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ABSTRACT
Designing Convolutional Neural Networks from scratch is a time-consuming process that requires specialist
expertise. While automated architecture generation algorithms have been proposed, the underlying search
strategies generally are computationally expensive. The existing methods also do not explore the search
space ef�ciently, and often lead to sub-optimal solutions. In this research, we propose a novel Particle
Swarm Optimization (PSO)-based model for deep architecture generation to address the above challenges.
Our proposed solution incorporates three new components. Firstly, a group-based encoding strategy is
devised, which enforces the candidate networks to always follow the best practices. Speci�cally, it ensures
that the number of groups can be adjusted in accordance with the input image size. By restricting the
number of groups, we can adapt the frequency of the pooling operations toward the input image size.
As such, it ascertains the position and maximum frequency of the pooling operations always result in
a valid network architecture without the need for additional complex governing rules. Secondly, a new
velocity updating mechanism is devised, which creates new network architectures by identifying the key
network con�guration differences. Thirdly, a new position updating mechanism using weighted velocity
strengths is devised. Both the velocity and position updating mechanisms facilitate the proposed PSO-based
model to search the intermediate positions of the particles’ trajectories, allowing a better trade-off between
diversi�cation and intensi�cation to be achieved. We employ eight well-known data sets, including Convex,
Rectangles, MNIST and its variants, for model evaluation. The proposed PSO-based model achieves up to
7.58% improvement in accuracy and up to 63% reduction in computational cost, in comparison with those
from the current state-of-the-art methods.

INDEX TERMS Convolutional Neural Network, Encoding, Evolutionary Computation, Image Classi�ca-
tion, Particle Swarm Optimization

I. INTRODUCTION
Convolutional Neural Networks (CNNs) have shown supe-
rior performance on computer vision applications. Tradition-
ally, networks such as LeNet [1], AlexNet [2] and ResNet
[3] are designed by manual processes. The resulting models
are often repurposed to solve challenges in new problem
domains using methods such as transfer learning [4]. Transfer
learning involves taking a pre-trained model and training

some of the layers further using a new data set [5]. Such
a transfer learning process relies heavily on existing cer-
tain well-known deep architectures. They are often overly
complex as the original model intention has been focused
on obtaining state-of-the-art performance on complex and
varied large-scale data sets. On the other hand, hand-crafting
a new model from scratch requires specialist knowledge and
trial-and-error owing to a vast number of design choices and
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hyperparameter settings. It is a bottleneck of designing a
network for a new application domain.

As an example, a typical CNN can be divided into sev-
eral speci�c types of layers. In general, each layer has a
speci�c type. There are three distinctive types of layers, i.e.
convolutional layers for extracting deep features, average or
max pooling layers for reducing the feature map sizes, and
fully connected layers for model classi�cation. The convolu-
tional layers perform convolutional operations on the input
images for deep feature learning while the pooling layers
down-sample an input dimension to achieve better spatial
invariance by reducing the feature map size and capturing
invariances in image-like data [6]. A reduction in the size
of a feature map also results in fewer parameters, mitigating
the over�tting issue [7] and lowering the computational cost.
The �nal layer is a fully connected layer for classi�cation
purposes.

A convolution is performed by sliding a kernel of size
K over an input feature map of size M and taking the
element-wise product. The distance at which the kernel is
moved is known as stride S and the input feature map can
also be given a P padding. The process can be repeated
multiple times using different kernels to increase the number
of output channels, which is denoted as the model width,
e.g. in Wide Resnet [8]. Using larger strides reduces the
output dimensions, however a common practice is to perform
all convolution operations based on the same convolution
formulation, i.e., use an appropriate padding to ensure match-
ing between the input and output dimensions. The required
padding for each side of the input volume to perform the
same convolution formulation can be found using Equation
1, with the most common setting of S = 1.

P =
K � S

2
(1)

When creating a new model from scratch, one of the main
challenges is to select the appropriate number of convolu-
tional layers, kernel sizes, and the number of output chan-
nels. The design process also needs to consider appropriate
positions, frequencies and types of pooling layers. The com-
plexity of this task is evident with the large body of studies
developed for the construction of new CNN architectures.
The related work in this �eld has resulted in numerous hand-
crafted architectures including VGG [9], GoogLeNet [10],
ResNet [3], and DenseNet [11]. Through parameter turning,
Wide Resnet [8] was able to improve its predecessor [3]
by constructing a wider variant of the originally proposed
ResNet model. The vast parameter combinations indicate that
it is impractical to identify the most effective combinations
using a manual process, therefore, the need to automate the
process of parameter settings.

Speci�cally, the concept of automatically evolving CNNs
refers to an automatic procedure for the generation of
CNN models with diverse architectures for tackling different
problems [12], [13], [14]. Many existing studies on auto-
matic CNN architecture generation adapt the existing meta-

heuristic algorithms [15] for deep architecture search [12]
[16]. Examples include Genetic Algorithm (GA) [17] [18]
which employs selection, crossover and mutation operations
to evolve the search process. On the other hand, Particle
Swarm Optimization (PSO) [19] utilizes the personal and
global best solutions to explore the search space. IPPSO
[13] has been one of the �rst studies to apply PSO for
deep network design. Inspired by network IP addresses,
the method adopts a new encoding scheme to overcome
network representation constraints, so that complex models
can be easily encoded. EvoCNN [14] presents a GA-based
approach that uses a variable-length gene encoding strategy
to represent the building blocks of a CNN model. In view
of the impressive global search capabilities of PSO and its
computational ef�ciency (e.g. as compared with the GA),
psoCNN [20] has been proposed recently for deep network
generation. The model adapts a traditional PSO algorithm to
behave more like the GA, where a particle position is updated
by copying the layers at random from either the personal
or global best solutions. Although psoCNN outperforms a
number of existing methods, e.g. IPPSO and EvoCNN, for
deep architecture generation, the model suffers from a num-
ber of constraints. The main weaknesses is that the search
space is not thoroughly explored as new particle positions
can only be constructed from the layers embedded in either
the global or personal best solutions. This indicates that only
the new combinations of layers are explored, rather than the
entirely new architectures. Another weakness of the model is
the obligation to design rules to guard against invalid CNN
architectures. Examples of invalid model guarding rules in-
clude the restriction of employing a fully connected layer
as the �rst layer, and the limitations in pooling so that the
resulting feature map sizes are not too small.

A. RESEARCH PROBLEMS
Owing to the dif�culty in identifying ef�cient deep networks
for tackling different problems, this research aims to provide
an automatic procedure for deep CNN model generation. The
research problems addressed in this study include:

� how to encode a CNN model architecture in a way that
it is ensured to be both architecturally valid and rea-
sonably built to avoid the need for additional hardcoded
governing rules [20] or wasteful function evaluations;

� how to effectively guide each particle through a complex
search space ef�ciently in order to construct more effec-
tive networks, in the meanwhile faster than the current
state-of-the-art algorithms [20] [21];

� how to design ef�cient CNN models using an algorithm
which is both easy to understand and fast to run, so that
the approach can be easily exploited in both academia
and industry settings with limited specialised knowl-
edge, while not compromising the overall performance.

Fig. 1 illustrates an overview of the proposed deep archi-
tecture generation model.
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FIGURE 1. The proposed system architecture where the identi�ed best model is indicated by the global best solution

B. CONTRIBUTIONS

This research has the following contributions, which aim to
address the aforementioned research problems.

� A new group-based encoding strategy is proposed. Each
group contains at least one convolutional layer. Its �nal
layer is reserved as an optional pooling layer. The num-
ber of groups can be adjusted in accordance with the
input image size. By restricting the number of groups,
we can adapt the frequency of the pooling operations
toward the input image size. As such, it ascertains the
position and maximum frequency of the pooling opera-
tions always result in a valid model architecture without
the need for additional governing rules.

