access to the combination of differentFurthermore, we also propose an adversarial bi-
levels of impact. A lower-orden will only grasp the interac- discriminator to reinforce the predictor such that it can adjust
tions between a few nodes, which is effective in describing tlits own forward and backward generation synchronously
movements with a small body scope such as “waving handiccording to the real motion dynamics. From previous work,
A higher-ordem could show spatial dependencies among a sehen a single directional discriminator is used [35], the
of nodes, which is valuable in characterizing global physicidng-term errors are easily accumulated due to the dif culty
coordination like “walking” and “jumping”. The choice of totalin correcting small mistakes at early prediction. This is
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because the recurrent temporal modeling tends to focus
more on the latest inputs. The function of the backward
discriminator is to help the predictor correct the beginning
predicted frames to reduce error accumulation.
We also design a model compression method that could
ef ciently communicate between the bi-predictor and the bi-
discriminator since they both need to encode the motion
dynamics, i.e. we share the structures and weights between
them within the same directions. This helps the common
component to quickly converge to the optimal motion manifold
and prevents the complicated GAN training from scratch.
The bi-directions of both spatial diffusion and temporal
predictor together form a quadruple diffusion convolutionglig 4. justration of the diffusion convolutional structure in the update
recurrent network (Q-DCRN) as shown in Fig. 3. In theate of GRU. The operator], , and denote concatenation, matrix

framework, we consider the sampling-based inference (i_r@L_JItipIication, and matrix addition, respectivelyy., Wé;n are the upstream
and downstream convolution kernels for the diffusion stefNote that we

.fe.edirjg.in it§ generation per step) in the bi-predict-or such t y have a single kernelg whenn = 0. The functionf denotes activation
it is bi-directional knowledgeable of its own dynamics, and the for z).

teacher forcing learning (i.e. feeding in the ground truth per
step) in the bi-discriminator such that it revises the predictor o o
with real dynamics. C. Velocity-informed Training
Here, we elaborate the details of our bi-predictor and bi- Given the quadruple prediction system, we now explain how
discriminator constructions. We formalize the forward predide train the system with velocity from the observed motion
tor (i.e. BiS-DCRN) using a diffusion convolutional GRU (de-dynamics to keep continuity at early prediction, and how we
noted asGRU ) as the basic recurrent unit. As an alternativeptimize the model to ensure a plausible generated sequence
to LSTM [49], GRU [18] has comparable performance witlin terms of the intra-frame poses and the inter-frame dynamics
more portable gate mechanisms. Intuitively, we embed the dudth the co-operation of two proposed losses.
directional diffusion convolution (Eg. (1)) into the GRU cell To reduce the initial frame jump, we propose a training
as a substitute for the matrix multiplication inside each gatstrategy to uniformly interpret the motion velocity from motion
By absorbing current motion velocitly x; and the previous observation to prediction. The velocity acts as an explicit indi-
hidden stateh; ; as input, a one-step diffusion convolutioncator to measure the body moving trend [50]. Compared with
transition based on GRU can then be formatted as raw poses, predicting velocity mitigates the loss of temporal
_ ) . dynamics over time, which prevents changeless poses or so-
he = GRU o (Ir X he alw); @) called “dying out”. With smaller magnitudes of input values,
wherew is the convolution kernel set. The diffusion convovelocities also assist to regularize the network regression with
lution ¢ is conducted on the update gate the reset gate good generalization ability. However, the general operation
ri, and the candidate of GRU, and we illustrate its detailedto include velocity is to use the residual architecture [8],
operations irg; as an example in Fig. 4. The same operatiorf$3], [16] that outputs the velocity from its observed pose
are conducted far;. In ¢;, theh; 1 in the structure is replaced sequence, which leads to the inconsistent dynamics between
by the dot product; h; 1, andf becomeganh The hidden the prediction and the seed moving trend. To avoid this, we
stateh; = zz hy 1+(1 z) c follows the standard GRU directly learn our system from the observed velocity to predict
architecture. the future velocity, and this preserves the initial continuity in
Next, we encode the pre x of motion dynamics framéhe generated temporal dynamics.
by frame. The encoded hidden state along with the lastFor the optimization of our framework, we wish the gen-
frame observation is utilized to activate the decoder. Thegated motion produces not only a plausible pose at each
entire predictor is under a seq2seq backbone. After translatingme but also an overall right moving dynamics. This is
the input motion velocity into high-dimensional expressiobecause a generated motion can be intuitively measured under
underGRU , the output will go through a linear projectionl) the consecutive pose set and 2) the temporal velocity
converted back to velocity space. The decoder will decogariation, where the second measurement is usually overlooked
the predictive velocities under a sampling-based mechanismbgsexisting research [9], [21], [51].
in [8]. We follow the same steps for the backward direction by To this end, we propose a velocity-pose reconstruction
predicting the backward velocity. Our discriminator consistess to penalize the reproduced poses from velocity, together
of a forward and a backward diffusion convolutional GRWvith a general adversarial loss to regularize the dynamics on
layer which is shared from the forward and the backwanglocity space. The whole network will optimize alternatively
predictor, respectively. The bi-discriminator encodes the gemecording to these two constraints and search the optimal
erated velocity frame by frame in two directions. The nabolution for the predicted motion.
forward and backward states are concatenated by a lineal) The Velocity-Pose Reconstruction Lodse propose a
layer K P 2! 1) with sigmoid activation to output novel velocity-pose reconstruction loss to measure the gener-
the probability as shown in the lower part of Fig. 3. ated velocity in pose domain. The “velocity-pose” is de ned
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as deriving the current pose based on the velocity over time IV. EXPERIMENTS

and the initial pose. Speci cally, for each temporal direction, . . .

we rst compute the pose displacement by accumulating theIn this section, we valldate_the proposed Q_DCRN on
- k%%th short and long-term predictions. The experiments are

to generate the current pose. The “reconstruction loss” denogggducted on various benchmark datasets commonly useq n

the mean squared error between the ground-truth poses Rtlon prediction tasks. We then compare the results with

the generated pose sequence. Since similar velocity chatl & state of the arts and justify the effectiveness of different

can derive completely different pose sequences, it is ris&ymponents of our model.

