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Abstract 15 

Bacterial community composition is largely influenced by environmental factors, and this 16 

applies to the Arctic region. However, little is known about the role of spatial factors in 17 

structuring such communities. In this study, we evaluated the influence of spatial scale on 18 

bacterial community structure across an Arctic landscape. Our results showed that spatial 19 

factors accounted for approximately 10 % of the variation at the landscape scale, equivalent 20 

to observations across the whole Arctic region, suggesting that while the role and 21 

magnitude of other processes involved in community structure may vary, the role of 22 

dispersal may be stable globally in the region. We assessed dispersal limitation by 23 

identifying the spatial autocorrelation distance, standing at approximately 60 m, which 24 

would be required in order to obtain fully independent samples and may inform future 25 

sampling strategies in the region. Finally, indicator taxa with strong statistical correlations 26 

with environment variables were identified. However, we showed that these strong taxa-27 

environment associations may not always be reflected in the geographical distribution of 28 

these taxa. 29 

Importance  30 

The significance of this study is threefold. It investigated the influence of spatial scale on the 31 

soil bacterial community composition across a typical Arctic landscape and demonstrated 32 

that conclusions reached when examining the influence of specific environmental variables 33 

on bacterial community composition are dependent upon the spatial scales over which they 34 

are investigated. This study identified a dispersal limitation (spatial autocorrelation) distance 35 

of approximately 60 m, required to obtain samples with fully independent bacterial 36 

communities, and therefore, should serve to inform future sampling strategies in the region 37 
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and potentially elsewhere. The work also showed that strong taxa-environment statistical 38 

associations may not be reflected in the observed landscape distribution of the indicator 39 

taxa. 40 

Introduction 41 

Significant spatial structuring of soil microorganisms has been demonstrated at micro [µm - 42 

mm] (1), plot [cm - to few meters] (1), landscape [hundreds of meters] (2), regional [kms] 43 

(3), national (4, 5), continental (6), and global scales (7-9). Hence, the scale of investigation 44 

is a key parameter to take into account in studies of bacterial biogeography. Martiny et al. 45 

(10) further demonstrated the importance of spatial scale on environmental factors 46 

identified influencing community composition in temperate soils. They found key 47 

environmental drivers differed across spatial scales - ammonia-oxidizing bacterial (AOB) 48 

community composition was dependent on distance, moisture and vegetation cover at the 49 

plot scale; however, at the regional scale, diversity was mainly influenced by water 50 

temperature, air temperature and moisture while nitrate concentration and air temperature 51 

were predominant at the continental scale. Finally, when considering all scales together, 52 

overall key drivers were geographic distance, sediment moisture, air temperature and 53 

vegetation cover. However, most biogeographical studies only investigate communities at 54 

one spatial scale (see Griffiths et al. (4), Tedersoo et al. (7), Bahram et al. (9) for further 55 

examples). The landscape scale (few hundred of meters to few kilometers) is considered 56 

highly relevant for studies of bacterial distribution patterns as it is the scale of human 57 

activities (at which agricultural practices and land management are integrated). Hence, the 58 

majority of studies at that scale investigate human-impacted landscapes (See Bru et al. (3), 59 

Dao (11), Constancias et al. (2), Palta et al. (12) and Neupane et al. (13) for further 60 
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examples) with only few studies describing Arctic communities from few meters to 3 km 61 

(14-16).  62 

The first aim of this study was to evaluate the influence of the spatial scale on bacterial 63 

community structure [Fig. S1] across an Arctic landscape [Fig 1]. Indeed, while the role of 64 

environmental parameters such as pH (17, 18), total organic content (TOC) (19), moisture 65 

content (20) and C:N ratio (21) on community composition in the Arctic has been 66 

demonstrated, much less is known about the influence of spatial parameters (19). However, 67 

determining the influence of environmental factors on communities remains an essential 68 

step to avoid overestimating the role of the spatial scale. In addition to providing a better 69 

understanding of the environmental factors influencing community structure, investigating 70 

multiple scales provides better knowledge of the spatial structure, which facilitates the 71 

development of sampling strategies where samples are collected beyond the spatial 72 

autocorrelation distance and are, therefore, truly independent (22). As autocorrelation 73 

distances have been identified from µm to km (22-25), with the potential of nested scales of 74 

variability (26), and site to site variation, no standardized protocol exists for soil sampling for 75 

metabarcoding studies (27, 28). Therefore, the second aim was to determine the minimum 76 

distance required to obtain independent soil samples in the region [Fig. S1], which may 77 

inform future sampling strategies in the Arctic. Finally, the last aim was to identify indicator 78 

taxa which were closely associated with environmental variables and map their spatial 79 

distribution across the landscape [Fig. S1]. Previous studies have attempted to identify 80 

indicator taxa that could be used for environmental monitoring (for example Simonin et al. 81 

(29) and Yang et al. (30) in rivers or Hermans et al. (31) in soils). As indicator taxa (32) 82 

highlight OTUs with strong environmental associations that may respond to ecological 83 

change, we expected their distribution to closely follow that of environmental parameters.  84 
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 85 