� A new velocity updating mechanism based on the key
network con�guration differences is developed. Exist-
ing models such as psoCNN [20] copy the layers ran-
domly from the global and personal best solutions for
architecture generation. This indicates that new models
are always generated based on the combinations of
existing layer con�gurations. To overcome such lim-
itation, the new velocity updating mechanism creates
new network architectures by identifying the key layer
con�guration differences between particles. This pro-
posed mechanism is capable of devising new network
architectures by exploring the intermediate positions of
the particles’ trajectories. It is also less dependent on the
requirement of a good random swarm initialization.

� A new position updating mechanism with weighted
velocity strengths is devised. This granular position
updating mechanism enables a thorough exploration of

the search space and increases the likelihood of gen-
erating diversi�ed network con�gurations. It employs
a weighted strength of the velocity updates for new
position generation, leading to the exploration of the
search space in various forces and scales to increase
the chances of formulating diversi�ed networks. Such
a granular movement also enables a better balance
between intensi�cation and diversi�cation, in order to
increase the chances of �nding global optimality. Both
proposed encoding and search strategies illustrate sig-
ni�cant capabilities in enhancing performance and com-
putational ef�ciency.

� A comprehensive evaluation of the proposed model with
a number of data sets is conducted. Our proposed model
compares favourably with the state-of-the-art models
such as psoCNN [20] and notable alternative methods
including EvoCNN [14]. Serving as a practical alter-
native to deep network generation, our proposed model
achieves up to 7.58% improvement in accuracy and up
to 63% reduction in computational cost, in comparison
with those from the current state-of-the-art methods.
Importantly, the proposed model is repeatable and easy
to implement with limited hardware resources.

This paper is organized as follows. We discuss the classical
search methods such as PSO and recent related studies on
deep architecture generation in Section II. Section III intro-
duces the proposed algorithm for deep architecture genera-
tion. A comprehensive evaluation is presented in Section IV.
Section V concludes this research and presents the directions
for further research.
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II. RELATED STUDIES
There are many recent applications of CNN models [22],
e.g. detecting material defects in industrial settings [23] and
addressing medical problems such as skin lesion segmen-
tation [24], fall detection [25] and health monitoring [26]
[27]. CNN models have also shown groundbreaking results in
classifying handwritten digits [1]. Object localization models
e.g. YOLO [28] [29], Fast R-CNN [30] and Faster R-CNN
[31] and object segmentation methods e.g. Mask R-CNN [32]
all make use of CNNs as the backbones to perform detection,
localization and segmentation tasks. Advances in automated
CNN architecture generation, therefore, have a signi�cant
impact in many domains.

Evolutionary algorithms such as PSO show superior search
capabilities in solving diverse optimization problems. Re-
lated studies adapt the PSO algorithm to CNN architecture
generation. Before discussing recent deep architecture gener-
ation methods, we �rst introduce the PSO algorithm.

Proposed by [19], PSO is a popular swarm intelligence
algorithm which simulates natural social behaviours, e.g. bird
�ocking or �sh schooling. The concept of PSO is to create
a swarm of particles, where each particle explores a search
space guided by the best-known position of the entire swarm,
gbest, as well as its individual best experience, pbest. In each
iteration, the particle position is updated by adding a velocity
to the current position vector. The formula for velocity calcu-
lation can be divided into three main components, i.e. inertia,
cognitive, and social components.

The inertia component shown in Equation 2 multiplies the
current velocity V for particle i in the t-th iteration with a
weight w, which controls the impact of the previous velocity
on the new velocity calculation.

inertia = wV t
i (2)

The cognitive component shown in Equation 3 multiplies
the distance between the current particle position X and its
personal best solution P by a cognitive acceleration coef�-
cient c1 as well as a random parameter r1.

cognitive = c1r1(P t
i �X

t
i ) (3)

Similarly, the social component shown in Equation 4
multiplies the distance between the current particle position
X and the global best solution G by a social acceleration
coef�cient c2 and a random value r2.

social = c2r2(Gt �Xt
i ) (4)

The acceleration coef�cients c1 and c2 control the degrees
at which a given position update is guided by the cognitive or
social component. The complete velocity updating formula
shown in Equation 5 produces the �nal velocity for the (t+1)-
th iteration.

V t+1
i = wV t

i + c1r1(P t
i �X

t
i ) + c2r2(Gt �Xt

i ) (5)

The new position in the (t+ 1)-th iteration is produced us-
ing Equation 6, based on the velocity yielded from Equation
5.

Xt+1
i = Xt

i + V t+1
i (6)

In comparison with other optimization methods, PSO
shows impressive search capabilities in solving single- and
multi-objective optimization problems [33], [34], [35], [36].
It is also relatively easy in implementation and computation.
Because of this, it has been widely adopted for optimizing
CNN models [37] [38].

One of the �rst studies of applying PSO to CNN generation
was IPPSO [13]. The IPPSO model adopts a �exible encod-
ing scheme to address the limitation of the traditional PSO
model where particles are required to have a �xed length. The
encoding scheme is inspired by IP addressing and subnetting
in computer network research. Speci�cally, an IP address
strategy is used to represent the layer parameters as a series of
bits. As an example, the kernel sizes within the search range
between 1 and 8 are encoded into 3 bits, i.e. a kernel size
of 1 is encoded as 001. A subnet is used to identify a layer
type, i.e. a convolutional, pooling, or fully connected layer.
Evaluated using a variant of the MNIST data set, i.e. MNIST-
BI (MNIST with background images), IPPSO has achieved
state-of-the-art performance. Experiments were reported as
taking on average 2.5 hours to complete for each data set.

A novel PSO variant namely psoCNN [20] was introduced
for deep architecture generation. Based on a selection cri-
terion for position updating in a swarm, psoCNN selects
the candidate layers from either the global or personal best
solution. It outperforms several state-of-the-art models for
architecture generation, including GA-based methods such as
EvoCNN [14], PSO-based methods such as IPPSO [13], and
reinforcement learning-based methods such as MetaQNN
[21]. It also depicts a low computational cost. One weakness
of psoCNN is that the particles are not able to fully explore
a search space, as compared with case in the traditional PSO
search operation. Instead, layers are copied from the personal
and global best solutions directly which signi�cantly reduces
search diversity and increases the likelihood of being trapped
in local optima.

Regardless of the search strategies, the bottleneck in opti-
mizing CNN models is the considerable computational cost
in �tness evaluation of the candidate models. Such a �tness
evaluation procedure needs to be repeatedly performed over a
signi�cant number of times during the optimization process.
Related studies such as [39] indicated that only 1.14% of
the candidate models achieve good results, and 88% provide
reasonable results, while the remaining illustrate poor perfor-
mances. The study indicates that the majority of the compu-
tational cost has been spent evaluating less optimal networks
during the search process. As such, a linear prediction model
was proposed in [39] as the performance predictor of deep
networks. Such techniques can be combined with any optimal
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architecture generation process to improve computational
ef�ciency while effectively exploring the search process.

Recently, Sun et al. [40] proposed a GA-based deep archi-
tecture generation model, namely CNN-GA, to automatically
devise networks for image classi�cation. Since the GA-based
optimization process commonly employs a �xed-length en-
coding strategy, where the length of chromosomes is �xed
and must be speci�ed beforehand, CNN-GA introduces a
variable-length encoding operation to overcome this restric-
tion. The encoding scheme considers both the skip blocks
and pooling layers. A skip block contains two convolutional
layers with �xed kernel sizes of 3x3 and 1x1, respectively,
along with a skip connection. A binary tournament selection
mechanism [41] is adopted, whereby two individuals are
selected at random based on the �tness scores. A crossover
operation is subsequently performed with respect to a random
threshold. Mutations are conducted by adding, removing, or
modifying layers. Evaluated using CIFAR-10 and CIFAR-
100 data sets, CNN-GA outperforms several existing meth-
ods such as NASNet [42] and DARTS [43].