to optimize the predictor on the velocity domain [17] when

the l_"network is blind to the ger_1erated poses. Therefore, We patasets

rebuild the poses from the predicted velocity frame by frame, _ )

and minimize the loss in the pose level, so that the generated) Human3.6M:We rst experiment on Human3.6M [38],

motion is controllable. which is a large and canonical 3D human pose dataset for
Practically, the bi-predictor will output the joint velocities,motion analysis. Human3.6M captures 7 actors performing 15

and we then reduce the cost based on the iteratively deriivities with diverse motion dynamics, such as periodic ac-

pose sequence according to the composed objective functit9fiS with moving regularities like “walking” and “eating”, and

with two independent terms calculating forward and backwafiPeriodic action with intensive variations like “posing” and
losses separately: “walking dog”. In each frame, there are 32 joints represented

. by 3D angles in the format of the exponential map. As in [8],
L _ i( X kxR K2+ X Kx % k) global translation and rotation are discarded together with
recons T _ oA I the joint angles in constant standard deviations. The motion
=t 'fl sequence is downsized to 25 frames per second. We test on
subject #5 while training on the others, and set 50 frames as
motion seeds and 25 frames for inference following previous
Xt Tyt I experimental setup [8], [15].
+ X (XT a1 F % 0) z 2) CMUI MoCap: Following [15], we conduct the sec-
- o g ond experiment on the CMU Motion Capture dataset (CMU
. =i 3) MoCap) [39]. The CMU MoCap database captures 5 main
activities produced by 144 actors, which serves over 2000
whereL recons  denotes the reconstruction loss conducted @Bcordings. This dataset is very challenging with complex
the bi-directional pose sequences. sports actions such as “soccer” and “basketball”. The skeleton
2) The Velocity-based Adversarial Loséfe then show the contains 38 joints in each 3D pose. We employ the same
details of how we form our adversarial loss in the veloCityriteria of data cleaning as [15]. Human interactions and
domain. With the bi-discriminator encoding the velocity trendnotions with multiple topics are removed as well as the motion
the adversarial loss will guide the generated velocities in tv&tegories with less than 6 trials. The nal set contains 8
directions to follow the ground truth moving dynamics. ~ motion types. We conduct the same pre-processing steps as
After minimizing the velocity-pose reconstruction loss (i.eqyman3.6M.
L recons ), the optimized predictor weights will be reused in 3) penn Action DatasetWe also experiment on the Penn
the discriminator (den_oted d3) within the same d_irection 10 Action dataset [40] to test the robustness of our approach
be further updated with respect to the adversarial 08§, towards 2D pose forecasting. The Penn Action dataset consists
which is computed by: of 2326 trials of human action annotated by 13 joints in
Ladv = Ex logD([r Xt+1: 757 X041 JjWr 5 Wp; Wo) @ the 2|D ptose. It contair;‘s 15 Qiﬁi.rengci[\egpriﬁlsﬁlvitgzc]iivtehrse
) L ) complexity range as shown in Fig. 5. As in , , the
+*Eelog(t D(Ir Rusa: 73 X ven e s Wi wo)); dataset is split into 1258 samples for training and 1068 for

wherewq represents the kernel parameters for the linear lay@ssting. Following [17], we input the initial velocity and predict
wi andw, are the shared forward and backward parameteffe next 16 frames of poses.

from the bi-predictor respectively, amdX 1 .t+1 is the reverse
of velocity sequence Xi.1. 1 in time order. The adversarial

2
= — X (Xt + r R‘io)
i=t+l %= t+1 2

training follows the minimax optimization: B. Baselines and Experimental Settings
min max L aqy : (5) 1) Baselines: In this work, three action-speci c models
Wt Wt ;Wo

are used for comparison, which are RNN-based models:
By reusing the learned weights; from D, the forward ERD [30], LSTM-3LR [30] and SRNN [31]. The action-
predictor can quickly converge to its target distribution. Notgpeci ¢ model aims to train an individual prediction model
that we do not updatey, in this step since we want to regulatefor each action. The more general and more challenging
the forward generation as our nal prediction rather than thmulti-label algorithm aims to train a universe model for all
backward generation. The sharing mechanism will not ongction categories. Our approach follows the intention of multi-
keep the prediction consistent with the ground truth motidabel algorithms. We then compare with the state-of-the-art
but also help save computational memory. multi-label algorithms related to our network architecture
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the generated poses on the protocol of MPJPE as suggested
by [38], [52]. The MPJPE is to calculate the deviation of
estimated joint points by converting the relative angles to
absolute joint coordinates using forward kinematics.
Percentage of Correct Keypoint (PCK)To be consistent
with TP-RNN [17] and 3D-PFNet [52], we also test PCK
on Human3.6M and Penn Action datasets. The intention of
PCK is to count the proportion of predicted joints detected
within a radius of prede ned threshold (in meters) around
(a) Baseball swing the objective joints, which is commonly employed in 2D or
3D pose estimation [20], [54]-[56].
3) Implementation Details:We express motion velocity
r x; as a graph signal oR¥ and utilize 64 units® = 64)
in the GRU cell under graph convolution. The maximum
step for spatial diffusiorN is set to 3 (see detailed analysis
in Section IV-G). To stabilize the optimization process, we
employ a scheduled training strategy to balance the predictor
and discriminator. We optimize two steps of Eq. (3) followed
by one step of adversarial training. The proposed model is
(b) Jump rope trained using gradient descent optimizer with a regressive
Fig. 5. Example frames of the Penn Action dataset. The upper rows Iearning rate of 0.05 On. Human3.6M and CMU MoCap,_and
sanlwpléd from RGB action videos and the bottoms ére the correspond 3)05 on the Penn A_Ct'on ‘?'atffiset- We set the batch _S'Ze to
extracted 2D joint positions. 16, and perform gradient clipping undernorm. The entire
network is implemented using the Tensor ow backend.

