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Materials and Methods

Genomic data

All SARS-CoV-2 genomes available on GISAID4) on 23 June 2020 were downloaded and
combined with all SARSCoV-2 genomes sequenced by the GOK consortium {5) by 26

June 2020 (available https://www.cogconsortium.uk/dajalhe pipeline used to collect and
process raw SARE0V-2 sequence data and sama$sociated metadata across the national
COG-UK network is described ir89). Among the genomes sequentgdhe COGUK

consortium, approximately 59.2% were sequenced using Illlumina sequencing technology and
27.5% using Oxford Nanopore Technologies (ONT). The sequencing platform was not recorded
for 13.3% of samples. Of the samples sequenced on the lllumina platform, apFiedxi50.8%

were sequenced on the NovaSeq, 31.6% on NextSeq, 13.5% on MiSeq and 4.1% on HiSeq. Of
the samples sequenced by ONT approximately 89% were sequenced on GridlON and 11% on
MinlON. All sequencing sites except Oxford used the ARTIC protet@Ifor amplification of
SARSCoV-2 samples. Rawequence data of all SARSV-2 genomes sequenced by the GOG

UK consortium are available from the European Nucleotide Archive (ENA) at ERELunder

the accession number PRJIEB37888ps://www.ebi.ac.uk/ena/browser/view/PRJEB37886
Mutations, insertions and deletions among genomes sequenced by tRekCEAsortium can

be visualized usin@oV-GLUE (http://covglue.cvr.gla.ac.ukd1). We removed sequences that

were from duplicate or environmental samples, those without exact collection dates, and those
with large clusters of substitutions or large indElsch genome sequence was alignedeo th
reference (Wuhahiu-1, GenBank: MN908947.3) usimginimap v2.14{42) and the resulting

SAM alignment was converted to a FASTA alignment, with the 50 and 30 UTRs of each genome
masked by Ns. Insertions relative to the reference were discarded arldG8® (kite position

relative to MN908947), which is globally homoplasic, was also masked. Genomes that contained
>5% Ns after mapping and those with a genetic distance to WH04 (GISAID: EPI_ISL_406801)
more than 4 standard deviations from thevegek meargenetic distance to WHO04 were

discarded. The final dataset consisted of 50,887 genomes sampled between 24 December 2019
and 22 June 2020, of which 26,181 (~51%) were from the UKHiged A). Accession numbers

for all 50,887 genomes are provided on tligH@b repository 38; https://github.com/CO&
UK/uk-intros-analysel

Geographical metadata

Administrative level 2 (admin2) metadata for the sampling location of UK virus genome
sequences in the dat (roughly equivalent to counties in the UK) required cleaning in order to
be mapped to official admin2 regions, as found in the Global Administrative Database (GADM,
https://gadm.orj

Some sampling locations in theetadata could not be unambiguously mapped to a known
location (e.g. OCity CentreQ), while others were for locations in overseas territories (e.g.
Falklands and Gibraltar). Yet other genome sequences had uninformative spatial records (e.g.
Yorkshire or Wées), or no admin2 level data at all. For these (3431 of 26,181) the admin2
region was not mapped. We carried out a simpletommme mapping where possible, which
included correcting spelling mistakes and alternative entries for the same county (eagn Durh
versus County Durham). Locations recorded at a higher spatial resolution were mapped to the
corresponding admin2 region (e.g. Solihull was mapped to Birmingham). Where the recorded



locations were larger than the admin2 regions (e.g. OWest Midlands@®)sirof the sequences

in the area were from this larger conglomeration as opposed to its-regb&rtion components,

these admin2 regions were combined. When creating the map figures, we also merged some city
authorities with no reported sequences wWhiir surrounding county, on the assumption that the
larger county was used to represent the location of city samples (e.g. for Leicester and
Leicestershire). Finally, genome sequences from Northern Ireland reported locations as historical
counties, rathethan the official admin2 designations, and so these historical counties were used
instead.

