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28 Abstract

29 Over the last two decades, an abundance of research has explored the impact of fatiguing 

30 locomotor exercise on the neuromuscular system. Neurostimulation techniques have been 

31 implemented prior to and following locomotor exercise tasks of a wide variety of intensities, 

32 durations, and modes. These techniques have allowed for the assessment of alterations 

33 occurring within the central nervous system and the muscle, while techniques such as 

34 transcranial magnetic stimulation and spinal electrical stimulation have permitted further 

35 segmentalisation of locomotor exercise-induced changes along the motor pathway. To this end, 

36 the present review provides a comprehensive synopsis of the literature pertaining to 

37 neuromuscular responses to locomotor exercise. Sections of the review were divided to discuss 

38 neuromuscular responses to maximal, severe, heavy and moderate intensity, high-intensity 

39 intermittent exercise, and differences in neuromuscular responses between exercise modalities. 

40 During maximal and severe intensity exercise, alterations in neuromuscular function reside 

41 primarily within the muscle. Although post-exercise reductions in voluntary activation 

42 following maximal and severe intensity exercise are generally modest, several studies have 

43 observed alterations occurring at the cortical and/or spinal level. During prolonged heavy and 

44 moderate intensity exercise, impairments in contractile function are attenuated with respect to 

45 severe intensity exercise, but are still widely observed. While reductions in voluntary activation 

46 are greater during heavy and moderate intensity exercise, the specific alterations occurring 

47 within the central nervous system remain unclear. Further work utilising stimulation techniques 

48 during exercise and integrating new and emerging techniques such as high-density 

49 electromyography is warranted to provide further insight into neuromuscular responses to 

50 locomotor exercise. 

51 Key words: Cycling, fatigue, neurostimulation, neuromuscular physiology, running

52
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53 Introduction

54 The study of exercise-induced fatigue has captivated academics within the field of sport and 

55 exercise for centuries, with research into the topic dating back as far as the 18th century through 

56 the pioneering work of Alessandro Mosso, documented in his book La fatica. Today, fatigue 

57 remains the subject of considerable research attention, with over 3000 scientific publications 

58 on this topic in the last 20 years. Despite this interest, a strict definition of fatigue remains 

59 elusive, likely due to the numerous divisions within sport and exercise science providing 

60 definitions which best suit their individual discipline. Recent efforts have been made to provide 

61 a universal definition of fatigue, applicable to both athletic and clinical populations, which 

62 encompasses the interdependent physical and cognitive processes that occur with numerous 

63 chronic health conditions, and during and following strenuous exercise 1. To this end, Enoka 

64 and Duchateau 1 define fatigue as a debilitating symptom of tiredness and weakness, dictated 

65 by interactions between performance fatigability, which involves an acute exercise-induced 

66 reduction in force or power output of the involved muscles, and perceived fatigability, 

67 involving changes in sensations that accompany fatigue. The definition of fatigue as a sensation 

68 of tiredness and weakness, underpinned and/or modulated by a myriad of physiological and 

69 psychological processes, is used for the purposes of this review. 

70 In sport and exercise science, considerable research has focused on the effect of fatiguing 

71 exercise on objective measures of performance, such as alterations in the force and/or power 

72 generating capacity of muscle (i.e. the ‘performance fatigability’ aspects) 2-4. Such endeavours 

73 are logical given that the ability of the muscle to exert force is imperative to successful sporting 

74 performance. During high-intensity or prolonged exercise, the force generating capacity of the 

75 muscle is reduced 5. This reduction in muscle force during exercise, and the neurophysiological 

76 changes which accompany it, are integral contributors to fatigue and impaired exercise 

77 performance, and also possibly increase injury risk 6,7. Consequently, understanding exercise-
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78 induced impairments in muscle force generating capacity, and the mechanisms which elicit 

79 these impairments, is a pertinent area of research. 

80 Voluntary force is produced through a complex chain of events which occur throughout the 

81 neuromuscular pathway, from brain to muscle. As every step along this pathway is susceptible 

82 to change during fatiguing exercise, determining the alterations within the neuromuscular 

83 pathway that occur during exercise can facilitate understanding of the causes of reduced muscle 

84 force, and in turn exercise performance 1. Using peripheral nerve stimulation, it is possible to 

85 differentiate between the contribution of alterations within the muscle and central nervous 

86 system (CNS) to impaired neuromuscular function and force generating capacity during 

87 exercise. Peripheral contributors to reductions in muscle force involve disturbances at sites at 

88 or distal to the neuromuscular junction and can be assessed by measuring involuntary evoked 

89 responses to electrical stimulation on relaxed muscle. This technique offers a method to assess 

90 the manifestation of biochemical and histological changes occurring within muscle fibers 

91 through changes in the resting twitch force. Other methods, such as muscle biopsies and 

92 Ultrasound, can be used to provide further insight into biochemical and histological alterations 

93 occurring during locomotor exercise 8,24. Central contributors to fatigue involve processes 

94 occurring proximal to the neuromuscular junction, resulting in an impairment in the capacity 

95 of the CNS to voluntarily activate the muscle, and can be examined through evoked responses 

96 to electrical or magnetic stimulation during submaximal and maximal voluntary contractions 

97 (MVCs) 5. Moreover, exercise-induced alterations in the corticospinal tract, which represents 

98 the primary motor pathway for control of human movement, can be further segmented through 

99 the use of transcranial magnetic stimulation (TMS), with concurrent spinal stimulation 

100 enabling the differentiation between cortical and spinal components of the motor pathway 8,9. 

101 Other techniques, such as the assessment of stretch-reflex responses following physical 

102 perturbations, can also be used to monitor natural reflex responses 10, though the application of 
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103 these methods in response to fatiguing locomotor exercise is limited. While many of these 

104 techniques permit the assessment of neuromuscular function at a segmented level, it should be 

105 noted that the peripheral and central contributors to impairments in neuromuscular function are 

106 not mutually exclusive. For example, changes occurring within the muscle influence the 

107 activation signal discharged by motor neurons during voluntary contractions, while sensory 

108 feedback is transmitted from the muscle travels to various sites within the CNS, and can 

109 influence the behaviour of cortical and spinal neurons 1,11,12. 

110 A common approach when studying neuromuscular responses to fatiguing exercise is to deliver 

111 electrical and magnetic stimuli during fatiguing single-limb, isometric exercise protocols.  

112 While this approach is convenient because participants are not required to manoeuvre to the 

113 designated apparatus for the fatiguing task (i.e. the equipment used to measure isometric force), 

114 the ‘real-world’ applicability of the findings from these studies is questionable due to a lack of 

115 ecological validity. That is, the type of exercise being performed differs substantially from that 

116 performed in a sport and exercise environment, where dynamic, locomotor exercise is 

117 performed with multiple limbs, and the systemic and local responses are considerably different 

118 to that of isometric exercise. Given the well-established importance of task dependency in 

119 determining the aetiology of exercise-induced fatigue 13, extrapolations from findings using 

120 isometric exercise models in the context of locomotor activity should be made with caution 14, 

121 and there is a requirement to assess neuromuscular function in response to locomotor exercise 

122 itself. As such, a plethora of research over the last two decades have documented 

123 neuromuscular responses to locomotor exercise of varying intensities, durations and modes, 

124 both during and in the recovery period following exercise 15-17. While a number of reviews 

125 exist in the literature on corticospinal excitability during locomotor exercise 8,18, neuromuscular 

126 function responses to repeated sprints 19 and extreme endurance exercise 20,   a comprehensive 

127 review of the literature describing neuromuscular responses to locomotor exercise is lacking. 
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128 An understanding of how locomotor exercise impacts the neuromuscular system has 

129 implications for those working with both athletic and clinical populations. Accordingly, the 

130 aim of this review is to summarise literature examining neuromuscular responses during and 

131 following fatiguing locomotor exercise, with a focus on the role of locomotor exercise 

132 intensity, duration, and mode on the modulation of neuromuscular function. 

133

134 The role of exercise intensity and duration on neuromuscular responses to fatiguing 

135 exercise

136 Research has demonstrated that the intensity and duration of locomotor exercise has a profound 

137 influence on the aetiology of impairments in neuromuscular function 21-23. Exercise intensity 

138 during locomotor exercise can be categorised into distinct domains demarcated by 

139 physiological thresholds.  Specifically, four intensity domains have so far been established; 

140 moderate (power output below lactate threshold), heavy (power output between lactate 

141 threshold and critical intensity, defined as the asymptote of the relationship between intensity 

142 and time, and the maximum sustainable exercise intensity), severe (power output above critical 

143 intensity that can be sustained until VO2max is reached) and extreme (supra-severe intensity in 

144 which exercise intensity is so great that VO2max cannot be reached before exhaustion) 24. Each 

145 intensity domain is characterised by differences in VO2 kinetics, muscle metabolic, and blood 

146 acid-base responses 25. In turn, the exercise intensity domain and the distinct physiological 

147 responses within these domains are proposed to influence the mechanisms responsible for 

148 impairments in neuromuscular function. In addition, many sporting activities are characterised 

149 by intermittent bouts of maximal or severe intensity exercise interspersed with periods of 

150 recovery or moderate and heavy intensity exercise, such as in team sports. Thus, this form of 

151 activity imposes a unique challenge to all physiological systems, including the neuromuscular 
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152 system, in that it is of prolonged duration, spans the four exercise intensity domains, and is 

153 characterised by substantial mechanical demands. 

154

155 Neuromuscular responses to ‘all-out’ exercise

156 Muscle force generating capacity, voluntary activation and contractile function

157 Short-duration, maximum intensity exercise (30-60 s), in which there is maximum effort and a 

158 considerable decrease in performance, is referred to as ‘all-out’ exercise 26. This form of 

159 exercise is commonplace during sprint interval training, which is regularly implemented as a 

160 means of improving health 27 and sports performance 28, as well as the Wingate 30 s test, and 

161 athletic events such as 400 m track running. Moreover, repeated sprint exercise, characterised 

162 by short maximal efforts (3-7 s) separated by brief recovery periods (< 60 s), is a common and 

163 effective training modality 29, and is implicated in team sports such as basketball 30. Despite 

164 the relatively brief nature of this mode of exercise, there is a substantial and progressive 

165 decrease in the force generating capacity of the muscle. Following a 30 s all out cycle sprint, 

166 Kruger et al. 31 found a 19% reduction in knee extensor maximum voluntary contraction 

167 (MVC). Similar results have been observed following running or cycling repeated sprint 

168 protocols, with reductions in MVC when measured within 30 s post-exercise ranging from 15-

169 24% (Table 1). It is well-established that the decrease in performance during all-out exercise 

170 is due primarily to alterations occurring within the muscle. Indeed, following 30 s all-out 

171 cycling, Kruger et al. 31 and Fernandez-del Olmo et al. 32 reported a 50% and 41% reduction 

172 in peak twitch force (Ptw), respectively, indicating the presence of considerable impairments 

173 within the contractile machinery 32. The reduction in the ability of the muscle to produce force 

174 in response to neural input during all-out exercise is likely due to the reliance on anaerobic 

175 metabolism, the by-products of which are deleterious to contractile function. Specific 

176 mechanisms proposed to contribute to impaired contractile function include the accumulation 
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177 of inorganic phosphate (Pi) derived from the creatine kinase reaction, which has multiple roles 

178 in impaired contractile function33, such as interference with Ca2+ release and sensitivity, 

179 reductions in specific force per cross-bridge and the rate of cross-bridge formation 34,35. 

180 Accumulation of H+ ions occurring due to anaerobic glycolysis, and subsequent interference 

181 with the excitation-contraction coupling process is also a commonly cited mechanism26,36.  

182 Discrepancies exist in the literature regarding the effect of maximal intensity exercise on 

183 voluntary activation (VA). For example, following two 30 s all-out cycling tasks separated by 

184 30 min, Fernandez-del-Olma et al. 32 found a 34% reduction in VA, whereas Kruger et al. 31 

185 found no reduction in VA following a similar exercise task. Following repeated sprint exercise, 

186 some studies have reported no change in VA 37,38, while many others reported significant 

187 decreases ranging between 3 and 11% 39-45 (Table 1). While these discrepancies could be 

188 related to differences in the exercise protocols (e.g. number or duration of sprint, exercise 

189 mode, between-sprint recovery duration), time to post-exercise neuromuscular assessment, 

190 and/or characteristics of the participants studied (sex, age, physical condition), the body of 

191 evidence would suggest short-duration, all-out exercise could inhibit the capacity of the CNS 

192 to activate muscle (Table 1). 

193 In regards to the kinetics of change in neuromuscular function during repeated sprints, 

194 impairments in MVC, VA and Ptw have been shown to occur following just two sprints of a 

195 repeated sprint protocol 43. Both Goodall et al. 43 and Hureau et al. 39 showed that most of the 

196 reduction in Ptw occurred during the first half of a repeat-sprint protocol, and reached a nadir 

197 around the mid stage. In contrast, impairments in VA were shown to be more pronounced 

198 during the later stages of the protocol 39. These kinetics could be explained by the early 

199 utilisation of higher threshold fatigable motor units during the initial sprints causing the rapid 

200 reduction in Ptw, while the reduction in VA during the later stages could be due to a number of 

201 mechanisms (discussed below). In addition, root mean square EMG (EMGRMS) normalised to 
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202 the maximal muscle compound action potential (Mmax) is progressively reduced throughout 

203 repeated sprints, suggesting reduced alpha(α)-motoneuron output 39,46. Accordingly, impaired 

204 contractile function plays a particularly prominent role in reduced muscle force during the early 

205 stages of repeated sprints, while reductions in VA become more apparent during the later 

206 stages. 
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211 Central nervous system alterations during ‘all-out’ exercise

212 While the peripheral changes which contribute to impaired neuromuscular function during all-

213 out exercise are well-established, the mechanisms which contribute to reductions in VA are 

214 less clear. A number of functional changes can occur within the CNS and contribute to 

215 impairments in VA and muscle force, including impairments in motor cortical output 49, 

216 changes in the intrinsic properties of α-motoneurons 50, altered reflex responses at the spinal 

217 cord 51, increases in group III/IV afferent firing ascending to supraspinal and spinal centres 46, 

218 and alterations in descending neuromodulatory systems 52. While the invasive nature associated 

219 with directly assessing the activity of some these systems preclude their measurement in 

220 humans, indirect measures can provide insights into adjustments in the neuromuscular pathway 

221 that occur during maximal intensity exercise. Figure 1 depicts the neuromuscular pathway and 

222 the potential alterations within this pathway that contribute to or occur with reduced 

223 performance during maximal intensity exercise based on current evidence primarily derived 

224 from maximal cycling exercise. 

225 Regarding cortical output, this is commonly estimated via the delivery of TMS over the motor 

226 cortex to estimate VA (VATMS). This technique involves delivering single-pulse TMS during a 

227 MVC, with an increase in the evoked superimposed force relative to an estimated resting twitch 

228 thought to be indicative of a decrease in cortical output. It should be noted that while VATMS is 

229 the most common method of estimating changes in maximal cortical output, it is associated 

230 with various limitations, such as activation of antagonist muscles, submaximal activation of 

231 the motoneuron pool, and accuracy of the estimated resting twitch 53, and spinal influences on 

232 VATMS cannot be ruled out.  Studies using this technique in response to maximal intensity 

233 exercise have provided mixed evidence, with some reporting a decrease 32,43 in VATMS while 

234 others report no change 38,54. Thus, while there is some evidence that output from the motor 

235 cortex could be impaired during all-out exercise, the limitations in VATMS as well as the 
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236 conflicting findings in the literature preclude a definitive conclusion on the matter. The 

237 mechanism(s) which could reduce motor cortical output are unclear, but could relate to 

238 alterations in the properties of cortical neurons, or synaptic inputs acting at or upstream of the 

239 motor cortex  45,49,55. While evidence regarding the activity of these neurons in response to 

240 maximal intensity exercise is scarce, Pearcey et al. 45 demonstrated a reduction in the motor 

241 evoked potential to cervicomedullary evoked potential (MEP/CMEP) ratio measured post-

242 exercise and between bouts of repeated arm sprint cycling, indicative of a decrease in the 

243 excitability of motor cortical neurons. Although the relationship between MEP and voluntary 

244 activation is not entirely clear, a decrease in the excitability of motor cortical neurons 

245 responsible for producing descending drive would require a compensatory increase in neural 

246 drive into the cortex, and if such an increase is not possible (e.g. due to the maximal nature of 

247 all-out exercise), recruitment of α-motoneurons would be diminished and VA reduced. More 

248 studies utilising VATMS and cortical combined with spinal stimulation are required to elucidate 

249 the effects of all-out exercise on motor cortical output and excitability. 

250 Alterations in α-motoneuron excitability can be assessed by measure the CMEP in response to 

251 all-out exercise. This measure is advantageous given that cortical projections to α-motoneurons 

252 lack conventional presynaptic inhibition, which can influence responses such as the H-reflex 

253 independently of altered motoneuron excitability 56. Motoneuron excitability is influenced by 

254 the level of descending synaptic input, sensory input, monoaminergic input, and alterations in 

255 the intrinsic properties of α-motoneurons, all of which could be altered during fatiguing 

256 exercise 5. Only one study has assessed the CMEP in response to all-out exercise, with Pearcey 

257 et al. 45 demonstrating a 29% increase in CMEP amplitude when measuring responses during 

258 an isometric contraction following repeated arm-cycle sprinting. This increase in α-

259 motoneuron excitability could be considered surprising given that studies have observed a 

260 decrease in spinal excitability during fatiguing isometric tasks (e.g. 50,57), highlighting the 
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261 importance of task-dependency and contraction mode on the neuromuscular adjustments to 

262 fatiguing exercise. The authors posited that the increased excitability could be due to a decrease 

263 in voltage threshold for action potential, activation of persistent inward currents and the 

264 monoaminergic system during exercise, and/or the facilitatory effects of firing of group III/IV 

265 afferents on the biceps brachii 58,45. It should be noted that when measured during ongoing 

266 voluntary contractions, CMEPs can be influenced by alterations in descending drive from the 

267 motor cortex, and thereby confound estimations of α-motoneuron excitability. Thus, further 

268 studies measuring CMEPs (or other methods of estimating α-motoneuron excitability such as 

269 measuring thoracic or lumbar evoked potentials) in the absence of ongoing descending drive 

270 (e.g. during the TMS evoked silent period 59,60), and during more traditional forms of maximal 

271 intensity exercise (e.g. cycle sprints), are warranted to further understanding on the effect of 

272 maximal intensity locomotor exercise on α-motoneuron excitability.

273 Changes in motor cortical output and α-motoneuron excitability can occur in addition to, and/or 

274 secondary to alterations in input from sensory neurons. For example, projections from sensory 

275 neurons innervating skeletal muscle, including muscle spindles (group Ia/II), Golgi tendon 

276 organs (group Ib) and group III/IV afferents, can modulate the corticospinal pathway during 

277 exercise. The role of Golgi tendon organs during locomotor exercise is unknown, but are 

278 suggested to play a limited role in exercise-induced impairments in neuromuscular function 

279 5,61. During locomotor activity, group Ia afferents provide facilitatory feedback to α-

280 motoneurons, and exercise-induced disfacilitation of these afferents has been suggested as a 

281 potential mechanism of impaired α-motoneuron firing rate and thereby VA 5,62. The excitability 

282 of the spinal loop between muscle spindle afferents projecting to α-motoneurons can be 

283 assessed through the H-reflex, involving exogenous stimulation of the motor nerve to activate 

284 Ia afferents. The H-reflex can be influenced by numerous pre- and post-synaptic mechanisms, 

285 with exercise-induced reductions in H-reflex largely attributed to reduced Ia afferent discharge, 
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286 increased presynaptic inhibition onto Ia afferents, and decreased α-motoneuron excitability. 

287 Only one study has used this technique in response to maximal intensity repeated sprint cycling, 

288 consisting of 7 × 10 s sprints 51. The study assessed the effects of repeated sprints on pre-

289 synaptic inhibition of the spinal reflex pathway by utilising stimulation of cutaneous afferents 

290 of the foot, which is known to reduce presynaptic inhibition of Ia afferents 63. Concurrently, 

291 the study measured H-reflex amplitude with and without cutaneous stimulation to assess the 

292 effect of exercise-induced changes in pre-synaptic inhibition on spinal loop excitability. The 

293 results showed that delivering cutaneous stimulation attenuated the sprint induced reduction in 

294 H-reflex, possibly through reduced presynaptic inhibition of Ia afferents, whilst also 

295 attenuating the decline in power output throughout the sprints. These results suggest that 

296 disfacilitation from group Ia afferents, possibly owing to increased presynaptic inhibition, 

297 could be implicated in impaired α-motoneuron output during maximal intensity exercise. 

298 Furthermore, the firing rate of group III and IV muscle afferents, which are mechano- and 

299 metabosensitive sensitive sensory receptors that project inhibitory and/or facilitatory feedback 

300 to cortical and spinal regions of the motor pathway, likely increases substantially during all-

301 out exercise 64. However, the role of these afferents on neuromuscular function during maximal 

302 intensity exercise is not entirely clear. Torres-Peralta et al. 65 had participants perform 

303 isokinetic sprints before an incremental exercise test to exhaustion. After the incremental test, 

304 the quadriceps were occluded for 10 or 60 s, and a second isokinetic sprint was performed 

305 immediately after the occlusion periods. Despite the presumably augmented build-up of 

306 metabolites and increased group III/IV afferent feedback elicited by 60 s of occlusion, peak 

307 power recovered and was higher than that after 10 s of occlusion. Thus, the authors suggested 

308 that the role if group III/IV afferent feedback on maximal sprint performance is negligible, and 

309 can be overcome by a strong central command. Hureau et al. 46 had participants perform 10 � 

310 10 s cycle sprints, which were preceded by neuromuscular electrical stimulation (NMES) to 
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311 elicit metabolic disturbances in the quadriceps. Power output during the sprints, EMG activity, 

312 and post-exercise changes in Ptw where compared between the NMES and a control condition 

313 without NMES. It was shown that both power output and EMG activity were reduced in the 

314 NMES condition relative to control, while the post-exercise reduction in Ptw was consistent 

315 between conditions. Thus, the authors suggested that the metabolic disturbances caused 

316 increased group III/IV feedback, thereby reducing neural drive estimated through EMG in 

317 order to prevent peripheral homeostasis from deviating beyond tolerable limits. Thus, different 

318 interpretations exist on the role of group III/IV afferent feedback during maximal intensity 

319 exercise, precluding firm conclusions on the matter 16. 

320

321 Neuromuscular responses to severe intensity, short-duration exercise

322 Muscle force generating capacity, voluntary activation and contractile function

323 Many sporting activities are characterised by short-duration, high-intensity locomotor exercise, 

324 such as middle-distance running (i.e. 800-5000 m) or track cycling events lasting ~2-20 min. 