under two types of baselines, which are RNN or CNN- .
based models: RRNN [8], 3D-PFNet [10], RMA [32], Tp-C. Comparisons on the Human3.6M Dataset
RNN [17], VGRU [10], QuaterNet [36], BIHMP-GAN [16], We rst compare with the state-of-the-art RNN or CNN-
and ConvSeq2seq [15]; GCN-based models: LDR [29] amgsed methods and report their MAE over future timestamps
DMGNN [28]. To demonstrate the effectiveness of our velo@0ms, 160ms, 320ms, 400ms (for short-term prediction) and
ity modeling method, we also present the prediction results fop00ms (for long-term prediction) on Human3.6M. The pre-
modeling velocity consistently (denoted as VRNN) to compaggiction accuracy comparisons are presented in Table |. We
with RRNN which models posture sequence with residugigni cantly outperform ERD, LSTM-3LR, and SRNN on four
connections. actions “walking”, “eating”, “smoking”, and “discussion” that

2) Evaluation Metrics:We rst evaluate our method on theare usually compared in previous works. Generally, VRNN
standard metric, i.e. the Mean Angle Error (MAE) calculatedutperforms RRNN even at the primary prediction (80ms),
on the Euler angle. Besides the common measurement, wisich shows the advantage of our velocity modeling manner
also adopt the positional metrics that cover the Mean Pever residual connections to improve temporal continuity at
Joint Position Error (MPJPE) and the Percentage of Corregrly prediction. The visualization results on keeping the
Keypoint (PCK) to validate the predictive ability of modelscontinuity can be found in our supplementary video. In Table I,
Previous literature of motion prediction heavily relies oQ-DCRN outperforms the baseline methods on both short and
measuring the Euler angle distance and sampling the predicietg-term prediction, and the error accumulates slower com-
poses qualitatively. However, merely using the Euler angjmred with the other methods along the sampled timestamps.
as quantitative criteria is unconvincing due to the non-uniqueWe also qualitatively verify RRNN, ConvSeq2seq, and
solutions for a feasible pose [53]. Hence, we also measure thé Q-DCRN prediction results towards commonly examined
generated poses using positional metrics as complementargctions on Human3.6M with two high-dynamic actions “walk-

Mean Angle Error (MAE) Following the standard evalu-ing” and “eating”, and two low-dynamic actions “smoking”
ation protocol adopted in [8], [15], [16], [32], we rst use theand “discussion” (see Fig. 6). We observe that Q-DCRN better
mean error of Euler angle as the evaluation metric for a faimulates the ground truth motion trends compared to the
comparison among the baselines and the proposed mettmitier two methods. For the high-dynamic “walking” action
The prediction error is calculated from the average of Eular Fig. 6(a), all three methods show reliable movements as
angle difference per joint between prediction and referenabe periodic pattern is easy to capture. We further observe
Note that the joint angles are represented by local orientatichat Q-DCRN gives a precise prediction of double arms
based on the kinematic chain in the human skeleton. staying behind the legs while its competitors fail to do so,

Mean Per Joint Position Error (MPJPE) As a common which shows the effectiveness of globally modeling joint
problem in Euler angle representation [53], similar posekependencies along the spatial graph. For the action “eating”
may deduce completely different joint angle sets. To avoid Fig. 6(b), there is an interesting investigation that both
such biased veri cation in the MAE metric, we also evaluat®RNN and ConvSeq2seq move the active arm to its opposite
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TABLE |
EVALUATIONS ON THE STATE-OF-THE-ART RNN OR CNN-BASED APPROACHES AT SHORTTERM AND LONG-TERM MAE OF HUMAN 3.6 M DATASET.
UNDERLINED VALUES REPRESENT THE LOWER ERROR BETWEERRNN AND VRNN. BOLD VALUES REPRESENT THE LOWEST ERROR AMONG ALL

METHODS.

Walking Eating Smoking Discussion
Time (milliseconds) 80 160 320 400 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000
ERD [30] 093 118 159 178 N/A | 127 145 166 180 N/A | 166 195 235 242 N/A | 227 247 268 276 NA
LSTM-3LR [30] 0.77 1.00 129 147 N/A | 089 109 135 146 N/A | 134 165 204 216 NA | 188 212 225 223 NA
SRNN [31] 081 094 116 1.30 N/A | 097 114 135 146 N/A 145 168 194 2.08 N/A 122 149 183 193 N/A
RRNN [8] 028 050 074 081 112|024 042 069 085 144|034 062 1.03 115 201|033 072 1.04 1.11 192
VRNN (Ours) 026 045 0.63 0.70 | 086 | 021 034 055 0.69| 1.21 | 026 048 0.89 0.90| 1.67 | 030 065 098 1.07| 1.77
ConvSeq2seq [15] 0.28 048 068 0.J71.08 | 0.21 0.35 057 0.72 1.27 | 0.27 049 093 091 168 | 0.31 0.65 091 1.02 2.01
RMA [32] 0.28 045 062 068 079 | 021 034 053 068 1.16 | 0.26 050 096 093 1.71 | 029 0.64 090 09§ 1.72
TP-RNN [17] 025 041 058 065 077 | 020 0.33 053 067 | 1.14 | 026 047 0.88 090 166 | 0.30 066 0.96 1.04 1.74
VGRU [10] 0.34 047 064 072 N/A | 027 040 064 079 N/A | 036 061 085 0.92| N/A | 046 082 095 121 N/A
QuaterNet [36] 0.21 034 056 0.62| N/A | 020 035 058 0.70 N/A | 0.25 047 093 090 N/A | 0.26 0.60 0.85 0.93 N/A
BiHMP-GAN [16] 033 052 063 067 085|020 033 054 0.70 1.20| 026 050 091 0.8f 111 | 033 0.65 091 0.95 1.77
Q-DCRN (Ours) 020 036 056 060| 069 | 018 032 056 067 | 1.18 | 022 043 087 0.84| 158 | 032 0.69 098 1.04 1.56

Directions Greeting Phoning Posing
Time (milliseconds) 80 160 320 400 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000
RRNN [8] 043 069 084 094 149|053 088 134 153 211|060 114 156 172 198 | 040 0.76 141 1.68| 2.55
VRNN (Ours) 0.37 058 077 0.86| 1.37 | 050 084 127 145| 177 | 057 111 148 1.63| 1.71 | 044 083 141 1.65| 251
ConvSeq2seq [15] 039 060 0.80 091145 | 051 082 121 138 1.72 | 059 113 151 165 181 | 029 0.60 112 1.37| 2.65
RMA [32] 040 061 0.77 086 142 | 052 086 126 143 179 | 059 111 147 159 173|026 054 114 141| 243
TP-RNN [17] 038 059 075 083 1.38| 051 086 127 144 181 | 057 108 144 159 168 | 042 076 129 154 247
Q-DCRN (Ours) 028 045 062 070 131|038 067 111 132 1.78| 053 100 139 156 160 | 030 066 128 152 2.26