Results 86 

Environmental factors 87 

Results showed that all 35 environmental variables had a significant impact on bacterial 88 

community structure with approximately 73 % of the variance explained by environmental 89 

factors [Table 1]. Overall, five key factors (TOC, pH, conductivity, aluminium and arsenic) 90 

had the most influence on bacterial community dissimilarity explaining 30 % of variation in 91 

total. While all other environmental factors individually explained between 0.9 % and 2.4 % 92 

of the variation, the combined soil elemental composition (excluding pH, conductivity and 93 

TOC) accounted for 51.5 % of the total variation in bacterial community composition. 94 

  Variation partitioning 95 

A total of 9 dbMEMs vectors were built using (x,y) geographic coordinates and after forward 96 

selection, five dbMEMs were identified as significantly impacting bacterial community 97 

diversity and used in subsequent analyses. The variation partitioning analysis differentiated 98 

the effect of environmental factors, linear trend and spatial vectors on community 99 

composition [Fig. 2]. The environmental fraction X1 explained 73 % of the variance [Table 100 

S1], equal to the finding by the adonis function and confirming the success of the variation 101 

partitioning analysis. Using the adjusted R2 values only as they accounted for the number of 102 

variables in the model, environmental factors explained 54 % of the variance, of which 38 % 103 

were not spatially structured (fraction [a]). The spatial component (X2 + X3) explained 25.6 104 

% of the variation, of which 16.3 % could be explained by induced spatial dependence. This 105 

was illustrated by fractions [d], [f] and [g], which represented spatially structured 106 
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environmental variables where the spatial structure of these environmental variables 107 

induced a similar spatial structure in the response data, highlighting the need to evaluate 108 

the influence of the environment on communities. The remaining 9.3 % of the spatial 109 

component represented spatial autocorrelation. The linear trend accounted for 3.8 % of the 110 

variance (fraction [b]) while spatial vectors explained 5.5 % of the variation. Fraction [e] had 111 

a negative R2 and could be considered null, as prescribed in D. Borcard et al. (33). Each 112 

fraction (X1, X2, X3) was tested individually and was significant (ANOVA, p < 0.001). In total, 113 

62.8 % of the bacterial community dissimilarity could be explained by environmental and 114 

spatial factors while the remaining 37.2 % of the variance could not be explained by the 115 

variables measured in this study.  116 

Spatial scale and autocorrelation 117 

The distance-decay curve illustrated the increase in community dissimilarity with increasing 118 

distance [Fig. 3A]. The power model was better fitted (R2 = 0.2261, p = 0.005) than the linear 119 

regression (R2 = 0.1844, p < 2.2 x 10�>16). Spatial autocorrelation was visualised on the 120 

distance-decay curve [Fig. 3], where geographically close communities were more similar up 121 

to 60 m. This was illustrated with the power model on the distance-decay curve, where the 122 

blue curve begins to plateau [Fig. 3A]. To further characterise the spatial autocorrelation 123 

distance, a Mantel correlogram was used [Fig. 3B] to compute the Mantel statistic between 124 

the geographic distance and bacterial community dissimilarity distance (Bray Curtis). The 125 

spatial autocorrelation was positive for the first distance class of 21 m, indicating that the 126 

bacterial communities were more similar than expected by chance. The second distance 127 

class of 63 m displayed no spatial autocorrelation, indicating random distribution beyond 63 128 
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m. Other distance classes presented negative autocorrelations indicating that these 129 

bacterial communities were more different than expected by chance. 130 

Geography also had some influence on environmental conditions with sites closer together 131 

being more similar. The spatial autocorrelation of environmental variables was first 132 

visualised in figure 3C, where geographically close sites were geochemically similar within 25 133 

m. However, beyond approximately 25 m, site equally close or far could present similar 134 

environmental conditions, as illustrated by the autocorrelation distance [Fig. 3C]. This was 135 

also illustrated by the weak linear regression (R2 = 0.019, p < 2.2 x 10�>16) and the best-fitted 136 

power model (R2 = 0.087, p = 0.005). Spatial autocorrelation was further tested for each 137 

individual variable using the semi-variograms produced prior to kriging. As semi-variograms 138 

are specific to each variable, the spatial autocorrelation distances were unique to each 139 

parameter. All the semi-variograms produced prior to Kriging indicated positive 140 

autocorrelations oscillating between 1 m and 100 m, depending on the variable tested, 141 

further illustrating the importance of the scale of investigation [Fig. S2]. 142 

Spatial distribution across the landscape 143 

Using an ordinary kriging method and after examining the semi-variograms, the spatial 144 

distribution of alpha diversity and key environmental variables were mapped across the 145 

landscape [Fig. 4]. The bacterial richness, diversity and evenness changed across the 146 

landscape [Fig. 4(A, B & C)], and kriged maps illustrated the relationships between diversity, 147 

evenness and richness. Overall, low richness indicated low diversity and low evenness, 148 

further observed using linear models [Fig. S3]. The kriged maps of alpha diversity and 149 

environmental variables showed the strong heterogeneity at the landscape scale with 150 

changes from high to low concentrations within just a few meters [Fig. 4(D, E & F)].  151 
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Indicator taxa 152 