Another deep architecture generation model, namely Au-
tomatically Evolving CNN (AE-CNN), was proposed in [44].
For deep network generation, the AE-CNN model employs
either a ResNet block [3] with three convolutional layers and
skip connections, or a DenseNet block [45] with four convo-
lutional layers and skip connections. The pooling layer is de-
signed to perform mean and max-pooling using a 2x2 kernel.
The computational cost of the search process is handled by
introducing asynchronous computation and caching, which
successfully reduces the cost of the �tness evaluation. Based
on the CIFAR-10 and CIFAR-100 data sets, the proposed
method is able to the reduce the computational cost from
the 100 GPU days as required by MetaQNN [21] to 35 GPU
days. However, their proposed strategies have not explored
kernel sizes other than 3x3 in the convolutional layers.

Gao et al. [46] proposed a gradient-priority PSO algorithm
for deep network generation for undertaking EEG-based
emotion recognition. It addresses the ef�ciency limitations of
automated architecture search in a high-dimensional search
space. A hybrid model based on PSO and the gradient descent
method is proposed for carrying out a weighted exploration
in dimensions of greater importance. The method identi�es
the optimal settings of both the convolutional and pooling
layers. To be speci�c, the kernel sizes and the number of
output channels are optimized for the convolutional layers.
For pooling layers, the optimal pooling types and the kernel
sizes are identi�ed. Instead of calculating the distance be-
tween the current particle and the global best solution, the
model computes the maximum gradient position for each
particle, which is subsequently used to accelerate the parti-
cle movement in the direction illustrating the most impact.
The method achieves an impressive performance for deep
network generation for emotion recognition in comparison
with those from existing studies.

Within the family of neural architecture search (NAS)
based algorithms, Kwasigroch et al. [47] aimed to reduce the

computational cost when generating CNN model architec-
tures from scratch. A novel network morphism operation is
combined with a greedy search algorithm (i.e. hill-climbing)
for generating an optimal architecture in undertaking malig-
nant melanoma classi�cation. The search mechanism incre-
mentally increases the model size over a number of iterations.
Savings in the computational cost are achieved by inheriting
the previously trained weights over to the new offspring.
The architecture search initially constructs a base model. It
consists of a 3x3 convolutional layer, followed by a max-
pooling layer, a second 3x3 convolutional layer and �nally
a Sigmoid activation function. This base model is trained
before multiple offspring solutions are created. The offspring
networks are created by applying an operation to extend
the parent model. The available extension methods include
inserting new layers, altering the number of output channels
on existing layers, or stacking two layers side by side and
applying an addition or concatenation operation to the output
of each layer. The offspring models are trained when training
of the parent model is completed. The best offspring model
from the current iteration is selected to become the parent for
the next iteration. Impressive results are achieved. The entire
search process requires 18 GPU hours, as compared with 38
GPU hours required by a related method reported in [44].

Wang et al. [48] proposed an ef�cient PSO model, namely
EPSOCNN, for deep architecture generation. It employs
the classical PSO algorithm to optimize a single network
block only, i.e. a dense block, to accelerate the evolutionary
process. Proposed in DenseNet [45], a dense block contains
3x3 convolutions and skip connections. Speci�cally, the EP-
SOCNN model optimizes the number of output channels
within a block using a widening factor, as well as the number
of convolutional layers with a search range between 6 and 32
within a single block. Once the best dense block is found,
a second-stage process progressively stacks the optimized
dense block to identify the optimal number of blocks, in order
to construct the �nal network. With fewer than 4 GPU days,
EPSOCNN yields an error rate of 3.58% on the CIFAR-10
data set, with an improvement of 1.12% over that in [44].
Note the study conducted has been based on the optimization
of an existing state-of-the-art network block.

There are also other related studies, such as [49] and [50],
which adopt non-evolutionary techniques such as pruning to
remove insigni�cant weights for devising deep networks.

III. THE PROPOSED APPROACH FOR DEEP
ARCHITECTURE GENERATION
We propose a novel PSO-based approach for deep archi-
tecture generation, which addresses the drawbacks of the
existing methods. The proposed PSO variant incorporates a
group-based encoding strategy as well as search operations
motivated by network con�guration variations and weighted
velocity strengths to increase search diversity. Speci�cally,
the proposed model employs a group-based encoding strat-
egy to stimulate particle natural movement while guarding
against invalid architectures. It also employs a novel particle
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distance computation strategy for calculating the differences
between the current position of particleX and the global best
gbest and personal best pbest solutions, respectively. Such a
search strategy enables the swarm to thoroughly explore the
search space between the particles and the local and global
optimal signals, in an attempt to identify the network con�g-
uration gaps, therefore increasing the chances of achieving
global optimality. To increase diversi�cation, a new velocity
updating mechanism is adopted to randomly select the layers
from either the distance between X and gbest, or the distance
betweenX and pbest. Moreover, the proposed model weights
the strength of velocity updates to implement a granular
movement to balance between exploration and exploitation.

The pseudo-code of the proposed PSO algorithm for
deep architecture generation is illustrated in Algorithm 1.
Firstly, the training and test sets are obtained for each im-
age database. A swarm of particles is initialized, where the
position of each particle presents a potential network archi-
tecture. The proposed PSO algorithm is used to evolve the
architecture and parameter settings of deep networks based
on the proposed search operations. Speci�cally, the particles
explore the search space by using a new weighted position
updating procedure. During �tness evaluation, each particle
encoded position is converted into a CNN model, which is
subsequently trained using the training data set. The average
training entropy loss is used as the �tness score to update
those of pbest and gbest accordingly, if the current solution
is �tter. The best architecture is obtained based on the global
best position identi�ed during the search process. It is then
fully trained using the training set with a comparatively
larger training epoch, and tested using the unseen test set.
We introduce each key proposed component in detail in the
following subsections.

A. THE PROPOSED ENCODING STRATEGY
A search space consists of all possible combinations of
available settings including the number of layers and layer
con�gurations. A particle represents one instance of a par-
ticular set of encoded settings which are used to describe a
model architecture. The proposed encoding strategy adopts a
group-based structure for describing a network, as shown in
Fig. 2.

The underlying rational of the group-based encoding strat-
egy is as follows. It is designed by embedding human knowl-
edge to ensure that the convolutional layers will always be
followed by optional pooling layers. The number of pooling
layers can be adjusted in accordance with the input image
size. In other words, the encoding process ensures that the
position of the pooling layers and the frequency of pooling
operations will be valid, corresponding to the input image
size. It simpli�es implementation and does not arti�cially
disrupt the natural particle movement.

Speci�cally, a group contains a number of convolutional
layers and an optional pooling layer. A network contains
multiple groups to vary down-sampling, but is limited by
gmax to ensure down-sampling does not occur too frequently.