The lookup tablshowing the metadata-GADM location mapping is provided ibata Sland
a Jupyter notebook containing the cleaning code is provided on tHelG#pository 38,
https://github.com/CO@JK/uk-intros-analysek

Phylogenetic analysis and molecular clock dating

We developed a new Bayesian molecular clock phylogenetic analysis pipelngeina
reconstruct a posterior set of tiraealed phylogenetic trees for our exceptionally large virus
genome dataset. Using the standard Bayesian approach it is currently impractical to estimate
time-scaled trees directly from genome sequence data fiar than a few thousand sequences.
Therefore, we employed a number of extensions to make the analysis tractable.

First, we divided the full genome sequence dataset (n=50,887) into five smaller datasets.
Genomes were assign8ARS CoV-2 lineages according@ the nomenclature defined in

Rambaut et al.43) usingPangolin(44; github.com/covineages/pangolin Each lineage (and

its sublineages) represe@tsnonophyletic clade in the global SAR®V-2 phylogeny and can

thus be analysed independently. For each lineage in A (h=3591), B (n=8821), B.1 (n=22,861),
B.1.1 (n=15,616), we estimated an approximately maxidiklihood tree using the Jukes

Cantor modein FastTree v2.1.1(45), then collapsed branch lengths shorter &la0°
substitutions per site, which corresponded to distances smaller than one substitution across the
whole virus genome, and likely result from nucleotide ambiguity codes in the gesemuences.

By pruning out a large monophyletic clade the maximikelihood tree for B.1 was further

divided into two trees, B.1.pruned (n=12,275) and B.1.X (n=10,586).

Prior to analysing the full dataset, an initial analysis was performed on a sugsebmes to

obtain estimates of the molecular clock rate and of the TMRCA (time of the most recent
common ancestor) of each largeale phylogenetic tree defined above. The full dataset was
subsampled as evenly as possible across/eeks and countriesithl a slight enrichment for

samples immediately descended from five large polytomies in the global phylogeny. For each of
these nodes, we always included the five oldest genomes, the most recent genome sequence and
five other immediatelescendantthat wee randomly chosen. The remaining genomes were
sampled by allocating an even number of sequences pereegiwhile maintaining a dataset

size of <1,000 genomes. For eachepek, genomes were sampled evenly by country until

either its allocation was exhsted or there were no remaining genomes available. This
subsampled dataset was analyseBEAST 1.1@46) using a GTR+G+F substitution model,

with a strict molecular clock model using a Aaformative continuousime Markov chain

(CTMC) prior @7) and aSkygrid coalescent tree prict&) with 40 grid points, roughly
corresponding to weeks between 1 October 2019 and 2 July 2020. In the analysis, monophyly



constraints were used to ensure that the clades corresponding to trseédegehylogenetic

trees ieéntified in the previous step were monophyletic. We combined four independent Markov
Chain Monte Carlo (MCMC) chains that were each run for 40 million steps, discarding the first 4
million steps of each chain as btimand resampling states every 400(pst€Convergence was
assessed usingacer(49).

Next, we applied a commonly used approach, recently implemenBiAST 1.10to convert
branches of the larggcale phylogenetic trees from units of substitutions per site to time. This
model takes the pt& of the nucleotide substitution model in a traditional Bayesian molecular
clock dating analysis. Briefly, each branch of a maximikelihood tree is first scaled to
represent the number of substitutions that occurred along that branch. Polytomisslaee ey
inserting branches of length 0 substitutions. The likelihood of a blathengths

substitutions is defined by a Poisson distribution with m@awheret; is the length of the
branch in years anahis the clock rate. The lelikelihood ofthe whole tree is then the sum of
the loglikelihoods of each branch, which represents a fixed, stiock model and follows a
commonly implemented approach for scaling phylogenies intod¢atbrated trees (e.§0-52).