325 The exercise intensity associated with these events falls within the ‘severe’ domain, i.e. above 

326 the maximum sustainable exercise intensity, or ‘critical intensity’. Due to the rapid energy 

327 requirements associated with severe intensity exercise and the consequent generation of ATP 

328 from anaerobic pathways, exercise within this domain is associated with a progressive loss of 

329 muscle homeostasis, such as a reduction in pH and glycogen and an increase in Pi 
23. These 

330 disturbances occurring at the peripheral level impair the capacity of the muscle to produce force 

331 in response to neural stimulation. Evidence suggests that disturbances within the muscle are 

332 the primary contributor to impairments in muscle force during severe-intensity exercise 21,22,66. 

333 Reductions in Ptw range from 16-55% when measured post-exercise (Table 2). This large 

334 variability in the magnitude of Ptw decrease could be due to a number of factors. Namely, the 

335 time to post-exercise neuromuscular assessment ranges from < 10 s to 4 min, with longer 
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336 durations often being required to manoeuvre participants to the neuromuscular testing 

337 apparatus. Kruger et al. 31 recently showed that Ptw recovered from −44% immediately post-

338 exercise to −34% following 2 minutes of recovery after severe intensity exercise, likely due to 

339 the rapid recovery of metabolic factors thought to interfere with the excitation-contraction 

340 coupling 36. Given that many studies take > 2 min to assess neuromuscular function, there is 

341 likely considerable underestimation of the effects of severe intensity exercise on Ptw, and Figure 

342 2 highlights that studies with a shorter time to post-exercise neuromuscular assessment 

343 demonstrate higher reductions in Ptw. 

344

345 Two other factors could contribute to the discrepancy in the level of reduced Ptw observed 

346 throughout the literature. Firstly, it is thought that the mechanisms contributing to the limit of 

347 tolerance, or the degree of fatigue which can be tolerated, could differ between individuals. 

348 Hodgson et al. 67 dichotomised a group of apparently homogenous individuals based on those 

349 who reached the limit of tolerance during ramp-incremental cycling with a knee-extension 

350 power reserve which exceeded the power produced at the limit of tolerance, and those without 

351 a power reserve. Those without a power reserve demonstrated exacerbated reductions in Ptw 

352 relative to those with a power reserve. Thus, it was suggested that task failure in individuals 

353 without a power reserve could be due to inhibitions in contractile function rendering them 

354 unable to achieve the required power output. In individuals with a power reserve, factors other 

355 than impaired contractile function might contribute to the limit of tolerance, or the willingness 

356 to tolerate a stronger symptom of fatigue might be lower than those without a power reserve. 

357 If disparate inter-individual mechanisms contributing to the limit of tolerance do exist, this 

358 could conceivably contribute to the variable reductions in Ptw between studies (Table 2) if some 
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359 individuals reach critical impairments in contractile function while others reach the limit of 

360 tolerance before these occur.

361 Secondly, the variable reductions in Ptw could be due to the considerable variance in the 

362 exercise intensity above critical power/speed between studies, with Table 2 displaying that task 

363 failure/completion occurred between 3 and 24 min. Conflicting evidence exists on whether the 

364 level of intensity above critical intensity influences the magnitude of reduction in Ptw at task 

365 failure. For example, Thomas et al. 21 demonstrated a greater reduction in Ptw at task failure 

366 when exercise was performed at a higher intensity (task failure at ~3 min) compared with a 

367 lower intensity (task failure at ~11 min) within the severe domain (33% vs 16% reduction in 

368 Ptw, respectively). In contrast, Schafer et al. 68 found no difference in end exercise reduction in 

369 Ptw when the power output was set to deplete the W’ within either 3 or 12 min (35% vs 31% 

370 reduction in Ptw, respectively), though it should be noted in this study participants didn’t 

371 necessarily exercise to volitional exhaustion. Furthermore, Black et al. 23 measured changes in 

372 a range of metabolic variables including PCr, lactate, K+
, ATP, pH and glycogen (variables 

373 which are linked with the reduction in Ptw 36), and found no difference in the change in any 

374 variable when exercise was performed at three different intensities within the severe domain 

375 (65, 75 and 85% of work-rate difference between gas exchange threshold and VO2max, in which 

376 task failure occurred from 2.2 to 13.9 min), although peak twitch was not measured in the 

377 study. It has been proposed that a consistent magnitude of end-exercise alterations in metabolic 

378 variables (and thus Ptw) could exist due to a task specific ‘individual critical threshold’ of 

379 peripheral alterations in response to severe intensity locomotor exercise, beyond which the 

380 degree of associated sensory perceptions would not be tolerable 69. Proponents of this theory 

381 suggested that the individual critical limit of altered metabolic homeostasis is mediated by 

382 group III/IV muscle afferents, which could reduce drive from the motor cortex through 

383 inhibitory feedback in response to metabolic stimuli. 70-72. Whether or not alterations within 
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384 the muscle are regulated to an unvarying “critical threshold” during locomotor exercise is 

385 debated 73-75, and numerous theories exist on exercise tolerance and the degree to which 

386 metabosensitive afferent feedback plays a role 76-78. Nevertheless, when considering the 

387 alterations within the neuromuscular system which occur during severe intensity exercise, it is 

388 clear that these primarily reside in the muscle.

389 Impairments in VA are evident in response to severe intensity exercise, with reductions in post-

390 exercise voluntary activation range from 3-14% (Table 2). One study assessed the kinetics of 

391 change in neuromuscular function throughout constant load severe intensity exercise. Decorte 

392 et al. 79 had participants perform intermittent bouts of 6 min cycling at ~80% peak power 

393 output, with 4 min recovery between cycling bouts during which neuromuscular function was 

394 assessed, and the task completed to exhaustion (occurring on average after 3 bouts of cycling). 

395 Their study demonstrated a curvilinear relationship between exercise duration and the decline 

396 in Ptw, such that most of the decline occurred in the first half of exercise. Concurrently, 

397 EMGRMS increased considerably during the first half of exercise, indicative of a higher 

398 descending drive required to sustain force due to impairments within the muscle, an 

399 interpretation further supported by the positive association between the change in rectus 

400 femoris EMGRMS and reduction in Qtw. This progressive impairment in contractile function and 

401 requirement to activate a greater volume of muscle to maintain a given power output is also 

402 thought to be the primary contributor to the VO2 slow component during severe intensity 

403 exercise 80. Towards the latter stages of exercise (80% and 100% of total cycling duration), 

404 there was a plateau in EMGRMS, concurrent with a significant decrease in voluntary activation. 

405 These results suggest that once either a certain level of impairment in contractile function or a 

406 level of increase in motor drive are reached, no additional increase in motor drive occurs. 

407 Whether this plateau in motor drive serves as a protective mechanism to prevent further, 

408 potentially harmful, alterations within the muscle, or if further increases in motor drive are 
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409 prevented by intrinsic changes along the motor pathway, is unclear 79. Nevertheless, the results 

410 indicate that, during constant-load severe intensity exercise, the impairment in VA widely 

411 observed throughout the literature (Table 2) occur primarily during the latter stages of severe 

412 intensity exercise, and could thus be implicated in task failure during constant load tasks 79.

413 It should be noted that the kinetics of altered neuromuscular function likely differ between self-

414 paced versus constant load exercise. For example, Azevedo et al. 81 recently characterised 

415 neuromuscular responses to a 4 km cycling time-trial, in which the pacing strategy was 

416 characterised by a fast-start, even paced, and end-spurt phase. Across three separate visits, 

417 neuromuscular function (MVC, VA and Ptw) was measured following these three phases. The 

418 results demonstrated that all three variables were reduced by 12%, 8% and 23%, respectively, 

419 following the fast-start phase, with no further reduction thereafter. The lack of further reduction 

420 in MVC, VA or Ptw could have been the result of the lower selected intensity during the middle 

421 phase, which likely fell below the critical intensity and thereby permitted repletion of work 

422 capacity and recovery of neuromuscular function 82,83. It should be noted, however, that the 

423 delay between exercise cessation and neuromuscular testing might have limited the ability to 

424 capture further decrements in neuromuscular function following the end-spurt 81.  

425
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432 Central nervous system alterations during severe intensity exercise

433 Central nervous system alterations during severe intensity exercise have been studied 

434 extensively., Figure 3 depicts alterations which occur throughout the neuromuscular pathway 

435 in response to severe intensity exercise based on current evidence. To assess specific alterations 

436 within the CNS occurring with severe intensity exercise, studies have implemented VATMS 21,22 

437 and the MEP/CMEP ratio 16,60,86 to assess motor cortical output and excitability, respectively, 

438 CMEP to assess α-motoneuron excitability 16,60,86, and afferent blockade through intrathecal 

439 fentanyl to assess the effects of group III/IV afferent feedback on neuromuscular function 

440 16,60,69,71,91. Using VATMS, a number of studies have demonstrated reductions in the region of 5-

441 8% 21,22,87,93,97. This could indicate a modest impairment in motor cortical output in response to 

442 severe intensity exercise. An impairment in motor cortical output is plausible given the plateau 

443 in EMGRMS throughout exercise in this domain as previously discussed 79, i.e. the motor cortex 

444 could be unable to ‘drive’ the α-motoneurons to cause further increases in EMGRMS, although 

445 it should be noted that VATMS provides only surrogate measures of cortical output. Impaired 

446 cortical output could be due, at least in part, to inhibition of motor cortical cells due to feedback 

447 from group III/IV afferents 16,98. During exhaustive cycling exercise at 80% peak power output, 

448 Sidhu et al. 16 demonstrated that the MEP/CMEP amplitude ratio was increased by 25% when 

449 group III/IV afferent feedback was reduced with fentanyl-blockade, but was unchanged in the 

450 presence of continued afferent feedback in control conditions, thus indicating the inhibitory 

451 influence on the motor cortex during severe intensity exercise. Concurrently, the study showed 

452 no reduction in VA with reduced afferent feedback, with a 14% reduction in control conditions. 

453 To further explore the mechanisms by which group III/IV afferent feedback inhibits cortical 

454 excitability, Sidhu et al. 60 assessed the effect of afferent blockade on GABAB inhibitory 

455 intracortical interneurons. Both GABAA and GABAB inhibitory interneurons play an integral 

456 role in generating and shaping voluntary output from the motor cortex. These intracortical 
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457 neurons have indirect projections onto corticospinal neurons, and can influence the excitability 

458 of the motor cortex through hyperpolarisation of corticospinal neurons elicited by inhibitory 

459 post-synaptic potentials (IPSPs) 99. By applying a paired-pulse TMS stimulus paradigm known 

460 as long-interval inhibition (LII) coupled with conditioned CMEPs during severe intensity 

461 cycling, Sidhu et al. 60 showed an increase in GABAB mediated inhibition which was abolished 

462 when group III/IV afferents were blocked. Thus, a potential mechanism by which severe 

463 intensity exercise inhibits the excitability of the motor cortex is through an increase in GABAB 

464 mediated inhibition as a result of group III/IV afferent feedback. Other severe-intensity 

465 exercise induced changes in intracortical inhibition, such as increases in GABAA mediated 

466 short-interval intracortical inhibition (SICI), have been demonstrated 93, though conflicting 

467 evidence exists 94. However, the study of Sidhu et al. 60 improved on previous study designs 

468 by  measuring during post-exercise cycling at an EMG level matched to pre-exercise, as 

469 opposed to post-exercise measures taken during isometric contractions. To improve 

470 understanding of the effects of severe intensity exercise at the motor cortical level, more 

471 research is required assessing motor cortical output and excitability, intracortical inhibitory and 

472 facilitatory activity, with measures taken during or immediately following exercise given that 

473 these measures can recover rapidly after exercise cessation 100.  The assessment of other 

474 possible mechanisms which could contribute to altered cortical output in response to severe 

475 intensity exercise, such as alterations in brain neurotransmitters, is also warranted 101. 

476 Using spinal stimulation at the cervicomedullary level, a number of recent studies have 

477 assessed the effects of severe intensity exercise at the α-motoneuron excitability 16,86. In these 

478 studies, which utilised constant-load exercise at 80% peak power until task failure, no change 

479 in α-motoneuron excitability was demonstrated between the beginning and end of exercise. 

480 While this implies no effect of severe intensity exercise at the α-motoneuron level, in non-

481 fatiguing circumstances, the same increase in EMG activity which occurs throughout severe 
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482 intensity exercise would cause an increase in spinal excitability 86. This was aptly shown by 

483 Weavil et al. 86, who found no change in MEP or CMEP during fatiguing cycling, but a ~40% 

484 increase in MEP and CMEP during a subsequent non-fatiguing trial when the EMG was set to 

485 increase by the same magnitude. Thus, while the net corticospinal excitability remains 

486 unchanged, these results indicated a disfacilitation of the corticospinal tract mediated at the 

487 spinal level. 

488 If  α-motoneurons are disfacilitation during severe intensity exercise, this does not appear to 

489 be related to increased group III/IV afferent feedback. In fact, Sidhu et al. 60 found that CMEP 

490 amplitude was increased during post-exercise cycling at a matched level of EMG relative to 

491 pre-exercise which did not occur when afferent feedback was reduced, suggesting that group 

492 III/IV afferents facilitate, rather than inhibit spinal α-motoneurons projecting to the knee 

493 extensors. Indeed, previous work has suggested that group III/IV afferent feedback can inhibit 

494 or facilitate α-motoneuron depending on the muscle group studied 58. Furthermore, Sidhu et al. 

495 60 also measured CMEP during the silent period to mitigate the potential influence of changes 

496 in on-going descending drive on α-motoneuron excitability, but found no change in conditioned 

497 CMEPs during control conditions or when afferent feedback was reduced. The authors 

498 speculated that the facilitatory effects of group III/IV feedback on α-motoneuron excitability 

499 might only occur in the presence of descending drive. 

500 The findings of Sidhu et al. 60 appear contradictory to that of Weavil et al. 86. That is, if α-

501 motoneurons are disfacilitated during constant load severe intensity cycling exercise, but a 

502 reduction in CMEP is not apparent due to the increased neural drive and EMG 86, one might 

503 expect that CMEP would decrease when measured at the same EMG level. However, the 

504 opposite was found by Sidhu et al. 60, i.e. CMEPs increased. This result cannot be explained 

505 by an increased descending drive at the same EMG level, since conditioned CMEPs exhibited 

506 no change 60. One possible explanation is that Weavil et al. 86 measured responses during 
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507 constant load cycling, while Sidhu et al. 60 had participants reduce their power output at post-

508 exercise in order to achieve the same EMG level as pre-exercise. It is possible that processes 

509 which disfacilitate α-motoneuron excitability (such as changes in intrinsic properties, 

510 activation of serotonin 1A receptors, of neurotransmitter depletion16,86) exhibited some 

511 recovery due to the decrease in intensity. This, coupled with the elevated facilitatory afferent 

512 feedback in the control trial, might have resulted in the increase α-motoneuron excitability at 

513 the same EMG level. Further studies measuring α-motoneuron excitability during severe 

514 intensity exercise, with both on-going descending drive and during the TMS evoked silent 

515 period, are warranted to provide further insight into the effects of severe intensity exercise on 

516 α-motoneuron excitability.

517 Alterations in spinal-loop excitability could also contribute to impaired neuromuscular function 

518 during severe intensity exercise, with reductions in H-reflex found to occur in an intensity-

519 dependent manner 102,103. Bulbulian and Darabos 102 found a 22% reduction in H-reflex 

520 amplitude relative to Mmax measured in the gastrocnemius following 20 minutes of non-

521 exhaustive treadmill running at 75% VO2max, compared to a 13% reduction at 40% VO2max. 

522 Similar reductions in H-reflex have been demonstrated following non-exhaustive high-

523 intensity cycling exercise 103. While the H-reflex alone cannot decipher between altered 

524 excitatory input from Ia afferents and a decrease in α-motoneuron excitability, evidence from 

525 fatiguing isometric contractions using microneurography show that muscle spindle afferent 

526 discharge is progressively reduced during sustained contractions 104, and that the efficacy of Ia 

527 input to facilitate the α-motoneuron is impaired due to increased presynaptic inhibition 105. 

528 During severe intensity exercise, presynaptic mechanisms, such as group III and IV afferent 

529 induced increases in presynaptic inhibition of Ia terminals, are likely given the metabolic 

530 disturbances and the proposed inputs of group III/IV afferents onto Ia afferent terminals 106. 

531 However, challenges associated with measurement techniques preclude definitive conclusions 
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532 on the role of Ia feedback in disfacilitating α-motoneurons and thereby contributing to impaired 

533 neuromuscular function. 

534 In addition to measuring the specific effects on group III/IV afferent feedback on motor cortical 

535 and α-motoneuronal excitability discussed above, a plethora of studies have assessed the effects 

536 of group III/IV afferent feedback on neuromuscular function through more global responses 

537 such as EMG and Ptw 
16,60,71,89,91. These studies have demonstrated that group III/IV afferents 

538 constrain motoneuronal output (estimated through EMG) to active skeletal muscle, thereby 

539 limiting exercise-induced intramuscular alterations. For example, Blain et al. 91 had 

540 participants perform a 5 km cycling time trial under control conditions and with fentanyl 

541 induced impairment in afferent feedback. With reduced afferent feedback, it was demonstrated 

542 that motoneuron output (estimated through vastus lateralis EMG) was 21% higher when 

543 afferent feedback was reduced compared to control conditions. Due to the greater activation 

544 levels throughout cycling, intramuscular alterations such as Pi, H+ and ADP,  concentrations, 

545 which are correlated reductions in Ptw 
107, were all significantly higher compared with control 

546 conditions when measured through muscle biopsies following exercise. Consequently, the 

547 reduction in Ptw was substantially greater when feedback was reduced (52 vs 31% reduction 

548 compared with control condition). The increased motoneuron output and end-exercise level of 

549 reduced Ptw with afferent blockade are consistent findings throughout the literature 85,89,90,108. 

550 Thus, it is suggested that, through metabosensitive firing of group III/IV afferent feedback, the 

551 level of metabolic disturbance is sensed within the CNS, and the drive to the muscle is 

552 subsequently regulated to prevent abnormal or interoperable deviations in muscle homeostasis 

553 78. 

554

Page 27 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

28

555 What is not entirely clear is how group III/IV constrains motoneuron output. It is unlikely to 

556 be a result of altered α-motoneuron excitability, given that reduced afferent feedback facilitates 

557 61 or has no effect 17 on CMEP amplitude. However, given the inhibitory effects of group III/IV 

558 afferent feedback within 16,60 and potentially upstream of the motor cortex 98, as well as their 

559 proposed inputs to Ia terminals 106, motoneuron output could be constrained through the 

560 neurophysiological adjustments that group III/IV afferents elicit within the CNS. However, as 

561 well as having proposed non-nociceptive effects through alterations in CNS function and 

562 induction of the pressor reflex 85, group III/IV afferents also elicit nociceptive effects, which 

563 could also have implications for perception of effort during exercise. The increased level of 

564 effort associated with discomfort and increased cardiopulmonary response as a result of group 

565 III/IV feedback could impact how hard participants are willing to ‘push’ during exercise, and 

566 thereby influence motoneuron output. During exercise at a constant load of 80% peak power 

567 output, Amann et al. 90 demonstrated the rate of perceived exertion (RPE) was lower following 

568 the initial 3 minutes of the task when afferent feedback was reduced relative to control 

569 conditions. During self-paced exercise, the RPE remains similar between reduced afferent 

570 feedback and control conditions throughout exercise, but the power output is enhanced during 

571 the early stages of exercise with reduced afferent feedback 91. Thus, early during severe 

572 intensity exercise, nociceptive and cardiopulmonary feedback likely contributes to an increased 

573 sense of effort associated with the same power output 90, or causes participants to choose a 

574 lower power output during self-paced tasks 91. Towards the latter stages of exercise, however, 

575 RPE is similar with and without reduced afferent feedback 90. This is likely the result of the 

576 increased drive to the muscle occurring throughout exercise due to the lack of nociceptive 

577 feedback, thereby ‘allowing’ greater activation of muscle, and in turn causing greater 

578 disturbances within the muscle. As the muscle becomes less responsive, a greater level of drive 

579 is required to compensate for contractile impairment and sustain the same power output 90, with 
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580 this increase in efferent command emitting parallel messages (corollary discharge) to brain 

581 regions associated with perceptions of exertion, thereby increasing RPE 109. Accordingly, in 

582 addition to the alterations along the neuromuscular pathway induced by group III/IV feedback, 

583 the nociceptive and cardiopulmonary signals evoked by these afferents likely influences the 

584 regulation of voluntary drive and perceptions of effort throughout exercise.

585
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609 Neuromuscular responses to sustained exercise below critical power

610 Muscle force generating capacity, voluntary activation and contractile function

611 Exercise between lactate threshold and critical intensity is classified as heavy intensity 

612 exercise, while exercise below lactate threshold is termed moderate intensity 23,24. Heavy 

613 intensity exercise can be sustained for prolonged periods, with time to task failure ranging 

614 between ~40 min to 3 hours 23,110. Moderate intensity exercise can be performed for durations 

615 well above 3-5 hours, and constitute the intensity at which ultra-endurance events are 

616 performed 20,77. The neuromuscular responses measured in studies in which exercise lasted 

617 from > 30 min to 3 hours (likely falling predominantly within the heavy domain) and > 3 hours 

618 (predominantly within the moderate domain) are displayed in Tables 3 and 4, respectively. 

619 While variation exists in the literature, a comparison between the results from the studies in 

620 these tables suggests that the loss in muscle strength is greater with increasing exercise duration 

621 before reaching an eventual plateau above exercise lasting ~1000 min (Figure 4), a 

622 phenomenon previously highlighted by Millet when examining running-based exercise 77. 

623 Within the heavy and moderate domains, energy supply is achieved through oxidative 

624 metabolism, rather than anaerobic pathways 25,111. Consequently, alterations in muscle 

625 metabolism are much more limited than with exercise in the severe domain, with steady-state 

626 values of PCr, pH and Pi achieved within the first few minutes of exercise 23,25. Nevertheless, 

627 impairments in contractile function have been widely observed following both moderate and 

628 severe intensity exercise (Tables 3 and 4). Following self-paced tasks, some of the reductions 

629 in Ptw could be a result of a “sprint-finish”, in which intensity increases towards the latter stages 

630 of a race and thus fall within the severe domain, with associated metabolic changes which 

631 contribute to reduced Ptw 22. For example, following a self-paced 20 km time trial lasting on 

632 average 32 min, Thomas et al. 22 showed a 31% reduction in Ptw, while in a separate study by 

633 the same group, the reduction in Ptw following a constant load task in which task-failure 
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634 occurred at 42 min was just 11% 21. Thus, the self-paced versus constant pace exercise 

635 challenges used across studies is another potential source of heterogeneity in results regarding 

636 neuromuscular responses to moderate and heavy intensity exercise (Tables 3 and 4). However, 

637 the magnitude of reduced Ptw observed by Thomas et al. 21 following constant load exercise is 

638 consistent with other studies within the heavy domain, with Lepers et al. 112,113 and Racinais et 

639 al. 114 demonstrating reductions in Ptw of 9, 12 and 11%, respectively. Interestingly, this 

640 reduction in Ptw is lower than some studies assessing Ptw following more prolonged constant 

641 load moderate intensity exercise 115,116 (Figure 4C), suggesting a possible greater extent of 

642 impaired contractile function following more prolonged locomotor exercise, though 

643 heterogenous results exist throughout the literature (Table 4). 