Algorithm 1 The proposed PSO-based deep architecture
generation model

1: procedure PSO-BASED CNN MODEL GENERATION
2: Initialize training and test data sets
3: Initialize a swarm population
4: for (each t iteration) do
5: for (each particle X in swarm) do
6: Construct a new model based on the current

particle position
7: loss trainModel()
8: if loss < pbest:fitness then
9: pbest:fitness loss

10: Update the personal best position
11: end if
12: if loss < gbest:fitness then
13: gbest:fitness loss
14: Update the global best position
15: end if
16: Update the particle position by using the pro-

posed weighted position updating procedure
17: end for
18: end for
19: Save gbest and initialize the identi�ed best model

based on gbest
20: Train the �nal network using the training set and a

larger training epoch
21: Test the �nal model with the unseen test set
22: Output the classi�cation error rate
23: end procedure

The �nal group in a network is always followed by a fully
connected layer for classi�cation. This proposed group-based
deep network generation strategy ensures all the formulated
CNN models are valid whilst still providing suf�cient �exi-
bility for search space exploration without the requirement to
specify the additional guarding rules.

In addition to the layer type, hyperparameter meta-data are
encoded. In the case of a convolutional layer, we encode the
kernel size as fk 2 Rjkmin � k � kmaxg, and the number
of output channels as fcout 2 Rjoutmin � cout � outmaxg.
Pertaining to the pooling layers, we encode the pooling type
as fptype 2 Rj0 � ptype � 1g. We assign the type of
the pooling layer according to the value of ptype. The types
of pooling include the max and average poolings, or none
in which case pooling is skipped. We assign different types
of pooling based on a pre-determined threshold setting (see
Section IV for detail).

Our proposed algorithm encodes the initial network depth
as fd 2 Rj1 � d � dmaxg which is subsequently split into
groups. A network contains g groups where fg 2 Rj1 �
g � gmaxg. We initialize the number of convolutional layers
in each group by setting linitial using Equation 7 so that the
initial number of layers is evenly distributed between groups.
During the evolving process, the number of convolutional
layers for each group is further optimized. The �nal layer
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FIGURE 2. An example model containing two groups where each group contains convolutional layers and an optional �nal pooling layer

of a group is always a pooling layer, where the pooling type
or whether pooling occurs is determined by the current value
of ptype. As down-sampling halves the input dimension size,
another key advantage of the proposed group-based method
is that gmax can be set to re�ect the dimension of the input
images, thus ensuring down-sampling is omitted in situation
that can cause the model to become invalid, mitigating the
need for additional rules. In other words, we ensure the po-
sition and maximum frequency of the pooling always result
in a valid model architecture without the need for complex
governing rules such as those imposed by psoCNN, which
interrupt the natural particle movements and complicate the
implementation. In this research, we limit the number of
groups to 2, owing to the input image size (i.e. 28x28).
However, for data sets with larger images, the number of
groups can be increased accordingly.

linitial =
d
g

(7)

As the �nal group is always followed by a fully con-
nected layer, the model maps the output channel in the �nal
network layer cout to the number of target classes nclass
automatically. The parameters optimized by the proposed
PSO algorithm including their search ranges are provided in
Table 1.

B. INITIALIZATION
A swarm consists of N particles initialized with randomly
assigned positions. The �rst step of initialization is to ran-
domly set the numbers of groups g and depth d for each
particle. For each group, we initialize l convolutional layers
according to Equation 7 with one pooling layer. Initializing
a convolutional layer is performed by randomly assigning
the kernel size k and the number of output channel cout,
respectively. The value of ptype is also randomly selected for
the pooling layer.

C. FITNESS EVALUATION
When evaluating the �tness of a particle, we �rst construct a
new model based on the hyperparameter settings for a given
particle. We train the model on the training set for 1 epoch.
Next, we compute the average loss of the Adam optimizer
[51] during the training phase. This average training loss is

used as the �tness score. The overall objective of the PSO
algorithm during the optimization process is to minimise
the average loss. The model with the most optimal network
con�guration is recommended as the global best solution. It
is subsequently trained with a larger number of epochs using
the training set and evaluated with the unseen test set for
performance comparison.

D. PARTICLE DISTANCE CALCULATION
In the PSO algorithm, an individual particle X moves in
the search space by following the personal and global best
solutions. The calculation of the distance from the particle’s
personal best position pbest, and the distance from the global
best position gbest is vital for search space exploration. We in-
troduce the proposed position distance computation between
two particles, as follows.

Particles often have different lengths owing to different
architecture con�gurations. As such, on a group-by-group
basis, the shallower group is padded to the same length by
temporarily appending the empty layers. Once both particle
lengths match, the distance of particle X2 with respect to
particle X1 de�ned as X1 � X2 is calculated depending
on the layer types. For the convolutional layers, X1 � X2
is computed by subtracting the current values of k and cout
of X2 from those of X1 to return the distances represented
as �k and �cout. Two special cases exist. Speci�cally, if
a convolutional layer of X1 is empty, the output is empty.
Conversely, if a convolutional layer of X2 is empty, the
con�gurations of the corresponding convolutional layer for
X1 are copied. Pertaining to the pooling layer, X1 � X2
is computed by subtracting the current value of ptype of
X2, from that of X1 to return the distance represented as
�ptype. Fig. 3 visually demonstrates the proposed distance
computation mechanism between two particles, including the
special and normal cases. The proposed particle difference
computation mechanism is applied to the distance compu-
tation between the current particle and its personal and the
global best solutions by replacing X1 with pbest and gbest,
respectively.

In comparison with the existing studies such as psoCNN
[20], where the distance between two particles is yielded
by directly copying the layer con�gurations from pbest or
gbest, the proposed movement mechanism identi�es the con-
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Layer Parameter Range
Convolution Kernel k fk 2 Rjkmin � k � kmaxg

Number of channels cout fcout 2 Rjoutmin � cout � outmaxg
Pooling Pooling type ptype fptype 2 Rj0 � ptype � 1g
Depth Number of layers l Automatically optimized during the velocity update evolving process

TABLE 1. The optimized network parameters and their corresponding search ranges. The settings of the search ranges adopted in our experiments are detailed in
Section IV.

�guration variations between two particles as indicated in
Fig. 4 and effectively explores the search space between the
current particle and the local and global best solutions to
avoid stagnation. In other words, the proposed strategy is
able to devise new layer con�gurations, instead of inheriting
the existing layer structures from pbest and gbest directly, in
order to increase search diversity. Therefore, the resulting
model is able to better explore the search space and attain
global optimality. We explain how these position differences
are used with respect to the velocity calculation in the next
section.

E. VELOCITY CALCULATION
To calculate velocity V , we compute the distances of X with
respect to pbest and gbest. Velocity is calculated for each
group respectively using the proposed distance calculation
mechanism. Fig. 4 illustrates an example for the distance
calculation between the current particle and the personal and
global best solutions.

Next, both resulting gbest � X and pbest � X distances
are padded to the same length by temporarily appending the
empty layers to the shallower group so that the same depth is
achieved.

We iterate over m layers and choose whether to keep the
resulting velocity calculation from gbest�X or pbest�X in
the �nal velocity by generating a random number fr 2 Rj0 �
r � 1g and comparing it against a threshold �. The resulting
velocity for each element is determined using Equation 8, as
shown in Fig. 5, where g represents the group number and
m denotes the number of layers in each group. In addition,
we set �=0.5 to best match the setting of [20], in order to
facilitate a direct comparison with the existing methods.

V g
m =

(
pg

best_m �X
g
m if r � �;

gg
best_m �X

g
m otherwise

(8)

F. PARTICLE UPDATE
Velocity V obtained from the process is subsequently used
to update the position of particle X . To facilitate a thorough
exploration of the search space as well as increase the like-
lihood of generating more diversi�ed layer con�gurations,
we adopt a weighted velocity strength for position updating.
Speci�cally, unlike the original PSO algorithm where the full
velocity is used for position updating, as indicated in Equa-
tion 6, we adopt a weighting factor � to apply partial velocity
for new position generation in the (t + 1)-th iteration. The
proposed position updating formula is de�ned in Equation 9.