Each largescale phylogenetitee was analysed under a strict clock model, with the clock rate
fixed to the median estimate from the preliminary analysi (0* substitutions/site/year) and

a Laplace roeheight prior with mean equal to the median TMRCA estimate of the
correspondig subtree in the preliminary analysis and scale equal to the average distance from
the median. Trees were sampled using MCMC under the model described above with a Skygrid
coalescent tree prio#8) using the same grdoints as in the preliminary analgsiA randomly
resolved timecalibrated tree estimated TneeTimg53) was used as the starting tree. To

maintain a mapping between the topology in the estimatedctfitarated tree and the input
genetic distance tree, we constrained the topologies kathrty treenove that broke a clade
present in the input tree was rejected. The resulting MCMC chain, therefore, only samples
different polytomy resolutions and branch durations. This approach allowed us to incorporate
uncertainty in the polytomy resolatis and branch durations into our molecular clock analysis.

We ran between 8 and 24 chains for 60 to 100 million MCMC steps for eactstaige
phylogeny. Upon completion, we discarded 15 million states asibdrom each chain. Chains
that did not caverge or pass the buimin less than 15 million states werertm. Chains were
combined and resampled every 100,000 states using custenipks, leaving between 6808 and
17,020 posterior samples of each lasgale phylogenetic tree. Convergence assessed using
Tracer(49) and the Rpackagecoda(54).

Identifying transmission lineages

We define a OUK transmission lineageO as two or more UK infection cases that (i) descend from
a shared, single importation of the virus into the UK from elsew(iérare the result of

subsequent local transmission within the UK, and (iii) were present in our virus genome
sequence dataset. This concept is illustratddgare 2A and is distinct from a transmission

cluster, an epidemiological term commonly refegrin a group of cases that occur close to each
other in space and time (e.g. in a hospital or care home). Therefore, a large UK transmission
lineage may comprise many different individual transmission clusters. Finally, if a UK
transmission lineage is exped to another country, any infections occurring outside of the UK

4



are determined to not belong to the transmission lineage, and any new importations descending
from the same lineage will be classified as new UK transmission lineages.

[It is important tonote that the OUK transmission lineageO definition employed here is distinct
from the lineaggdhylotype designations used by other parts of the €CB&onsortium and that

are displayed dtttps://microreact.org/project/cogconsortiuihose latter designations (which

have the format OUKEO) are defined on the basis of shared sets of mutations, rather than shared
descent from an inferred single introduction event.]

We can identify UK transmissin lineages in the timealibrated trees estimated in the previous

step as clades of two or more genomes sampled in the UK. The TMRCA of all genome
sequences in a UK transmission lineage represents the earliest transmission event in the lineage
revealed bythe data; however, it does not necessarily represent the first transmission event in the
lineage as a whole, nor does it represent the importation date (i.e. the arrival date of the index
patient in the UK). The relationship between the TMRCA of a UKstrassion lineage in our

dataset and the importation date is illustrateligure 2B. Specifically, if the transmission

lineage is welsampled, then the TMRCA represents the date of the first transmission event in
the lineage (TMRCA A irig. 2B). However if the transmission lineage is sparsely sampled

then the TMRCA may represent a later transmission event (TMRCA-R)ir2B). The

Oimportation dateO of each UK transmission lineage is the date that an infected inbound traveller
entered the UK.

We usedh twostate asymmetric discrete trait analysis (DTA) mo88) (mplemented iBBEAST
1.10(46) to infer ancestral node locations (UK, AJK) on empirical distributions of 500 time
calibrated trees sampled from each of the posterior tree distributionatest above.

Additionally, we used a robust counting approd) (o estimate the expected number of
location state transitions into and out of the UK. For each-segke subtree, we combined 2
independent chains, each run for 5 million MCMC stepssamnapled every 4500 states. The first
10% of each run was discarded as batrresulting in 2000 trees with estimates of the ancestral
location for each internal node. FinallreeAnnotator 1.1@vas used to generate maximum

clade credibility (MCC) treesof each subtree, where each internal node is assigned a posterior
probability of representing a transmission event in the UK.