Purchases Sitting Sitting Down Taking Photo
Time (milliseconds) 80 160 320 400 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000
RRNN [8] 059 083 116 1.24] 235|047 077 125 149 215|054 1.03 158 181 281|033 0.64 098 1.179 1.54
VRNN (Ours) 060 083 113 121|232 | 040 064 104 118| 168 | 043 080 1.17 1.32] 198 | 027 054 085 0.98 | 1.36
ConvSeq2seq [15] 063 091 119 129252 039 061 102 11§ 167 | 041 0.78 1.16 131 206 | 0.23 049 088 1.0 1.40
RMA [32] 059 084 114 119 233 | 040 064 104 122 171|041 0.77 114 129 2.07 | 027 052 080 092 1.21
TP-RNN [17] 059 082 112 1.18 228 | 041 066 1.07 122 174|041 079 113 127 193|026 051 0.80 095 1.35
Q-DCRN (Ours) 046 068 108 113 216|029 051 088 1.05 163|037 073 103 115 195|018 038 064 078 1.17

Waiting Walking Dog Walking Together Average
Time (milliseconds) 80 160 320 400 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000 | 80 160 320 400| 1000
RRNN [8] 034 067 1.15 135 227 | 053 089 121 135]| 1.94 | 028 056 0.79 0.84 136 | 042 074 112 126 1.94
VRNN (Ours) 031 061 111 132| 246 | 054 095 129 145 203 | 024 051 072 0.75| 1.29 | 0.38 0.68 1.02 1.14| 1.73
ConvSeq2seq [15] 030 0.62 1.09 130250 | 059 1.00 132 144 192 | 027 052 071 0.74 128 | 0.38 0.68 101 113 1.77
RMA [32] 033 065 1.12 130 228 | 053 0.87 116 1.33 2.00| 0.28 0.52 068 0.714 1.31| 037 0.66 098 1.10 1.71
TP-RNN [17] 030 060 109 131 246 | 053 093 124 138 198 | 023 047 067 0.7] 1.28 | 037 066 099 1.11 1.71
Q-DCRN (Ours) 0.26 056 099 1.18 233|046 079 110 120 1.82| 020 040 057 0.62 120 | 0.31 057 0.90 1.0 1.60

direction compared with ground truth. This is because the erquaitterns that are easily captured. We also report the long-term
propagation issues resulted in large posture deviation in lofg€K accuracy in Fig. 7(b), and Q-DCRN already succeeds
term motion prediction. We can see that through narrowinqnder a small threshold (0.025), which means more predicted
the deviation at the early phase, Q-DCRN is able to maintgimints are falling within the neighbour region of real joints in
the right motion trend inherited from its seed sequence. long-term prediction. Note that comparing with other methods,

Other than preserving the high-dynamic trend, we also shd§¢ achieve the best performance (the lowest MPJPE and the

a better prediction in low-dynamic motions. For “smoking” irnighest PCK accuracies) on these actions. This aligns with the

ysualization in Fig. 6 that we are the closest to the ground

Fig. 6(c), RRNN performs an unexpected action of puttin ) - o o
down the leg. This is because the residual connections gch poses, which also indicates that positional evaluation is
more reliable than Euler angle-based metric.

RRNN force the decoded prediction to move, which makes
dif cult to synthesize low-dynamic or motionless sequences. We also compare with the recent GCN-based prediction
While Q-DCRN could keep the static trend with the inpuinethods in Table Il with 320ms, 400ms (short term) and
velocity closes to zero. For “discussion” in Fig. 6(d), botmore timesteps 520ms, 640ms, 760ms, 880ms, 1000ms (long
RRNN and ConvSeg2seq fail to catch the pace of the aterm). In the short term, both LDR and DMGNN produce
movements, which results in wrong predictions for the arietter numerical results as their employing of TCN generates
direction detected in the long term. Such observations suggestoothed movements from motion history with lower errors
that Q-DCRN can handle both high-dynamic and low-dynamat the beginning of prediction. However, the smoothness may
motions precisely following the real poses. Please refer somehow degrade long-term high dynamic motions such as
the supplementary video for more qualitative comparisons twalking” and “walking together”. We found that Q-DCRN
high-dynamic and low-dynamic predictions. performs better in such motions by preserving the long-term

In “discussion”, we also notice a better visualization resu?ityna'_ﬂniC trend. When c_omparing with DMGNN, this adve_m-
(Fig. 6(d)) but a worse MAE (“discussion” in Table ). Totage is more obvious with over half of the lower errors laying

further investigate the inconsistency between the visualizatibhUr @Pproach. In practice, those high-dynamic motions are

and quantitative results, we test the MPJPE on the four actiofffy common in our daily life and may also indicate some
and their average in Fig. 7(a). For all methods, “walking angerous situations such as walking across the road, thus are

and “eating” on average have lower MPJPE than “smokinéﬂghly valued in motion prediction tasks [2], [11], [57].
and “discussion” because these actions contain more repetitivéVe further give two examples in Fig. 8 to show the differ-
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(a) Walking (b) Eating

(c) Smoking (d) Discussion

Fig. 6. Qualitative comparisons with the state-of-the-art RNN or CNN-based approaches on the Human3.6M dataset. For each action, the top sequence refers
to the ground truth. The second, third and bottom sequences correspond to RRNN, ConvSeqg2seq, and our Q-DCRN, respectively. The initial four poses are
the seed frames, followed by one second of prediction.