The indicator species analysis identified 163 true specialists (statistic >0.98) OTUs associated 153 

with 12 environmental variables. Indicator taxa were generally associated with the highest 154 

concentration of each element. The phylogenetic tree specific to indicator taxa illustrated 155 

the high taxonomic diversity of indicator taxa [Fig. 5], however, figure 6 demonstrated that 156 

identified indicator taxa do not necessarily follow environmental gradients as they are 157 

expected to. Of the four key factors (excluding pH) influencing bacterial communities [Table 158 

1], only conductivity and arsenic had some indicator taxa associated. Indicators of 159 

conductivity (Cond) were restricted to two OTUs associated with high conductivity, both 160 

Bacteroidetes classified in the Cytophagales order [Fig. 5]. Peaks of high conductivity were 161 

visualised in figure 6A and correlated with peaks in abundance of the two OTUs identified 162 

[Fig. 6B, C]. Indicators of arsenic (As) were closely associated with barium (Ba) and were 163 

taxonomically diverse, with the majority classified as Actinobacteria, Alphaproteobacteria, 164 

Chloroflexi, Halanaerobiales and Firmicutes [Fig. 5]. Arsenic concentration appeared more 165 

homogeneous across the landscape [Fig. 6D] with an average concentration = 13 ppm, min = 166 

1.81 ppm, max = 20.51 ppm. These indicator taxa of arsenic were all associated with high 167 

concentrations [Fig. 6E, F, G, H & I] and were also associated with high concentrations of 168 

barium in the soil. Iron (Fe) and manganese (Mn) are both essential elements of soils. Iron 169 

concentration was highly heterogeneous across the landscape, with a strong peak in 170 

concentration at one site [Fig. 6J]. This peak was reflected by the presence of unique 171 

indicator taxa of which the abundance was closely related to this high concentration [Fig. 172 

6K, L]. Indicators of iron were diverse, with a large number of Proteobacteria (Alpha, Beta, 173 

Gamma), Chloroflexi, Bacteroidetes, Cyanobacteria, Planctomycetes and Verrucomicrobia 174 

[Fig. 5]. On the other hand, manganese concentration was heterogeneous across the 175 
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landscape [Fig. 6M] but unlike other indicator taxa, they were associated with low 176 

concentrations in the soil [Fig. 6N, O]. The indicator taxa of manganese were predominantly 177 

classified as Proteobacteria [Fig. 5] and were also closely related to low concentrations of 178 

niobium (Nb), lead (Pb) and zirconium (Zr), however, they were associated with high 179 

concentrations of molybdenum (Mo). Indicator taxa of strontium (Sr) were limited to five 180 

OTUs, an unknown Verrucomicrobium, a Ca. Saccharibacterium (TM7), a 181 

Deltaproteobacterium and two Alphaproteobacteria while indicators of zinc (Zn) were 182 

classified in all almost all phyla [Fig. 5], illustrating the wide array of specialist taxa 183 

associated with high concentrations of zinc. 184 

Discussion  185 

Key environmental factors influencing bacterial communities 186 

Total organic carbon, pH and conductivity were identified as the key drivers of bacterial 187 

diversity across the Arctic landscape and are also commonly identified in studies across the 188 

globe (8, 34-38). While pH was previously identified as the primary driver of bacterial 189 

diversity in Arctic soils across the whole Arctic region (19); here, at the landscape scale, TOC 190 

was identified as the primary factor influencing bacterial community structure and was 191 

tightly linked with soil moisture. Generally, soil organic carbon content increases with 192 

increasing precipitation and decreasing temperature (39). In the Arctic tundra, not only 193 

precipitation but snowmelt and permafrost thaw have major impacts on soil moisture and 194 

hydrology across the landscape (40, 41). In this study, where pH was on average 195 

acidoneutral at 6.05 ± 0.36 with very few acidic patches, but organic carbon content was 196 

very patchy (6 % - 46 %); the role of TOC in bacterial community structure is perhaps not 197 
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surprising. However, it highlights the importance of investigating different spatial scales as 198 

drivers at the global scale may not necessarily be the same across the landscape of interest. 199 

Aluminium and arsenic were the fourth and fifth environmental variables accounting for the 200 

most variation in bacterial community structure [Table 1]. Aluminium is one of the most 201 

�����µ�v�����v�š�� �u���š���o�� �]�v�� �š�Z���� �����Œ�š�Z�[�•�� ���Œ�µ�•�š�� ���v���� �u�]���Œ�}�}�Œ�P���v�]�•�u�•�� ���}�v�š�]�v�µ�}�µ�•�o�Ç�� �]�v�š���Œ�����š�� �Á�]�š�Z��202 

aluminium in soils (42, 43). While aluminium lacks apparent biological function (42),  the  203 

aluminium  ion  (Al3+) can be toxic to living organisms and is a function of the soil pH; the 204 

concentration of toxic  Al3+ gradually  increases  as  pH  decreases  from  pH  =  6.2 (42, 43). 205 

Here, little pH changes but large aluminium concentration variation were observed across 206 

the landscape, which were not correlated to each other (linear regression: R2 = 0.00069, p = 207 

0.81). The toxicity of Al3+ may be influencing the bacterial community structure, however, 208 

the concentration of Al3+ ions was not measured. 209 

Arsenic is ubiquitous in low abundance in the natural environment and recognised as one of 210 

the most toxic elements (44, 45). Here, a decrease in diversity and richness was observed 211 

with increasing arsenic concentrations, which likely reflects the toxic effect of oxyanions of 212 

arsenate on many bacteria, although some can use it as a terminal electron acceptor (44). 213 