Transmission lineages were identified by first labelling each node in the MCC trees as UK or
nonUK and then initiating a deptlirst search from each UK genome in the MCC trees. All
nodes with a median age after 23 January 20@0posterior probability >0.5 of the ancestral
location being located in the UK were labelled as UK nodes. The-fiegithearch is continued
until a no-UK node is encountered or there are no nodes left to explore. At the end of the depth
first search, all nodes visited by the search are added to the same UK transmission lineage. If
only one tip is visited, the UK genome at the tip is marked as a singletis procedure is
repeated iteratively until every UK genome in the tree has been assigned a transmission lineage
or marked as a singleton. Transmission lineage names start with the dataset used to construct the
MCC tree, followed by " DTA_MCC_", anchaarbitrary number e.g. "B.1.1_DTA_MCa&2."
For the 8 largest transmission lineages we simplify the name as follows:

1! B.1.1_DTA _MCC_47 = DTA_47

2! B_DTA_ MCC _1=DTA 1



3! B_.DTA_MCC_13 = DTA 13

4) B.1.pruned_DTA_MCC_17 = DTA 17
5. B.1.pruned_DTA_MCC %= DTA_62

6. B.1.prured DTA_MCC_234 = DTA 234
70 B_.DTA_MCC_172 = DTA_172

8. B.1.pruned_DTA_MCC_290 = DTA_290

The above procedure was repeated on each of the 2000 posterior trees, for each subtree, from the
DTA analyses described above to examine statistical uncertainty in themsimband duration

of UK transmission lineages and their TMRCA distribution. Transmission lineages identified on
each posterior tree follow the same naming convention, but without "MCC" in the name.

Our methodology is likely to underestimate the trumber of transmission lineages and

singletons. Since only a small fraction of UK infections have been sequénige@X), many

lineages will have gone undetected. Furthermore, the power to detect a transmission lineage in
our sparsehsampled dataset iedendent on its size (i.e. the frequency of a lineage being

sampled from a small random sample of infections), making it more likely for larger lineages to
be detected. The low sampling fraction means that some singletons detected in our dataset likely
belong to observed and unobserved UK transmission lineages. Nonetheless, the true number of
singletons (importations not resulting in onward transmission) is likely to be significantly more
than our estimate, because their small size makes them difficeltetct dvith a low sampling

fraction. Finally, undesampling of genomes from other countries could result in mistaken
aggregation of separate importations, reducing the number of detected lineages. This mistaken
aggregation will result in larger, older leges being estimated. This was the motivation for

placing an age limit on UK nodes in the tree. We chose 23 Januara2®26 oldest possible

date for a transmission event in the UK as this represents the date that the first patient who tested
positive br SARSCoV-2 in the UK entered the countr§7) (tested positive on 30 January

2020). Although older importations into the UK could in theory be possible, if they had resulted

in large autochthonous outbreaks we would have observed this in both epidgaladad

genomic data.

We estimate a median of 2968 (95% HPD 28293) norUK to UK state transitions and an
additional 1468 (95% HPD 1361566) UK to noAUK state transition§Fig. S1, Table S1)

using the robust counting approaéi®)( The former slighly exceeds the sum of transmission
lineages and singletons as identified on the MCC trees (=2918) and across the 2000 posterior
trees (median=2829, 95% HPD=273@48;Table SJ). This result is expected, since multiple
location state changes along longrimfaes contribute to the total number of state transitions, but
do not add to the total number of UK transmission lineages or singletons. The largest number of
location state transitions occur on the B.1.1 phylogeny, with the fewest occurring on lineage A,
which are the largest and smallest of the subtrees, respectively. Proportional to the number of
tips, fewer state changes are inferred on the two B.1 phylogenies than other subtrees, while the
number of UK to nofUK transitions on the B phylogeny exceelattinferred on other lineages.