644 It is thought that glycogen depletion is the primary contributor towards impaired contractile 

645 function following prolonged heavy and moderate intensity exercise 111,117. Glycogen depletion 

646 could interfere with the excitation-contraction coupling through localised depletion of muscle 

647 glycogen at the t-tubular-sarcoplasmic reticulum (SR) junction 118. Indeed, following 4 h of 

648 glycogen depleting exercise, Gejl et al. 119 showed a persistent reduction in SR Ca2+  release 

649 after 4 h of recovery when participants were given only water, while participants given 

650 carbohydrates concurrently demonstrated recovery of SR Ca2+  release. Inhibition of SR Ca2+  

651 release is thought to occur below critical levels of muscle glycogen (250-300 mmol·kg-1) 120, 

652 and values below these concentrations have been demonstrated following heavy and moderate 

653 intensity exercise 23,110, including ultramarathon running 121. Another mechanism likely 

654 contributing to impaired contractile function include increased production of reactive oxygen 

655 and nitrogen species 122, which increase following prolonged exercise 123 and interfere with 

656 Ca2+ release through redox modifications of ryanodine receptors 124. Furthermore, following 

657 running based exercise involving repeated stretch shortening cycles, muscle damage induced 

658 myofibrillar disintegrity and disorganisation of sarcomeres likely occurs, leading to a reduced 
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659 ability of the contractile machinery to produce force 125. Thus, while the magnitude of impaired 

660 contractile function is not as prominent following moderate and heavy intensity exercise 

661 compared to severe intensity, the consistently reduced Ptw across studies (Tables 3 and 4) 

662 suggests that alterations within the muscle contribute to reduced neuromuscular function within 

663 these domains. 

664 Reductions in VA are substantial following moderate and heavy intensity exercise, and these 

665 appear to be exacerbated as exercise duration increases (Figure 4). This likely explains, minat 

666 least in part, the increased strength loss associated with longer duration exercise (Figure 4). 

667 Studies examining the kinetics of altered neuromuscular function during prolonged moderate 

668 duration exercise have shown that reduced VA occurs in the latter stages, with Place et al. 126 

669 and Lepers et al. 116 demonstrating that VA was reduced only following 4 and 5 h of a 5 h 

670 running and cycling task, respectively. 

671
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691 Central nervous system alterations during moderate and heavy intensity exercise

692 Overall, little research exists examining specific alterations within the CNS in response to 

693 moderate or heavy intensity exercise. Studies have demonstrated reductions in VATMS within 

694 both domains 17,21,115, possibly indicating impaired motor cortical output. The impact of 

695 prolonged exercise on the excitability of the motor pathway is unclear. When measured with 

696 the muscle at rest, studies have demonstrated reductions in MEP amplitude following 

697 prolonged exercise ranging from 20 km cycling 22, marathon running 132, and a simulated Tour 

698 de France 141. However, changes in MEP amplitude at rest might not reflect alterations in 

699 corticospinal excitability that occur during contractions. When corticospinal excitability has 

700 been assessed pre- and post-prolonged exercise during isometric contractions, conflicting 

701 findings exist, with studies reporting an increase 17, decrease 132,141, or no change in MEP 

702 amplitude 21,22,142. Similarly conflicting results have been shown for the silent period, with no 

703 change 115 or an increase 17 being reported. The conflicting findings could be the result of the 

704 substantial heterogeneity in the exercise challenges, such as the modalities and the duration of 

705 the task, as well as methodological differences such as stimulation intensities and the 

706 contraction intensities at which corticospinal excitability is measured, both of which can 

707 influence the change in MEP in response to exercise 17,143. No research to date has utilised 

708 spinal stimulation to assess the effect of prolonged exercise on α-motoneuron excitability, and 

709 this represents an area for future research. Racinais et al. 114 demonstrated a 61% reduction in 

710 H-reflex amplitude following 90 min of non-exhaustive running exercise. Avela et al. 62 

711 observed similar reductions in H-reflex amplitude following marathon running, whilst also 

712 displaying reductions in the EMG response and passive stretch-resisting force following a 

713 natural stretch reflex evoked through sudden changes in muscle length. However, whether this 

714 was due to altered Ia excitatory input or impaired α-motoneuron excitability is unclear. Further 
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715 work is required to elucidate the effects of prolonged exercise within the moderate and heavy 

716 exercise domains on the corticospinal pathway at both the supraspinal and spinal level. 

717

718 Neuromuscular responses to high-intensity intermittent exercise

719 While an increasing number of studies have assessed neuromuscular responses to continuous 

720 locomotor exercise during tasks such as cycling and running, many team sports, such as 

721 association football (soccer), rugby league, and hockey, are characterised by bouts of high-

722 intensity exercise interspersed with prolonged periods of low-to-moderate intensity activity. In 

723 addition, team sport players also complete numerous dynamic actions throughout competitive 

724 matches, such as jumping, changing direction, tackling and/or kicking, which are often 

725 performed with incomplete recovery 144. Consequently, high-intensity intermittent team sports 

726 are associated with a high physiological and neuromuscular demand, resulting in substantial 

727 fatigue and impairments in neuromuscular function 145. During team sports such as soccer and 

728 hockey, fatigue manifests through transient reductions in work-rate following the most 

729 demanding periods of a match, and cumulative reductions in work-rate towards the end of a 

730 match 144. In addition, fatigue is thought to increase the risk of sustaining an injury during 

731 match-play, as players are more susceptible to sustaining injuries towards the latter stages of a 

732 match 6. In order to better understand the physiology underpinning fatigue experienced during 

733 match-play, studies have examined the neuromuscular responses to simulated and competitive 

734 high-intensity intermittent team sport activity. 

735 Using a simulated soccer match protocol designed to replicate the physiological demands of 

736 soccer match-play, Goodall et al. 145 investigated neuromuscular function before, at half-time 

737 (i.e. 45 min), full-time (i.e. 90 min) and following a period of extra time (i.e. 120 min). An 

738 interesting finding from this study was that while the simulated soccer match induced 

739 reductions in MVC and impairments in both contractile function and VA, the reduction in 
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740 contractile function demonstrated a plateau after half-time (Figure 5). It was hypothesised that 

741 this plateau was due to the early fatigue of higher threshold motor units, which are more 

742 susceptible to fatigue, within the first half. In the second half, the lower reduction in contractile 

743 function was suggested to be a result of the recruitment of more fatigue-resistant motor units, 

744 which exert a smaller reduction in the size of evoked twitch responses. In contrast to the nadir 

745 in contractile function, impairments in VA increased progressively, with a VA lower at half-

746 time compared with pre-match, and lower at the end of extra-time compared with half-time. 

747 These impairments in neuromuscular function were concurrent with increases in perceptions 

748 of effort and impairments in voluntary physical performance (sprint speed and jump height) 

749 measured in a companion study 146. 

750 Numerous other studies have assessed neuromuscular function following a range of 

751 competitive and simulated high intensity intermittent team sport protocols (Table 5). Following 

752 simulated 147 and competitive soccer match-play 15,148, studies have demonstrated impairments 

753 in Ptw and VA of around 14% and 8%, respectively 15,148, resulting in a 11-14% reduction in 

754 knee extensor MVC. These impairments occurred concurrently with decreases in jump height, 

755 reactive strength and sprint speed 15,147. The mechanisms of impaired contractile function 

756 following match-play likely relate to the considerable muscle damage elicited by the numerous 

757 eccentric actions associated with match-play 149, glycogen depletion, with glycogen levels 

758 reported to fall below concentrations at which Ca2+ handling is impaired 119,150, and increases 

759 in reactive oxygen and nitrogen species, with measures of oxidative stress increased following 

760 a single match 149, possibly inhibiting Ca2+ handling 122. The mechanisms of impaired VA are 

761 less clear, with the limited number of studies examining corticospinal and intracortical 

762 responses following simulated 145,147 and competitive match-play 15 showing no changes post-

763 exercise, though further research is required to assess the effect of high-intensity intermittent 

764 exercise on spinal reflex pathways and α-motoneuronal excitability. Thus, during prolonged 
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765 high-intensity intermittent exercise such as soccer match-play, neuromuscular function is 

766 impaired both at the peripheral and central level, with peripheral disturbances more prevalent 

767 in the earlier stages of exercise, and impairments in VA more apparent as exercise progresses. 

768 These disruptions in neuromuscular function likely contribute to the decline in physical 

769 performance known to occur following the most demanding periods of match-play and towards 

770 the end of a match. 
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777 Conclusions on the role of exercise intensity on neuromuscular responses to locomotor 

778 exercise

779 The above synopsis of the current literature pertaining to neuromuscular responses to maximal, 

780 severe, heavy, moderate and high-intensity intermittent intensity locomotor exercise, provides 

781 insight into the challenge imposed on the neuromuscular system during fatiguing locomotor 

782 activity. Across the exercise domains, there are both commonalities and differences in 

783 neuromuscular responses which warrant discussion. 

784 Overall, the reduction in muscle force generating capacity is similarly reduced following 

785 exhaustive maximal, severe and heavy intensity exercise 21,31. Reductions in MVC are more 

786 pronounced following long-duration moderate intensity exercise, which appears to be related 

787 to exercise duration (Figure 3). However, different neuromuscular mechanisms are likely to 

788 contribute to declines in MVC between domains. While VA has been shown to be reduced 

789 following exercise across all domains, possibly due in part to impaired motor cortical output,  

790 these reductions are more substantial following prolonged moderate and heavy intensity 

791 exercise. For example, Thomas et al. 21 demonstrated a 9% reduction in VA following 42 min 

792 of cycling at the power output associated at the respiratory compensation point, compared to a 

793 3% reduction at the power output associated with VO2max, with a similarly greater magnitude 

794 of reduced VA following prolonged compared with short-duration self-paced cycling 22. As 

795 indicated in previous sections, reductions in VA appear to occur in a dose-response manner 

796 based on the duration of exercise. What is unclear at present is which mechanisms contribute 

797 to the exacerbated reduction in VA following prolonged exercise. While increases in group 

798 III/IV afferent feedback have been suggested to contribute to impaired VA in response to 

799 severe intensity exercise 16, the firing rate of these afferents are less likely to increase below 

800 critical intensities given that there is a lower build-up of metabolites or, in the case of cycling, 

801 markers of muscle damage to which these afferents are sensitive 158. The greater reduction in 
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802 VATMS following prolonged heavy intensity exercise compared with short-duration severe 

803 intensity exercise 21,22 would suggest that impaired cortical output could be an important 

804 contributor. However, the mechanisms contributing to impaired VATMS are not well 

805 understood. Exacerbated increases in core temperature 159 and alterations in neurotransmitter 

806 concentrations 101 have both been suggested, however comparisons between these potential 

807 contributors across domains has not been made. 

808 Similarly, no evidence exists comparing the effects of exercise within different domains on α-

809 motoneuron responses to exercise. Following maximal intensity arm cycling exercise, one 

810 study observed an increase in α-motoneuron excitability 45. During severe intensity exercise, it 

811 is suggested that α-motoneurons are disfacilitated 86, while another study suggests a fatigue-

812 induced facilitation of α-motoneurons 60. No evidence exists on the effect of prolonged 

813 moderate or heavy intensity exercise on α-motoneuron excitability. Thus, the precise effects of 

814 different intensities of locomotor exercise on α-motoneuron excitability is unclear, and more 

815 research is required to better understand these responses.   

816 Contractile function is also impaired following exercise within all domains. The magnitude and 

817 the mechanisms of this reduction, however, differ. Impairments in contractile function are 

818 greater following maximal and severe intensity exercise compared with moderate and heavy 

819 intensity exercise 21,22,31. For example, Kruger et al. 31 found a 50% reduction in Ptw following 

820 a 30 s of all-out cycling, a 44% reduction following 10 min of severe intensity exercise, and a 

821 14% reduction following 90 min of moderate intensity exercise. The mechanisms contributing 

822 to impairments in contractile function following maximal and severe intensity exercise are 

823 likely relate to a build-up of metabolites associated with high anaerobic energy turnover. In 

824 contrast, the reduction in Ptw following prolonged exercise is thought to be related to glycogen 

825 depletion 119, increased production of reactive oxygen and nitrogen species 122, and, following 

826 running-based exercise, muscle damage 125. Accordingly, the distinct metabolic responses 
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827 between exercise domains causes impaired contractile function through different mechanisms 

828 and to different degrees. 

829 Finally, there are similarities across all domains with respect to the kinetics of altered 

830 neuromuscular function. For example, during repeated sprint 43, constant load severe intensity 

831 79, high-intensity intermittent 145, and prolonged constant load moderate intensity exercise 116, 

832 impaired contractile function is demonstrated during the first half of exercise, before impaired 

833 VA becomes more evident during the latter half. During repeated sprint exercise, motoneuron 

834 output estimated through EMG is progressively reduced 39, while EMG is increased before 

835 plateauing during severe intensity exercise 79. Thus, the nadir in reduction Ptw commonly 

836 observed during exercise within these domains could be due to the reduced or plateaued 

837 recruitment of muscle during the later stages of exercise, causing no further decrements in 

838 contractile function.

839 To better understand the effects of different intensities of locomotor exercise on neuromuscular 

840 function, more research is required, similar to that of Thomas et al. 21,22, to compare 

841 neuromuscular responses at a segmented level between different exercise domains. 

842 Furthermore, although challenging, studies should attempt to deliver stimulations to probe the 

843 excitability of the corticospinal tract, both at the cortical and spinal level, during the task itself 

844 16,60,86. Finally, due to the rapid recovery of contractile and CNS following exercise 31,160, 

845 studies should attempt to rapidly deliver stimulations upon exercise cessation in situations 

846 where neuromuscular function is being assessed post-exercise. This can be achieved using 

847 custom-built exercise ergometers which permit immediate neuromuscular assessments without 

848 the requirement to manoeuvre between exercise and testing apparatus 31,66,161.  

849

850
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851 The effect of exercise modality on neuromuscular responses to locomotor exercise

852 One of the central themes surrounding research into the neuromuscular responses to fatiguing 

853 exercise is task-dependency. In addition to the influence of exercise intensity and duration 

854 discussed earlier, exercise modality, or the type of locomotor exercise being performed, can 

855 have a profound influence on the demands placed on the neuromuscular system 130. Exercise 

856 modality can influence the contraction type in the prime movers involved in locomotor 

857 exercise, as well as contraction duration or time under tension, the active skeletal muscle mass, 

858 mechanical efficiency and muscle recruitment strategy. All of these factors can in turn 

859 influence the metabolic and mechanical stress imposed on the muscle, and the mechanisms 

860 underpinning decrements in neuromuscular function during exercise. 

861 While several different modes of locomotor exercise exist (e.g. running, cycling, rowing, 

862 skiing), systematic comparisons delineating the neuromuscular responses to different exercise 

863 modes are scarce. However, studies by Lepers et al. 116 and Place et al. 126 assessed the 

864 neuromuscular responses to cycling and running exercise, respectively, at the same relative 

865 intensity (55% maximal aerobic power or velocity) and duration (5 h). Comparisons between 

866 the results of those studies show that, despite the similar exercise intensity and duration, the 

867 reduction in knee extensor strength was greater following running (28%) compared with 

868 cycling exercise (18%). The greater reduction in MVC was likely due to the greater reduction 

869 in VA following running (16%) compared with cycling (8%). In a study directly comparing 

870 cycling and running exercise, Tomazin et al. 47 had participants perform three sets of five × six 

871 second repeated sprints on both a treadmill and a cycle ergometer, on separate occasions. The 

872 study found that the reduction in MVC was greater during and following running sprints 

873 compared with cycling. In addition, the reduction in MVC was accompanied by a reduction in 

874 VA throughout the running protocol which was not seen during cycling. Following ~3 h of 

875 running 130 and skiing exercise 131, a significant reduction in VA (8%) was only observed 
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876 following running based exercise. Thus, it appears that alterations to CNS function and 

877 consequent impairments in muscle strength are greater following running-based exercise 

878 compared with other locomotor exercise modes. This is likely a result of the muscle damage 

879 associated with running based exercise, and the lower mechanical demands imposed during 

880 exercise such as cycling and skiing. Specifically, running involves multiple stretch shortening 

881 cycles and associated eccentric contractions, likely to elicit considerable muscle damage, 

882 whereas cycling and skiing impose a high metabolic stress but a substantially lower mechanical 

883 stress. In turn, muscle damage could elicit reductions in VA through reduced sensitivity of 

884 muscle spindles and disfacilitation of α-motoneurons from Ia afferents 62, and/or increased 

885 inhibitory feedback from group III/IV afferents which are sensitive to various markers of 

886 muscle damage 162. Furthermore, muscle damage elicited by eccentric exercise protocols have 

887 been shown to elicit substantial impairments in VA when measured immediately post-exercise 

888 158, further suggesting that muscle damage sustained during running contributes to the greater 

889 reduction in VA compared with cycling.

890 At the peripheral level, studies have reported a greater reduction in contractile function during 

891 and following cycling compared with running 116,126,163. For example, following 5 × 6 s cycling 

892 and running sprints, Rampinini et al. 163 demonstrated a significantly greater reduction in knee 

893 extensor peak twitch force following cycling (~55% reduction) compared with running 

894 (~35%). Similarly, Lepers et al. 116 found a significant reduction in knee extensor peak twitch 

895 during every hour throughout 5 h of cycling, whereas Place et al. 126 showed a potentiation of 

896 quadriceps contractile properties throughout 5 h of running exercise. The higher disturbances 

897 at the peripheral level in response to cycling could be a consequence of the differences in the 

898 involved muscle mass. For example, during weight supported sports such as cycling, the overall 

899 active muscle mass involved is lower than during running, with force primarily generated from 

900 the quadriceps. It has been demonstrated throughout the literature that during tasks involving 
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901 lower active muscle mass, the reduction in twitch force is higher 164,165. This is likely because 

902 during tasks involving a higher muscle mass, there is a greater sensory input (e.g. from group 

903 III/IV afferents) from the involved muscle mass, as well as a greater disruption to homeostasis 

904 in other physiological systems (e.g. cardiovascular, respiratory) 73. Consequently, there is a 

905 greater contribution to fatigue and the limit of tolerance from multiple physiological systems, 

906 whereas during cycling the more local, less diffuse signal from the lower muscle mass permits 

907 greater disturbances within the muscle to be tolerated 73. Moreover, running and cycling 

908 comprise different types of muscle contraction, with implications for the metabolic cost of 

909 exercise and thereby the neuromuscular responses. For example, during running, ~60% of the 

910 time taken to complete one stride is spent in the support phase (i.e. foot contact with the ground) 

911 for speeds between 12 and 23 km/h 166. In turn, around 34% of the support phase comprised 

912 eccentric muscle action, which has implications for the metabolic demand of running both due 

913 to the lower metabolic cost of eccentric contractions, and the higher efficiency of subsequent 

914 concentric contractions due to the “preloading” of muscle during the eccentric phase (i.e. 

915 through the stretch-shortening cycle) 167. Furthermore, the greater central deficit during running 

916 exercise possibly related to Ia disfacilitation (see above) could also limit alterations in 

917 contractile function. During cycling exercise, there is a high intramuscular tension throughout 

918 the majority of the pedal revolution, requiring high force generating of the quadriceps, and 

919 consequently greater recruitment of type II motor units. The high intramuscular pressure could 

920 also lead to partial occlusion of femoral artery blood flow, thereby reducing oxygen delivery 

921 and leading to greater metabolic disturbances 168. Thus, there are several potential explanations 

922 to the greater impairment in Ptw found after cycling versus running based exercise. Overall, 

923 there remains limited evidence comparing neuromuscular responses to different modes of 

924 locomotor exercise, and research in this area could provide useful information for athletes and 

925 practitioners when devising training programmes. 
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926

927 Conclusions and future research

928 The present review provides a synopsis of literature, conducted primarily over the last two 

929 decades, pertaining to alterations in neuromuscular function in response to fatiguing locomotor 

930 exercise. The plethora of research which now exists in this area has clearly demonstrated the 

931 integral importance of task-dependency on alterations within the neuromuscular system. It is 

932 well established that neuromuscular function during exercise above critical intensity is 

933 primarily limited by disturbances in metabolic homeostasis and consequent impairments in 

934 contractile function. More prolonged exercise below critical intensity causes considerable 

935 reductions in the capacity of the nervous system to activate muscle, though the precise 

936 alterations within the central nervous system contributing to this reduction are still unclear. 

937 During repeated sprint, constant load severe intensity, high-intensity intermittent, and 

938 prolonged constant load moderate intensity exercise, impaired contractile function is 

939 demonstrated during the first half of exercise, before impaired voluntary activation becomes 

940 more evident during the latter half. Primarily, studies have utilised electrical nerve stimulation 

941 at rest and during maximal voluntary contractions to determine the effects of locomotor 

942 exercise at the peripheral and central level, respectively. To further investigate alterations 

943 within the nervous system, many studies have additionally utilised transcranial magnetic 

944 stimulation to assess the excitability of the corticospinal pathway, electrical stimulation of 

945 descending spinal tracts to assess α-motoneuron excitability, and nerve stimulation to assess 

946 spinal loop excitability at rest or during isometric contractions prior to and following locomotor 

947 exercise. While these studies have provided valuable insight into how various types of 

948 locomotor exercise impact the neuromuscular system, one limitation of this approach is that 

949 measuring responses during isometric contractions deviates from the locomotor exercise task 

950 itself, and thus hinders understanding of neuromuscular alterations that occur during the task. 
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951 For example, while prolonged exercise elicits substantial reductions in voluntary activation of 

952 muscle during a maximal voluntary contraction, the relevance of this reduction to exercise 

953 performance during submaximal intensity tasks is unclear, and has been questioned 74. 

954 Measuring the force generating capacity of muscle during isometric contractions also deviates 

955 from the types of contractions performed during dynamic locomotor exercise, and indeed 

956 measures of neuromuscular function during isometric contractions are not interchangeable with 

957 those measured during dynamic assessments 169. Moreover, the delay between exercise 

958 cessation and commencing neuromuscular assessments represents a significant general 

959 limitation when studying neuromuscular responses to locomotor exercise. To overcome these 

960 limitations, studies over the last decade have developed methodologies allowing them to 

961 deliver transcranial magnetic and electrical spinal stimulation during the locomotor exercise 

962 task itself 60,86. This represents an important advancement in the field, and future research 

963 should seek to employ similar techniques to better understand how various locomotor exercise 

964 challenges influence the nervous system during exercise. New and emerging methodologies, 

965 such as high-density surface EMG, have the potential to provide further insight into exercise-

966 induced alterations in nervous system function, though incorporating these techniques in 

967 response to locomotor exercise is a challenging prospect. Overall, while considerable 

968 advancements have been made in the last two decades, more work is required to provide further 

969 insight into locomotor exercise induced alterations in neuromuscular function, particularly 

970 within the central nervous system. 

971

972

973

974
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975 Table and Figure Legends

976 Table 1. Literature quantifying neuromuscular alterations pre-to-post maximal intensity 

977 locomotor exercise.

978 Table 2. Literature quantifying neuromuscular alterations pre-to-post severe intensity 

979 locomotor exercise. Studies utilising protocols which resulted in task-failure in < 30 min were 

980 considered “severe intensity”.