(CY

(b)

Fig. 7. Evaluations on the two positional metrics of Human3.6M with (a) MP8RErves along the prediction timeline and (b) PCKecurves at 1000ms
under different thresholds. # the lower the bettef, the higher the better.

ences in the generated high-dynamic sequences. In Fig. 8[&),Comparisons on the CMU MoCap Dataset
we observe that DMGNN tends to lose the active walking trend
with an over-smoothed prediction. While our result still keeps The MAE results on CMU MoCap are shown in Table Il
the long-term walking cycle with relatively large steps similaand the average comparisons across all 8 motion categories
to the ground truth. Figure 8(b) is a “walking dog” actiorare given in Table IV. We achieve a comparable result on
with lots of movements in arms and legs. For DMGNN, the®€MU MoCap with most of the best predictions falling in our
prediction is losing the moving dynamics by generating me@pproaches. We observe from the angular result that Q-DCRN
poses and eventually results in unnatural poses. In contraerks well especially on actions with legible intentions or
our prediction still preserves the active movements such egnsistent changes such as “sitting” or “basketball signals”,
raising the right hand to keep balance. but shows higher errors on the actions with large accelerations
like “jumping” or “running”. From the average performance in
Table IV, our method has closer predictions overall to ground
truth than the baselines towards the frequently compared angle
distance.
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TABLE I
EVALUATIONS ON THE STATE-OF-THE-ART GCN-BASED APPROACHES AT SHORTTERM AND LONG-TERM MAE OF HUMAN 3.6 M DATASET.
Walking Eating Smoking Discussion
Time (milliseconds) 320 400/ 520 640 760 880 1000 320 400 | 520 640 760 880 100Q 320 400 | 520 640 760 880 100Q 320 400 | 520 640 760 880 1000
LDR [29] 046 057 NNA N/A NA NA 071 [ 049 0.64| NNA NA NA NA 097 | 079 082 NJA NA NA NA 1.08 | 0.72 0.81| NNA N/A NA NA 0.84
DMGNN [28] 049 058| 067 071 0.74 0.70 0.74 049 059| 077 091 099 1.06 114/ 081 0.77| 078 082 096 1.24 148 | 092 099|120 134 139 135 140
Q-DCRN (Ours) 0.56 0.60 066 070 069 067 0.69 056 067|079 085 089 105 118 | 087 0.84| 089 095 110 135 15§ 098 1.04| 125 141 151 158 1.56
Directions Greeting Phoning Posing
Time (milliseconds) 320 400/ 520 640 760 880 100Q 320 400 | 520 640 760 880 100Q 320 400 | 520 640 760 880 100Q 320 400 | 520 640 760 880 1000
LDR [29] 0.59 0.68] N/A° N/A NA NA 0.95 | 0.87 098] NNA  N/A NA NA 133 | 063 0.78] NNA N/A NA NA 133|091 107 NNA NA NA NA 1.34
DMGNN [28] 0.65 0.71| 1.00 1.09 123 134 140 094 112|157 151 164 182 180|129 143|122 139 152 161 162 1.06 1.34| 146 138 152 176 1.96
Q-DCRN (Ours) 062 0.70 080 094 114 128 131 | 111 132|169 163 169 179 178 | 139 156| 1.27 134 147 155 160 | 1.28 152| 1.71 164 178 207 2.26
Purchases Sitting Sitting Down Taking Photo
Time (milliseconds) 320 400/ 520 640 760 880 100Q 320 400 | 520 640 760 880 100Q 320 400 | 520 640 760 880 100Q 320 400 | 520 640 760 880 1000
LDR [29] 0.88 1.08] N/A N/A N/A NA 1491069 1.01| NNA NA NA NA 138 | 087 093] NNA N/A NA NA 142|054 071 NA NA NA NA 1.20
DMGNN [28] 1.05 1.14| 157 171 186 220 242076 097|121 129 146 159 163 093 105|118 137 151 159 168 | 058 0.71| 091 099 110 121 1.32
Q-DCRN (Ours) 1.08 113 134 141 156 193 216 | 088 105|119 127 144 156 163 | 103 115|129 152 169 183 19§ 064 0.78| 089 09 105 110 1.17
Waiting Walking Dog Walking Together
Time (milliseconds) 320 400/ 520 640 760 880 100Q 320 400 | 520 640 760 880 100Q 320 400 | 520 640 760 880 1000
LDR 29] 084 115 NJ/A N/A NA NA 121093 114 NNA NA NA NA 138 | 049 054 NJA NA NA NA 1.38
DMGNN [28] 0.88 110| 1.33 158 1.88 211 217 | 116 1.34| 185 197 216 218 222 050 057|0.82 0.96 107 114 147
Q-DCRN (Ours) 099 118 146 173 202 225 233 110 120|145 150 171 177 182 | 057 0.62| 067 075 0.80 0.83 1.20
TABLE Il
EVALUATIONS ON MAE OoF CMU MOCAP DATASET.
Basketball Basketball Signal Directing Trafc Jumping
Time (milliseconds) 80 160 320 400 1000 | 80 160 320 400/ 1000 | 80 160 320 400/ 1000 | 80 160 320 400/ 1000
RRNN [8] 050 0.80 127 14§ 1.78| 041 076 132 154 215]| 0.33 059 0.93 1.10| 205 | 056 0.88 1.77 2.02 2.40
VRNN (Ours) 0.44 069 110 1.23| 177|017 033 062 0.75| 137 | 030 0.60 0.98 1.12| 227 | 0.38 0.66 150 1.73| 2.11
ConvSeq2seq [15] 039 066 114 131218 034 064 115 135 191 | 025 060 092 1.0] 2.05 | 041 067 145 1.64 2.08
BiHMP-GAN [16] 037 062 101 1.11| 1.83| 032 056 1.01 118 1.88 | 025 051 085 096/ 1.95| 039 057 131 150 1.93
Q-DCRN (Ours) 0.34 055 1.00 1.19| 234 | 009 018 035 044 092 | 026 041 076 092 2.07 | 0.39 068 145 159 1.72
Running Soccer Walking Wash Window
Time (milliseconds) 80 160 320 400 1000 | 80 160 320 400/ 1000| 80 160 320 400/ 1000 | 80 160 320 400/ 1000
RRNN [8] 0.33 050 0.66 0.75| 1.00 | 029 051 088 099 1.72 | 0.35 0.47 060 065| 0.88 | 0.30 046 0.72 0.91] 1.36
VRNN (Ours) 035 066 1.08 120 0.89 | 021 0.35 0.70 0.83| 1.41 | 0.34 046 0.61 0.70| 1.06 | 0.27 041 0.75 0.98| 1.35
ConvSeq2seq [15] 029 046 059 060068 | 0.24 044 078 091 153 | 0.34 044 048 050 0.76 | 0.31 049 0.78 0.9¢ 1.36
BIHMP-GAN [16] 0.28 0.40 050 0.53 0.62 | 0.26 044 072 0.82| 151 | 035 045 044 046| 072 | 031 046 0.77 092 1.31
Q-DCRN (Ours) 0.34 058 0.83 0.8 070 | 020 0.33 073 0.89| 1.51 | 0.32 043 055 0.63| 0.80 | 0.22 0.38 0.84 1.09| 1.48
(@
Fig. 9. Visualization of “running” on the CMU MoCap dataset. The three
sequences refer to the ground truth, ConvSeq2seq, and Q-DCRN from top
to bottom. ConvSeq2seq traps in mean poses with movement decay on legs
while we still keep the active running mode as the ground truth.
(b)