As with Al3+, the chemical concentration of the various forms of arsenic was not measured 214 

and therefore, cannot conclude that the toxicity has an influence on bacterial community 215 

structure, although it is a possibility. Indicator taxa associated with high concentrations of 216 

arsenic were diverse but dominated by Actinobacteria and Proteobacteria and was in 217 

accordance with Dunivin et al. (45) who conducted a global survey of arsenic related genes 218 

in soils and identified these phyla as harbouring more arsenic resistance genes. 219 
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All other elements measured had some influence on the observed bacterial community 220 

[Table 1], from key major elements such as sulphur, calcium, silicon; to key trace elements 221 

such as iron, manganese, magnesium, zinc, copper, molybdenum and cadmium; and other 222 

elements, toxic or not, such as bromine, yttrium or lead. It should also be noted that while 223 

TOC, pH and conductivity had a significant influence on bacterial community composition 224 

(21.8 %), the soil elemental composition combined explained most of the variation (> 50 %). 225 

This may serve to highlight the level of complexity of the factors influencing community 226 

structure. 227 

Indicator taxa 228 

Environmental variables were highly heterogenous across the landscape, which was 229 

reflected by the distribution of alpha diversity and indicator taxa. The indicator species 230 

analysis determined abundant OTU-environment associations and identified 163 OTUs that 231 

could be considered true specialists in relation to 12 environmental variables. These OTUs 232 

were generally associated with high concentrations of the variable in question except for 233 

those associated with manganese, niobium, lead and zirconium which were representative 234 

of low concentrations. As illustrated in the phylogenetic tree [Fig. 5], the diversity of these 235 

indicator taxa was high, with numerous representatives of the Proteobacteria, Chloroflexi, 236 

Bacteroidetes, Planctomycetes and Verrucomicrobia. The distribution of some indicator 237 

taxa, selected for their reported relationship with the associated variable in the literature, 238 

was mapped across the landscape to illustrate the association with the elements�[��239 

concentration. For arsenic, Clostridium and Clostridia-related (Halanaerobiales) taxa were 240 

mapped as they have been identified with some role in arsenic cycling (44, 46) and with 241 

arsenic-resistance genes (45). A Gemmatimonadetes and a Candidatus Parcubacterium 242 
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(clustered closely with the Cyanobacteria) were also mapped, as both have been identified 243 

with potential roles in arsenic cycling (46). The distribution of OTUs associated with iron 244 

were mapped and included a Cyanobacterium (47, 48) and a Deltaproteobacterium, a class 245 

with known taxa involved in iron cycling (47-49). Finally, the OTUs associated with 246 

manganese were also associated with other environmental variables and mainly identified 247 

as Proteobacteria. A Deltaproteobacterium and the only Chlamydiae identified were 248 

mapped, two classes associated with manganese cycling (48). While this analysis showed 249 

the strong associations of some OTUs with the measured environmental parameters, it also 250 

illustrated the difficulty of using indicator taxa for monitoring purposes due to the large 251 

number of associations identified and the high heterogeneity across the landscape. This was 252 

clear when the distribution of key indicator taxa was mapped across the landscape and did 253 

not clearly follow the distribution of the environmental variable associated. Furthermore, 254 

while indicator taxa may be identified, they do not necessarily participate in the associated 255 

element cycle. For instance, these OTUs may benefit from high concentration of arsenic due 256 

to higher tolerance to toxicity and decreased competition, without having any involvement 257 

in arsenic cycling. 258 

Selection and dispersal structure bacterial communities 259 

The variation partitioning analysis quantified the importance of both selection 260 

(deterministic) and dispersal (stochastic) on bacterial community structure. Environmental 261 

variables explained 54 % of the total variation, corresponding to selection and 16 % were 262 

spatially structured, corresponding to the induced spatial dependence. Then, spatial 263 

components (trend + dbMEMs) alone explained 10 % of the variation, illustrating spatial 264 

autocorrelation or dispersal (33). This is the same magnitude of influence as recorded in 265 
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Malard et al. (19) investigating biogeographical patterns across the whole Arctic region, 266 

suggesting that the magnitude of influence of dispersal of bacterial community structure 267 

may be stable in the Arctic.  268 

More specifically, the distance-decay curve of environmental factors showed that edaphic 269 

properties were spatially autocorrelated up to approximately 25 m, although this was the 270 

overall spatial autocorrelation as each variable autocorrelated within different distances. 271 

After that distance, environmental variables were independent, and this was illustrated by 272 

the weak slope of the linear regression and the overall variability of edaphic properties. In 273 

addition, even highly similar environmental conditions could harbour dissimilar bacterial 274 

communities, further illustrating the potential role of dispersal and other processes such as 275 

drift or diversification. The distance-decay curve of bacterial communities showed a positive 276 

spatial autocorrelation distance at up to 60 m, which was further supported by the Mantel 277 

correlogram. For the Arctic region as a whole, an autocorrelation distance within the same 278 

order of magnitude, approximating 20 m, was previously identified (19). This limited 279 

dispersal range in Arctic soils is in contrast with studies in other regions of the globe. For 280 

instance, in a glacier forefield in southern Alaska, this distance was over 600 m (50) while in 281 