We caution that UK to neblK transitions are likely to be underestimated because of under
sampling in other countries and differences in the proportion of infections sequenced between
countries.



The transmission lineagezsi distribution from the MCC trees falls within the HPD interval
taken across the 2000 posterior trdgg.(2C). Although the sizes of the largest transmission
lineages vary substantially across posterior trees, the cumulative size distributions are simil
across all treed{g. 2C, inset). Similarly, the transmission lineage duration distribution on the
MCC trees falls within the variation of the HPD interval taken across the 2000 posterior trees

(Fig. S6.

We used the Jaccard index to compare tassdication of UK genome sequences into
transmission lineages and singletons between posterior trees and the MCElgtgesS13A
shows the mean, median and 95% HPD interval of the Jaccard index for each posterior tree
compared to the 1999 other postetrees, across all subtrees. While most Jaccard indices are
between 0.7 and 0.8, there is a noteworthy minority of trees with mean Jaccard indices <0.6
(n=100). Comparing the 2000 posterior trees to the classification on the MCCHpe313B,
resuls in a similar distribution of Jaccard indices, with most indices between 0.7 and 0.8 and
minorities below 0.6 and above 0.8 (n=68, n=170 respectively).

We undertook a similar analysis of the sensitivity to phylogenetic uncertainty of the distribution
of UK transmission lineage TMRCAs. We computed the median and 95% HPD interval of the
number of transmission lineage TMRCAS on each date across the 2000 sampled posterior trees.
Figure S14shows that the TMRCA distribution computed from the MCC treeswatlsn the
comparatively narrow HPD limits, and oscillates around the median estimate for each date.

UK epidemiological data

The number of reported COVHDI cases in the UK, by specimen date, were downloaded from
https://coronavirus.data.gov.uk/cagdate accessed: 1 September 2020). The number of reported
COVID-19 cases for each Upper Tier Local Authority (UTLA) in England, Local Health Board
(LHB) in Wales and regional NHS Board in Scotland, bgcamen date, were downloaded from
https://coronavirus.data.gov.uk/downloads/csv/coronaviases_latest.csv
http:/mwww?2.nphs.wales.nhs.uk:8080/CommunitySurveillanceDocfilesf"Rapid COVID19
surveillance data.xlsy"andhttps://github.cofDataScienceScotland/COVID8-Management
Information(file: "COVID19- Daily Management InformationScottish Health Boards

Cumulative cases.csy'respectively (date accessed: 15 October 2020).

To enable comparison of case and sequence data, tecated to report case data were
combined to correspond to those used for sequence davicaeversa (see th&eographical
metadatasection). Northern Ireland was not included due to inconsistencies between the
locations used for case and sequence @@i@rting that could not be easily resolved.

Global deaths due to COVD9

The cumulative number of daily COVHD9 deaths for each country were downloaded from the

JHU CSSE COVIDBP19 Database (date accessed: 19 August 263R)\(Ve removed data

pertainingto cruise ships, and aggregated data to the country level where data were reported for
subnational divisions (e.g. Australia). For countries with overseas territories included in the
dataset (e.g. United Kingdom), we excluded the cumulative death couhtse overseas

territories. For each country we computed a time series of the daily number of deaths by taking
the difference in the cumulative number on consecutive days. When this difference was negative,




for example when corrections in the cumulatienber were ngiropagated backwards, we set
the value to zero. A relevant outlier in these time series is the addition of 1290 deaths in China
on 17 April 2020, while on the days before and after no deaths were recorded. To account for
these deaths, wenifiormly distributed these deaths over the previous 85 days described by the
epidemiological data.