Xt+1 = �V +Xt (9)

where � is the weighting factor used to control the degree
at which the position of a particle is changed with respect to
the velocity. We set �=0.5 in Equation 9 based on trial-and-
error. Moreover, position updates with respect to the kernel
size k are bound purely by kmin. Likewise, position updates
with respect to the number of channels cout are bound only by
outmin, in order to ensure the values remain valid. Such a po-
sition updating mechanism provides a granular and thorough
exploration of the search space to increase the likelihood of
�nding global optimality and avoiding being trapped in local
optima.

IV. EXPERIMENTAL STUDIES
In our experimental studies, we initialize a swarm of 20
particles, a maximum of 10 iterations, and the settings in
Table 2, for identifying the optimal network con�guration.
The proposed model is implemented using PyTorch v1.5
[52]. During the optimization process, we train each model
recommended by each particle for 1 epoch with a mini-batch
size of 64. We adopt the cross-entropy loss as the �tness
criterion and Adam as the optimizer with a learning rate
of 0.001. The �nal best model indicated by the global best
solution is re-trained for 100 epochs using the training set,
which is subsequently evaluated using the test set.

All convolutions are performed with the same convolution
formulation where padding is applied to the input to ensure
matching between the input and output dimensions. Each
convolution within the CNN, except for the �rst one, is
preceded with a dropout layer with a dropout probability
of 0.5. A convolutional layer is always followed by batch
normalisation [53] and a ReLu activation function [54]. For
the pooling operations, we adopt a non-overlapping 2x2
pooling mechanism. The �nal layer of each yielded model
is a fully connected layer, which maps the outputs of the �nal
convolutional layer to the number of classes of the respective
data set.

A. ALGORITHM PARAMETER SETTINGS
We adopt the settings shown in Table 2. The values and
constraints in Table 2 are manually selected to best match
those proposed in [20], in order to facilitate a direct compar-
ison between the competing methods. As an example, the �
parameter in Equation 8 is used as the threshold to determine
if each dimension of the new velocity is generated using the
position difference from the personal or global best solution.
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FIGURE 3. Distance between particles calculated as X1 � X2

FIGURE 4. Distance calculation between particle X and pbest and gbest respectively

Name Description Value Used
kmin Minimum kernel size 3
kmax Maximum kernel size 7
outmin Minimum number of channels 3
outmax Maximum number of channels 256
dmax Maximum depth 20
gmax Maximum number of groups 2
� Layer selection boundary threshold 0.5
� Weighting factor 0.5

TABLE 2. Algorithm settings and the search space used in our experiments.
We adopt the settings to closely match those of existing studies [20] so that a
fair comparison can be made.

We set �=0.5 to best match the setting adopted by psoCNN
[20] to ensure a fair comparison. Such a setting (i.e. �=0.5)
gives an equal consideration of the position difference from
both best solutions as a reasonable trade-off. In our experi-

ments, we adopt �=0.5 in Equation 9 based on manual trial-
and-error. � is the weight factor used to control the degree
at which the position of a particle is changed with respect
to the velocity. We set �=0.5 in Equation 9 to determine the
effects of the updated velocity for new position generation.
As the benchmark data sets used have a size of 28x28, we set
gmax = 2 so that down-sampling does not cause the dimen-
sion to reduce below 8x8. Moreover, the pooling parameter,
ptype, is optimized during the optimization process as shown
in Table 1. It has the search range of [0, 1]. Equation 10 is
used to de�ne the pooling type according to the optimized
value of ptype.
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FIGURE 5. Calculating the �nal velocity by picking at random from pbest � X or gbest � X

pooling =

8
><

>:

NoPooling if ptype � 0:33;
AvePooling if ptype > 0:33 & ptype � 0:66;
MaxPooling otherwise

(10)

B. BENCHMARK MODELS
A number of hand-crafted networks and deep architecture
generation methods are employed for performance compar-
ison. In particular, several PSO-based algorithms are used
in our experiments. As an example, IPPSO [13] is adopted
which employs a test methodology consisting of 20 particles
over 10 iterations constrained to a maximum of 9 convolu-
tional layers and 3 fully connected layers.

Another state-of-the-art PSO-based architecture genera-
tion method, i.e. psoCNN [20], is also selected for compari-
son. It adopts a test methodology consisting of 20 particles
optimized over 10 iterations. The search space constraints
include a kernel size between 3x3 and 7x7 inclusive, a
maximum of 256 channels and an upper limit of 20 layers
comprising a combination of convolutional, pooling and fully
connected layers. During the training phase, each candidate
model is trained for 1 epoch using the Adam optimizer, where
the swarm objective is to minimise the average loss.

In addition to PSO-based approaches, we select the
GA-based EvoCNN [14] model as another method for
performance comparison. EvoCNN employs the selection,
crossover and mutation operators for CNN architecture gen-
eration. It generates offspring chromosomes from an initial
parent pool size of 100. The variable-length gene encoding
strategy is used to represent the CNN architectures with
diverse lengths where convolutional, pooling and fully con-
nected layers are embedded.

Moreover, MetaQNN [21] is used for performance com-
parison. It is a meta-modeling algorithm based on reinforce-
ment learning for generating high-performing CNN architec-

tures. Finally, three variants of the LeNet model [1] are also
adopted as examples of hand-crafted networks for perfor-
mance comparison. We select LeNet-1 which contains twelve
convolutional layers, two average pooling layers and one
linear layer, LeNet-4 which contains twenty convolutional
layers, two average pooling layers and two linear layers, and
LeNet-5 which contains twenty-two convolutional layers,
two average pooling layers and three linear layers.

C. DATA SETS
We employ a total of eight well-known benchmark data
sets for performance comparison, namely Rectangles,
Rectangles-I, Convex, MNIST, and four MNIST variant data
sets. These data sets are selected to aid direct comparison
between the proposed method and the aforementioned recent
models. Speci�cally, the MNIST data set [1] contains im-
ages of handwritten digits ranging from 0 to 9, with size-
normalized and centered. The data set consists of 60,000
training and 10,000 test samples.

We also employ several MNIST variant data sets for eval-
uation. These data sets are comparatively more challenging
owing to the additional distraction factors. As an example,
MNIST-RD [55] comprises rotated MNIST digits, while
MNIST-RB [55] contains MNIST digits with random back-
ground. MNIST-BI [55] consists of MNIST digits against
background images, while MNIST-RD+BI [55] contains ro-
tated MNIST digits against background images.

In addition to MNIST and its variant data sets, other
additional data sets adopted for comparison include Con-
vex [55], Rectangles [55], and a variant of Rectangles, i.e.
Rectangles-I [55], which consists of rectangles against image
backgrounds.

Table 3 provides a summary of the aforementioned data
sets.

D. RESULTS
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Data set Description Classes Training Samples Test Samples
MNIST Handwritten digits 10 60,000 10,000
MNIST-RD MNIST with rotated digits 10 12,000 50,000
MNIST-RB MNIST with random backgrounds 10 12,000 50,000
MNIST-BI MNIST with background images 10 12,000 50,000
MNIST-RD+BI MNIST with rotated digits and background images 10 12,000 50,000
Rectangles Rectangle border shapes 2 12,000 50,000
Rectangles-I Rectangle border shapes against image backgrounds 2 12,000 50,000
Convex Convex shapes 2 8,000 50,000

TABLE 3. A summary of the data sets used in our experiments, all of which have an input size of 28 x 28 x 1

1) Performance Comparison with Existing Studies
Table 4 presents the experimental results for eight data
sets. For the three LeNet models, i.e. LeNet-1, LeNet-4
and LeNet-5, the results for the MNIST data set are taken
from the original publication [1]. We conduct experiments
using the three LeNet models for the remaining data sets
and present the results in Table 4. For all other benchmark
methods, i.e. MetaQNN [21], EvoCNN [14], IPPSO [13] and
psoCNN [20], we provide the results reported in their original
studies, in order to ensure a fair comparison.