British soils, it was below 1 km (4). It suggests that Arctic soil bacterial communities only 282 

disperse to approximately 60 m and may form rather isolated island communities. 283 

Therefore, the scale of sampling is important in these landscapes to capture community 284 

variability and therefore, a minimum of 60 m should be maintained between sites to obtain 285 

independent samples. Further investigations at other Arctic sites are required to determine 286 

whether this applies across the whole Arctic region.  287 
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Overall, these results suggest that induced spatial dependence may be an important factor 288 

shaping bacterial communities within 25 m, that is, as edaphic properties are very similar, 289 

bacterial communities are also similar. Between 25 and 60 m, environmental variability 290 

increased and yet, communities remained relatively similar, suggesting that dispersal may 291 

be the primary process shaping bacterial communities. Beyond 60 m, the environment was 292 

highly heterogeneous, bacterial communities were highly dissimilar and selection was likely 293 

the main process structuring communities. While one process may dominate within each 294 

distance category, it is still likely the combination of different processes (selection, dispersal, 295 

diversification and drift) with different magnitudes still driving community assembly (51).  296 

While 63 % of the variation (non-adjusted R2 = 81 %) of bacterial community assemblage 297 

could be explained, 37 % remained unexplained. Many factors, whether biotic or abiotic 298 

could still be influencing bacterial communities. Based on the scale of this study, it is 299 

unlikely that most climatic and topographic variables would have much influence on the 300 

community structure variation. Instead, other edaphic factors such as total nitrogen or 301 

phosphorus content, clay, silt and sand content but also the presence of ice or soil texture 302 

may have more impact locally. Furthermore, biotic interactions such as competition and 303 

predation within bacterial communities or with other members of the soil biota or higher 304 

organisms may have some influence. For instance, grazing is one of the main disturbances to 305 

the ecosystem locally, primarily by the Svalbard reindeer and the barnacle goose (52). In 306 

addition to impacting the vegetation, they trample over the landscape and fertilise it and 307 

therefore, grazing can have significant impacts on the ecosystem and has been shown to 308 

decrease microbial respiration and the available carbon (53) while animal faeces increase 309 

the available nitrogen and can increase bacterial abundance (54). Human presence may also 310 

have some influence as the sampling site was close to another scientific research site with 311 
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open-top chambers, few cabins were located in the area�U�����v���� �š�Z���� ���}���o���Z�D�]�v���� �ó�[���Á���• still in 312 

operation, approximately 1.5 km away and 400 m above the sampling site. 313 

Conclusion 314 

In this study, spatial factors accounted for approximately 10 % of the variation in community 315 

composition at the landscape scale, equivalent to observations across the whole Arctic 316 

region, suggesting that while the role and magnitude of other processes involved in 317 

community structure may vary, the role of dispersal may be stable globally in the region. 318 

Furthermore, the identification of different driving environmental factors at different scales 319 

highlights their dependence upon the spatial scales over which they are investigated. 320 

Overall, we suggest that induced spatial dependence may be shaping bacterial communities 321 

within 25 m. Between 25 and 60 m, dispersal may be the primary process shaping bacterial 322 

communities and beyond 60 m, selection is likely the main process structuring communities. 323 

As dispersal may be limited to 60 m, and while further studies should be conducted, we 324 

suggest that soil sampling in the region should be conducted beyond this distance to 325 

capture landscape variability while collecting independent samples. Finally, by mapping the 326 

spatial distribution of indicator taxa across the landscape, we showed that strong taxa-327 

environment statistical associations may not actually be reflected in the landscape 328 

distribution of these bacterial taxa. 329 

Material and Methods 330 

Sampling site 331 

In July 2017, 44 soil samples were collected in Adventdalen, Svalbard [Fig. 1A] following the 332 

sampling design depicted in figure 1B and characterised by 8 North-South transects of 5 333 
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samples each. Samples within each transect were approximately 50 m apart while the 334 

distance between transects was approximately 100 m. On transect 6, extra samples were 335 

collected 10 m and 1 m apart to investigate smaller scale patterns [Fig. 1B, 1C]. 336 

Adventdalen is a broad U-shaped valley open to the West, from which the mouth is located 337 

approximately 2 km from Longyearbyen and 6 km from Svalbard Airport. Adventdalen was 338 

deglaciated about 10 ka BP (55) and permafrost is estimated to be 100 m thick close to the 339 

shore.  It is a typical Arctic landscape, in one of the driest areas of Svalbard, with an average 340 

of 190 mm of annual precipitation, and mean annual temperature of -6 °C (56).  The study 341 

site was located approximately 9 km into the valley, 11 km away from Longyearbyen, at 342 

78.17 °N, 16.02 °E. The vegetation is primarily dwarf shrub/grass heath, dominated by Salix 343 

spp., mosses, lichens and Graminea spp. (57) [Fig. 1D]. The main disturbances to the site 344 

come from grazing, primarily by the Svalbard reindeer (Rangifer tarandus platyrhynchus) 345 

and the barnacle goose (Branta leucopsis) (52). 346 

Sample collection and soil properties 347 

The coordinates from each site were recorded with a portable GPS. At each location, 50 g of 348 

soil in the top 15 cm was collected using ethanol-cleaned trowels and Whirl-Pak bags 349 