Population data

Countrypopulation size estimates were downloaded from the UN Department of Economic and
Social Affairs websitehttps://population.un.org/wpp/Download/Standard/Populgtiasing the
Mediumfertility projection for 2020%9).

Travel and mobility data

To investigate temporal trends in SAIRSV-2 importation intesity we sought information on

the number of travellers entering the UK from each other country for the period from 1 January
to 30 April 2020. Incoming travellers comprised both British nationals and resident and visiting
citizens of othecountries. Estirates were obtained by combining multiple data sources. First,
the UK Home Office has provided statistics that describe the number of inbound travellers
arriving in the UK by air on each day during this period
(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachmeht_data/fi
e/887655/statistieselatingto-covid-19-andthe-immigrationsystemtablesmay-2020

arrivals.od}. This data set provides the daily number of incoming air passengers but not their
source country. Second, we obtained the number of tickets sold for inthighbgburneys to the

UK along with their origin location from the IATA (for passengers that transfer, the source
location is the country from where the whole journey started). We used these numbers to
calculate the percentage of arrivals from each cgurt a monthly basis from January to April
2020. We multiplied the monthly distribution of source destination by the total number of air
passenger arrivals in the UK each day to estimate the number of arrivals from each country.
Third, we augmented the @e air passenger numbers with estimated numbers of incoming
travellers arriving per day by shesta ferry and through the Channel Tunnel (Frebehtiunnel

sous la Manche Numbers of shotsea ferry passengers from France, Netherlands and the
Republic @ Ireland were estimated from monthly statistics obtained from the UK Department of
Transport
(https://assets.publishingrvice.gov.uk/government/uploads/system/uploads/attachment_data/fil
e/908445/spas0107.9d¥Vithin that data set, values are provided for the Republic of Ireland and
for OOther EU countriesO. The latter total was broken down by country using data from 2019
showing that 72.7% of UK sheska journeys are with France, 13.6% with the Republic of
Ireland, 10.4% with the Netherlands, and 3.3% with other countries
(https://www.gov.uk/government/statistics/qeessengestatistics2019shortsearoutes.

Eurotunnel Shuttle vehicle movements from France were obtained from publicly available
monthly recordsHttps://www.eurotunnelfreight.com/uk/2020/02/shuttfic-for-january

2020. In the absence of other information we assumed (i) inbound and outbound vehicle
movements via the Eurotunnel Shuttle services wqually frequent and (ii) one passenger per
truck and 1.5 passengers per passenger vehicle. Inbound Eurostar rail passenger numbers from
France and Belgium were estimated from available data and adjusted as far as possible for post
pandemic reduction indwel. Specifically, ~2m passengers travelled by Eurostar in the first
guarter of 2020Https://www.breakingtravelnews.com/news/arfielgostatpassengecount




slips-by-a-fifth -in-early-2020. Monthly Eurostar passenger numbers were then calculated by
assuming (i) inbound and outbound journeys were equally frequent, (ii) two thirds of inbound
Eurostar journeys originated in France and third in Belgium, in approximate proportitm

the ratio of services, and (iii) the proportional decrease in Eurostar travel volumes during March
and April 2020 was equal to that observed for vehicle movements via the Eurotunnel Shuttle.
Our estimatesanot incorporate estimates of movements across the land border between the UK
and the Republic of Ireland. This is unlikely to be problematic as the numbers of infections in the
Republic of Ireland was relatively low compared to other potential sourcgrissuduring the

time period of interest.

Epidemiological model

We sought an estimate of the number of individuals in each source country who are (i) infected
with SARSCoV-2 and (ii) able to travel to the UK and initiate a transmission chain. In what
follows we refer to these individuals as the Opotential initiators of a transmission lineageO
(PITL). We conservatively assumed that symptomatic individuals cannot initiate a transmission
chain in the UK, either through being prevented from travelling degisolation on arrival.