981 Table 3. Literature assessing neuromuscular responses pre-to-post heavy intensity exercise. 

982 Studies in which exercise duration ranged from > 30 – 189 min were considered “heavy 

983 intensity”.  

984 Table 4. Studies assessing neuromuscular responses pre-to-post moderate intensity exercise. 

985 Studies in which exercise duration was > 240 min were considered “moderate intensity”.

986 Table 5. Studies assessing neuromuscular responses pre-to-post high-intensity intermittent 

987 team sport exercise.

988 Figure 1. Proposed alterations in neuromuscular function occurring during maximal intensity 

989 exercise. Adapted from Taylor et al. 61.

990 Figure 2. Relationship between time to post-exercise assessment and reduction in knee 

991 extensor maximum voluntary contraction (MVC; A), voluntary activation (VA; B) and peak 

992 twitch force (Ptw; C) as a percentage of pre-exercise 16,21,22,31,60,66,68,70,84,86,87,89,91,93,94,96. The R2 

993 is derived from the logarithmic slope presented on each graph.

994 Figure 3. Proposed alterations in neuromuscular function occurring during severe intensity 

995 exercise. Adapted from Taylor et al. 61.

996 Figure 4. Relationship between reduction in knee extensor maximal voluntary contraction 

997 (MVC; A), voluntary activation (VA; B) and peak twitch force (Ptw; C) as a percentage of pre-
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998 exercise relative to the duration of exercise. Note that the figure pertains only to longer duration 

999 with a minimum duration of 30 min 17,21,22,113-116,126-128,135-140. * outlier 127.

1000 Figure 5. Maximum voluntary contraction (A), potentiated knee-extensor twitch force (B) and 

1001 voluntary activation measured with motor nerve (VA), and motor cortical (VATMS) stimulation 

1002 (c) at pre-exercise, half time (HT), full time (FT), and following extra time (ET) of a simulated 

1003 soccer match. P = < 0.05 vs. the pre-exercise value, † = P < 0.05 vs. HT, ‡ = P < 0.05 vs. FT.   

1004 From Goodall et al. 145.

1005 Conflict of Interest

1006 The authors have no conflicts of interest.

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

Page 50 of 125Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

51

1019 References

1020 1. Enoka RM, Duchateau J. Translating Fatigue to Human Performance. Medicine and science in 
1021 sports and exercise. 2016;48(11):2228-2238.
1022 2. Halson SL. Monitoring training load to understand fatigue in athletes. Sports medicine 
1023 (Auckland, NZ). 2014;44 Suppl 2(Suppl 2):S139-147.
1024 3. Thorpe RT, Strudwick AJ, Buchheit M, Atkinson G, Drust B, Gregson W. Monitoring Fatigue 
1025 During the In-Season Competitive Phase in Elite Soccer Players. International journal of 
1026 sports physiology and performance. 2015;10(8):958-964.
1027 4. Coutts AJ, Slattery KM, Wallace LK. Practical tests for monitoring performance, fatigue and 
1028 recovery in triathletes. Journal of science and medicine in sport. 2007;10(6):372-381.
1029 5. Gandevia SC. Spinal and supraspinal factors in human muscle fatigue. Physiological reviews. 
1030 2001;81(4):1725-1789.
1031 6. Ekstrand J, Hagglund M, Walden M. Injury incidence and injury patterns in professional 
1032 football: the UEFA injury study. British journal of sports medicine. 2011;45(7):553-558.
1033 7. Dugan SA, Frontera WR. Muscle fatigue and muscle injury. Physical medicine and 
1034 rehabilitation clinics of North America. 2000;11(2):385-403.
1035 8. Weavil JC, Amann M. Corticospinal excitability during fatiguing whole body exercise. 
1036 Progress in brain research. 2018;240:219-246.
1037 9. McNeil CJ, Butler JE, Taylor JL, Gandevia SC. Testing the excitability of human motoneurons. 
1038 Frontiers in human neuroscience. 2013;7:152.
1039 10. Nicol C, Avela J, Komi PV. The stretch-shortening cycle : a model to study naturally occurring 
1040 neuromuscular fatigue. Sports medicine (Auckland, NZ). 2006;36(11):977-999.
1041 11. Martin PG, Weerakkody N, Gandevia SC, Taylor JL. Group III and IV muscle afferents 
1042 differentially affect the motor cortex and motoneurones in humans. The Journal of 
1043 physiology. 2008;586(5):1277-1289.
1044 12. Amann M. Significance of Group III and IV muscle afferents for the endurance exercising 
1045 human. Clinical and experimental pharmacology & physiology. 2012;39(9):831-835.
1046 13. Enoka RM. Mechanisms of muscle fatigue: Central factors and task dependency. Journal of 
1047 electromyography and kinesiology : official journal of the International Society of 
1048 Electrophysiological Kinesiology. 1995;5(3):141-149.
1049 14. Sidhu SK, Cresswell AG, Carroll TJ. Corticospinal responses to sustained locomotor exercises: 
1050 moving beyond single-joint studies of central fatigue. Sports medicine (Auckland, NZ). 
1051 2013;43(6):437-449.
1052 15. Brownstein CG, Dent JP, Parker P, et al. Etiology and Recovery of Neuromuscular Fatigue 
1053 following Competitive Soccer Match-Play. Frontiers in physiology. 2017;8:831.
1054 16. Sidhu SK, Weavil JC, Mangum TS, et al. Group III/IV locomotor muscle afferents alter motor 
1055 cortical and corticospinal excitability and promote central fatigue during cycling exercise. 
1056 Clinical neurophysiology : official journal of the International Federation of Clinical 
1057 Neurophysiology. 2017;128(1):44-55.
1058 17. Temesi J, Rupp T, Martin V, et al. Central fatigue assessed by transcranial magnetic 
1059 stimulation in ultratrail running. Medicine and science in sports and exercise. 
1060 2014;46(6):1166-1175.
1061 18. Gruet M, Temesi J, Rupp T, Levy P, Millet GY, Verges S. Stimulation of the motor cortex and 
1062 corticospinal tract to assess human muscle fatigue. Neuroscience. 2013;231:384-399.
1063 19. Collins BW, Pearcey GEP, Buckle NCM, Power KE, Button DC. Neuromuscular fatigue during 
1064 repeated sprint exercise: underlying physiology and methodological considerations. Applied 
1065 physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 
1066 2018;43(11):1166-1175.

Page 51 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

52

1067 20. Millet GY, Martin V, Temesi J. The role of the nervous system in neuromuscular fatigue 
1068 induced by ultra-endurance exercise. Applied physiology, nutrition, and metabolism = 
1069 Physiologie appliquee, nutrition et metabolisme. 2018;43(11):1151-1157.
1070 21. Thomas K, Elmeua M, Howatson G, Goodall S. Intensity-Dependent Contribution of 
1071 Neuromuscular Fatigue after Constant-Load Cycling. Medicine and science in sports and 
1072 exercise. 2016;48(9):1751-1760.
1073 22. Thomas K, Goodall S, Stone M, Howatson G, St Clair Gibson A, Ansley L. Central and 
1074 peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Medicine and science 
1075 in sports and exercise. 2015;47(3):537-546.
1076 23. Black MI, Jones AM, Blackwell JR, et al. Muscle metabolic and neuromuscular determinants 
1077 of fatigue during cycling in different exercise intensity domains. Journal of applied physiology 
1078 (Bethesda, Md : 1985). 2017;122(3):446-459.
1079 24. Burnley M, Vanhatalo A, Jones AM. Distinct profiles of neuromuscular fatigue during muscle 
1080 contractions below and above the critical torque in humans. Journal of applied physiology 
1081 (Bethesda, Md : 1985). 2012;113(2):215-223.
1082 25. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to 
1083 exercise above and below the "critical power" assessed using 31P-MRS. American journal of 
1084 physiology Regulatory, integrative and comparative physiology. 2008;294(2):R585-593.
1085 26. Bishop DJ. Fatigue during intermittent-sprint exercise. Clinical and experimental 
1086 pharmacology & physiology. 2012;39(9):836-841.
1087 27. Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related 
1088 outcomes in sedentary overweight/obese men. Metabolism: clinical and experimental. 
1089 2010;59(10):1421-1428.
1090 28. Gibala MJ, Little JP, van Essen M, et al. Short-term sprint interval versus traditional 
1091 endurance training: similar initial adaptations in human skeletal muscle and exercise 
1092 performance. The Journal of physiology. 2006;575(Pt 3):901-911.
1093 29. Taylor J, Macpherson T, Spears I, Weston M. The effects of repeated-sprint training on field-
1094 based fitness measures: a meta-analysis of controlled and non-controlled trials. Sports 
1095 medicine (Auckland, NZ). 2015;45(6):881-891.
1096 30. Conte D, Favero TG, Lupo C, Francioni FM, Capranica L, Tessitore A. Time-motion analysis of 
1097 Italian elite women's basketball games: individual and team analyses. Journal of strength 
1098 and conditioning research. 2015;29(1):144-150.
1099 31. Kruger RL, Aboodarda SJ, Jaimes LM, Samozino P, Millet GY. Cycling Performed on an 
1100 Innovative Ergometer at Different Intensities-Durations in Men: Neuromuscular Fatigue and 
1101 Recovery Kinetics. Applied physiology, nutrition, and metabolism = Physiologie appliquee, 
1102 nutrition et metabolisme. 2019.
1103 32. Fernandez-del-Olmo M, Rodriguez FA, Marquez G, et al. Isometric knee extensor fatigue 
1104 following a Wingate test: peripheral and central mechanisms. Scandinavian journal of 
1105 medicine & science in sports. 2013;23(1):57-65.
1106 33. Allen DG, Trajanovska S. The multiple roles of phosphate in muscle fatigue. Frontiers in 
1107 physiology. 2012;3:463.
1108 34. Yquel RJ, Arsac LM, Thiaudiere E, Canioni P, Manier G. Effect of creatine supplementation on 
1109 phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent 
1110 maximal exercise. Journal of sports sciences. 2002;20(5):427-437.
1111 35. Jones DA, Turner DL, McIntyre DB, Newham DJ. Energy turnover in relation to slowing of 
1112 contractile properties during fatiguing contractions of the human anterior tibialis muscle. 
1113 The Journal of physiology. 2009;587(Pt 17):4329-4338.
1114 36. Allen DG, Lamb GD, Westerblad H. Skeletal muscle fatigue: cellular mechanisms. 
1115 Physiological reviews. 2008;88(1):287-332.

Page 52 of 125Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

53

1116 37. Girard O, Bishop DJ, Racinais S. Hot conditions improve power output during repeated 
1117 cycling sprints without modifying neuromuscular fatigue characteristics. European journal of 
1118 applied physiology. 2013;113(2):359-369.
1119 38. Girard O, Bishop DJ, Racinais S. Neuromuscular adjustments of the quadriceps muscle after 
1120 repeated cycling sprints. PloS one. 2013;8(5):e61793.
1121 39. Hureau TJ, Ducrocq GP, Blain GM. Peripheral and Central Fatigue Development during All-
1122 Out Repeated Cycling Sprints. Medicine and science in sports and exercise. 2016;48(3):391-
1123 401.
1124 40. Racinais S, Bishop D, Denis R, Lattier G, Mendez-Villaneuva A, Perrey S. Muscle 
1125 deoxygenation and neural drive to the muscle during repeated sprint cycling. Medicine and 
1126 science in sports and exercise. 2007;39(2):268-274.
1127 41. Pearcey GE, Murphy JR, Behm DG, Hay DC, Power KE, Button DC. Neuromuscular fatigue of 
1128 the knee extensors during repeated maximal intensity intermittent-sprints on a cycle 
1129 ergometer. Muscle & nerve. 2015;51(4):569-579.
1130 42. Monks MR, Compton CT, Yetman JD, Power KE, Button DC. Repeated sprint ability but not 
1131 neuromuscular fatigue is dependent on short versus long duration recovery time between 
1132 sprints in healthy males. Journal of science and medicine in sport. 2017;20(6):600-605.
1133 43. Goodall S, Charlton K, Howatson G, Thomas K. Neuromuscular fatigability during repeated-
1134 sprint exercise in male athletes. Medicine and science in sports and exercise. 2015;47(3):528-
1135 536.
1136 44. Perrey S, Racinais S, Saimouaa K, Girard O. Neural and muscular adjustments following 
1137 repeated running sprints. European journal of applied physiology. 2010;109(6):1027-1036.
1138 45. Pearcey GE, Bradbury-Squires DJ, Monks M, Philpott D, Power KE, Button DC. Arm-cycling 
1139 sprints induce neuromuscular fatigue of the elbow flexors and alter corticospinal excitability 
1140 of the biceps brachii. Applied physiology, nutrition, and metabolism = Physiologie appliquee, 
1141 nutrition et metabolisme. 2016;41(2):199-209.
1142 46. Hureau TJ, Olivier N, Millet GY, Meste O, Blain GM. Exercise performance is regulated during 
1143 repeated sprints to limit the development of peripheral fatigue beyond a critical threshold. 
1144 Experimental physiology. 2014;99(7):951-963.
1145 47. Tomazin K, Morin JB, Millet GY. Etiology of Neuromuscular Fatigue After Repeated Sprints 
1146 Depends on Exercise Modality. International journal of sports physiology and performance. 
1147 2017;12(7):878-885.
1148 48. Tomazin K, Morin JB, Strojnik V, Podpecan A, Millet GY. Fatigue after short (100-m), medium 
1149 (200-m) and long (400-m) treadmill sprints. European journal of applied physiology. 
1150 2012;112(3):1027-1036.
1151 49. Taylor JL, Todd G, Gandevia SC. Evidence for a supraspinal contribution to human muscle 
1152 fatigue. Clinical and experimental pharmacology & physiology. 2006;33(4):400-405.
1153 50. McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL. Behaviour of the motoneurone pool in a 
1154 fatiguing submaximal contraction. The Journal of physiology. 2011;589(Pt 14):3533-3544.
1155 51. Pearcey GEP, Noble SA, Munro B, Zehr EP. Spinal Cord Excitability and Sprint Performance 
1156 Are Enhanced by Sensory Stimulation During Cycling. Frontiers in human neuroscience. 
1157 2017;11:612.
1158 52. Cotel F, Exley R, Cragg SJ, Perrier JF. Serotonin spillover onto the axon initial segment of 
1159 motoneurons induces central fatigue by inhibiting action potential initiation. Proceedings of 
1160 the National Academy of Sciences of the United States of America. 2013;110(12):4774-4779.
1161 53. Todd G, Taylor JL, Gandevia SC. Measurement of voluntary activation based on transcranial 
1162 magnetic stimulation over the motor cortex. Journal of applied physiology (Bethesda, Md : 
1163 1985). 2016;121(3):678-686.
1164 54. Peyrard A, Willis SJ, Place N, Millet GP, Borrani F, Rupp T. Neuromuscular evaluation of arm-
1165 cycling repeated sprints under hypoxia and/or blood flow restriction. European journal of 
1166 applied physiology. 2019;119(7):1533-1545.

Page 53 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

54

1167 55. Butler JE, Taylor JL, Gandevia SC. Responses of human motoneurons to corticospinal 
1168 stimulation during maximal voluntary contractions and ischemia. The Journal of 
1169 neuroscience : the official journal of the Society for Neuroscience. 2003;23(32):10224-10230.
1170 56. Nielsen J, Petersen N. Is presynaptic inhibition distributed to corticospinal fibres in man? The 
1171 Journal of physiology. 1994;477(Pt 1):47-58.
1172 57. McNeil CJ, Giesebrecht S, Khan SI, Gandevia SC, Taylor JL. The reduction in human 
1173 motoneurone responsiveness during muscle fatigue is not prevented by increased muscle 
1174 spindle discharge. The Journal of physiology. 2011;589(Pt 15):3731-3738.
1175 58. Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL. Fatigue-sensitive afferents inhibit 
1176 extensor but not flexor motoneurons in humans. The Journal of neuroscience : the official 
1177 journal of the Society for Neuroscience. 2006;26(18):4796-4802.
1178 59. Finn HT, Rouffet DM, Kennedy DS, Green S, Taylor JL. Motoneuron excitability of the 
1179 quadriceps decreases during a fatiguing submaximal isometric contraction. Journal of 
1180 applied physiology (Bethesda, Md : 1985). 2018;124(4):970-979.
1181 60. Sidhu SK, Weavil JC, Thurston TS, et al. Fatigue-related group III/IV muscle afferent feedback 
1182 facilitates intracortical inhibition during locomotor exercise. J Physiol. 2018;596(19):4789-
1183 4801.
1184 61. Taylor JL, Amann M, Duchateau J, Meeusen R, Rice CL. Neural Contributions to Muscle 
1185 Fatigue: From the Brain to the Muscle and Back Again. Medicine and science in sports and 
1186 exercise. 2016;48(11):2294-2306.
1187 62. Avela J, Kyrolainen H, Komi PV, Rama D. Reduced reflex sensitivity persists several days after 
1188 long-lasting stretch-shortening cycle exercise. Journal of applied physiology (Bethesda, Md : 
1189 1985). 1999;86(4):1292-1300.
1190 63. Hagbarth KE. Excitatory and inhibitory skin areas for flexor and extensor motoneurons. Acta 
1191 physiologica Scandinavica Supplementum. 1952;26(94):1-58.
1192 64. Mense S, Craig AD, Jr. Spinal and supraspinal terminations of primary afferent fibers from 
1193 the gastrocnemius-soleus muscle in the cat. Neuroscience. 1988;26(3):1023-1035.
1194 65. Torres-Peralta R, Morales-Alamo D, González-Izal M, et al. Task Failure during Exercise to 
1195 Exhaustion in Normoxia and Hypoxia Is Due to Reduced Muscle Activation Caused by Central 
1196 Mechanisms While Muscle Metaboreflex Does Not Limit Performance. Frontiers in 
1197 physiology. 2016;6(414).
1198 66. Temesi J, Mattioni Maturana F, Peyrard A, Piucco T, Murias JM, Millet GY. The relationship 
1199 between oxygen uptake kinetics and neuromuscular fatigue in high-intensity cycling 
1200 exercise. European journal of applied physiology. 2017;117(5):969-978.
1201 67. Hodgson MD, Keir DA, Copithorne DB, Rice CL, Kowalchuk JM. Power reserve following 
1202 ramp-incremental cycling to exhaustion: implications for muscle fatigue and function. 
1203 Journal of applied physiology (Bethesda, Md : 1985). 2018;125(2):304-312.
1204 68. Schafer LU, Hayes M, Dekerle J. The magnitude of neuromuscular fatigue is not intensity 
1205 dependent when cycling above critical power but relates to aerobic and anaerobic 
1206 capacities. Experimental physiology. 2019;104(2):209-219.
1207 69. Amann M. Central and peripheral fatigue: interaction during cycling exercise in humans. 
1208 Medicine and science in sports and exercise. 2011;43(11):2039-2045.
1209 70. Johnson MA, Sharpe GR, Williams NC, Hannah R. Locomotor muscle fatigue is not critically 
1210 regulated after prior upper body exercise. Journal of applied physiology (Bethesda, Md : 
1211 1985). 2015;119(7):840-850.
1212 71. Amann M, Venturelli M, Ives SJ, et al. Peripheral fatigue limits endurance exercise via a 
1213 sensory feedback-mediated reduction in spinal motoneuronal output. Journal of applied 
1214 physiology (Bethesda, Md : 1985). 2013;115(3):355-364.
1215 72. Noakes TD, St Clair Gibson A, Lambert EV. From catastrophe to complexity: a novel model of 
1216 integrative central neural regulation of effort and fatigue during exercise in humans. British 
1217 journal of sports medicine. 2004;38(4):511-514.

Page 54 of 125Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

55

1218 73. Thomas K, Goodall S, Howatson G. Performance Fatigability Is Not Regulated to A Peripheral 
1219 Critical Threshold. Exercise and sport sciences reviews. 2018;46(4):240-246.
1220 74. Marcora S. Counterpoint: Afferent feedback from fatigued locomotor muscles is not an 
1221 important determinant of endurance exercise performance. Journal of applied physiology 
1222 (Bethesda, Md : 1985). 2010;108(2):454-456; discussion 456-457.
1223 75. Amann M, Secher NH. Point: Afferent feedback from fatigued locomotor muscles is an 
1224 important determinant of endurance exercise performance. J Appl Physiol (1985). 
1225 2010;108(2):452-454; discussion 457; author reply 470.
1226 76. Marcora SM, Staiano W. The limit to exercise tolerance in humans: mind over muscle? 
1227 European journal of applied physiology. 2010;109(4):763-770.
1228 77. Millet GY. Can neuromuscular fatigue explain running strategies and performance in ultra-
1229 marathons?: the flush model. Sports medicine (Auckland, NZ). 2011;41(6):489-506.
1230 78. Hureau TJ, Romer LM, Amann M. The 'sensory tolerance limit': A hypothetical construct 
1231 determining exercise performance? European journal of sport science. 2018;18(1):13-24.
1232 79. Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S. Central and peripheral fatigue kinetics 
1233 during exhaustive constant-load cycling. Scandinavian journal of medicine & science in 
1234 sports. 2012;22(3):381-391.
1235 80. Keir DA, Copithorne DB, Hodgson MD, Pogliaghi S, Rice CL, Kowalchuk JM. The slow 
1236 component of pulmonary O2 uptake accompanies peripheral muscle fatigue during high-
1237 intensity exercise. Journal of applied physiology (Bethesda, Md : 1985). 2016;121(2):493-
1238 502.
1239 81. Azevedo RA, Cruz R, Couto P, et al. Characterization of performance fatigability during a self-
1240 paced exercise. Journal of applied physiology (Bethesda, Md : 1985). 2019;127(3):838-846.
1241 82. Felippe LC, Melo TG, Silva-Cavalcante MD, et al. Relationship between recovery of 
1242 neuromuscular function and subsequent capacity to work above critical power. European 
1243 journal of applied physiology. 2020;120(6):1237-1249.
1244 83. Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution 
1245 of work capacity above critical power. Medicine and science in sports and exercise. 
1246 2012;44(8):1526-1532.
1247 84. Ansdell P, Thomas K, Howatson G, Amann M, Goodall S. Deception Improves Time Trial 
1248 Performance in Well-trained Cyclists without Augmented Fatigue. Medicine and science in 
1249 sports and exercise. 2018;50(4):809-816.
1250 85. Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Opioid-mediated muscle 
1251 afferents inhibit central motor drive and limit peripheral muscle fatigue development in 
1252 humans. The Journal of physiology. 2009;587(1):271-283.
1253 86. Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M. Fatigue diminishes 
1254 motoneuronal excitability during cycling exercise. Journal of neurophysiology. 
1255 2016;116(4):1743-1751.
1256 87. Goodall S, Gonzalez-Alonso J, Ali L, Ross EZ, Romer LM. Supraspinal fatigue after normoxic 
1257 and hypoxic exercise in humans. J Physiol. 2012;590(11):2767-2782.
1258 88. Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA. Arterial 
1259 oxygenation influences central motor output and exercise performance via effects on 
1260 peripheral locomotor muscle fatigue in humans. The Journal of physiology. 2006;575(Pt 
1261 3):937-952.
1262 89. Hureau TJ, Weavil JC, Thurston TS, et al. Pharmacological attenuation of group III/IV muscle 
1263 afferents improves endurance performance when oxygen delivery to locomotor muscles is 
1264 preserved. Journal of applied physiology (Bethesda, Md : 1985). 2019.
1265 90. Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA. Implications of group 
1266 III and IV muscle afferents for high-intensity endurance exercise performance in humans. 
1267 The Journal of physiology. 2011;589(Pt 21):5299-5309.