(Nasco, Fort Atkinson, WI, USA). Plant roots and rocks were removed manually in a class II 350 

biological safety cabinet (ESCO, Singapore), samples were homogenised and frozen at -20 °C 351 

before transportation to the United Kingdom for analyses. pH and conductivity were 352 

measured in the laboratory in a 1:5 freshly thawed soil to water ratio, using a Mettler-353 

Toledo FE20 pH meter (Mettler-Toledo Instruments co., Shanghai, China) and a CMD500 354 

conductivity meter (WPA, Cambridge, UK). Moisture content was measured gravimetrically 355 

on soils after drying at 150 °C for 24 h and total organic content (TOC) was measured 356 
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gravimetrically by heating previously dried soils to 550 °C for 4 h. To analyse the elemental 357 

composition of each sample, 5 g of thawed soil was placed in ceramic crucibles and left to 358 

dry at 37 °C for 5 days. Dried samples were crushed to a fine powder using a mortar and 359 

pestle, put in a powder sample cup, placed in the XRF spectrometer (X-Lab2000, Spectro, 360 

Kleve, Germany) and analysed. Resulting concentrations were adjusted using calibrated 361 

values and results were expressed in part per million (ppm).  362 

DNA extraction and amplicon sequencing 363 

Soil DNA was extracted in duplicate for each sample using the PowerSoil kit (Qiagen, Hilden, 364 

�'���Œ�u���v�Ç�•���(�}�o�o�}�Á�]�v�P���š�Z�����u���v�µ�(�����š�µ�Œ���Œ�•�[���‰�Œ�}�š�}���}�o�X���í�ò�^���Œ�Z�E�����P���v�����o�]���Œ���Œ�]���•���Á���Œ�������}�v�•�š�Œ�µ���š������365 

using the universal primers 515F-806R (58) to amplify the V4 region. Amplicons were 366 

generated using a high-fidelity Accuprime DNA polymerase (Invitrogen, Carlsbad, CA, USA), 367 

were purified using AMPure magnetic bead capture kit (Agencourt, Beckman Coulter, MA, 368 

USA) and quantified using a QuantIT PicoGreen fluorometric kit (Invitrogen). The purified 369 

amplicons were then pooled in equimolar concentrations using a SequalPrep plate 370 

normalization kit (Invitrogen), and the final concentration of the library was determined 371 

using a SYBR green quantitative PCR (qPCR) assay. Libraries were mixed with Illumina-372 

generated PhiX control libraries and our own genomic libraries and denatured using fresh 373 

NaOH. The resulting amplicons were sequenced on the Illumina MiSeq V2, 500 cycles. 374 

Bioinformatics processing  375 

Raw paired-end reads were subjected to adaptor and primer clipping using Cutadapt (59) 376 

resulting in 71,207 ± 3,280 reads per sample. Forward and reverse reads were merged using 377 

FLASH (60). Reads with over 1.5 total expected errors per read and/or read length less than 378 

245 base pairs were truncated during quality filtration using the Vsearch (61) filtering 379 
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module. It resulted in 64,917 ± 4,291 high quality merged reads per sample. Dereplication 380 

was performed to identify unique sequences. A two-step chimera detection method was 381 

used, first by aligning against ChimeraSlayer Gold database provided with SILVA (62), second 382 

by using the denovo detection module. An open-reference operational taxonomic unit 383 

(OTU) calling was performed on high-quality trimmed sequences at 97% similarity level 384 

using the USEARCH (63) algorithm for clustering to generate operational taxonomical units 385 

(OTUs). It resulted in (85 DNA samples) a total of 5,436,264 reads (63,956 ± 38,865 386 

reads/sample) assigned against 23,627 OTUs. Unique (chimera filtered) representative 387 

sequences were aligned using the Python Nearest Alignment Space Termination (PyNAST) 388 

(64) tool with a relaxed neighbour-joining tree built using FastTree (65). OTUs were assigned 389 

taxonomy using the Lowest Common Ancestor (LCA) based Classification Resources for 390 

Environmental Sequence Tags (CREST) (66) with a minimum classification score of 0.80 391 

against SILVA release 128 as a reference database.   392 

Data availability 393 

The sequencing dataset is deposited at the European Nucleotide Archive under the 394 

BioProject accession PRJNA564217. 395 

Statistical analysis 396 

Alpha diversity (richness, Shannon and Simpson indices) was calculated in QIIME v1.90 (67) 397 

on the matrices resulting from multiple rarefactions with the smallest sample size (22316 398 

reads) as maximum depth. Results were collated and averaged to obtain a single 399 

representative value for each sample. The OTU table was normalised using cumulative-sum 400 

scaling (CSS) (68). The resulting OTU table was input into R for subsequent analyses and the 401 

Bray-Curtis dissimilarity distance was calculated using vegan (69). 402 
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To evaluate the environmental component, Pearson�[�•�� ���}�Œ�Œ���o���š�]�}�v�� ���}���(�(�]���]���v�š�•�� �Á���Œ����403 

calculated using the corrplot package (70) to first identify possible correlations between 404 

environmental variables. With these many variables, it was a necessary step to avoid 405 

misinterpretation of the results (Katz, 2011). Coefficients over |0.8| indicated strong 406 

correlations [Fig. S4] and as such, variables were removed to keep only one representative 407 