The last two rows in Table 4 present the mean classi-
�cation error rate achieved by the proposed method over
10 runs, as well as the best result from the 10 runs, for
each data set. The remaining rows are the mean and best
error rates reported by the compared methods. The results in
which the proposed method outperforms the competitors are
highlighted in bold. As illustrated in Table 4, our proposed
approach achieves a superior performance, indicated by a
reduction in the error rates reported across nearly all the test
data sets in comparison with all the baseline models, with
the same swarm size, iterations and constrains. In addition,
psoCNN is the best performing baseline method across all
data sets. In Table 5, we compare the error rates of our
proposed model against those of psoCNN [20], to clearly
indicate performance improvements.

MNIST represents a relatively simple benchmark data set
with limited room for improvement. The networks devised
by our proposed method achieve a mean error rate of 0.38%
for MNIST, which is an improvement of 0.06% as compared
with those from the networks yielded by psoCNN. The best
CNN model devised by our proposed method achieves the
best error rate of 0.35%, which is within a reasonable error
margin as compared with the best error rate of 0.32% from
psoCNN.

With respect to the MNIST-RD data set, the psoCNN
method obtains a mean error rate of 6.42%. Our method
produces a mean error rate of 3.9%, which illustrates an
improvement of 2.52%. The devised best network achieves
the best error rate of 3.23%, outperforming the best model
from psoCNN by 0.35%.

Moreover, for MNIST-RB, again psoCNN is the leading
baseline method with a mean error rate of 2.53%. Our
proposed method yields a mean error rate of 1.88%, and
outperforms psoCNN by 0.65%.

For the MNIST-BI data set, our devised networks achieve

a mean error rate of 2.46%. The psoCNN model achieves a
slightly better performance with a mean error rate of 2.4%.

For MNIST-RD+BI, our generated networks achieve a
mean error rate of 13.4%, which shows a signi�cant im-
provement of 7.58% over the mean result of 20.98% obtained
by the networks devised by psoCNN. Our identi�ed best
network also produces the best error rate of 11.61%, and
outperforms that yielded by psoCNN by 2.67%.

For the Rectangles data set, our approach achieves the
mean and best error rates of 0%. This indicates that our
approach is able to devise 10 CNN networks, all of which
achieve a 100% accuracy rate. On the other hand, psoCNN
and EvoCNN obtain the mean error rates of 0.34% and
0.01%, respectively.

For the Rectangles-I data set, our optimized networks
achieve a mean error rate of 1.57%, and outperform those
generated by psoCNN by 2.37%. Moreover, our identi�ed
best CNN model achieves the best error rate of 1.01%, which
shows an improvement of 1.21% as compared with the best
network yielded by psoCNN.

For the Convex data set, our generated CNN models
achieve a mean error rate of 1.63%, which outperforms those
produced by psoCNN by 2.27%.

We subsequently conduct a convergence curve comparison
between the proposed model and psoCNN. Fig. 6 plots the
mean entropy loss scores of the gbest solutions for both
methods in the training stage over 10 runs with respect to all
data sets. Our proposed model illustrates a faster reduction in
loss and continuous improvements in subsequent iterations
as compared with those of psoCNN. As an example, for the
MNIST-RD+BI data set, the mean loss of psoCNN �attens
after iteration 4. Comparatively, our proposed model contin-
ues to achieve improvements until iteration 8. In short, our
model shows faster convergence rates in comparison with
those of psoCNN pertaining to the architecture search for all
the data sets.

2) Effectiveness of the Proposed Encoding and Search
Strategies
To further indicate the effectiveness of the proposed en-
coding and search strategies, we conduct experiments using
purely the proposed encoding strategy as well as the overall
proposed model. Speci�cally, Table 6 illustrates the mean
results of our model (1) with only the proposed encoding
strategy, and (2) with both the proposed encoding and search
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Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
Hand-crafted architectures

LeNet-1 1.70% [1] 19.3% 7.50% 9.80% 40.06% 0.08% 16.92% 10.61%
LeNet-4 1.10% [1] 11.79% 6.18% 8.96% 33.83% 0.05% 16.09% 8.39%
LeNet-5 0.95% [1] 11.10% 5.99% 8.70% 34.64% 0.07% 12.48% 8.40%

Reinforcement learning techniques
MetaQNN (best) [21] 0.44% - - - - - - -

Evolutionary optimization techniques
EvoCNN (best) [14] 1.18% 5.22% 2.80% 4.53% 35.03% 0.01% 5.03% 4.82%
EvoCNN (mean) [14] 1.28% 5.46% 3.59% 4.62% 37.38% 0.01% 5.97% 5.39%
IPPSO (best) [13] 1.13% - - - 33% - - 8.48%
IPPSO (mean) [13] 1.21% - - - 34.50% - - 12.06%
psoCNN (best) [20] 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.70%
psoCNN (mean) [20] 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.90%

Our system
ours (best) 0.35% 3.23% 1.8% 2.2% 11.61% 0% 1.01% 1.36%
ours (mean) 0.38% 3.9% 1.88% 2.46% 13.4% 0% 1.57% 1.63%

TABLE 4. Experimental results compared against various benchmark methods in terms of error rates. Results in bold indicating a reduction in error rate when
compared with the benchmark methods. For the LeNet models, we report the results for MNIST taken from the original study [1] alongside our own results for the
remaining data sets. The results of MetaQNN, EvoCNN, IPPSO and psoCNN are extracted from their original studies, i.e. [21], [14], [13] and [20], respectively.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
ours (best) 0.35% 3.23% 1.8% 2.2% 11.61% 0% 1.01% 1.36%
ours (mean) 0.38% 3.9% 1.88% 2.46% 13.4% 0% 1.57% 1.63%
psoCNN (best) [20] 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.70%
psoCNN (mean) [20] 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.90%
error difference (best) 0.03%(+) 0.35%(-) 0.01%(+) 0.30%(+) 2.67%(-) 0.03%(-) 1.21%(-) 0.34%(-)
error difference (mean) 0.06%(-) 2.52%(-) 0.65%(-) 0.06%(+) 7.58%(-) 0.34%(-) 2.37%(-) 2.27%(-)

TABLE 5. The mean error rates over 10 runs for the proposed method and psoCNN [20], along with the performance differences between the two methods (where
the (-) symbol indicates that the proposed model is better and the (+) symbol indicates that the proposed model is worse).

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
psoCNN (best) [20] 0.32% 3.58% 1.79% 1.90% 14.28% 0.03% 2.22% 1.70%
psoCNN (mean) [20] 0.44% 6.42% 2.53% 2.40% 20.98% 0.34% 3.94% 3.90%
ours (best) encoding + copy 0.36% 3.32% 2.07% 2.44% 15.68% 0.02% 1.58% 1.47%
ours (mean) encoding + copy 0.42% 4.76% 2.25% 3.43% 18.00% 0.47% 2.30% 1.94%
ours (best) 0.35% 3.23% 1.8% 2.2% 11.61% 0% 1.01% 1.36%
ours (mean) 0.38% 3.9% 1.88% 2.46% 13.4% 0% 1.57% 1.63%

TABLE 6. Result comparison between our model using the encoding strategy only, and our model using both encoding and search strategies, over 10 runs.