Page 55 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

56

1268 91. Blain GM, Mangum TS, Sidhu SK, et al. Group III/IV muscle afferents limit the intramuscular 
1269 metabolic perturbation during whole body exercise in humans. The Journal of physiology. 
1270 2016;594(18):5303-5315.
1271 92. Amann M, Dempsey JA. Locomotor muscle fatigue modifies central motor drive in healthy 
1272 humans and imposes a limitation to exercise performance. The Journal of physiology. 
1273 2008;586(1):161-173.
1274 93. O'Leary TJ, Morris MG, Collett J, Howells K. Central and peripheral fatigue following non-
1275 exhaustive and exhaustive exercise of disparate metabolic demands. Scandinavian journal of 
1276 medicine & science in sports. 2016;26(11):1287-1300.
1277 94. O'Leary TJ, Collett J, Morris MG. High-intensity exhaustive exercise reduces long-interval 
1278 intracortical inhibition. Experimental brain research. 2018;236(12):3149-3158.
1279 95. Skof B, Strojnik V. Neuromuscular fatigue and recovery dynamics following prolonged 
1280 continuous run at anaerobic threshold. British journal of sports medicine. 2006;40(3):219-
1281 222; discussion 219-222.
1282 96. Husmann F, Gube M, Felser S, et al. Central Factors Contribute to Knee Extensor Strength 
1283 Loss after 2000-m Rowing in Elite Male and Female Rowers. Medicine and science in sports 
1284 and exercise. 2017;49(3):440-449.
1285 97. O'Leary TJ, Collett J, Howells K, Morris MG. Endurance capacity and neuromuscular fatigue 
1286 following high- vs moderate-intensity endurance training: A randomized trial. Scandinavian 
1287 journal of medicine & science in sports. 2017;27(12):1648-1661.
1288 98. Gandevia SC, Allen GM, Butler JE, Taylor JL. Supraspinal factors in human muscle fatigue: 
1289 evidence for suboptimal output from the motor cortex. The Journal of physiology. 1996;490 ( 
1290 Pt 2)(Pt 2):529-536.
1291 99. Ortu E, Deriu F, Suppa A, Tolu E, Rothwell JC. Effects of volitional contraction on intracortical 
1292 inhibition and facilitation in the human motor cortex. The Journal of physiology. 
1293 2008;586(21):5147-5159.
1294 100. Hunter SK, McNeil CJ, Butler JE, Gandevia SC, Taylor JL. Short-interval cortical inhibition and 
1295 intracortical facilitation during submaximal voluntary contractions changes with fatigue. 
1296 Experimental brain research. 2016;234(9):2541-2551.
1297 101. Klass M, Roelands B, Levenez M, et al. Effects of noradrenaline and dopamine on supraspinal 
1298 fatigue in well-trained men. Medicine and science in sports and exercise. 2012;44(12):2299-
1299 2308.
1300 102. Bulbulian R, Darabos BL. Motor neuron excitability: the Hoffmann reflex following exercise 
1301 of low and high intensity. Medicine and science in sports and exercise. 1986;18(6):697-702.
1302 103. Motl RW, O'Connor P J, Dishman RK. Effects of cycling exercise on the soleus H-reflex and 
1303 state anxiety among men with low or high trait anxiety. Psychophysiology. 2004;41(1):96-
1304 105.
1305 104. Macefield G, Hagbarth KE, Gorman R, Gandevia SC, Burke D. Decline in spindle support to 
1306 alpha-motoneurones during sustained voluntary contractions. The Journal of physiology. 
1307 1991;440:497-512.
1308 105. Duchateau J, Balestra C, Carpentier A, Hainaut K. Reflex regulation during sustained and 
1309 intermittent submaximal contractions in humans. The Journal of physiology. 2002;541(Pt 
1310 3):959-967.
1311 106. Rossi A, Decchi B, Ginanneschi F. Presynaptic excitability changes of group Ia fibres to muscle 
1312 nociceptive stimulation in humans. Brain research. 1999;818(1):12-22.
1313 107. Fitts RH. The cross-bridge cycle and skeletal muscle fatigue. Journal of applied physiology 
1314 (Bethesda, Md : 1985). 2008;104(2):551-558.
1315 108. Sidhu SK, Weavil JC, Venturelli M, et al. Spinal mu-opioid receptor-sensitive lower limb 
1316 muscle afferents determine corticospinal responsiveness and promote central fatigue in 
1317 upper limb muscle. The Journal of physiology. 2014;592(22):5011-5024.

Page 56 of 125Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

57

1318 109. de Morree HM, Klein C, Marcora SM. Perception of effort reflects central motor command 
1319 during movement execution. Psychophysiology. 2012;49(9):1242-1253.
1320 110. Coyle EF, Coggan AR, Hemmert MK, Ivy JL. Muscle glycogen utilization during prolonged 
1321 strenuous exercise when fed carbohydrate. Journal of applied physiology (Bethesda, Md : 
1322 1985). 1986;61(1):165-172.
1323 111. Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical Power: An Important 
1324 Fatigue Threshold in Exercise Physiology. Medicine and science in sports and exercise. 
1325 2016;48(11):2320-2334.
1326 112. Lepers R, Theurel J, Hausswirth C, Bernard T. Neuromuscular fatigue following constant 
1327 versus variable-intensity endurance cycling in triathletes. Journal of science and medicine in 
1328 sport. 2008;11(4):381-389.
1329 113. Lepers R, Hausswirth C, Maffiuletti N, Brisswalter J, van Hoecke J. Evidence of neuromuscular 
1330 fatigue after prolonged cycling exercise. Medicine and science in sports and exercise. 
1331 2000;32(11):1880-1886.
1332 114. Racinais S, Girard O, Micallef JP, Perrey S. Failed excitability of spinal motoneurons induced 
1333 by prolonged running exercise. Journal of neurophysiology. 2007;97(1):596-603.
1334 115. Jubeau M, Rupp T, Perrey S, et al. Changes in voluntary activation assessed by transcranial 
1335 magnetic stimulation during prolonged cycling exercise. PloS one. 2014;9(2):e89157.
1336 116. Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY. Neuromuscular fatigue during a 
1337 long-duration cycling exercise. Journal of applied physiology (Bethesda, Md : 1985). 
1338 2002;92(4):1487-1493.
1339 117. Burnley M, Jones AM. Power-duration relationship: Physiology, fatigue, and the limits of 
1340 human performance. European journal of sport science. 2018;18(1):1-12.
1341 118. Ortenblad N, Westerblad H, Nielsen J. Muscle glycogen stores and fatigue. The Journal of 
1342 physiology. 2013;591(18):4405-4413.
1343 119. Gejl KD, Hvid LG, Frandsen U, Jensen K, Sahlin K, Ortenblad N. Muscle glycogen content 
1344 modifies SR Ca2+ release rate in elite endurance athletes. Med Sci Sports Exerc. 
1345 2014;46(3):496-505.
1346 120. Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic 
1347 reticulum Ca2+ kinetics in human skeletal muscle. The Journal of physiology. 2011;589(Pt 
1348 3):711-725.
1349 121. Noakes TD, Lambert EV, Lambert MI, McArthur PS, Myburgh KH, Benade AJ. Carbohydrate 
1350 ingestion and muscle glycogen depletion during marathon and ultramarathon racing. 
1351 European journal of applied physiology and occupational physiology. 1988;57(4):482-489.
1352 122. Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive 
1353 oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and 
1354 recovery. J Physiol. 2016;594(18):5149-5160.
1355 123. Mrakic-Sposta S, Gussoni M, Moretti S, et al. Effects of Mountain Ultra-Marathon Running 
1356 on ROS Production and Oxidative Damage by Micro-Invasive Analytic Techniques. PloS one. 
1357 2015;10(11):e0141780.
1358 124. Cheng AJ, Place N, Westerblad H. Molecular basis for exercise-induced fatigue: the 
1359 importance of strictly controlled cellular Ca2+ handling. Cold Spring Harb Perspect Med. 
1360 2017.
1361 125. Skurvydas A, Mamkus G, Kamandulis S, Dudoniene V, Valanciene D, Westerblad H. 
1362 Mechanisms of force depression caused by different types of physical exercise studied by 
1363 direct electrical stimulation of human quadriceps muscle. European journal of applied 
1364 physiology. 2016;116(11-12):2215-2224.
1365 126. Place N, Lepers R, Deley G, Millet GY. Time course of neuromuscular alterations during a 
1366 prolonged running exercise. Medicine and science in sports and exercise. 2004;36(8):1347-
1367 1356.

Page 57 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

58

1368 127. Sahlin K, Seger JY. Effects of prolonged exercise on the contractile properties of human 
1369 quadriceps muscle. European journal of applied physiology and occupational physiology. 
1370 1995;71(2-3):180-186.
1371 128. Saldanha A, Nordlund Ekblom MM, Thorstensson A. Central fatigue affects plantar flexor 
1372 strength after prolonged running. Scandinavian journal of medicine & science in sports. 
1373 2008;18(3):383-388.
1374 129. Petersen K, Hansen CB, Aagaard P, Madsen K. Muscle mechanical characteristics in fatigue 
1375 and recovery from a marathon race in highly trained runners. European journal of applied 
1376 physiology. 2007;101(3):385-396.
1377 130. Millet GY, Martin V, Lattier G, Ballay Y. Mechanisms contributing to knee extensor strength 
1378 loss after prolonged running exercise. Journal of applied physiology (Bethesda, Md : 1985). 
1379 2003;94(1):193-198.
1380 131. Millet GY, Martin V, Maffiuletti NA, Martin A. Neuromuscular fatigue after a ski skating 
1381 marathon. Canadian journal of applied physiology = Revue canadienne de physiologie 
1382 appliquee. 2003;28(3):434-445.
1383 132. Ross EZ, Middleton N, Shave R, George K, Nowicky A. Corticomotor excitability contributes to 
1384 neuromuscular fatigue following marathon running in man. Experimental physiology. 
1385 2007;92(2):417-426.
1386 133. Gauche E, Lepers R, Rabita G, et al. Vitamin and mineral supplementation and 
1387 neuromuscular recovery after a running race. Medicine and science in sports and exercise. 
1388 2006;38(12):2110-2117.
1389 134. Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G. Alterations of 
1390 neuromuscular function after an ultramarathon. Journal of applied physiology (Bethesda, Md 
1391 : 1985). 2002;92(2):486-492.
1392 135. Martin V, Kerherve H, Messonnier LA, et al. Central and peripheral contributions to 
1393 neuromuscular fatigue induced by a 24-h treadmill run. Journal of applied physiology 
1394 (Bethesda, Md : 1985). 2010;108(5):1224-1233.
1395 136. Giandolini M, Gimenez P, Temesi J, et al. Effect of the Fatigue Induced by a 110-km 
1396 Ultramarathon on Tibial Impact Acceleration and Lower Leg Kinematics. PloS one. 
1397 2016;11(3):e0151687.
1398 137. Temesi J, Arnal PJ, Rupp T, et al. Are Females More Resistant to Extreme Neuromuscular 
1399 Fatigue? Medicine and science in sports and exercise. 2015;47(7):1372-1382.
1400 138. Millet GY, Tomazin K, Verges S, et al. Neuromuscular consequences of an extreme mountain 
1401 ultra-marathon. PloS one. 2011;6(2):e17059.
1402 139. Besson T, Rossi J, Mallouf TLR, et al. Fatigue and Recovery following Single- versus 
1403 Multistage Ultramarathon Running. Medicine and science in sports and exercise. 2020.
1404 140. Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP. Alterations of Neuromuscular 
1405 Function after the World's Most Challenging Mountain Ultra-Marathon. PloS one. 
1406 2013;8(6):e65596.
1407 141. Ross EZ, Gregson W, Williams K, Robertson C, George K. Muscle contractile function and 
1408 neural control after repetitive endurance cycling. Medicine and science in sports and 
1409 exercise. 2010;42(1):206-212.
1410 142. Hollge J, Kunkel M, Ziemann U, Tergau F, Geese R, Reimers CD. Central fatigue in sports and 
1411 daily exercises. A magnetic stimulation study. International journal of sports medicine. 
1412 1997;18(8):614-617.
1413 143. Aboodarda SJ, Fan S, Coates K, Millet GY. The short-term recovery of corticomotor responses 
1414 in elbow flexors. BMC neuroscience. 2019;20(1):9.
1415 144. Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review. Journal of sports sciences. 
1416 2005;23(6):593-599.

Page 58 of 125Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

59

1417 145. Goodall S, Thomas K, Harper LD, et al. The assessment of neuromuscular fatigue during 120 
1418 min of simulated soccer exercise. European journal of applied physiology. 2017;117(4):687-
1419 697.
1420 146. Harper LD, Hunter R, Parker P, et al. Test-Retest Reliability of Physiological and Performance 
1421 Responses to 120 Minutes of Simulated Soccer Match Play. Journal of strength and 
1422 conditioning research. 2016;30(11):3178-3186.
1423 147. Thomas K, Dent J, Howatson G, Goodall S. Etiology and Recovery of Neuromuscular Fatigue 
1424 after Simulated Soccer Match Play. Medicine and science in sports and exercise. 
1425 2017;49(5):955-964.
1426 148. Rampinini E, Bosio A, Ferraresi I, Petruolo A, Morelli A, Sassi A. Match-related fatigue in 
1427 soccer players. Medicine and science in sports and exercise. 2011;43(11):2161-2170.
1428 149. Ispirlidis I, Fatouros IG, Jamurtas AZ, et al. Time-course of changes in inflammatory and 
1429 performance responses following a soccer game. Clinical journal of sport medicine : official 
1430 journal of the Canadian Academy of Sport Medicine. 2008;18(5):423-431.
1431 150. Krustrup P, Ortenblad N, Nielsen J, et al. Maximal voluntary contraction force, SR function 
1432 and glycogen resynthesis during the first 72 h after a high-level competitive soccer game. 
1433 European journal of applied physiology. 2011;111(12):2987-2995.
1434 151. Murphy AP, Snape AE, Minett GM, Skein M, Duffield R. The effect of post-match alcohol 
1435 ingestion on recovery from competitive rugby league matches. Journal of strength and 
1436 conditioning research. 2013;27(5):1304-1312.
1437 152. Skein M, Duffield R, Minett GM, Snape A, Murphy A. The effect of overnight sleep 
1438 deprivation after competitive rugby league matches on postmatch physiological and 
1439 perceptual recovery. International journal of sports physiology and performance. 
1440 2013;8(5):556-564.
1441 153. Duffield R, Murphy A, Snape A, Minett GM, Skein M. Post-match changes in neuromuscular 
1442 function and the relationship to match demands in amateur rugby league matches. Journal 
1443 of science and medicine in sport. 2012;15(3):238-243.
1444 154. Pointon M, Duffield R. Cold water immersion recovery after simulated collision sport 
1445 exercise. Medicine and science in sports and exercise. 2012;44(2):206-216.
1446 155. Ansdell P, Dekerle J. Sodium bicarbonate supplementation delays neuromuscular fatigue 
1447 without changes in performance outcomes during a basketball match simulation protocol. 
1448 Journal of strength and conditioning research. 2017.
1449 156. Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion 
1450 decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in 
1451 the heat. Scandinavian journal of medicine & science in sports. 2014;24(4):656-666.
1452 157. Pointon M, Duffield R, Cannon J, Marino FE. Cold water immersion recovery following 
1453 intermittent-sprint exercise in the heat. European journal of applied physiology. 
1454 2012;112(7):2483-2494.
1455 158. Goodall S, Thomas K, Barwood M, et al. Neuromuscular changes and the rapid adaptation 
1456 following a bout of damaging eccentric exercise. Acta physiologica (Oxford, England). 
1457 2017;220(4):486-500.
1458 159. Goodall S, Charlton K, Hignett C, et al. Augmented supraspinal fatigue following constant-
1459 load cycling in the heat. Scandinavian journal of medicine & science in sports. 2015;25 Suppl 
1460 1:164-172.
1461 160. Brownstein CG, Souron R, Royer N, Singh B, Lapole T, Millet GY. Disparate kinetics of change 
1462 in responses to electrical stimulation at the thoracic and lumbar level during fatiguing 
1463 isometric knee extension. Journal of applied physiology (Bethesda, Md : 1985). 2019.
1464 161. Doyle-Baker D, Temesi J, Medysky ME, Holash RJ, Millet GY. An Innovative Ergometer to 
1465 Measure Neuromuscular Fatigue Immediately after Cycling. Medicine and science in sports 
1466 and exercise. 2018;50(2):375-387.

Page 59 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

60

1467 162. Endoh T, Nakajima T, Sakamoto M, Komiyama T. Effects of muscle damage induced by 
1468 eccentric exercise on muscle fatigue. Medicine and science in sports and exercise. 
1469 2005;37(7):1151-1156.
1470 163. Rampinini E, Connolly DR, Ferioli D, La Torre A, Alberti G, Bosio A. Peripheral neuromuscular 
1471 fatigue induced by repeated-sprint exercise: cycling vs. running. The Journal of sports 
1472 medicine and physical fitness. 2016;56(1-2):49-59.
1473 164. Rossman MJ, Garten RS, Venturelli M, Amann M, Richardson RS. The role of active muscle 
1474 mass in determining the magnitude of peripheral fatigue during dynamic exercise. American 
1475 journal of physiology Regulatory, integrative and comparative physiology. 
1476 2014;306(12):R934-940.
1477 165. Rossman MJ, Venturelli M, McDaniel J, Amann M, Richardson RS. Muscle mass and 
1478 peripheral fatigue: a potential role for afferent feedback? Acta physiologica (Oxford, 
1479 England). 2012;206(4):242-250.
1480 166. Nelson RC, Dillman CJ, Lagasse P, Bickett P. Biomechanics of overground versus treadmill 
1481 running. Medicine and science in sports. 1972;4(4):233-240.
1482 167. Carter H, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in 
1483 treadmill running and cycle ergometry: a comparison. Journal of applied physiology 
1484 (Bethesda, Md : 1985). 2000;89(3):899-907.
1485 168. Edwards RH, Hill DK, McDonnell M. Myothermal and intramuscular pressure measurements 
1486 during isometric contractions of the human quadriceps muscle. The Journal of physiology. 
1487 1972;224(2):58P-59P.
1488 169. Kruger RL, Aboodarda SJ, Jaimes LM, MacIntosh BR, Samozino P, Millet GY. Fatigue and 
1489 recovery measured with dynamic properties versus isometric force: effects of exercise 
1490 intensity. The Journal of experimental biology. 2019;222(Pt 9).

1491

1492

Page 60 of 125Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1

1 Neuromuscular responses to fatiguing locomotor exercise

2 Dr. Callum G Brownstein1, Prof. Guillaume Y Millet1,2, Dr. Kevin Thomas3.

3 1Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, 

4 Saint-Etienne, France

5 2Institut Universitaire de France (IUF)

6 3Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK

7

8

9 Address for correspondence:

10 Dr. Callum BROWNSTEIN

11 Laboratoire Interuniversitaire de Biologie de la Motricité

12 Bâtiment IRMIS

13 10 rue de la Marandière

14 42270 Saint Priest en Jarez

15 France

16 04 77 42 18 83

17 Email: callum.brownstein@univ-st-etienne.fr

18

19

20

21

22

23

24

25

26

27

Page 61 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

2

28 Abstract

29 Over the last two decades, an abundance of research has explored the impact of fatiguing 

30 locomotor exercise on the neuromuscular system. Neurostimulation techniques have been 

31 implemented prior to and following locomotor exercise tasks of a wide variety of intensities, 

32 durations, and modes. These techniques have allowed for the assessment of alterations 

33 occurring within the central nervous system and the muscle, while techniques such as 

34 transcranial magnetic stimulation and spinal electrical stimulation have permitted further 

35 segmentalisation of locomotor exercise-induced changes along the motor pathway. To this end, 

36 the present review provides a comprehensive synopsis of the literature pertaining to 

37 neuromuscular responses to locomotor exercise. Sections of the review were divided to discuss 

38 neuromuscular responses to maximal, severe, heavy and moderate intensity, high-intensity 

39 intermittent exercise, and differences in neuromuscular responses between exercise modalities. 

40 During maximal and severe intensity exercise, alterations in neuromuscular function reside 

41 primarily within the muscle. Although post-exercise reductions in voluntary activation 

42 following maximal and severe intensity exercise are generally modest, several studies have 

43 observed alterations occurring at the cortical and/or spinal level. During prolonged heavy and 

44 moderate intensity exercise, impairments in contractile function are attenuated with respect to 

45 severe intensity exercise, but are still widely observed. While reductions in voluntary activation 

46 are greater during heavy and moderate intensity exercise, the specific alterations occurring 

47 within the central nervous system remain unclear. Further work utilising stimulation techniques 

48 during exercise and integrating new and emerging techniques such as high-density 

49 electromyography is warranted to provide further insight into neuromuscular responses to 

50 locomotor exercise. 

51 Key words: Cycling, fatigue, neurostimulation, neuromuscular physiology, running

52
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53 Introduction

54 The study of exercise-induced fatigue has captivated academics within the field of sport and 

55 exercise for centuries, with research into the topic dating back as far as the 18th century through 

56 the pioneering work of Alessandro Mosso, documented in his book La fatica. Today, fatigue 

57 remains the subject of considerable research attention, with over 3000 scientific publications 

58 on this topic in the last 20 years. Despite this interest, a strict definition of fatigue remains 

59 elusive, likely due to the numerous divisions within sport and exercise science providing 

60 definitions which best suit their individual discipline. Recent efforts have been made to provide 

61 a universal definition of fatigue, applicable to both athletic and clinical populations, which 

62 encompasses the interdependent physical and cognitive processes that occur with numerous 

63 chronic health conditions, and during and following strenuous exercise 1. To this end, Enoka 

64 and Duchateau 1 define fatigue as a debilitating symptom of tiredness and weakness, dictated 

65 by interactions between performance fatigability, which involves an acute exercise-induced 

66 reduction in force or power output of the involved muscles, and perceived fatigability, 

67 involving changes in sensations that accompany fatigue. The definition of fatigue as a sensation 

68 of tiredness and weakness, underpinned and/or modulated by a myriad of physiological and 

69 psychological processes, is used for the purposes of this review. 

70 In sport and exercise science, considerable research has focused on the effect of fatiguing 

71 exercise on objective measures of performance, such as alterations in the force and/or power 

72 generating capacity of muscle (i.e. the ‘performance fatigability’ aspects) 2-4. Such endeavours 

73 are logical given that the ability of the muscle to exert force is imperative to successful sporting 

74 performance. During high-intensity or prolonged exercise, the force generating capacity of the 

75 muscle is reduced 5. This reduction in muscle force during exercise, and the neurophysiological 

76 changes which accompany it, are integral contributors to fatigue and impaired exercise 

77 performance, and also possibly increase injury risk 6,7. Consequently, understanding exercise-
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78 induced impairments in muscle force generating capacity, and the mechanisms which elicit 

79 these impairments, is a pertinent area of research. 