Thus, our estimates of daily SARV-2 prevalence includes only psgmptomatic and
asymptomatic individuals. Asymptomatic individuals are counted among the PITL as those
capable of initiating a transmission lineage at any thie they are still infectiouszigure S16
illustrates the ways in which individuals are counted towards the daily PITL and their potential
disease outcomes.

We estimated the daily number of PITL by baodtrapolating the time series of daily numbers

of deaths due to COVH29 in each source country. COUI® deaths were used instead of

confirmed cases, as we are primarily interested in temporal dynamics rather than absolute values,
and death counts are believed to be less sensitive to changes in tasendeéporting delays

and differences in the level of surveillance among countries and regions. Estimates of the latent
period (infection to becoming infectious), incubation period (infection to onset of symptoms), the
infectious duration, and the tinbetween symptom onset and death (in fatal cases) were used to
estimate the number of infected individuals who would go on to die from CQU9]In each

stage of the disease, on each ddy.(S16. We then estimated the total number of infected
individuals on each day by multiplying with the reciprocal of the infection fatality rate (IFR).

Estimates of the periods defined above were taken fromrpeiemwed sources. Specifically, we
assumed that the time from acquiring an infection to becoming infedgid@idaysg0) and the

time to symptom onset 5 days (2 days after becoming infecti®ijs)The infectious period for
patients who recover from the disease was assumed to end 5 days after symptod®)onbkae
those who die from the disease are agslito do so 18 days after the onset of sympt@®s (

Given the large numbers of deaths we expect that variation in these timings among individuals
will be averaged out and is not considered. We further assumed an asymptomatic proportion of
31% ©3) and anFR of 1%, which is broadly consistent with those found in the literature for
China, France, and passengers aboard the Diamond Prié2e84, 65). These values

correspond to our study period, the spring epidemic of C@GMDmore recent estimates oRF

may vary due to changing treatment regimes and other factors. To examine the sensitivity of our
results to the asymptomatic proportion weae our analysis with proportions of 0.18 and 0.78



(the range of published estimatés; 67), and found that ouesults were robust over this range
(data not shown).

We did not account for changing levels of infectivity among individuals over the course of their
infection. Using the time series of deaths extracted from the JHU CSSE CTMIatabase

(58), as desabed above, we obtained estimates of the daily number of PITL in 183 countries
from 31 December 2019 to 26 July 2020.

Estimated importation intensity

The daily Oestimated importation intensityO (Ell) of a country is defined as the product of the
proportion of individuals in that country who make up the PITL (as described above) on each
day, and the number of individuals who travelled from that country to the UK on that day. The
former is estimated by dividing our estimate of the total number of indigduad could

potentially initiate a lineage (for each day) by the total population of the country (see the
Epidemiological modedection). The latter corresponds to the total number of arrivals by air,

ferry, and rail on that day (see theavel and mobili datasection). To assist in the subsequent

use of the Ell, we aggregated all countries with low PITL estimates into a single OotherQ
category. The aggregated countries are those that comprised less than 1% of the cumulative total
number of cases as oMay 2020 (excluding the UK). This left 53 primary source locations.
Maximum EIll (Fig. S17 was highest for Spain, (which experienced a large, early epidemic that
peaked before inbound passenger numbers declined), followed by France (whose later epidemic
peak coincided with high but declining international travel).

Importation lag model

We modelled the TMRCA of an observed transmission lineage (the data observation) as the
arrival date of the index patient (of that transmission cluster) in the3Jglus alag time,L,

until the first transmission event in the lineage revealed by the data. Given the probability that an
importation occurs on day, fe(g), and the probability of a lag time pdlays,f.(j), the

probability of a TMRCA occurring on ddyis v, defined by

S8 ")FH )L K
/

with v=\/ M. TMRCAs and importation dates are assumed to be independent, so the likelihood
for all transmission lineages is the product of the correspondiing each lineage.