Model MNIST MNIST-RD MNIST-RB MNIST-BI MNIST-RD+BI Rectangles Rectangles-I Convex
psoCNN (mean) [20] 276 47 49 56 43 14 46 33
ours (mean) encoding + copy 268 43 44 29 29 7 42 30
Speed improvement encoding + copy -3% -9% -10% -48% -33% -49% -8% -6%
ours (mean) 192 22 23 21 26 5 33 29
Speed improvement -30% -53% -53% -63% -40% -61% -29% -11%

TABLE 7. The mean search time in minutes of our experiments using (1) purely the proposed encoding strategy, and (2) the overall proposed model for the training
and search phase over 10 runs and their corresponding improvements against those of psoCNN. The (-) symbol indicates that the proposed strategies are better in
computational costs. All experiments have been conducted using one NVIDIA GeForce RTX 2080Ti consumer GPU.

mechanisms, over a set of 10 runs. The results from the
proposed encoding strategy only are shown in rows 3 and 4 in
Table 6. When evaluating the encoding strategy in isolation,
we adopt the same copying strategy of psoCNN [20] as the
search operations. Speci�cally, we copy the layers randomly
from either the global or personal best position using the
same decision boundary setting of � = 0:5, as that used in
psoCNN. When using the proposed encoding strategy only,
the results indicate a reduction of the mean error rates for
6 out of 8 data sets, as compared with those of psoCNN,

as presented in Table 6. Furthermore, the results indicate a
further improvement across all 8 data sets when both the
proposed encoding and search strategies are combined, as
illustrated in rows 5 and 6 in Table 6. This clearly ascertains
the capability of the proposed search mechanisms in enhanc-
ing the performance over and above the improvements from
adopting only the proposed encoding strategy.
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3) Computational Cost Comparison
We present a computational cost comparison for the archi-
tecture search during the training stage between the proposed
model and psoCNN over 10 runs in Table 7. To indicate
the effectiveness of the proposed strategies in reducing the
computational cost, we present the mean search time (in
minutes) using (1) solely the proposed encoding strategy,
and (2) the overall proposed model. Our model and psoCNN
adopt the same experimental settings, i.e., with the mean
training entropy loss as the �tness score and a training epoch
of one. In addition, we use the same swarm size of 20,
and the same maximum iteration cycle of 10 so that the
search duration of all methods can be compared directly and
fairly. All the experiments are conducted using one NVIDIA
GeForce RTX 2080Ti consumer GPU.

When evaluating the encoding strategy only, we employ
the same copying search operation as that of psoCNN. We
report the mean computational costs of our model using
purely the encoding strategy in row 2 and its cost reduction
against those of psoCNN in row 3. As indicated in Table
7, our model with purely the encoding strategy illustrates
enhanced computational ef�ciency in comparison with those
of psoCNN for all data sets. This is owing to the initializa-
tion of the swarm with valid and comparatively reasonable
network architectures using the proposed encoding strategy
that are able to accelerate the search process. In addition,
we report the mean computational costs of our model using
both the proposed encoding and search strategies in row 4
and its cost reduction against those of psoCNN in row 5.
The results indicate that the overall proposed model shows
a greater computational cost reduction across all data sets,
owing to the ef�ciency of the proposed search mechanisms
for architecture evolution during the search process.

Because of the adoption of different �tness evaluation
strategies, we do not present a direct computational cost
comparison with other baseline methods, i.e. MetaQNN,
EvoCNN and IPPSO. Speci�cally, these models train and
test each optimized candidate network using the training and
validation sets, respectively, which increases the search times
due to the use of additional steps (which are computationally
heavy). According to the original studies, MetaQNN [21]
indicates a search time of 100 GPU days for the MNIST
data set, EvoCNN [14] requires average 2-3 days using
two GTX 1080 GPU cards for each data set, while IPPSO
[13] consumes average 2.5 hours for the MNIST, MNIST-
RD+BI and Convex data sets, respectively. Our proposed
model and psoCNN illustrate better computational ef�ciency
in comparison with those of the aforementioned models in
most of the test cases.

E. DISCUSSION
1) Theoretical Justi�cation
In this research, we propose a group-based encoding strategy
as well as new velocity and position updating mechanisms
based on the key network con�guration differences and
weighted velocity strengths. The advantages of our proposed

model in comparison with the most closely related one, i.e.
psoCNN [20], are as follows.

The search process of the psoCNN model [20] gener-
ates a particular type of layer in any number (e.g. multi-
ple convolutional or pooling layers). It also generates any
combination of convolutional, pooling and fully connected
layers for devising CNN architectures. Therefore, psoCNN
requires additional governing rules to ensure the validity of
the generated networks, which interrupt the exploration ca-
pability of the particles in the search space. In order to tackle
such limitation, the proposed group-based encoding strategy
ensures all the formulated CNN models are valid without
the requirement of additional governing rules. Speci�cally,
each group contains at least one convolutional layer, which
is followed by an optional pooling layer. In other words, the
pooling layer is always positioned as the �nal layer in the
group. Moreover, the number of groups can be adjusted in ac-
cordance with the input image size. By restricting the number
of groups, we can adapt the frequency of pooling operations
toward the input image size. This ensures the position of
pooling layers and the frequency of pooling operations are
valid with respect to the input image size without the need for
any additional governing rules. Instead of generating several
fully connected layers as in psoCNN, our model only attaches
one fully connected layer as the last layer of the �nal group
in a network, which is similar to the approach in [3].

Moreover, in psoCNN [20], instead of creating new layer
con�gurations, the existing layer con�gurations from the
personal and global best solutions are copied directly in
the velocity updating operation (as illustrated in the right-
hand side in Fig. 7). In contrast, our model employs the
key layer con�guration differences between the current par-
ticle and the personal and global best solutions for new
velocity generation (as illustrated in the left-hand in Fig. 7).
Therefore, the proposed model is more capable of devising
new network architectures using intermediate positions of
the particles’ trajectories. In addition, we employ a new
position updating mechanism that takes a partial strength of
velocity updates to generate new positions. This provides the
capabilities for the particles to explore the search space with
various momentums and scales, in order to increase search
diversity. Such a search mechanism allows a more granular
exploration pertaining to the in-between positions, increasing
the chances of devising more diversi�ed networks. Therefore,
the proposed model is less reliant on initialization, along with
enhanced capabilities in evolving architecture generation.

2) Experimental Observations in Comparison with Related
Studies
In this section, we discuss how our encoding strategy and
search mechanisms lead to improvements in both speed and
accuracy in comparison with those of psoCNN [20] through
experimental observations. We �rstly explain the rational of
our encoding strategy in enhancing both speed and accuracy.
Then, we clarify the rational of the combined search and
encoding strategies in further improving accuracy and speed
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FIGURE 6. Convergence curves of the proposed algorithm and psoCNN. The mean losses of 10 runs are plotted over 10 iterations for all data sets.

of the �nal model.

To identify the contribution of our encoding strategy in
terms of computational ef�ciency, we isolate the encoding
strategy from the proposed search operations by combining

it with the copying search strategy used in psoCNN [20].
We record the time taken to perform the architecture search
in the training phase. The detailed computational costs are
presented in Table 7. As discussed earlier, the results indicate
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that across all 8 data sets, our encoding strategy improves the
computational costs as compared with those of psoCNN [20].
Speci�cally, we observe a reduction in computational costs in
the architecture search stage by up to 49% on the Rectangles
data set. As indicated in Table 7, our proposed encoding
strategy is the primary reason for the enhancement of com-
putational ef�ciency. As an example, the encoding method of
psoCNN allows the construction of models containing a large
number of fully connected layers. In some cases, the models
created by psoCNN contain 8 consecutive fully connected
layers, resulting in a long training time. Subsequent iterations
attempt to eliminate the additional fully connected layers
and �nally recommend a model with one fully connected
layer towards the end of the search process. In contrast, as
discussed above, the proposed encoding strategy avoids such
a problem by �xing the number of fully connected layers
to one, as well as �xing its position to the �nal layer of
the model, therefore contributing toward the reduction in
computational costs.