80 Voluntary force is produced through a complex chain of events which occur throughout the 

81 neuromuscular pathway, from brain to muscle. As every step along this pathway is susceptible 

82 to change during fatiguing exercise, determining the alterations within the neuromuscular 

83 pathway that occur during exercise can facilitate understanding of the causes of reduced muscle 

84 force, and in turn exercise performance 1. Using peripheral nerve stimulation, it is possible to 

85 differentiate between the contribution of alterations within the muscle and central nervous 

86 system (CNS) to impaired neuromuscular function and force generating capacity during 

87 exercise. Peripheral contributors to reductions in muscle force involve disturbances at sites at 

88 or distal to the neuromuscular junction and can be assessed by measuring involuntary evoked 

89 responses to electrical stimulation on relaxed muscle. This technique offers a method to assess 

90 the manifestation of biochemical and histological changes occurring within muscle fibers 

91 through changes in the resting twitch force. Other methods, such as muscle biopsies and 

92 Ultrasound, can be used to provide further insight into biochemical and histological alterations 

93 occurring during locomotor exercise 8,24. Central contributors to fatigue involve processes 

94 occurring proximal to the neuromuscular junction, resulting in an impairment in the capacity 

95 of the CNS to voluntarily activate the muscle, and can be examined through evoked responses 

96 to electrical or magnetic stimulation during submaximal and maximal voluntary contractions 

97 (MVCs) 5. Moreover, exercise-induced alterations in the corticospinal tract, which represents 

98 the primary motor pathway for control of human movement, can be further segmented through 

99 the use of transcranial magnetic stimulation (TMS), with concurrent spinal stimulation 

100 enabling the differentiation between cortical and spinal components of the motor pathway 8,9. 

101 Other techniques, such as the assessment of stretch-reflex responses following physical 

102 perturbations, can also be used to monitor natural reflex responses 10, though the application of 
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103 these methods in response to fatiguing locomotor exercise is limited. While many of these 

104 techniques permit the assessment of neuromuscular function at a segmented level, it should be 

105 noted that the peripheral and central contributors to impairments in neuromuscular function are 

106 not mutually exclusive. For example, changes occurring within the muscle influence the 

107 activation signal discharged by motor neurons during voluntary contractions, while sensory 

108 feedback transmitted from the muscle travels to various sites within the CNS, and can influence 

109 the behaviour of cortical and spinal neurons 1,11,12. 

110 A common approach when studying neuromuscular responses to fatiguing exercise is to deliver 

111 electrical and magnetic stimuli during fatiguing single-limb, isometric exercise protocols.  

112 While this approach is convenient because participants are not required to manoeuvre to the 

113 designated apparatus for the fatiguing task (i.e. the equipment used to measure isometric force), 

114 the ‘real-world’ applicability of the findings from these studies is questionable due to a lack of 

115 ecological validity. That is, the type of exercise being performed differs substantially from that 

116 performed in a sport and exercise environment, where dynamic, locomotor exercise is 

117 performed with multiple limbs, and the systemic and local responses are considerably different 

118 to that of isometric exercise. Given the well-established importance of task dependency in 

119 determining the aetiology of exercise-induced fatigue 13, extrapolations from findings using 

120 isometric exercise models in the context of locomotor activity should be made with caution 14, 

121 and there is a requirement to assess neuromuscular function in response to locomotor exercise 

122 itself. As such, a plethora of research over the last two decades have documented 

123 neuromuscular responses to locomotor exercise of varying intensities, durations and modes, 

124 both during and in the recovery period following exercise 15-17. While a number of reviews 

125 exist in the literature on corticospinal excitability during locomotor exercise 8,18, neuromuscular 

126 function responses to repeated sprints 19 and extreme endurance exercise 20,   a comprehensive 

127 review of the literature describing neuromuscular responses to locomotor exercise is lacking. 
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128 An understanding of how locomotor exercise impacts the neuromuscular system has 

129 implications for those working with both athletic and clinical populations. Accordingly, the 

130 aim of this review is to summarise literature examining neuromuscular responses during and 

131 following fatiguing locomotor exercise, with a focus on the role of locomotor exercise 

132 intensity, duration, and mode on the modulation of neuromuscular function. 

133

134 The role of exercise intensity and duration on neuromuscular responses to fatiguing 

135 exercise

136 Research has demonstrated that the intensity and duration of locomotor exercise has a profound 

137 influence on the aetiology of impairments in neuromuscular function 21-23. Exercise intensity 

138 during locomotor exercise can be categorised into distinct domains demarcated by 

139 physiological thresholds.  Specifically, four intensity domains have so far been established; 

140 moderate (power output below lactate threshold), heavy (power output between lactate 

141 threshold and critical intensity, defined as the asymptote of the relationship between intensity 

142 and time, and the maximum sustainable exercise intensity), severe (power output above critical 

143 intensity that can be sustained until VO2max is reached) and extreme (supra-severe intensity in 

144 which exercise intensity is so great that VO2max cannot be reached before exhaustion) 24. Each 

145 intensity domain is characterised by differences in VO2 kinetics, muscle metabolic, and blood 

146 acid-base responses 25. In turn, the exercise intensity domain and the distinct physiological 

147 responses within these domains are proposed to influence the mechanisms responsible for 

148 impairments in neuromuscular function. In addition, many sporting activities are characterised 

149 by intermittent bouts of maximal or severe intensity exercise interspersed with periods of 

150 recovery or moderate and heavy intensity exercise, such as in team sports. Thus, this form of 

151 activity imposes a unique challenge to all physiological systems, including the neuromuscular 
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152 system, in that it is of prolonged duration, spans the four exercise intensity domains, and is 

153 characterised by substantial mechanical demands. 

154

155 Neuromuscular responses to ‘all-out’ exercise

156 Muscle force generating capacity, voluntary activation and contractile function

157 Short-duration, maximum intensity exercise (30-60 s), in which there is maximum effort and a 

158 considerable decrease in performance, is referred to as ‘all-out’ exercise 26. This form of 

159 exercise is commonplace during sprint interval training, which is regularly implemented as a 

160 means of improving health 27 and sports performance 28, as well as the Wingate 30 s test, and 

161 athletic events such as 400 m track running. Moreover, repeated sprint exercise, characterised 

162 by short maximal efforts (3-7 s) separated by brief recovery periods (< 60 s), is a common and 

163 effective training modality 29, and is implicated in team sports such as basketball 30. Despite 

164 the relatively brief nature of this mode of exercise, there is a substantial and progressive 

165 decrease in the force generating capacity of the muscle. Following a 30 s all out cycle sprint, 

166 Kruger et al. 31 found a 19% reduction in knee extensor maximum voluntary contraction 

167 (MVC). Similar results have been observed following running or cycling repeated sprint 

168 protocols, with reductions in MVC when measured within 30 s post-exercise ranging from 15-

169 24% (Table 1). It is well-established that the decrease in performance during all-out exercise 

170 is due primarily to alterations occurring within the muscle. Indeed, following 30 s all-out 

171 cycling, Kruger et al. 31 and Fernandez-del Olmo et al. 32 reported a 50% and 41% reduction 

172 in peak twitch force (Ptw), respectively, indicating the presence of considerable impairments 

173 within the contractile machinery 32. The reduction in the ability of the muscle to produce force 

174 in response to neural input during all-out exercise is likely due to the reliance on anaerobic 

175 metabolism, the by-products of which are deleterious to contractile function. Specific 

176 mechanisms proposed to contribute to impaired contractile function include the accumulation 
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177 of inorganic phosphate (Pi) derived from the creatine kinase reaction, which has multiple roles 

178 in impaired contractile function33, such as interference with Ca2+ release and sensitivity, 

179 reductions in specific force per cross-bridge and the rate of cross-bridge formation 34,35. 

180 Accumulation of H+ ions occurring due to anaerobic glycolysis, and subsequent interference 

181 with the excitation-contraction coupling process is also a commonly cited mechanism26,36.  

182 Discrepancies exist in the literature regarding the effect of maximal intensity exercise on 

183 voluntary activation (VA). For example, following two 30 s all-out cycling tasks separated by 

184 30 min, Fernandez-del-Olma et al. 32 found a 34% reduction in VA, whereas Kruger et al. 31 

185 found no reduction in VA following a similar exercise task. Following repeated sprint exercise, 

186 some studies have reported no change in VA 37,38, while many others reported significant 

187 decreases ranging between 3 and 11% 39-45 (Table 1). While these discrepancies could be 

188 related to differences in the exercise protocols (e.g. number or duration of sprint, exercise 

189 mode, between-sprint recovery duration), time to post-exercise neuromuscular assessment, 

190 and/or characteristics of the participants studied (sex, age, physical condition), the body of 

191 evidence would suggest short-duration, all-out exercise could inhibit the capacity of the CNS 

192 to activate muscle (Table 1). 

193 In regards to the kinetics of change in neuromuscular function during repeated sprints, 

194 impairments in MVC, VA and Ptw have been shown to occur following just two sprints of a 

195 repeated sprint protocol 43. Both Goodall et al. 43 and Hureau et al. 39 showed that most of the 

196 reduction in Ptw occurred during the first half of a repeat-sprint protocol, and reached a nadir 

197 around the mid stage. In contrast, impairments in VA were shown to be more pronounced 

198 during the later stages of the protocol 39. These kinetics could be explained by the early 

199 utilisation of higher threshold fatigable motor units during the initial sprints causing the rapid 

200 reduction in Ptw, while the reduction in VA during the later stages could be due to a number of 

201 mechanisms (discussed below). In addition, root mean square EMG (EMGRMS) normalised to 
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202 the maximal muscle compound action potential (Mmax) is progressively reduced throughout 

203 repeated sprints, suggesting reduced alpha(α)-motoneuron output 39,46. Accordingly, impaired 

204 contractile function plays a particularly prominent role in reduced muscle force during the early 

205 stages of repeated sprints, while reductions in VA become more apparent during the later 

206 stages. 
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211 Central nervous system alterations during ‘all-out’ exercise

212 While the peripheral changes which contribute to impaired neuromuscular function during all-

213 out exercise are well-established, the mechanisms which contribute to reductions in VA are 

214 less clear. A number of functional changes can occur within the CNS and contribute to 

215 impairments in VA and muscle force, including impairments in motor cortical output 49, 

216 changes in the intrinsic properties of α-motoneurons 50, altered reflex responses at the spinal 

217 cord 51, increases in group III/IV afferent firing ascending to supraspinal and spinal centres 46, 

218 and alterations in descending neuromodulatory systems 52. While the invasive nature associated 

219 with directly assessing the activity of some these systems preclude their measurement in 

220 humans, indirect measures can provide insights into adjustments in the neuromuscular pathway 

221 that occur during maximal intensity exercise. Figure 1 depicts the neuromuscular pathway and 

222 the potential alterations within this pathway that contribute to or occur with reduced 

223 performance during maximal intensity exercise based on current evidence primarily derived 

224 from maximal cycling exercise. 

225 Regarding cortical output, this is commonly estimated via the delivery of TMS over the motor 

226 cortex to estimate VA (VATMS). This technique involves delivering single-pulse TMS during a 

227 MVC, with an increase in the evoked superimposed force relative to an estimated resting twitch 

228 thought to be indicative of a decrease in cortical output. It should be noted that while VATMS is 

229 the most common method of estimating changes in maximal cortical output, it is associated 

230 with various limitations, such as activation of antagonist muscles, submaximal activation of 

231 the motoneuron pool, and accuracy of the estimated resting twitch 53, and spinal influences on 

232 VATMS cannot be ruled out.  Studies using this technique in response to maximal intensity 

233 exercise have provided mixed evidence, with some reporting a decrease 32,43 in VATMS while 

234 others report no change 38,54. Thus, while there is some evidence that output from the motor 

235 cortex could be impaired during all-out exercise, the limitations in VATMS as well as the 
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236 conflicting findings in the literature preclude a definitive conclusion on the matter. The 

237 mechanism(s) which could reduce motor cortical output are unclear, but could relate to 

238 alterations in the properties of cortical neurons, or synaptic inputs acting at or upstream of the 

239 motor cortex  45,49,55. While evidence regarding the activity of these neurons in response to 

240 maximal intensity exercise is scarce, Pearcey et al. 45 demonstrated a reduction in the motor 

241 evoked potential to cervicomedullary evoked potential (MEP/CMEP) ratio measured post-

242 exercise and between bouts of repeated arm sprint cycling, indicative of a decrease in the 

243 excitability of motor cortical neurons. Although the relationship between MEP and voluntary 

244 activation is not entirely clear, a decrease in the excitability of motor cortical neurons 

245 responsible for producing descending drive would require a compensatory increase in neural 

246 drive into the cortex, and if such an increase is not possible (e.g. due to the maximal nature of 

247 all-out exercise), recruitment of α-motoneurons would be diminished and VA reduced. More 

248 studies utilising VATMS and cortical combined with spinal stimulation are required to elucidate 

249 the effects of all-out exercise on motor cortical output and excitability. 

250 Alterations in α-motoneuron excitability can be assessed by measure the CMEP in response to 

251 all-out exercise. This measure is advantageous given that cortical projections to α-motoneurons 

252 lack conventional presynaptic inhibition, which can influence responses such as the H-reflex 

253 independently of altered motoneuron excitability 56. Motoneuron excitability is influenced by 

254 the level of descending synaptic input, sensory input, monoaminergic input, and alterations in 

255 the intrinsic properties of α-motoneurons, all of which could be altered during fatiguing 

256 exercise 5. Only one study has assessed the CMEP in response to all-out exercise, with Pearcey 

257 et al. 45 demonstrating a 29% increase in CMEP amplitude when measuring responses during 

258 an isometric contraction following repeated arm-cycle sprinting. This increase in α-

259 motoneuron excitability could be considered surprising given that studies have observed a 

260 decrease in spinal excitability during fatiguing isometric tasks (e.g. 50,57), highlighting the 
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261 importance of task-dependency and contraction mode on the neuromuscular adjustments to 

262 fatiguing exercise. The authors posited that the increased excitability could be due to a decrease 

263 in voltage threshold for action potential, activation of persistent inward currents and the 

264 monoaminergic system during exercise, and/or the facilitatory effects of firing of group III/IV 

265 afferents on the biceps brachii 58,45. It should be noted that when measured during ongoing 

266 voluntary contractions, CMEPs can be influenced by alterations in descending drive from the 

267 motor cortex, and thereby confound estimations of α-motoneuron excitability. Thus, further 

268 studies measuring CMEPs (or other methods of estimating α-motoneuron excitability such as 

269 measuring thoracic or lumbar evoked potentials) in the absence of ongoing descending drive 

270 (e.g. during the TMS evoked silent period 59,60), and during more traditional forms of maximal 

271 intensity exercise (e.g. cycle sprints), are warranted to further understanding on the effect of 

272 maximal intensity locomotor exercise on α-motoneuron excitability.

273 Changes in motor cortical output and α-motoneuron excitability can occur in addition to, and/or 

274 secondary to alterations in input from sensory neurons. For example, projections from sensory 

275 neurons innervating skeletal muscle, including muscle spindles (group Ia/II), Golgi tendon 

276 organs (group Ib) and group III/IV afferents, can modulate the corticospinal pathway during 

277 exercise. The role of Golgi tendon organs during locomotor exercise is unknown, but are 

278 suggested to play a limited role in exercise-induced impairments in neuromuscular function 

279 5,61. During locomotor activity, group Ia afferents provide facilitatory feedback to α-

280 motoneurons, and exercise-induced disfacilitation of these afferents has been suggested as a 

281 potential mechanism of impaired α-motoneuron firing rate and thereby VA 5,62. The excitability 

282 of the spinal loop between muscle spindle afferents projecting to α-motoneurons can be 

283 assessed through the H-reflex, involving exogenous stimulation of the motor nerve to activate 

284 Ia afferents. The H-reflex can be influenced by numerous pre- and post-synaptic mechanisms, 

285 with exercise-induced reductions in H-reflex largely attributed to reduced Ia afferent discharge, 
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286 increased presynaptic inhibition onto Ia afferents, and decreased α-motoneuron excitability. 

287 Only one study has used this technique in response to maximal intensity repeated sprint cycling, 

288 consisting of 7 × 10 s sprints 51. The study assessed the effects of repeated sprints on pre-

289 synaptic inhibition of the spinal reflex pathway by utilising stimulation of cutaneous afferents 

290 of the foot, which is known to reduce presynaptic inhibition of Ia afferents 63. Concurrently, 

291 the study measured H-reflex amplitude with and without cutaneous stimulation to assess the 

292 effect of exercise-induced changes in pre-synaptic inhibition on spinal loop excitability. The 

293 results showed that delivering cutaneous stimulation attenuated the sprint induced reduction in 

294 H-reflex, possibly through reduced presynaptic inhibition of Ia afferents, whilst also 

295 attenuating the decline in power output throughout the sprints. These results suggest that 

296 disfacilitation from group Ia afferents, possibly owing to increased presynaptic inhibition, 

297 could be implicated in impaired α-motoneuron output during maximal intensity exercise. 

298 Furthermore, the firing rate of group III and IV muscle afferents, which are mechano- and 

299 metabosensitive sensitive sensory receptors that project inhibitory and/or facilitatory feedback 

300 to cortical and spinal regions of the motor pathway, likely increases substantially during all-

301 out exercise 64. However, the role of these afferents on neuromuscular function during maximal 

302 intensity exercise is not entirely clear. Torres-Peralta et al. 65 had participants perform 

303 isokinetic sprints before an incremental exercise test to exhaustion. After the incremental test, 

304 the quadriceps were occluded for 10 or 60 s, and a second isokinetic sprint was performed 

305 immediately after the occlusion periods. Despite the presumably augmented build-up of 

306 metabolites and increased group III/IV afferent feedback elicited by 60 s of occlusion, peak 

307 power recovered and was higher than that after 10 s of occlusion. Thus, the authors suggested 

308 that the role if group III/IV afferent feedback on maximal sprint performance is negligible, and 

309 can be overcome by a strong central command. Hureau et al. 46 had participants perform 10 � 

310 10 s cycle sprints, which were preceded by neuromuscular electrical stimulation (NMES) to 
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311 elicit metabolic disturbances in the quadriceps. Power output during the sprints, EMG activity, 

312 and post-exercise changes in Ptw where compared between the NMES and a control condition 

313 without NMES. It was shown that both power output and EMG activity were reduced in the 

314 NMES condition relative to control, while the post-exercise reduction in Ptw was consistent 

315 between conditions. Thus, the authors suggested that the metabolic disturbances caused 

316 increased group III/IV feedback, thereby reducing neural drive estimated through EMG in 

317 order to prevent peripheral homeostasis from deviating beyond tolerable limits. Thus, different 

318 interpretations exist on the role of group III/IV afferent feedback during maximal intensity 

319 exercise, precluding firm conclusions on the matter 16. 

320

321 Neuromuscular responses to severe intensity, short-duration exercise

322 Muscle force generating capacity, voluntary activation and contractile function

323 Many sporting activities are characterised by short-duration, high-intensity locomotor exercise, 

324 such as middle-distance running (i.e. 800-5000 m) or track cycling events lasting ~2-20 min. 

325 The exercise intensity associated with these events falls within the ‘severe’ domain, i.e. above 

326 the maximum sustainable exercise intensity, or ‘critical intensity’. Due to the rapid energy 

327 requirements associated with severe intensity exercise and the consequent generation of ATP 

328 from anaerobic pathways, exercise within this domain is associated with a progressive loss of 

329 muscle homeostasis, such as a reduction in pH and glycogen and an increase in Pi 
23. These 

330 disturbances occurring at the peripheral level impair the capacity of the muscle to produce force 

331 in response to neural stimulation. Evidence suggests that disturbances within the muscle are 

332 the primary contributor to impairments in muscle force during severe-intensity exercise 21,22,66. 

333 Reductions in Ptw range from 16-55% when measured post-exercise (Table 2). This large 

334 variability in the magnitude of Ptw decrease could be due to a number of factors. Namely, the 

335 time to post-exercise neuromuscular assessment ranges from < 10 s to 4 min, with longer 
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336 durations often being required to manoeuvre participants to the neuromuscular testing 

337 apparatus. Kruger et al. 31 recently showed that Ptw recovered from −44% immediately post-

338 exercise to −34% following 2 minutes of recovery after severe intensity exercise, likely due to 

339 the rapid recovery of metabolic factors thought to interfere with the excitation-contraction 

340 coupling 36. Given that many studies take > 2 min to assess neuromuscular function, there is 

341 likely considerable underestimation of the effects of severe intensity exercise on Ptw, and Figure 

342 2 highlights that studies with a shorter time to post-exercise neuromuscular assessment 

343 demonstrate higher reductions in Ptw. 

344

345 Two other factors could contribute to the discrepancy in the level of reduced Ptw observed 

346 throughout the literature. Firstly, it is thought that the mechanisms contributing to the limit of 

347 tolerance, or the degree of fatigue which can be tolerated, could differ between individuals. 

348 Hodgson et al. 67 dichotomised a group of apparently homogenous individuals based on those 

349 who reached the limit of tolerance during ramp-incremental cycling with a knee-extension 

350 power reserve which exceeded the power produced at the limit of tolerance, and those without 

351 a power reserve. Those without a power reserve demonstrated exacerbated reductions in Ptw 

352 relative to those with a power reserve. Thus, it was suggested that task failure in individuals 

353 without a power reserve could be due to inhibitions in contractile function rendering them 

354 unable to achieve the required power output. In individuals with a power reserve, factors other 

355 than impaired contractile function might contribute to the limit of tolerance, or the willingness 

356 to tolerate a stronger symptom of fatigue might be lower than those without a power reserve. 

357 If disparate inter-individual mechanisms contributing to the limit of tolerance do exist, this 

358 could conceivably contribute to the variable reductions in Ptw between studies (Table 2) if some 
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359 individuals reach critical impairments in contractile function while others reach the limit of 

360 tolerance before these occur.