from the 39 to the 11" predicted frame (highlighted with red

Fig. 8. Qualitative comparisons with DMGNN on high-dynamic motionsPOXes), the torso slightly leans forward compared to the ground
The three sequences refer to the ground truth, DMGNN, and Q-DCRN frairuth and ConvSeg2seq, which concurs with Table 11l that a

top to bottom.

THE AVERAGE MAE OF CMU MOCAP DATASET.

TABLE IV

relatively higher numerical error of running between 160ms
and 400ms is observed. However, the frames generated by
ConvSeg?2seq tend to have more averaged poses and result in
losing theterminal swingphase toward the end of the motion.

Time (miliseconds) 80 160 320 400 1000 Compared to ConvSeq2seq, the running poses of our Q-DCRN
RRNN [8] 038 0.62 1.02 119 1.67 can clearly show the trend of raising or putting down legs
VRNN (Ours) 031 052 092 1.07 ]| 1.53 in turn, which ensures a better prediction. This again, shows
ConvSeqZseq [15] 0.32 052 0.86 099155 . 2
BIHMP-GAN [16]  0.32 050 0.83 0.94 | 147 that a higher angle error rate does not necessarily indicate the
Q-DCRN (Ours) 027 044 0.81 0.95| 1.44 generated motion is in bad quality.

To validate the generated poses, we also report the MPJPE
results in Table V. In terms of the 3D position, our approach

We further visualize “running” on CMU MoCap in Fig. 9reduces the error rate substantially in most cases. Comparing
to qualitatively evaluate the performance of our method. lith higher MAE of “running” and “walking” after 400ms,
the running sequence generated by Q-DCRN, we nd th&@-DCRN performs lower MPJPE on these two actions which
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TABLE V
EVALUATIONS ON MPJPEOF CMU MOCAP DATASET.
Basketball Basketball Signal Directing Traf ¢ Jumping
Time (milliseconds) 80 160 320 560 1000 | 80 160 320 560 | 1000 | 80 160 320 560 1000 | 80 160 320 560 | 1000
ConvSeq2seq [15]  22.1 41.0 784 1309172.8| 156 30.6 60.0 99.7| 129.4 | 63.1 112.6 2228 2634 262.0| 27.3 554 111.7 171.9] 2284
Q-DCRN (Ours) 212 371 703 117.3 1479| 35 81 180 315| 618 | 168 249 499 97.8| 1705| 281 57.8 1106 144.8| 166.6
Running Soccer Walking Wash Window
Time (milliseconds) 80 160 320 560 1000 | 80 160 320 560 | 1000 | 80 160 320 560 1000 | 80 160 320 560 | 1000
ConvSeq2seq [15] 23.9 287 37.8 557 | 708 | 37.0 765 1831 1784 203.7 | 145 28.7 549 719 97.2 | 21.6 445 845 113.q 14438
Q-DCRN (Ours) 273 382 557 484 | 624 | 184 400 777 113.8 1529|158 262 512 689| 771 | 102 216 498  78.7| 109.1
TABLE VI
EVALUATIONS ON PCK@0.05 (%)oF PENN ACTION DATASET.
Predicted frame
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
RRNN [8] 824 683 585 509 447 400 364 334 313 295 283 273 264 257 250 245
3D-PFNet [52] 79.2 60.0 49.0 439 415 403 398 39.7 40.1 405 411 416 423 429 432 433
TP-RNN [17] 845 720 648 603 572 550 534 521 509 500 493 487 483 479 476 473
Q-DCRN 852 726 651 605 575 554 539 526 515 506 500 494 491 488 486 484
echos with Fig. 9 that for such active motions, we can TABLE VII

better keep the real dynamlcs In |Ong_term predlctlon. We PREDICTION ERROR COMPARISONS UNDER DIFFERENT SPATIAL AND

further argue that MPJPE is more discriminative than MAE TEMPORAL CONFIGURATIONS

as observed in “directing traf c” and “soccer”, where both Time (miliseconds) 80 160 320 400 1000
methods yield similar quantitative results in angle space but VRNN 038 068 102 114 173
. " DCRN 031 059 095 1.07 1.66

Q-DCRN has much lower error than ConvSeq2seq in positionyag  gis-DCRN 031 058 094 106 166
space. BiS-DCRNfwd dis. 0.32 058 092 1.04 1.64
BiS-DCRNbwd dis. 0.30 057 092 1.06| 1.65

Q-DCRN 031 057 0.90 1.02| 1.60

E. Comparisons on the Penn Action Dataset VRNN 226 430 /7.8 91y 1459
_ . . vppe  DCRN 191 390 720 844 131.8

To make a fair comparison with the methods [8], [17], [52] BiS-DCRN _ 189 372 682 810 129.9
conducted on the Penn Action dataset, the experiments are BiS-DCRNfwd dis. 192 375 679 0.0 1289
o BiS-DCRNbwd dis. 185 37.0 70.7 832 131.2

evaluated on PCK at = 0:05 (PCK@0.05), and the results Q-DCRN 187 36.9 679 797 127.3

are provided in Table VI. We achieve the state of the art at all
predicted steps by a large margin with RRNN and 3D-PFNet,

and superior to TP'RN.N notably at longer pTe‘?"C“O”- Thﬁme (forward only) which is denoted as DCRN, the perfor-
other three methods fail to preserve the prediction accura;