(Katz, 2011). For example, a high moisture content was correlated with a high TOC content 408 

�~�W�����Œ�•�}�v�[�•�� �A�� �ì�X�ô�ô�•�U�� �]�v�� �š�Z�]�•�� �����•���U�� �u�}�]�•�š�µ�Œ���� �Á���•�� ���]�•�����Œ�������� ���•�� �]�š�� �]�•�� �Á�����š�Z���Œ-dependent and is 409 

expected to be more variable day to day than TOC. Of 48 parameters measured, 35 were 410 

independent and considered to be representative. The distribution of the 35 remaining 411 

environmental variables was investigated using the moments package (71) to assess the 412 

skewness and kurtosis. Skewness evaluates the degree of distribution shift to one side or 413 

another and a good distribution should equal 0, while kurtosis evaluates the tail distribution 414 

and should also be close to 0 to assume normal distribution. Using diagnostic plots, 415 

skewness and kurtosis, the necessary transformations to improve the unimodal distribution 416 

of environmental variables were carried (summarised in Table S2) and collinearity was 417 

�À���Œ�]�(�]���������P���]�v���Á�]�š�Z���W�����Œ�•�}�v�[�•�����}�Œ�Œ���o���š�]�}�v�•���€�&�]�P�X���^5]. Transformed environment variables were 418 

scaled and a sequential PERMANOVA was conducted using the adonis function 419 

implemented in vegan with standard 999 permutations to identify environmental variables 420 

significantly associated with the Bray-Curtis community dissimilarity. 421 

To evaluate the spatial component, the geographic locations (x,y) of the sampling sites were 422 

transformed to cartesian coordinates using the SoDA package (72) and the Euclidean 423 

distance was calculated using vegan. Distance-decay curves were produced using linear 424 

regressions of the Euclidean distance of the geographic locations against the Bray-Curtis 425 

dissimilarity distance and the Euclidean distance of scaled environmental variables. 426 
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The presence of a linear trend (a systematic increase or decrease in the OTU data with (x,y) 427 

coordinates) was visualised by the distance-decay curve [Fig. 3A] and tested by RDA and 428 

ANOVA, as prescribed in Borcard et al. (33). As a significant linear trend was identified, the 429 

OTU table was detrended by linear regression of the (x,y) coordinates. Distance-based 430 

�D�}�Œ���v�[�•�� ���]�P���v�À�����š�}�Œ�� �D���‰�• (dbMEM) were constructed with (x,y) coordinates using the 431 

adespatial R package (73). The significance of the spatial vectors (dbMEMs) was assessed 432 

using the detrended OTU table and tested with ANOVA. Forward selection was conducted to 433 

identify significant dbMEM vectors and the remaining dbMEMs were plotted using RDA.  434 

Variation partitioning analysis (VPA) was used to assess the impact of environmental and 435 

spatial factors on community composition (undetrended OTU table) and was conducted 436 

using the environmental variables, (x,y) coordinates (linear trend) and significant dbMEM 437 

vectors. Individual fractions were tested using RDA and ANOVA, as prescribed in Borcard et 438 

al. (33). 439 

To evaluate spatial autocorrelation, the detrended OTU table and the Euclidean distances of 440 

cartesian coordinates (x,y) were used to produce a Mantel correlogram with standard 999 441 

permutations using vegan. Semi-variograms were also produced using the autoKrige 442 

function of the automap package (Hiemstra and Hiemstra, 2013) to use for geostatistical 443 

analyses. Kriging was conducted using the autoKrig and automapPlot functions in the 444 

automap package. Environmental variables and alpha diversity measures were interpolated 445 

and mapped across the landscape. 446 

Indicator taxa were determined by the Dufrene-Legendre indicator species analysis (32) to 447 

identify OTUs that were specifically associated with different environmental variables. The 448 

first step was to define categories for each environmental variable (i.e. high conductivity, 449 
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medium conductivity and low conductivity). To identify groups statistically rather than 450 

subjectively, an automatic cluster approach was employed using the nbclust package (74), 451 

which indicated the ideal number of groups (Table S2). Clusters were created using the 452 

kmeans function (Table S2) and used with the multipatt function in the indicspecies package 453 

with 999 permutations (32). Indicator taxa with a correlation statistic higher than 0.98 were 454 

considered true specialists and used for subsequent analyses. The phylogenetic tree of 455 

indicator taxa was built using the representative sequences from the identified indicator 456 

taxa using FastTree method (65) and visualised using iTOL (75). Indicator taxa distribution 457 

was mapped across the landscape by kriging, as previously described and Pearson 458 

correlations were calculated between the indicator taxa and the environmental variables of 459 

interest.  460 
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Table 1: The relative influence of environmental factors on bacterial community structure, 671 

calculated by PERMANOVA using the adonis function. * 0.05 >p >0.01, ** 0.01 >p >0.001, 672 

*** p <0.001. 673 

Variable  R2 Pr( > F)  Variable  R2 Pr( > F)  Variable  R2 Pr( > F)  