361 Secondly, the variable reductions in Ptw could be due to the considerable variance in the 

362 exercise intensity above critical power/speed between studies, with Table 2 displaying that task 

363 failure/completion occurred between 3 and 24 min. Conflicting evidence exists on whether the 

364 level of intensity above critical intensity influences the magnitude of reduction in Ptw at task 

365 failure. For example, Thomas et al. 21 demonstrated a greater reduction in Ptw at task failure 

366 when exercise was performed at a higher intensity (task failure at ~3 min) compared with a 

367 lower intensity (task failure at ~11 min) within the severe domain (33% vs 16% reduction in 

368 Ptw, respectively). In contrast, Schafer et al. 68 found no difference in end exercise reduction in 

369 Ptw when the power output was set to deplete the W’ within either 3 or 12 min (35% vs 31% 

370 reduction in Ptw, respectively), though it should be noted in this study participants didn’t 

371 necessarily exercise to volitional exhaustion. Furthermore, Black et al. 23 measured changes in 

372 a range of metabolic variables including PCr, lactate, K+
, ATP, pH and glycogen (variables 

373 which are linked with the reduction in Ptw 36), and found no difference in the change in any 

374 variable when exercise was performed at three different intensities within the severe domain 

375 (65, 75 and 85% of work-rate difference between gas exchange threshold and VO2max, in which 

376 task failure occurred from 2.2 to 13.9 min), although peak twitch was not measured in the 

377 study. It has been proposed that a consistent magnitude of end-exercise alterations in metabolic 

378 variables (and thus Ptw) could exist due to a task specific ‘individual critical threshold’ of 

379 peripheral alterations in response to severe intensity locomotor exercise, beyond which the 

380 degree of associated sensory perceptions would not be tolerable 69. Proponents of this theory 

381 suggested that the individual critical limit of altered metabolic homeostasis is mediated by 

382 group III/IV muscle afferents, which could reduce drive from the motor cortex through 

383 inhibitory feedback in response to metabolic stimuli. 70-72. Whether or not alterations within 

Page 78 of 125Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

19

384 the muscle are regulated to an unvarying “critical threshold” during locomotor exercise is 

385 debated 73-75, and numerous theories exist on exercise tolerance and the degree to which 

386 metabosensitive afferent feedback plays a role 76-78. Nevertheless, when considering the 

387 alterations within the neuromuscular system which occur during severe intensity exercise, it is 

388 clear that these primarily reside in the muscle.

389 Impairments in VA are evident in response to severe intensity exercise, with reductions in post-

390 exercise voluntary activation range from 3-14% (Table 2). One study assessed the kinetics of 

391 change in neuromuscular function throughout constant load severe intensity exercise. Decorte 

392 et al. 79 had participants perform intermittent bouts of 6 min cycling at ~80% peak power 

393 output, with 4 min recovery between cycling bouts during which neuromuscular function was 

394 assessed, and the task completed to exhaustion (occurring on average after 3 bouts of cycling). 

395 Their study demonstrated a curvilinear relationship between exercise duration and the decline 

396 in Ptw, such that most of the decline occurred in the first half of exercise. Concurrently, 

397 EMGRMS increased considerably during the first half of exercise, indicative of a higher 

398 descending drive required to sustain force due to impairments within the muscle, an 

399 interpretation further supported by the positive association between the change in rectus 

400 femoris EMGRMS and reduction in Qtw. This progressive impairment in contractile function and 

401 requirement to activate a greater volume of muscle to maintain a given power output is also 

402 thought to be the primary contributor to the VO2 slow component during severe intensity 

403 exercise 80. Towards the latter stages of exercise (80% and 100% of total cycling duration), 

404 there was a plateau in EMGRMS, concurrent with a significant decrease in voluntary activation. 

405 These results suggest that once either a certain level of impairment in contractile function or a 

406 level of increase in motor drive are reached, no additional increase in motor drive occurs. 

407 Whether this plateau in motor drive serves as a protective mechanism to prevent further, 

408 potentially harmful, alterations within the muscle, or if further increases in motor drive are 
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409 prevented by intrinsic changes along the motor pathway, is unclear 79. Nevertheless, the results 

410 indicate that, during constant-load severe intensity exercise, the impairment in VA widely 

411 observed throughout the literature (Table 2) occur primarily during the latter stages of severe 

412 intensity exercise, and could thus be implicated in task failure during constant load tasks 79.

413 It should be noted that the kinetics of altered neuromuscular function likely differ between self-

414 paced versus constant load exercise. For example, Azevedo et al. 81 recently characterised 

415 neuromuscular responses to a 4 km cycling time-trial, in which the pacing strategy was 

416 characterised by a fast-start, even paced, and end-spurt phase. Across three separate visits, 

417 neuromuscular function (MVC, VA and Ptw) was measured following these three phases. The 

418 results demonstrated that all three variables were reduced by 12%, 8% and 23%, respectively, 

419 following the fast-start phase, with no further reduction thereafter. The lack of further reduction 

420 in MVC, VA or Ptw could have been the result of the lower selected intensity during the middle 

421 phase, which likely fell below the critical intensity and thereby permitted repletion of work 

422 capacity and recovery of neuromuscular function 82,83. It should be noted, however, that the 

423 delay between exercise cessation and neuromuscular testing might have limited the ability to 

424 capture further decrements in neuromuscular function following the end-spurt 81.  

425
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432 Central nervous system alterations during severe intensity exercise

433 Central nervous system alterations during severe intensity exercise have been studied 

434 extensively. Figure 3 depicts alterations which occur throughout the neuromuscular pathway 

435 in response to severe intensity exercise based on current evidence. To assess specific alterations 

436 within the CNS occurring with severe intensity exercise, studies have implemented VATMS 21,22 

437 and the MEP/CMEP ratio 16,60,86 to assess motor cortical output and excitability, respectively, 

438 CMEP to assess α-motoneuron excitability 16,60,86, and afferent blockade through intrathecal 

439 fentanyl to assess the effects of group III/IV afferent feedback on neuromuscular function 

440 16,60,69,71,91. Using VATMS, a number of studies have demonstrated reductions in the region of 5-

441 8% 21,22,87,93,97. This could indicate a modest impairment in motor cortical output in response to 

442 severe intensity exercise. An impairment in motor cortical output is plausible given the plateau 

443 in EMGRMS throughout exercise in this domain as previously discussed 79, i.e. the motor cortex 

444 could be unable to ‘drive’ the α-motoneurons to cause further increases in EMGRMS, although 

445 it should be noted that VATMS provides only surrogate measures of cortical output. Impaired 

446 cortical output could be due, at least in part, to inhibition of motor cortical cells due to feedback 

447 from group III/IV afferents 16,98. During exhaustive cycling exercise at 80% peak power output, 

448 Sidhu et al. 16 demonstrated that the MEP/CMEP amplitude ratio was increased by 25% when 

449 group III/IV afferent feedback was reduced with fentanyl-blockade, but was unchanged in the 

450 presence of continued afferent feedback in control conditions, thus indicating the inhibitory 

451 influence on the motor cortex during severe intensity exercise. Concurrently, the study showed 

452 no reduction in VA with reduced afferent feedback, with a 14% reduction in control conditions. 

453 To further explore the mechanisms by which group III/IV afferent feedback inhibits cortical 

454 excitability, Sidhu et al. 60 assessed the effect of afferent blockade on GABAB inhibitory 

455 intracortical interneurons. Both GABAA and GABAB inhibitory interneurons play an integral 

456 role in generating and shaping voluntary output from the motor cortex. These intracortical 
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457 neurons have indirect projections onto corticospinal neurons, and can influence the excitability 

458 of the motor cortex through hyperpolarisation of corticospinal neurons elicited by inhibitory 

459 post-synaptic potentials (IPSPs) 99. By applying a paired-pulse TMS stimulus paradigm known 

460 as long-interval inhibition (LII) coupled with conditioned CMEPs during severe intensity 

461 cycling, Sidhu et al. 60 showed an increase in GABAB mediated inhibition which was abolished 

462 when group III/IV afferents were blocked. Thus, a potential mechanism by which severe 

463 intensity exercise inhibits the excitability of the motor cortex is through an increase in GABAB 

464 mediated inhibition as a result of group III/IV afferent feedback. Other severe-intensity 

465 exercise induced changes in intracortical inhibition, such as increases in GABAA mediated 

466 short-interval intracortical inhibition (SICI), have been demonstrated 93, though conflicting 

467 evidence exists 94. However, the study of Sidhu et al. 60 improved on previous study designs 

468 by  measuring during post-exercise cycling at an EMG level matched to pre-exercise, as 

469 opposed to post-exercise measures taken during isometric contractions. To improve 

470 understanding of the effects of severe intensity exercise at the motor cortical level, more 

471 research is required assessing motor cortical output and excitability, intracortical inhibitory and 

472 facilitatory activity, with measures taken during or immediately following exercise given that 

473 these measures can recover rapidly after exercise cessation 100.  The assessment of other 

474 possible mechanisms which could contribute to altered cortical output in response to severe 

475 intensity exercise, such as alterations in brain neurotransmitters, is also warranted 101. 

476 Using spinal stimulation at the cervicomedullary level, a number of recent studies have 

477 assessed the effects of severe intensity exercise at the α-motoneuron excitability 16,86. In these 

478 studies, which utilised constant-load exercise at 80% peak power until task failure, no change 

479 in α-motoneuron excitability was demonstrated between the beginning and end of exercise. 

480 While this implies no effect of severe intensity exercise at the α-motoneuron level, in non-

481 fatiguing circumstances, the same increase in EMG activity which occurs throughout severe 
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482 intensity exercise would cause an increase in spinal excitability 86. This was aptly shown by 

483 Weavil et al. 86, who found no change in MEP or CMEP during fatiguing cycling, but a ~40% 

484 increase in MEP and CMEP during a subsequent non-fatiguing trial when the EMG was set to 

485 increase by the same magnitude. Thus, while the net corticospinal excitability remains 

486 unchanged, these results indicated a disfacilitation of the corticospinal tract mediated at the 

487 spinal level. 

488 If  α-motoneurons are disfacilitation during severe intensity exercise, this does not appear to 

489 be related to increased group III/IV afferent feedback. In fact, Sidhu et al. 60 found that CMEP 

490 amplitude was increased during post-exercise cycling at a matched level of EMG relative to 

491 pre-exercise which did not occur when afferent feedback was reduced, suggesting that group 

492 III/IV afferents facilitate, rather than inhibit spinal α-motoneurons projecting to the knee 

493 extensors. Indeed, previous work has suggested that group III/IV afferent feedback can inhibit 

494 or facilitate α-motoneuron depending on the muscle group studied 58. Furthermore, Sidhu et al. 

495 60 also measured CMEP during the silent period to mitigate the potential influence of changes 

496 in on-going descending drive on α-motoneuron excitability, but found no change in conditioned 

497 CMEPs during control conditions or when afferent feedback was reduced. The authors 

498 speculated that the facilitatory effects of group III/IV feedback on α-motoneuron excitability 

499 might only occur in the presence of descending drive. 

500 The findings of Sidhu et al. 60 appear contradictory to that of Weavil et al. 86. That is, if α-

501 motoneurons are disfacilitated during constant load severe intensity cycling exercise, but a 

502 reduction in CMEP is not apparent due to the increased neural drive and EMG 86, one might 

503 expect that CMEP would decrease when measured at the same EMG level. However, the 

504 opposite was found by Sidhu et al. 60, i.e. CMEPs increased. This result cannot be explained 

505 by an increased descending drive at the same EMG level, since conditioned CMEPs exhibited 

506 no change 60. One possible explanation is that Weavil et al. 86 measured responses during 
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507 constant load cycling, while Sidhu et al. 60 had participants reduce their power output at post-

508 exercise in order to achieve the same EMG level as pre-exercise. It is possible that processes 

509 which disfacilitate α-motoneuron excitability (such as changes in intrinsic properties, 

510 activation of serotonin 1A receptors, of neurotransmitter depletion16,86) exhibited some 

511 recovery due to the decrease in intensity. This, coupled with the elevated facilitatory afferent 

512 feedback in the control trial, might have resulted in the increase α-motoneuron excitability at 

513 the same EMG level. Further studies measuring α-motoneuron excitability during severe 

514 intensity exercise, with both on-going descending drive and during the TMS evoked silent 

515 period, are warranted to provide further insight into the effects of severe intensity exercise on 

516 α-motoneuron excitability.

517 Alterations in spinal-loop excitability could also contribute to impaired neuromuscular function 

518 during severe intensity exercise, with reductions in H-reflex found to occur in an intensity-

519 dependent manner 102,103. Bulbulian and Darabos 102 found a 22% reduction in H-reflex 

520 amplitude relative to Mmax measured in the gastrocnemius following 20 minutes of non-

521 exhaustive treadmill running at 75% VO2max, compared to a 13% reduction at 40% VO2max. 

522 Similar reductions in H-reflex have been demonstrated following non-exhaustive high-

523 intensity cycling exercise 103. While the H-reflex alone cannot decipher between altered 

524 excitatory input from Ia afferents and a decrease in α-motoneuron excitability, evidence from 

525 fatiguing isometric contractions using microneurography show that muscle spindle afferent 

526 discharge is progressively reduced during sustained contractions 104, and that the efficacy of Ia 

527 input to facilitate the α-motoneuron is impaired due to increased presynaptic inhibition 105. 

528 During severe intensity exercise, presynaptic mechanisms, such as group III and IV afferent 

529 induced increases in presynaptic inhibition of Ia terminals, are likely given the metabolic 

530 disturbances and the proposed inputs of group III/IV afferents onto Ia afferent terminals 106. 

531 However, challenges associated with measurement techniques preclude definitive conclusions 
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532 on the role of Ia feedback in disfacilitating α-motoneurons and thereby contributing to impaired 

533 neuromuscular function. 

534 In addition to measuring the specific effects on group III/IV afferent feedback on motor cortical 

535 and α-motoneuronal excitability discussed above, a plethora of studies have assessed the effects 

536 of group III/IV afferent feedback on neuromuscular function through more global responses 

537 such as EMG and Ptw 
16,60,71,89,91. These studies have demonstrated that group III/IV afferents 

538 constrain motoneuronal output (estimated through EMG) to active skeletal muscle, thereby 

539 limiting exercise-induced intramuscular alterations. For example, Blain et al. 91 had 

540 participants perform a 5 km cycling time trial under control conditions and with fentanyl 

541 induced impairment in afferent feedback. With reduced afferent feedback, it was demonstrated 

542 that motoneuron output (estimated through vastus lateralis EMG) was 21% higher when 

543 afferent feedback was reduced compared to control conditions. Due to the greater activation 

544 levels throughout cycling, intramuscular alterations such as Pi, H+ and ADP,  concentrations, 

545 which are correlated reductions in Ptw 
107, were all significantly higher compared with control 

546 conditions when measured through muscle biopsies following exercise. Consequently, the 

547 reduction in Ptw was substantially greater when feedback was reduced (52 vs 31% reduction 

548 compared with control condition). The increased motoneuron output and end-exercise level of 

549 reduced Ptw with afferent blockade are consistent findings throughout the literature 85,89,90,108. 

550 Thus, it is suggested that, through metabosensitive firing of group III/IV afferent feedback, the 

551 level of metabolic disturbance is sensed within the CNS, and the drive to the muscle is 

552 subsequently regulated to prevent abnormal or interoperable deviations in muscle homeostasis 

553 78. 

554
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555 What is not entirely clear is how group III/IV constrains motoneuron output. It is unlikely to 

556 be a result of altered α-motoneuron excitability, given that reduced afferent feedback facilitates 

557 61 or has no effect 17 on CMEP amplitude. However, given the inhibitory effects of group III/IV 

558 afferent feedback within 16,60 and potentially upstream of the motor cortex 98, as well as their 

559 proposed inputs to Ia terminals 106, motoneuron output could be constrained through the 

560 neurophysiological adjustments that group III/IV afferents elicit within the CNS. However, as 

561 well as having proposed non-nociceptive effects through alterations in CNS function and 

562 induction of the pressor reflex 85, group III/IV afferents also elicit nociceptive effects, which 

563 could also have implications for perception of effort during exercise. The increased level of 

564 effort associated with discomfort and increased cardiopulmonary response as a result of group 

565 III/IV feedback could impact how hard participants are willing to ‘push’ during exercise, and 

566 thereby influence motoneuron output. During exercise at a constant load of 80% peak power 

567 output, Amann et al. 90 demonstrated the rate of perceived exertion (RPE) was lower following 

568 the initial 3 minutes of the task when afferent feedback was reduced relative to control 

569 conditions. During self-paced exercise, the RPE remains similar between reduced afferent 

570 feedback and control conditions throughout exercise, but the power output is enhanced during 

571 the early stages of exercise with reduced afferent feedback 91. Thus, early during severe 

572 intensity exercise, nociceptive and cardiopulmonary feedback likely contributes to an increased 

573 sense of effort associated with the same power output 90, or causes participants to choose a 

574 lower power output during self-paced tasks 91. Towards the latter stages of exercise, however, 

575 RPE is similar with and without reduced afferent feedback 90. This is likely the result of the 

576 increased drive to the muscle occurring throughout exercise due to the lack of nociceptive 

577 feedback, thereby ‘allowing’ greater activation of muscle, and in turn causing greater 

578 disturbances within the muscle. As the muscle becomes less responsive, a greater level of drive 

579 is required to compensate for contractile impairment and sustain the same power output 90, with 
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580 this increase in efferent command emitting parallel messages (corollary discharge) to brain 

581 regions associated with perceptions of exertion, thereby increasing RPE 109. Accordingly, in 

582 addition to the alterations along the neuromuscular pathway induced by group III/IV feedback, 

583 the nociceptive and cardiopulmonary signals evoked by these afferents likely influences the 

584 regulation of voluntary drive and perceptions of effort throughout exercise.
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609 Neuromuscular responses to sustained exercise below critical power

610 Muscle force generating capacity, voluntary activation and contractile function

611 Exercise between lactate threshold and critical intensity is classified as heavy intensity 

612 exercise, while exercise below lactate threshold is termed moderate intensity 23,24. Heavy 

613 intensity exercise can be sustained for prolonged periods, with time to task failure ranging 

614 between ~40 min to 3 hours 23,110. Moderate intensity exercise can be performed for durations 

615 well above 3-5 hours, and constitute the intensity at which ultra-endurance events are 

616 performed 20,77. The neuromuscular responses measured in studies in which exercise lasted 

617 from > 30 min to 3 hours (likely falling predominantly within the heavy domain) and > 3 hours 

618 (predominantly within the moderate domain) are displayed in Tables 3 and 4, respectively. 

619 While variation exists in the literature, a comparison between the results from the studies in 

620 these tables suggests that the loss in muscle strength is greater with increasing exercise duration 

621 before reaching an eventual plateau above exercise lasting ~1000 min (Figure 4), a 

622 phenomenon previously highlighted by Millet when examining running-based exercise 77. 

623 Within the heavy and moderate domains, energy supply is achieved through oxidative 

624 metabolism, rather than anaerobic pathways 25,111. Consequently, alterations in muscle 

625 metabolism are much more limited than with exercise in the severe domain, with steady-state 

626 values of PCr, pH and Pi achieved within the first few minutes of exercise 23,25. Nevertheless, 

627 impairments in contractile function have been widely observed following both moderate and 

628 severe intensity exercise (Tables 3 and 4). Following self-paced tasks, some of the reductions 

629 in Ptw could be a result of a “sprint-finish”, in which intensity increases towards the latter stages 

630 of a race and thus fall within the severe domain, with associated metabolic changes which 

631 contribute to reduced Ptw 22. For example, following a self-paced 20 km time trial lasting on 

632 average 32 min, Thomas et al. 22 showed a 31% reduction in Ptw, while in a separate study by 

633 the same group, the reduction in Ptw following a constant load task in which task-failure 
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634 occurred at 42 min was just 11% 21. Thus, the self-paced versus constant pace exercise 

635 challenges used across studies is another potential source of heterogeneity in results regarding 

636 neuromuscular responses to moderate and heavy intensity exercise (Tables 3 and 4). However, 

637 the magnitude of reduced Ptw observed by Thomas et al. 21 following constant load exercise is 

638 consistent with other studies within the heavy domain, with Lepers et al. 112,113 and Racinais et 

639 al. 114 demonstrating reductions in Ptw of 9, 12 and 11%, respectively. Interestingly, this 

640 reduction in Ptw is lower than some studies assessing Ptw following more prolonged constant 

641 load moderate intensity exercise 115,116 (Figure 4C), suggesting a possible greater extent of 

642 impaired contractile function following more prolonged locomotor exercise, though 

643 heterogenous results exist throughout the literature (Table 4). 

644 It is thought that glycogen depletion is the primary contributor towards impaired contractile 

645 function following prolonged heavy and moderate intensity exercise 111,117. Glycogen depletion 

646 could interfere with the excitation-contraction coupling through localised depletion of muscle 

647 glycogen at the t-tubular-sarcoplasmic reticulum (SR) junction 118. Indeed, following 4 h of 

648 glycogen depleting exercise, Gejl et al. 119 showed a persistent reduction in SR Ca2+  release 

649 after 4 h of recovery when participants were given only water, while participants given 

650 carbohydrates concurrently demonstrated recovery of SR Ca2+  release. Inhibition of SR Ca2+  

651 release is thought to occur below critical levels of muscle glycogen (250-300 mmol·kg-1) 120, 

652 and values below these concentrations have been demonstrated following heavy and moderate 

653 intensity exercise 23,110, including ultramarathon running 121. Another mechanism likely 

654 contributing to impaired contractile function include increased production of reactive oxygen 

655 and nitrogen species 122, which increase following prolonged exercise 123 and interfere with 

656 Ca2+ release through redox modifications of ryanodine receptors 124. Furthermore, following 

657 running based exercise involving repeated stretch shortening cycles, muscle damage induced 

658 myofibrillar disintegrity and disorganisation of sarcomeres likely occurs, leading to a reduced 

Page 91 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

32

659 ability of the contractile machinery to produce force 125. Thus, while the magnitude of impaired 

660 contractile function is not as prominent following moderate and heavy intensity exercise 

661 compared to severe intensity, the consistently reduced Ptw across studies (Tables 3 and 4) 

662 suggests that alterations within the muscle contribute to reduced neuromuscular function within 

663 these domains. 

664 Reductions in VA are substantial following moderate and heavy intensity exercise, and these 

665 appear to be exacerbated as exercise duration increases (Figure 4). This likely explains, at least 

666 in part, the increased strength loss associated with longer duration exercise (Figure 4). Studies 

667 examining the kinetics of altered neuromuscular function during prolonged moderate duration 

668 exercise have shown that reduced VA occurs in the latter stages, with Place et al. 126 and Lepers 

669 et al. 116 demonstrating that VA was reduced only following 4 and 5 h of a 5 h running and 

670 cycling task, respectively. 

671

672

673

674

675

676
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691 Central nervous system alterations during moderate and heavy intensity exercise

692 Overall, little research exists examining specific alterations within the CNS in response to 

693 moderate or heavy intensity exercise. Studies have demonstrated reductions in VATMS within 

694 both domains 17,21,115, possibly indicating impaired motor cortical output. The impact of 

695 prolonged exercise on the excitability of the motor pathway is unclear. When measured with 

696 the muscle at rest, studies have demonstrated reductions in MEP amplitude following 

697 prolonged exercise ranging from 20 km cycling 22, marathon running 132, and a simulated Tour 

698 de France 141. However, changes in MEP amplitude at rest might not reflect alterations in 

699 corticospinal excitability that occur during contractions. When corticospinal excitability has 

700 been assessed pre- and post-prolonged exercise during isometric contractions, conflicting 

701 findings exist, with studies reporting an increase 17, decrease 132,141, or no change in MEP 

702 amplitude 21,22,142. Similarly conflicting results have been shown for the silent period, with no 

703 change 115 or an increase 17 being reported. The conflicting findings could be the result of the 

704 substantial heterogeneity in the exercise challenges, such as the modalities and the duration of 

705 the task, as well as methodological differences such as stimulation intensities and the 

706 contraction intensities at which corticospinal excitability is measured, both of which can 

707 influence the change in MEP in response to exercise 17,143. No research to date has utilised 

708 spinal stimulation to assess the effect of prolonged exercise on α-motoneuron excitability, and 

709 this represents an area for future research. Racinais et al. 114 demonstrated a 61% reduction in 

710 H-reflex amplitude following 90 min of non-exhaustive running exercise. Avela et al. 62 

711 observed similar reductions in H-reflex amplitude following marathon running, whilst also 

712 displaying reductions in the EMG response and passive stretch-resisting force following a 

713 natural stretch reflex evoked through sudden changes in muscle length. However, whether this 

714 was due to altered Ia excitatory input or impaired α-motoneuron excitability is unclear. Further 
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715 work is required to elucidate the effects of prolonged exercise within the moderate and heavy 

716 exercise domains on the corticospinal pathway at both the supraspinal and spinal level. 