¥¥ance of BiS-DCRN with bi-directional convolutions in space,

in the long ter.m especially for RRNN, vvhigh ;uffers a OIraStlgiS-DCRN with the forward discriminator only (denoted as
drop along with t_he predpted frames. This is because W.hEth—DCRN fwd dis) or with the backward discriminator only
the observed motion pre x is short (one frame for Penn Actio Yenoted as BiS-DCRKwd dis), together with Q-DCRN by

dataset), the residual connection in RRNN may cause a Ial Sluding the bi-directional discriminator. The error compar-

error accumulation with less information directing the decodelg. ns under MAE and MPJPE metrics are shown in Table VII

3D-PFNet is constructed under a plain RNN architecture, an the average performance on Human3.6M. We found that

TP-RNN improves it by designing multi-scale hierarchical . . - .
RNNs to better learn the motion dynamics. However, thecompared with VRNN, there is a signi cant improvement of

methods do not consider the latent relationship between RN in both MAE and MPJPE, which yields that replacing
oints. For our case. we outoerform them witr? the hel o*ﬁy connectivity with graph convolution gives potentials in
Joints. ) ! P . P ﬁlentifying inner spatial dependencies during temporal propa-
spatial modeling using graph convolutions. We also sustain the

; . . gation, thus outperforming individual RNN-based model.
ground truth with a gentle accuracy decay by incorporati . ,
adversarial training to keep the long-term performance. The!n &ddition, we observe that BiS-DCRN has comparable
success on Penn Action dataset also highlights the generdfi}E but lower MPJPE compared with DCRN. This shows

of our proposed prediction method across different types it BiS-DCRN is overall superior to DCRN by including the
data modalities. convergence process in diffusion convolutions. This is because

the speed of a child node will more or less in uence its root
node(s) in terms of the correlations on the graph With
F. Ablation Studies both divergence and convergence convolution processes, the
1) Network Structure:We then evaluate the effectiveneséoints are aware of the dynamics of its neighbour joints from
of our bi-directional spatial-temporal con gurations. Starting/Pstream and downstream random walks on the graph for a
from VRNN, we gradually add the key components back t&ore perceptive and accurate spatial prediction.
Q-DCRN and test the performance at each step. We show théastly, the improvement from BiS-DCRN to Q-DCRN
results of single direction in both space (divergence only) astiows the effectiveness of bi-directional temporal modeling.
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From both metrics, Q-DCRN demonstrates a better prediction TABLE VIII
especially in generating longer motions (320-1000ms), whicRREDICTION ERROR COMPARISON{MPJPE)UNDER DIFFERENT GRAPH

illustrates the bene ts of using adversarial training to reduce STRUCTURES
the error accumulation by amending the forward and backward A Type 80 160 320 400 1000
dynamics. From the result of BiS-DCRMd dis, we nd that xed  undirected ~ 20.1 421 77.3 90} 1344

. L S : o adaptive undirected 19.8 36.9 68.6 80.6129.1
the single directional discriminator improves the prediction in - z4aptive  directed 187 369 67.9 79.7 1273

the long term but may corrupt the short term compared with
BiS-DCRN. This is because the forward discriminator may
forget the information from the past dynamics, which makes
it hard to revise the beginning velocities. On the contrary,
we observe a better prediction at 80ms for BiS-DCBNd
dis. but a large error in the long term, since the backward
discriminator focuses more on the initial dynamics while los-
ing the long-term information. By balancing the bi-directional
discriminator, the nal Q-DCRN is able to improve both short
and long-term predictions compared with BiS-DCRN. We also
observe that at the beginning of prediction (80ms), BiS-DCRN
and Q-DCRN present similar angle results in MAE, while they
show differently in position space from MPJPE. This further
con rms our assumption that MPJPE is a more discriminative @ (®)

tool in measuring the generated movements compared W#B. 10. visualization of (a) the undirected joint connections of the xed
MAE. adjacency matrix, and (b) the top 40 joint connections of the learned adjacency

2) Graph Structure; We also evaluate Q-DCRN l'“.]dermatrix on Human3.6M. Th_e arrow denotes the direction of the connectipn.

. . . The weight of the connection is visualized from a red to yellow scale, with
different adjacency matrices and graph types. The result i red color representing larger weights.
Table VIII shows that our system performs the best under the
adaptive, directed graph structure.

Fixed vs. Adaptive We compare the performance of thenot constrained to be positive, we select the top 40 absolute
unweighted graph structure de ned by the xed adjacencyalues ofA representing the most signi cant connections in
matrix A, and our weighted graph structure de ned by théhe information delivery between joints. The position of the
adaptiveA in the P' and the 29 rows of Table VIII. The value inA indicates the direction of the connection, eAgq is
xed A is represented by a binary matrix, where the jointgointing from jointp to joint q. From Fig. 10(b), we observe
connected by bones are xed at 1 with the others at 0. Notkat many selected edges between joints are not connected
that since the joints under xed\ is an undirected graph, by bones, which highlights the importance of the implicit
i.e. bone connections are undirected, we do not have t@nnections. We also nd many connections between legs are
option for a directed graph under xed. Therefore, the selected. This makes sense as many of the learned motions are
effectiveness of the adaptive is evaluated on the baseline ofwalking-related, where the movements of legs are dominant.
the undirected graph. From the results, we observe a signi catother interesting observation is that the connections are not
improvement wherA is adaptive. This is because the originahecessarily symmetric for the left and right body—more edges
xed A restricts the information transitions only within theare associated with the right arm than the left arm, which may
edges of bone connections, which neglects the useful implibie due to some natural habits that most actors are likely right-
connections. Furthermore, all the connections take the sah@nded.
importance in xedA, which contradicts the fact that different 3) Loss Functions:First, we test the effectiveness of the
connections may contribute differently to the motion, sugbroposed velocity-pose reconstruction loss. We compare it
as the connection of knee and foot is more informative thavith directly calculating the mean squared error based on
the connection of spine and neck in a “running” action. Bthe velocity between ground truth and prediction. Second, the
softening these two conditions of, all nodes are exibly ablation for our velocity-based adversarial loss is conducted
connected with the trainable edge weights, which presems training the discriminator with the generated pose rather
better performance than the xel. than velocity, where the predictor and the discriminator do