To identify the contribution of our encoding strategy in
terms of accuracy, Table 6 shows that by applying our en-
coding strategy on its own and adopting the same veloc-
ity updating mechanism as that of psoCNN (i.e. the layer
copying strategy from pbest or gbest), it results in an im-
provement in the mean accuracy rates (of 10 runs) pertaining
to the MNIST, MNIST-RD, MNIST-RB, MNIST-RD+BI,
Rectangles-I and Convex data sets. These empirical results
reveal that psoCNN has constructed pooling layers one after
another, leading to poor performing networks and wasteful
function evaluations. The experimental results also indicate
that the use of hardcoded rules in psoCNN for ensuring
model validity interrupts the natural particle movement. This
is ascertained by the aforementioned accuracy improvements
when applying our encoding strategy alone. The proposed
encoding strategy ensures that undesirable candidate models
such as those containing stacks of pooling layers are never
constructed, since the pooling position is determined by a
group-based structure in our scheme. Each group can only
contain at most one pooling layer, which is always positioned
as the �nal layer in the group after at least one convolutional
layer. Pooling layers, therefore, are never stacked. Further-
more, rules that can interrupt the natural particle movement
such as eliminating excessive pooling layers are not required
in our scheme, as the maximum number of pooling layers is
determined by the maximum number of groups. Therefore,
our model eliminates the possibility of having excessive
down-sampling operations that can cause the network to
become invalid, mitigating the need for additional governing
rules. Indeed, our encoding strategy ensures that each devised
model is reasonably constructed that helps exploit the search
space in a comprehensive manner.

As indicated in Table 6 and Table 7, combining our pro-
posed search mechanisms (both velocity and position updat-
ing operations) and our encoding strategy together results
in further improvement of accuracy and computational ef�-
ciency as compared with those yielded by using the proposed

encoding strategy alone. We observe that by combining both
strategies together, the mean accuracy rate increases by up
to 7.58% pertaining to the MNIST-RD+BI data set and the
mean computational cost reduces by up to 63% pertaining to
the MNIST-BI data set. This suggests that the copying search
strategy adopted by psoCNN is less �exible, because such
a strategy heavily relies on a good initialization. It does not
create new layer structures for new velocity generation, but
simply copying the existing layer con�gurations from either
the pbest or gbest solutions, as illustrated in the right-hand
part of Fig. 7. Comparatively, our proposed velocity updating
mechanism combined with a granular weighted movement
operation is able to formulate completely new particle solu-
tions by identifying the key layer con�guration differences
between particles, as shown in the left-hand part of Fig. 7.
In other words, our search strategies are able to yield new
layer con�gurations which cannot be achieved by the copying
operation of psoCNN. In addition, owing to the capabilities
of searching the intermediary positions, our velocity and
granular weighted position updating mechanisms have better
diversi�cation and intensi�cation, leading to better devised
networks, as ascertained by the empirical results. In short,
both proposed encoding and search mechanisms illustrate
superior ef�ciency in terms of speed and performance in
comparison with those of psoCNN.

We have also observed that the proposed model and
psoCNN are signi�cantly faster than the reinforcement learn-
ing and other evolutionary optimization methods for deep
architecture generation, whilst not sacri�cing accuracy. The
search cost of our proposed model consumes 5 to 192 min-
utes, while that of psoCNN consumes 14 to 276 minutes,
for all the test data sets. On the other hand, MetaQNN [21],
which is based on reinforcement learning, requires 100 GPU
days for processing the MNIST data set, while EvoCNN [14],
which uses a GA-based method, needs on average 2-3 days
of processing time with two GTX1080 GPU cards for each
data set.

3) Discussion of Identi�ed Models
The best CNN models identi�ed by our proposed method
for all the test data sets are shown in Table 8. In some
instances, such as on the Rectangles data set, numerous
models that achieve the same best performance (i.e. 0% error
rate) are identi�ed. While the computational cost is not an
objective in our �tness function, signi�cantly smaller models
are generated in this study as compared with those reported
by psoCNN. As an example, the best model contains two
convolutional layers with 70 and 60 channels, respectively,
for the Rectangles data set, whereas the network produced by
psoCNN contains three convolutional layers with 139, 113,
and 226 channels respectively. Average pooling is the most
common method of pooling identi�ed in our experiments,
which is the same observation found in related studies.

The empirical results indicate that performance can be
further improved by using more iterations and larger pop-
ulation sizes. For further research, we intend to extend the
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FIGURE 7. Comparison of particle distance calculations between our proposed approach and the psoCNN method

proposed method by encoding the skip connections, allowing
deeper models to be generated. Such networks can be used
for undertaking complex data sets that require deep model
architectures.

V. CONCLUSIONS, LIMITATIONS AND FUTURE WORK
We have proposed a novel PSO-based algorithm for au-
tomatic CNN architecture generation. The proposed algo-
rithm addresses two weaknesses of the current state-of-the-
art methods. Firstly, a group-based encoding strategy has
been introduced to remove the need for additional hard-
coded rules. Our strategy adopts a natural particle movement
and simpli�es implementation. Secondly, a novel particle
distance calculation scheme has been proposed. It performs
distance calculation at a parameter level to address the draw-
back of the existing methods which copy the layers directly
at random from either pbest or gbest. Moreover, a weighted
position updating mechanism has been developed, with the
use of a weighting factor to provide granular movement
control in the search space. Combining the proposed distance
computation strategy with the new position updating mecha-
nism, our method is equipped with superior search diversity
and is less dependent on good initialization, as compared
with related methods such as psoCNN.

With an identical setting, i.e. no data augmentation, the
same swarm size, iteration numbers, and search ranges, we
have demonstrated that our method achieves superior per-
formance in eight benchmark data sets, and achieves up to
7.58% improvement in accuracy and up to 63% reduction
in computational cost in comparison with those of existing
methods. The convergence curves of the proposed model
across all data sets indicate a steady reduction in loss, indi-
cating convergence of the particles without being trapped in
local optima.

One limitation of this study is the model settings shown
in Table 2. The current settings are based on the constraints

reported in the related paper [20], in order to ensure that a fair
comparison can be made. It is envisaged that optimal settings
can be formulated, e.g. with the use of adaptive strategies
for � and �. Indeed, it is bene�cial to devise an adaptive
strategy to alter � slightly after each iteration so that the
position differences to the global best solution are given more
emphasis than those from earlier iterations.

In future work, we will explore adding skip connections,
which are a key requirement in deep architectures, for the
generation of new models. Moreover, we will explore hybrid
deep networks such as the combination of CNN with Long
Short-Term Memory (LSTM) networks. Such hybrid models
will be useful for undertaking various image understanding
and time series prediction tasks. From the algorithm per-
spective, the impact of larger swarm sizes and iterations will
be explored, along with adaptive selection from the distance
between X and gbest as the iterations progress for velocity
updating, in order to further aid exploration. On the other
hand, hybrid search strategies based on the integration of the
proposed model with other swarm intelligence algorithms,
e.g. Fire�y Algorithm [56], Cuckoo Search [57], Dragon�y
Algorithm [58] and Grey Wolf Optimizer [59], will be in-
vestigated to further enhance performance. Furthermore, we
will apply the proposed algorithm for CNN model generation
in other computer vision tasks such as object detection and
visual question generation.
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