This model doesot account for incomplete sampling of patients from UK transmission lineages.
It is likely that the TMRCA of a small transmission lineage is more recent than the first
transmission event after the importation and this issue is potentially further exteddsi non
random sampling of genome sequences from patients in the lirgg@/e therefore expect
shorter lag times for bigger transmission lineages. To account for thidegzadence, we

model the average importation lag as a function of lineage $he functional form of this is

given by the equatioh + #/ n, where" corresponds to the minimal average lag time expected
under complete sampling of the lineage &raatcounts for the increase in lag time as a smaller
proportion of sequences are luded in the lineage.
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We applied this model to the TMRCA estimates of individual transmission lineages and their
sizes as obtained from the MCC trees (seddémetifying transmission lineagegction). Values

for " and# were found by numerically optimig the likelihood function using random draws

from an exponential distribution as initial parameter values. The optimisation procedure was
repeated several times to ensure that the algorithm did not become stuck in a local optimum. We
further tested whethr lineage size affects the importation lag through a likelihood ratio test

(LRT) comparing the above model to a nested model without size dependen@g and found

that the sizelependent model is preferre@f (= 137.22,p < 0.001). The maximum likelihood
estimates fol' and# are 0.72 and 28.9Fig. S18, respectively.

Although we assume a constant IFR in the epidemiological model,kelg that the IFR has

varied both through time (due to changes in treatment) and among locations. However, notable
improvements in COVIEL9 treatment were mostly implemented after our study period and the
countries that contributed >90% of estimated imgubitases to the UK-{g. S2Q are Western
European nations with similar medical systems and mechanisms of reporting @OVID
associated deaths. Crucially, the dependence of Ell on the number of inbound travellers from,
and the number of cases in, each ¢oufboth of which vary rapidly over orders of magnitude)
means that likely variation in IFR has comparatively little numerical effect.

Travel advice in the UK

The travel advice issued by the Foreign and Commonwealth Office (FCO) of the United
Kingdom petaining to countries and regions affected by COMMwas primarily made

available through their websitECO Travel advice: coronavirus (COVID9) at
https://www.gov.uk/guidanéegaveladvicenovetcoronaviruy. The number of COVIEL9 cases

in the UK was available via the government websterénavirus cases in the Udt
https://www.gw.uk/guidance/coronavirusovid-19-informationfor-the-public). Travel advice

was also echoed by various news outlets and other information platforms, such as the Public
Health Scotland/NHS Scotlarkdt for Travelwebsite Ottps://www.fitfortravel.nhs.uf/ We

collected this information by mining archived FCO sites, manually retrieving HTML files
corresponding to updates to the URLs provided above and available at the Internet Archive
(https://archive.org/ Files were obtained and examined for all dates when changes to the URL
were published (18 updates were published in total between 4 February and 23 May 2020).
Furthermore, we compared this advice withRitefor Travelonline resource, collected through

a similar approach. Where information was insufficient or unclear, we complemented it with data
from news outlets to clarify travel advice, which was the case before February 4, when there was
no official trawel advice (only notifications for novel coronavirus). We collated all the travel

advice information into a single standardised table containing types of advice, dates of
implementation and countries or geographic regions covered by the advice. The ggbaseof
included both suggestions against specific types of travel versus all bessemtial travel and

the recommended period of sedblation upon return from specific destinations. All of the

changes in travel advice wdretween February 6 and Mér23, when specific seil$olation
recommendations applied to the general population and not just returning travellers. A summary
of the main changes in the UK travel advice across time (in particular, dates when advice for new
countries were issued) isgsented iMable S5and the complete lookup table is provided as a
separate fileData $b).
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Fig. S1.Number of location state transitions between the binary phylogenetic traits UKi\on
detected by the robust counting approatiplemented in BEAST 1.10. NOK to UK=blue,

UK to nonUK=red. Posterior distributions are truncated at their 95% HPD interval limits and
the horizontal lines indicate median estimates.
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