Undirected vs. DirectedWe verify the effectiveness of our not share the weights and structures since they are modeling
directed graph by comparing it with its undirected counterpaddifferent motion features.
where the adjacency matriX and its transpose are reduced The comparison results are shown in Table IX. In the top
to one symmetric matrix denoting the equivalent informatiorow when only the velocity is considered in the optimization,
transfer between a pair of nodes. The comparison results in the prediction error is fast accumulated as the system cannot
2" and the & rows of Table VIII show that using a directedguarantee the quality of the generated poses. In the middle
graph structure is more bene cial for a precise prediction. row when only the static pose is considered, no penalization

Visualization We further visualize the adaptive to show is added on the motion dynamics, which leads to a biased
the learned spatial correlations comparing with the xegrediction with large error rates in both the short and long
undirected connections in Fig. 10. Since the adapfivés term. In the bottom row, the system improves the prediction
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TABLE IX avoids arti cially crafting deep graph convolutions to extract
PREDICTION ERROR COMPARISON§MPJPE)UNDER DIFFERENT LOSS features of different receptive elds, which yields a more
FUNCTIONS. .
ef cient model.

L recons L adv 80 160 320 400[ 1000
velocity-based  velocity-based 18.7 37.2 69.7 81.830.1 . .
velocity-pose ~ pose-based  19.7 39.3 682 801205 H. Discussion

velocity-pose _ velocity-based 18.7 369 67.9 79 127.3 In our adaptive graph connectivity can be regarded as an
attention map that represents the signi cance of joint pairs,
which can be even extended to multi-head attentions [58]
with different attention combinations to further improve the
tting ability of our model. It is also bene cial to adopt other
attention mechanisms, such as considering temporal attention
[59] to strengthen the network with the important memories
from the past and future dynamics, if under bi-directional
settings.

One of the main challenges for RNN to process long
sequences is losing long-term dependency. In this work, we
adopt adversarial training to enhance its prediction results.
Many other techniques that are orthogonal to our work, such
as adaptively skipping the state update to reduce sequential
operations [60], hierarchically integrating the temporal infor-

Fig. 11. Prediction error comparisons under different maximum diffusioation several steps away [61], or efciently reusing gate
steps,N, in the dual random walks. matrices with sparse representations [62] in RNN can also
be well employed to further boost the performance in terms
. ) . S of prediction accuracy and computational cost.
Wlth_ the optimal solution by synchronously considering th_e We also nd that the proposed Q-DCRN is effective in
static pose from the reconstruction loss and the VelOC'Bfedicting the possible movements tracked from 2D videos,

dynamics from the adversarial loss. which sheds light on two potential future works: One is that
we can realize 3D pose prediction from RGB videos [63] by
G. Parameters and Model Ef ciency integrating our framework with any 2D to 3D recovery algo-

A tioned in Section N-A. th | ¢ . rithms; Another is directly predicting image outputs without
diff s_mentlonle\:l n i elc '?R “A, e V? ue ?c trTaX'lmgn:the middle step of extracting joint features [64]. As we do
musion step’N - controls the approximation of the giobal, o, qngjger any speci ¢ bone constraints or body hierarchy,

graph c!istributions that the dif_fusior! process would CONVETger proposed framework is not limited to the human skeleton
to. A blased_N_may lead tg either inadequate or re_dundarthut also compatible with any forms of data under graph
graph description. From Fig. 11, we found that using onl

e . . . ; gtructure, but we do rely on other designs like CNN to learn
one diffusion step will lose information spread along multlplﬁqe representative local features from images in the rst hand.

n_odes, causing a large error rate. A maximum of ve steps Since current motion predictions heavily depend on the
gives a plausible result with the price of more Iters to deduc recision of the detected pose, which is technically hard to

higher-order diffusions. Hence, we employ three diffusio chieve especially in crowded scenes [57], [65] or under a

steps which can suf ciently and ef ciently describe the spati epth camera [34], [66], how to develop a robust system under
de\pl)vendlency. h ber of dth noisy supervision may also bene t the prediction community.

) gas? comprz:\re t ﬁ SqueLIO )pzarargt(a:t;rﬁ and t r? plredﬁfere are already some successful attempts, such as recon-
tion time for each method in Table X. Q- uses the ea§fructing the motion history for denoising [11] or estimating

parameters with relatively lower time cost, especially aMONgstributions with multiple future possibilities [67]. Pairing

the graph-based methods. We adopt graph embedding th Bse methods with Q-DCRN to reduce the impact of noisy
shared among all nodes under a recurrent network, whi

. : : imput will be another potential direction to explore.
reduces the proportion of the learnable weights in contras

to [8], [15]. When comparing with [28] and [29], Q-DCRN V. CONGLUSION

We propose a quadruple diffusion convolutional recurrent
TABLE X network to preserve motion trend for human dynamic predic-
TRAINING PARAMETERS AND PREDICTION TIME(25 FRAMES) USED N tjon, We encode spatial structure as an adaptive diffusion graph
EACH METHOD. . . . . . .
with bi-directional random walks in multiple spatial steps, and

Method # parameters _ Testing time (ms) perform graph convolution on the recurrent seq2seq network
Non-graph Em';ég]zseq 5] 138_46“% 1; to decode temporal dependencies. A bi-directional temporal

DMGNN [28] 52:6m 116 pregjictor tqgether \{vith a bi-discriminator i; designed in an
Graph-based LDR [29] 2:1m 2.4 ef cient weight-sharing manner to t and revise the short and

Q-DCRN 0:2m 2.2 long-term motion trends. The network is constructed directly
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on the velocity with a reconstruction loss on poses, whigo]
has proved to be more powerful at reducing discontinuitg

at early prediction than residual connections in RNN-bas ]
architecture. Experimental results on both angular and po-
sitional metrics suggest that the proposed Q-DCRN is al#]
to preserve the motion trend with lower prediction errors to

generate realistic moving dynamics. [22]
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