717

718 Neuromuscular responses to high-intensity intermittent exercise

719 While an increasing number of studies have assessed neuromuscular responses to continuous 

720 locomotor exercise during tasks such as cycling and running, many team sports, such as 

721 association football (soccer), rugby league, and hockey, are characterised by bouts of high-

722 intensity exercise interspersed with prolonged periods of low-to-moderate intensity activity. In 

723 addition, team sport players also complete numerous dynamic actions throughout competitive 

724 matches, such as jumping, changing direction, tackling and/or kicking, which are often 

725 performed with incomplete recovery 144. Consequently, high-intensity intermittent team sports 

726 are associated with a high physiological and neuromuscular demand, resulting in substantial 

727 fatigue and impairments in neuromuscular function 145. During team sports such as soccer and 

728 hockey, fatigue manifests through transient reductions in work-rate following the most 

729 demanding periods of a match, and cumulative reductions in work-rate towards the end of a 

730 match 144. In addition, fatigue is thought to increase the risk of sustaining an injury during 

731 match-play, as players are more susceptible to sustaining injuries towards the latter stages of a 

732 match 6. In order to better understand the physiology underpinning fatigue experienced during 

733 match-play, studies have examined the neuromuscular responses to simulated and competitive 

734 high-intensity intermittent team sport activity. 

735 Using a simulated soccer match protocol designed to replicate the physiological demands of 

736 soccer match-play, Goodall et al. 145 investigated neuromuscular function before, at half-time 

737 (i.e. 45 min), full-time (i.e. 90 min) and following a period of extra time (i.e. 120 min). An 

738 interesting finding from this study was that while the simulated soccer match induced 

739 reductions in MVC and impairments in both contractile function and VA, the reduction in 

Page 97 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

38

740 contractile function demonstrated a plateau after half-time (Figure 5). It was hypothesised that 

741 this plateau was due to the early fatigue of higher threshold motor units, which are more 

742 susceptible to fatigue, within the first half. In the second half, the lower reduction in contractile 

743 function was suggested to be a result of the recruitment of more fatigue-resistant motor units, 

744 which exert a smaller reduction in the size of evoked twitch responses. In contrast to the nadir 

745 in contractile function, impairments in VA increased progressively, with a VA lower at half-

746 time compared with pre-match, and lower at the end of extra-time compared with half-time. 

747 These impairments in neuromuscular function were concurrent with increases in perceptions 

748 of effort and impairments in voluntary physical performance (sprint speed and jump height) 

749 measured in a companion study 146. 

750 Numerous other studies have assessed neuromuscular function following a range of 

751 competitive and simulated high intensity intermittent team sport protocols (Table 5). Following 

752 simulated 147 and competitive soccer match-play 15,148, studies have demonstrated impairments 

753 in Ptw and VA of around 14% and 8%, respectively 15,148, resulting in a 11-14% reduction in 

754 knee extensor MVC. These impairments occurred concurrently with decreases in jump height, 

755 reactive strength and sprint speed 15,147. The mechanisms of impaired contractile function 

756 following match-play likely relate to the considerable muscle damage elicited by the numerous 

757 eccentric actions associated with match-play 149, glycogen depletion, with glycogen levels 

758 reported to fall below concentrations at which Ca2+ handling is impaired 119,150, and increases 

759 in reactive oxygen and nitrogen species, with measures of oxidative stress increased following 

760 a single match 149, possibly inhibiting Ca2+ handling 122. The mechanisms of impaired VA are 

761 less clear, with the limited number of studies examining corticospinal and intracortical 

762 responses following simulated 145,147 and competitive match-play 15 showing no changes post-

763 exercise, though further research is required to assess the effect of high-intensity intermittent 

764 exercise on spinal reflex pathways and α-motoneuronal excitability. Thus, during prolonged 
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765 high-intensity intermittent exercise such as soccer match-play, neuromuscular function is 

766 impaired both at the peripheral and central level, with peripheral disturbances more prevalent 

767 in the earlier stages of exercise, and impairments in VA more apparent as exercise progresses. 

768 These disruptions in neuromuscular function likely contribute to the decline in physical 

769 performance known to occur following the most demanding periods of match-play and towards 

770 the end of a match. 
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777 Conclusions on the role of exercise intensity on neuromuscular responses to locomotor 

778 exercise

779 The above synopsis of the current literature pertaining to neuromuscular responses to maximal, 

780 severe, heavy, moderate and high-intensity intermittent intensity locomotor exercise, provides 

781 insight into the challenge imposed on the neuromuscular system during fatiguing locomotor 

782 activity. Across the exercise domains, there are both commonalities and differences in 

783 neuromuscular responses which warrant discussion. 

784 Overall, the reduction in muscle force generating capacity is similarly reduced following 

785 exhaustive maximal, severe and heavy intensity exercise 21,31. Reductions in MVC are more 

786 pronounced following long-duration moderate intensity exercise, which appears to be related 

787 to exercise duration (Figure 3). However, different neuromuscular mechanisms are likely to 

788 contribute to declines in MVC between domains. While VA has been shown to be reduced 

789 following exercise across all domains, possibly due in part to impaired motor cortical output,  

790 these reductions are more substantial following prolonged moderate and heavy intensity 

791 exercise. For example, Thomas et al. 21 demonstrated a 9% reduction in VA following 42 min 

792 of cycling at the power output associated at the respiratory compensation point, compared to a 

793 3% reduction at the power output associated with VO2max, with a similarly greater magnitude 

794 of reduced VA following prolonged compared with short-duration self-paced cycling 22. As 

795 indicated in previous sections, reductions in VA appear to occur in a dose-response manner 

796 based on the duration of exercise. What is unclear at present is which mechanisms contribute 

797 to the exacerbated reduction in VA following prolonged exercise. While increases in group 

798 III/IV afferent feedback have been suggested to contribute to impaired VA in response to 

799 severe intensity exercise 16, the firing rate of these afferents are less likely to increase below 

800 critical intensities given that there is a lower build-up of metabolites or, in the case of cycling, 

801 markers of muscle damage to which these afferents are sensitive 158. The greater reduction in 
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802 VATMS following prolonged heavy intensity exercise compared with short-duration severe 

803 intensity exercise 21,22 would suggest that impaired cortical output could be an important 

804 contributor. However, the mechanisms contributing to impaired VATMS are not well 

805 understood. Exacerbated increases in core temperature 159 and alterations in neurotransmitter 

806 concentrations 101 have both been suggested, however comparisons between these potential 

807 contributors across domains has not been made. 

808 Similarly, no evidence exists comparing the effects of exercise within different domains on α-

809 motoneuron responses to exercise. Following maximal intensity arm cycling exercise, one 

810 study observed an increase in α-motoneuron excitability 45. During severe intensity exercise, it 

811 is suggested that α-motoneurons are disfacilitated 86, while another study suggests a fatigue-

812 induced facilitation of α-motoneurons 60. No evidence exists on the effect of prolonged 

813 moderate or heavy intensity exercise on α-motoneuron excitability. Thus, the precise effects of 

814 different intensities of locomotor exercise on α-motoneuron excitability is unclear, and more 

815 research is required to better understand these responses.   

816 Contractile function is also impaired following exercise within all domains. The magnitude and 

817 the mechanisms of this reduction, however, differ. Impairments in contractile function are 

818 greater following maximal and severe intensity exercise compared with moderate and heavy 

819 intensity exercise 21,22,31. For example, Kruger et al. 31 found a 50% reduction in Ptw following 

820 a 30 s of all-out cycling, a 44% reduction following 10 min of severe intensity exercise, and a 

821 14% reduction following 90 min of moderate intensity exercise. The mechanisms contributing 

822 to impairments in contractile function following maximal and severe intensity exercise are 

823 likely relate to a build-up of metabolites associated with high anaerobic energy turnover. In 

824 contrast, the reduction in Ptw following prolonged exercise is thought to be related to glycogen 

825 depletion 119, increased production of reactive oxygen and nitrogen species 122, and, following 

826 running-based exercise, muscle damage 125. Accordingly, the distinct metabolic responses 
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827 between exercise domains causes impaired contractile function through different mechanisms 

828 and to different degrees. 

829 Finally, there are similarities across all domains with respect to the kinetics of altered 

830 neuromuscular function. For example, during repeated sprint 43, constant load severe intensity 

831 79, high-intensity intermittent 145, and prolonged constant load moderate intensity exercise 116, 

832 impaired contractile function is demonstrated during the first half of exercise, before impaired 

833 VA becomes more evident during the latter half. During repeated sprint exercise, motoneuron 

834 output estimated through EMG is progressively reduced 39, while EMG is increased before 

835 plateauing during severe intensity exercise 79. Thus, the nadir in reduction Ptw commonly 

836 observed during exercise within these domains could be due to the reduced or plateaued 

837 recruitment of muscle during the later stages of exercise, causing no further decrements in 

838 contractile function.

839 To better understand the effects of different intensities of locomotor exercise on neuromuscular 

840 function, more research is required, similar to that of Thomas et al. 21,22, to compare 

841 neuromuscular responses at a segmented level between different exercise domains. 

842 Furthermore, although challenging, studies should attempt to deliver stimulations to probe the 

843 excitability of the corticospinal tract, both at the cortical and spinal level, during the task itself 

844 16,60,86. Finally, due to the rapid recovery of contractile and CNS following exercise 31,160, 

845 studies should attempt to rapidly deliver stimulations upon exercise cessation in situations 

846 where neuromuscular function is being assessed post-exercise. This can be achieved using 

847 custom-built exercise ergometers which permit immediate neuromuscular assessments without 

848 the requirement to manoeuvre between exercise and testing apparatus 31,66,161.  

849

850
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851 The effect of exercise modality on neuromuscular responses to locomotor exercise

852 One of the central themes surrounding research into the neuromuscular responses to fatiguing 

853 exercise is task-dependency. In addition to the influence of exercise intensity and duration 

854 discussed earlier, exercise modality, or the type of locomotor exercise being performed, can 

855 have a profound influence on the demands placed on the neuromuscular system 130. Exercise 

856 modality can influence the contraction type in the prime movers involved in locomotor 

857 exercise, as well as contraction duration or time under tension, the active skeletal muscle mass, 

858 mechanical efficiency and muscle recruitment strategy. All of these factors can in turn 

859 influence the metabolic and mechanical stress imposed on the muscle, and the mechanisms 

860 underpinning decrements in neuromuscular function during exercise. 

861 While several different modes of locomotor exercise exist (e.g. running, cycling, rowing, 

862 skiing), systematic comparisons delineating the neuromuscular responses to different exercise 

863 modes are scarce. However, studies by Lepers et al. 116 and Place et al. 126 assessed the 

864 neuromuscular responses to cycling and running exercise, respectively, at the same relative 

865 intensity (55% maximal aerobic power or velocity) and duration (5 h). Comparisons between 

866 the results of those studies show that, despite the similar exercise intensity and duration, the 

867 reduction in knee extensor strength was greater following running (28%) compared with 

868 cycling exercise (18%). The greater reduction in MVC was likely due to the greater reduction 

869 in VA following running (16%) compared with cycling (8%). In a study directly comparing 

870 cycling and running exercise, Tomazin et al. 47 had participants perform three sets of five × six 

871 second repeated sprints on both a treadmill and a cycle ergometer, on separate occasions. The 

872 study found that the reduction in MVC was greater during and following running sprints 

873 compared with cycling. In addition, the reduction in MVC was accompanied by a reduction in 

874 VA throughout the running protocol which was not seen during cycling. Following ~3 h of 

875 running 130 and skiing exercise 131, a significant reduction in VA (8%) was only observed 
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876 following running based exercise. Thus, it appears that alterations to CNS function and 

877 consequent impairments in muscle strength are greater following running-based exercise 

878 compared with other locomotor exercise modes. This is likely a result of the muscle damage 

879 associated with running based exercise, and the lower mechanical demands imposed during 

880 exercise such as cycling and skiing. Specifically, running involves multiple stretch shortening 

881 cycles and associated eccentric contractions, likely to elicit considerable muscle damage, 

882 whereas cycling and skiing impose a high metabolic stress but a substantially lower mechanical 

883 stress. In turn, muscle damage could elicit reductions in VA through reduced sensitivity of 

884 muscle spindles and disfacilitation of α-motoneurons from Ia afferents 62, and/or increased 

885 inhibitory feedback from group III/IV afferents which are sensitive to various markers of 

886 muscle damage 162. Furthermore, muscle damage elicited by eccentric exercise protocols have 

887 been shown to elicit substantial impairments in VA when measured immediately post-exercise 

888 158, further suggesting that muscle damage sustained during running contributes to the greater 

889 reduction in VA compared with cycling.

890 At the peripheral level, studies have reported a greater reduction in contractile function during 

891 and following cycling compared with running 116,126,163. For example, following 5 × 6 s cycling 

892 and running sprints, Rampinini et al. 163 demonstrated a significantly greater reduction in knee 

893 extensor peak twitch force following cycling (~55% reduction) compared with running 

894 (~35%). Similarly, Lepers et al. 116 found a significant reduction in knee extensor peak twitch 

895 during every hour throughout 5 h of cycling, whereas Place et al. 126 showed a potentiation of 

896 quadriceps contractile properties throughout 5 h of running exercise. The higher disturbances 

897 at the peripheral level in response to cycling could be a consequence of the differences in the 

898 involved muscle mass. For example, during weight supported sports such as cycling, the overall 

899 active muscle mass involved is lower than during running, with force primarily generated from 

900 the quadriceps. It has been demonstrated throughout the literature that during tasks involving 

Page 105 of 125 Acta Physiologica

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

46

901 lower active muscle mass, the reduction in twitch force is higher 164,165. This is likely because 

902 during tasks involving a higher muscle mass, there is a greater sensory input (e.g. from group 

903 III/IV afferents) from the involved muscle mass, as well as a greater disruption to homeostasis 

904 in other physiological systems (e.g. cardiovascular, respiratory) 73. Consequently, there is a 

905 greater contribution to fatigue and the limit of tolerance from multiple physiological systems, 

906 whereas during cycling the more local, less diffuse signal from the lower muscle mass permits 

907 greater disturbances within the muscle to be tolerated 73. Moreover, running and cycling 

908 comprise different types of muscle contraction, with implications for the metabolic cost of 

909 exercise and thereby the neuromuscular responses. For example, during running, ~60% of the 

910 time taken to complete one stride is spent in the support phase (i.e. foot contact with the ground) 

911 for speeds between 12 and 23 km/h 166. In turn, around 34% of the support phase comprised 

912 eccentric muscle action, which has implications for the metabolic demand of running both due 

913 to the lower metabolic cost of eccentric contractions, and the higher efficiency of subsequent 

914 concentric contractions due to the “preloading” of muscle during the eccentric phase (i.e. 

915 through the stretch-shortening cycle) 167. Furthermore, the greater central deficit during running 

916 exercise possibly related to Ia disfacilitation (see above) could also limit alterations in 

917 contractile function. During cycling exercise, there is a high intramuscular tension throughout 

918 the majority of the pedal revolution, requiring high force generating of the quadriceps, and 

919 consequently greater recruitment of type II motor units. The high intramuscular pressure could 

920 also lead to partial occlusion of femoral artery blood flow, thereby reducing oxygen delivery 

921 and leading to greater metabolic disturbances 168. Thus, there are several potential explanations 

922 to the greater impairment in Ptw found after cycling versus running based exercise. Overall, 

923 there remains limited evidence comparing neuromuscular responses to different modes of 

924 locomotor exercise, and research in this area could provide useful information for athletes and 

925 practitioners when devising training programmes. 
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926

927 Conclusions and future research

928 The present review provides a synopsis of literature, conducted primarily over the last two 

929 decades, pertaining to alterations in neuromuscular function in response to fatiguing locomotor 

930 exercise. The plethora of research which now exists in this area has clearly demonstrated the 

931 integral importance of task-dependency on alterations within the neuromuscular system. It is 

932 well established that neuromuscular function during exercise above critical intensity is 

933 primarily limited by disturbances in metabolic homeostasis and consequent impairments in 

934 contractile function. More prolonged exercise below critical intensity causes considerable 

935 reductions in the capacity of the nervous system to activate muscle, though the precise 

936 alterations within the central nervous system contributing to this reduction are still unclear. 

937 During repeated sprint, constant load severe intensity, high-intensity intermittent, and 

938 prolonged constant load moderate intensity exercise, impaired contractile function is 

939 demonstrated during the first half of exercise, before impaired voluntary activation becomes 

940 more evident during the latter half. Primarily, studies have utilised electrical nerve stimulation 

941 at rest and during maximal voluntary contractions to determine the effects of locomotor 

942 exercise at the peripheral and central level, respectively. To further investigate alterations 

943 within the nervous system, many studies have additionally utilised transcranial magnetic 

944 stimulation to assess the excitability of the corticospinal pathway, electrical stimulation of 

945 descending spinal tracts to assess α-motoneuron excitability, and nerve stimulation to assess 

946 spinal loop excitability at rest or during isometric contractions prior to and following locomotor 

947 exercise. While these studies have provided valuable insight into how various types of 

948 locomotor exercise impact the neuromuscular system, one limitation of this approach is that 

949 measuring responses during isometric contractions deviates from the locomotor exercise task 

950 itself, and thus hinders understanding of neuromuscular alterations that occur during the task. 
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951 For example, while prolonged exercise elicits substantial reductions in voluntary activation of 

952 muscle during a maximal voluntary contraction, the relevance of this reduction to exercise 

953 performance during submaximal intensity tasks is unclear, and has been questioned 74. 

954 Measuring the force generating capacity of muscle during isometric contractions also deviates 

955 from the types of contractions performed during dynamic locomotor exercise, and indeed 

956 measures of neuromuscular function during isometric contractions are not interchangeable with 

957 those measured during dynamic assessments 169. Moreover, the delay between exercise 

958 cessation and commencing neuromuscular assessments represents a significant general 

959 limitation when studying neuromuscular responses to locomotor exercise. To overcome these 

960 limitations, studies over the last decade have developed methodologies allowing them to 

961 deliver transcranial magnetic and electrical spinal stimulation during the locomotor exercise 

962 task itself 60,86. This represents an important advancement in the field, and future research 

963 should seek to employ similar techniques to better understand how various locomotor exercise 

964 challenges influence the nervous system during exercise. New and emerging methodologies, 

965 such as high-density surface EMG, have the potential to provide further insight into exercise-

966 induced alterations in nervous system function, though incorporating these techniques in 

967 response to locomotor exercise is a challenging prospect. Overall, while considerable 

968 advancements have been made in the last two decades, more work is required to provide further 

969 insight into locomotor exercise induced alterations in neuromuscular function, particularly 

970 within the central nervous system. 

971

972

973

974
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975 Table and Figure Legends

976 Table 1. Literature quantifying neuromuscular alterations pre-to-post maximal intensity 

977 locomotor exercise.

978 Table 2. Literature quantifying neuromuscular alterations pre-to-post severe intensity 

979 locomotor exercise. Studies utilising protocols which resulted in task-failure in < 30 min were 

980 considered “severe intensity”.

981 Table 3. Literature assessing neuromuscular responses pre-to-post heavy intensity exercise. 

982 Studies in which exercise duration ranged from > 30 – 189 min were considered “heavy 

983 intensity”.  

984 Table 4. Studies assessing neuromuscular responses pre-to-post moderate intensity exercise. 

985 Studies in which exercise duration was > 240 min were considered “moderate intensity”.

986 Table 5. Studies assessing neuromuscular responses pre-to-post high-intensity intermittent 

987 team sport exercise.

988 Figure 1. Proposed alterations in neuromuscular function occurring during maximal intensity 

989 exercise. Adapted from Taylor et al. 61.

990 Figure 2. Relationship between time to post-exercise assessment and reduction in knee 

991 extensor maximum voluntary contraction (MVC; A), voluntary activation (VA; B) and peak 

992 twitch force (Ptw; C) as a percentage of pre-exercise 16,21,22,31,60,66,68,70,84,86,87,89,91,93,94,96. The R2 

993 is derived from the logarithmic slope presented on each graph.

994 Figure 3. Proposed alterations in neuromuscular function occurring during severe intensity 

995 exercise. Adapted from Taylor et al. 61.

996 Figure 4. Relationship between reduction in knee extensor maximal voluntary contraction 

997 (MVC; A), voluntary activation (VA; B) and peak twitch force (Ptw; C) as a percentage of pre-
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998 exercise relative to the duration of exercise. Note that the figure pertains only to longer duration 

999 with a minimum duration of 30 min 17,21,22,113-116,126-128,135-140. * outlier 127.

1000 Figure 5. Maximum voluntary contraction (A), potentiated knee-extensor twitch force (B) and 

1001 voluntary activation measured with motor nerve (VA), and motor cortical (VATMS) stimulation 

1002 (c) at pre-exercise, half time (HT), full time (FT), and following extra time (ET) of a simulated 

1003 soccer match. P = < 0.05 vs. the pre-exercise value, † = P < 0.05 vs. HT, ‡ = P < 0.05 vs. FT.   

1004 From Goodall et al. 145.
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Figure 2. Relationship between time to post-exercise assessment and reduction in knee extensor maximum 
voluntary contraction (MVC; A), voluntary activation (VA; B) and peak twitch force (P¬tw; C) as a 

percentage of pre-exercise 16,21,22,31,60,66,68,70,84,86,87,89,91,93,94,96. The R2 is derived from the 
logarithmic slope presented on each graph. 
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Figure 4. Relationship between reduction in knee extensor maximal voluntary contraction (MVC; A), 
voluntary activation (VA; B) and peak twitch force (Ptw; C) as a percentage of pre-exercise relative to the 
duration of exercise. Note that the figure pertains only to longer duration with a minimum duration of 30 

min 17,21,22,113-116,126-128,135-140. * outlier 127. 
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Figure 5. Maximum voluntary contraction (A), potentiated knee-extensor twitch force (B) and voluntary 
activation measured with motor nerve (VA), and motor cortical (VATMS) stimulation (c) at pre-exercise, half 
time (HT), full time (FT), and following extra time (ET) of a simulated soccer match. P = < 0.05 vs. the pre-

exercise value, † = P < 0.05 vs. HT, ‡ = P < 0.05 vs. FT.   From Goodall et al. 145. 
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