TOC 0.089 0.001*** Sr 0.018 0.002** Th 0.013 0.005** 

pH 0.070 0.001*** S 0.016 0.001*** Ag 0.012 0.007** 

Cond 0.059 0.001*** Cu 0.015 0.001*** Mo 0.012 0.013* 

Al  0.041 0.001*** Te 0.015 0.002** Sb 0.012 0.010** 

As 0.041 0.001*** Ba 0.014 0.003** Cd 0.011 0.023* 

Br 0.024 0.001*** In 0.014 0.002** Ta 0.011 0.016* 

La 0.022 0.001*** Nb 0.014 0.004** Tl 0.011 0.021* 

Y 0.021 0.002** Nd 0.014 0.008** Zr 0.011 0.012* 

Ca 0.018 0.003** Si 0.014 0.004** Zn 0.010 0.031* 

Cl 0.018 0.001*** Fe 0.013 0.002** Ge 0.009 0.046* 

Cs 0.018 0.001*** I 0.013 0.006** Sn 0.009 0.036* 

Pb 0.018 0.001*** Mn 0.013 0.009** Residuals 0.269 N/A 

 674 

 675 

 676 

 677 
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Figures 679 

 680 

Figure 1: Map of sampling sites in (A) Svalbard. (B) Sampling design in 8 transects in 681 

Adventdalen. (C) Smaller scale samples on transect 6. (D) View of Adventdalen. 682 
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 683 

 684 

Figure 2: Venn diagram illustrating the results of the variation partitioning analysis on the 685 

influence of environmental variables and spatial factors on bacterial community 686 

composition. Results of each partition can be multiplied by 100 for the percentage of 687 

variation explained and are detailed in table S2. 688 
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  689 

Figure 3: (A) Distance-decay curve illustrating the increase in bacterial community 690 

dissimilarity with increasing geographic distance. (B) Mantel correlogram of spatial 691 

autocorrelation illustrating the dispersal limitation. Red squares indicate positive significant 692 

autocorrelation which was only identified in the first distance class (0-21 m). Beyond 60 m, 693 

the autocorrelation was either negative (black squares) or not significant (white squares). 694 

(C) Distance-decay curve illustrating increasing environmental variation with increasing 695 

geographic distance. The red curve illustrates the linear regression and the blue curve is the 696 

power model.  697 
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 698 

Figure 4: Kriged maps of the spatial distribution across the landscape showing the 699 

heterogeneity of (A) Richness, (B) Shannon index, (C) Simpson index, (D) pH, (E) Total 700 

organic carbon and (F) Aluminium. The color bar of A, B, C indicates values of alpha diversity 701 

while the color bar of environmental variables indicates element concentrations (see units of 702 

each variable in table S2, taking into account data transformations). 703 
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 704 

Figure 5: Phylogenetic tree of indicator taxa associated with environmental variables 705 

showing the high phylogenetic diversity. Coloured bands illustrate the taxonomy of each 706 
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OTU at the phylum level; labels indicate the taxonomy down to the family level if available. 707 

Coloured points indicate the element associated.  708 

 709 

Figure 6: Spatial distribution across the landscape using Kriged map and illustrating the 710 

heterogeneous distribution. The color bar of environmental variables indicates element 711 

concentrations (Table S2 for units, considering data transformations) while the color bar for 712 

OTUs represents the relative abundance. Box 1:(A) Conductivity. (B) Phylum: Bacteroidetes, 713 

order: Cytophagales. (C) Phylum: Bacteroidetes, order: Cytophagales. Box 2:(D) Arsenic. (E) 714 

Phylum: Firmicutes, order: Unknown Clostridia. (F) Phylum: Halanaerobiales, order: 715 

Halanaerobiales. (G) Phylum: Halanaerobiales, order: Halanaerobiales. (H) Phylum: 716 

Gemmatimonadetes, +order: Gemmatimonadales. (I) Phylum: Ca. Parcubacteria, class: Ca. 717 

Azambacteria. Box 3:(J) Iron. (K) Phylum: Proteobacteria (Delta), order: Bdellovibrionales. (L) 718 

Phylum: Cyanobacteria, order: Oscillatoriaceae. Box 4:(M) Manganese. (N) Phylum: 719 

Chlamydiae, order: Chlamydiales. (O) Phylum: Proteobacteria (Delta), order: Oligoflexales. 720 
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1

2

3

4

A. Cond B. OTU1 - Bacteroidetes C. OTU2 - Bacteroidetes 

D. As E. OTU3 - Firmicutes F. OTU4 - Halanaerobiales

G. OTU5 - Halanaerobiales H. OTU6 - Gemmatimonadetes I. OTU7 - Ca. Parcubacteria

J. Fe K. OTU8 - (Delta)Proteobacteria L. OTU9 - Cyanobacteria

M. Mn N. OTU10 - Chlamydiae O. OTU11 - (Delta)Proteobacteria

Cor = 0.63 Cor = 0.69

Cor = 0.45 Cor = 0.46

Cor = 0.41 Cor = 0.44 Cor = 0.33

Cor = 0.52 Cor = 0.52

Cor = -0.34 Cor = -0.43

 on January 5, 2021 by guest
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/

